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ABSTRACT

The light use efficiency (LUE) approach is ofteedsvith remotely sensed data products and
meteorological data to estimate net primary pradacfNPP) from local to global scales. To
estimate local NPP, detailed information of spa@ad temporal dynamic change on
vegetation within local landscape is increasinghportant. Recently, the advancement of
technology in sensor web has shown to be promi&ngmproving the estimation of local
NPP due to its ability to provide real-time dattll $e challenge ahead to researchers is how
to integrate remote sensing and the sensor webvd#tavariability in spatial and temporal
scale for better estimation of NPP at local levEhe objective of this study was to
demonstrate a method for acquiring local NPP esitoms by integrating remote sensing and
sensor web data at Gendt location.

The light use efficiency model has been found tortmee appropriate for NPP estimation at
local scale level in comparison to other methodd was adopted in this thesis. Spatial
variability in remote sensing datasets were hargezhiinto common resolution based on
aggregation technigue while temporal variabilitysensor web datasets were harmonized into
daily time step based on integration and averagentgques. Therefore, LUE method was
used to integrate the remote sensing and sensodataland the results were investigated by
comparing them with two coarse scale MODIS stangmodlucts. The results attained from
LUE model shows that high annual NPP values wetaimdd for cropland and grassland
compared to other vegetation types. The compangas done based on the derived daily
GPP and annual NPP 2007 with MODIS product 8 day® @GMOD17A2) and annual NPP
(MOD17A3) 2006. Correlations were found at sometmns with cropland and grassland for
GPP while no correlation was found for annual NfhBugh at some locations with grassland
and cropland the values of NPP seemed to be mudercl Sources for the difference in
results were identified as change in managemettteoparcel/size or land use types at some
locations within the study area since the comparisas based on different years. The use of
different light use efficiencies in the estimatioindaily GPP is also considered as a source of
differences. Additionally, the use of different gareters in the estimation of growth and
maintenance respiration were recognized as sourths. demonstrated method was
successful for data integration but the validityhed results obtained need further study.

Keywords. Gross primary production, Net primary productibight use efficiency, MODIS,
Remote sensing, In-situ sensing (sensor web).
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1 INTRODUCTION

1.1 Background

Net primary production (NPP) is the net amount @& energy converted to plant organic
matter through photosynthesis. It is the rate atklviegetation in an ecosystem fixes £O
from the atmosphere (gross primary productivity PGERinus the rate at which the vegetation
returns CQ to the atmosphere through plant respiration. beme years, modeling NPP of
terrestrial ecosystems has been a subject of isiag@nterest because of concerns about the
global terrestrial carbon cycle in relation to dite change.

The practical importance of NPP is in its utility @ measure of crop yield, forest production
(Milner et al., 1996), and other economically amgially significant product of vegetation
growth. Regular monitoring of global terrestrialt @rimary production (NPP) and gross
primary production (GPP) is needed for the purposkegvaluating trends in biospheric
behavior (Nemani et al., 2003), and investigatiaggé-scale patterns in food and fiber
production(Running et al., 2004). Consequentlyinesing global primary productivity and
monitoring changes will play an important role etecting the state of biosphere.

At the global scale, terrestrial NPP is one of thest-modeled ecological parameters, with
models that differ markedly in approach and compfesften yielding comparable estimates
(Field et al., 1995). Field et al. (1995) also woteat similarities at global scale reveal little
about a model's ability to estimate local or reglddPP, NPP for subannual time increments,
or NPP under conditions of changed climate or gsedistributions (Field et al., 1995).

At the local scale, NPP can be defined and measarédo experimental ways as biomass
produced during the growing season or as net galsaege of plants, namely, the difference
between gross primary production (GPP) and autbtcospiration (Churkina and Running,
1998). However, measurements based on biomass adatdby far the most common.
Measurements based on biomass must confront tHeermde of quantifying below ground
processes, including root production and exudafiada et al., 1988). Measurements based
on gas exchange are complicated by the fact thatviery difficult to measure either GPP or
autotrophic respiration (Ra) in isolation. Gas exuje measurements at the leaf scale
typically measure the sum of photosynthesis anidrésgpiration.

Satellite remote sensing is an attractive tool doop area and NPP estimates because it
provides spatial and temporal information on theatmn and state of crop canopies. Recent
advances in remote sensing, in terms of both nesose and algorithm development for data
processing, have shown a promising potential fanglmear real-time monitoring of key
biophysical parameters of vegetation, for inpubimtn ecosystem model. This includes
consistent and timely availability of land surfggeducts from EOS/MODIS.

In the last few years, a coordinated strategy heenlkdeveloped to improve estimates of
terrestrial net and gross primary productivity loyegrating multiple, complementary and
independent data sources. This is because envimdahmwonditions change over the earth’s
surface, consequently, NPP of terrestrial vegetatiaries over space and time. Spatial
variations of NPP are related to factors such asaté, vegetation distribution, and land use
across the planet from local to global scales (€taa., 2004). The advanced technologies of
today make it possible to develop integrated apgvesito Earth sensing that encompass both
remote and in-situ sensing. The ongoing challengeientific researchers is how to develop
the approach that integrates an in-situ sensoramdlremote sensing imagery data to provide
superior estimates and predictions of biomass caoyl yield.



Different approaches have been used to estimatomragxchange from regional to global
scales (Goetz and Prince, 1998kosystem models play an important role in syn#negi
such disparate time/space data into single coharalysis of terrestrial carbon fluxes.
However, the applicability of such models at anrapenal level is often limited by the
fundamental drawback of large input parameter requents, for which some may require
acquisition in near real time (Hazarika et al., 200

The recent advancement of sensor web technologystasn a promising potential in the
analysis of temporal dynamic change on vegetationditions within local landscape.
Information/measurement from sensor web is ondefkey variables driving ecosystems at
local to global scales. Sufficient availability afal-time sensor web data has increased the
understanding and detection of vegetation statusanéd landscape. This has increased the
opportunity of better estimation local NPP wheradlause variability is dominant across
landscape.

1.2 Problem definition

Net primary production is highly variable in spaaed time. Spatial variations of NPP are
related to factors such as climate, vegetatiomidigton, and land use across the planet from
local to global scales (Cao et al., 2004). In ustderding the spatial variability of NPP at the
local scale level, detailed information in parteubvegetation distribution and climatology at
large spatial scale is highly important. TherefddP estimation at local scale level has
much influence on detailed and finer resolutioradat both spatial and temporal.

Different literature sources have tried to docuraesgveral methods used to estimate NPP
from regional to global. Some of these methodsuaezl remote sensing data while others are
combined remote sensing and meteorological dataeMer, application of these datasets can
easily be distinguished based on local or globallirsg. Detection of current status of
vegetation growth or net primary productivity atdb level can only be determined with
detailed information on landscape variability anghly temporal resolution datasets. Such
information is difficult to acquire based on ongdyof dataset either remote sensing or
meteorological data. Though remote sensing is naws chvailable in real time such as
MODIS product but its coarse scale has been a égrelvin use at local level. Their resolution
ranges from 250m to 1km for the MODIS instrumemsd & 1km and above for the other
instruments (Chien et al., 2005). In general rensatesing is still recognized for providing
spatial detailed information at local level thoughlow temporal scaling. Recently, the
advancement of sensor web technology has beenmeedgfor providing real time data
which is useful in temporal scientific applicatiddased on local NPP estimation, these sensor
web data with high temporal scaling is more sigaifit in detecting current vegetation
condition. Therefore, local NPP can be better estioh by combining or integrating different
data sources.

In the past, carbon budgets and estimates of NRE mestly been calculated on a yearly
basis. Recent technological developments in coatisumeasurements have made it possible
to make NPP estimates with a daily time resolutidhis is more profound in detecting
temporal dynamic change of vegetation within Idealdscape. The advancement of today’s
technologies has made it possible to develop iatedrapproaches to Earth sensing that
encompass both remote and in-situ sensing (Teitled., 2005)So far there is only limited
number of published literatures on methods for damp real-time sensor web data and



remote sensing data for improving NPP estimatidrer&fore it is the aim of this research to
develop a method that will integrate sensor webranabte sensing for the purpose of better
estimation of NPP productivity at local scale levels the intent of this research to apply the
method at Gendt area as a test case and examinmsbibility of implementing the same
approach elsewhere. The derived NPP productivitly lve compared with MODIS product
(MOD17A2/A3). This is an important step for thissearch in order to understand and
guantify the quality and accuracy of the results.

1.3 Research objectives

The aim of this thesis is to demonstrate a metloodntegrating remote sensing and sensor
web for estimation of NPP at the Gendt area albedWaal (near the city of Nijmegen). This
objective is achieved by:

« Assessing the potential of combining real-time semgeb data with earth observation
data for mapping NPP (with the purpose of estingatirop productivity).
« Generating a time series of NPP maps for vegetatiea.

1.4 Research questions

1. Which possibilities existing for integration of rete sensing data and sensor web data
for NPP estimation?

2. Which method can be implemented for NPP estimatictme present study and how
can this method be parameterized?

3. Which methods can be used to deal with differemcapatial and temporal resolution
of different data sources?

4. Are the results consistent with MODIS products (MOB2 and MOD17A3)? In case
of differences can these be explained?

5. Which are the possibilities for data comparison gatidation to assess the quality of
the developed NPP estimation method?

6. Can the method approach of the research be aptedhere?

1.5 Report outline

The general background information of the reseavels introduced in chapter one. This
includes the problem definition, research objedjuwesearch questions, and report outline.
Chapter two reviews methods for integration rens®asing data and sensor web data for
NPP estimation. Model parameterization and datairespents are also discussed in this
chapter. The implementation of the method usedhis gtudy is discussed in Chapter three.
Preprocessing of meteorological data, the impleatemt of a local light use efficiency model
for GPP/NPP estimation, and methods comparisoalad®cumented in this chapter. Chapter
four presents the results of the application of thethod on the Gendt area. Also a
comparison of the derived GPP/NPP with (standar@DNB products is made. Chapter five
discusses the results of the case study. Finalwpter 6 lists the conclusions and
recommendations raised from the study. In the emimh, the results are discussed with
regards to the research questions. The appendices @ the end of the report contained the
scripts used in this thesis.



2 LITERATURE REVIEW

2.1 Overview - NPP model

For many years remote sensing techniques have temagnized for NPP estimation at

regional to global scale levels. Recently, muchrdibn has been given to the development of
method(s) that can integrate different data souteesnprove NPP estimation. Since then,

different methods have been developed for NPP asbmand these methods differ in terms
of on factors such as the resolution of the inpatad global or regional scale, use of

biophysical factors or climate variables parametniedels, ways of processing, and general
assumptions. The method used for NPP estimatebeaiscussed in three broad categories,
namely; light-use efficiency (LUE) approach, climatependent approach and other (land-
biosphere) models. Light use efficiency approacksugemote sensing and meteorological
data in the estimation of NPP. The climate dependpproach uses empirical relationships
between climate variables and vegetation attribsteh as cover types, allowing NPP to be
estimated as a function of climate variables sueh t@mperature, precipitation, and

evapotranspiration. This thesis will explore andie® the method that is capable of

integrating remote sensing and sensor web.

2.2  NPP modeling approach

There are now a large number of efficiency modelsiclv differ in their detail and
complexity, but all are based on the idea that Kadge of incident radiation and light-
absorbing properties of the plant canopy can deterthe maximum potential photosynthesis
for that canopy. The models which use the LUE apginocan be categorized as production
efficiency model (PEM) or a light-use efficiency UE) model. Each group has different
strategies adopted by each model. According tonfRwet al., 1999, Cramer et al., 1999b),
production efficiency models were identified as @GASLO-PEM, TURC and SDBM all of
them derived NPP at global scale level. The lige¢ efficiency model has been used to
estimate GPP and net primary production (NPP) mbws spatial and temporal scales.

2.2.1 LUE (Light Use Efficiency) model

Predicting the gross primary productivity (GPP)tefrestrial ecosystems has been a major
challenge in quantifying the global carbon cycleari@dell et al., 2000). Among all the
predictive methods, the light use efficiency (LUEBpdel may have the most potential to
adequately address the spatial and temporal dysamhiGPP because of its theoretical basis
and practicality (Running et al., 2000). Light-wséciency (LUE) approach is a concept used
for NPP estimation and was explored by Monteith/@,91977). Now days this approach has
been used in many models to estimate carbon ufakegetation. The light-use efficiency
(LUE) approach is widely used to estimate NPP edelascales because it is conceptually
simple and can be directly parameterized with rensensing data (Ahl et al., 2005, Gower et
al., 1999). According to Gower et al. (1999), tHéH approach has two advantages, namely
1) it is simple and some evidence exists to sugipastmaximum light use efficiency may be
conservative within major vegetation classes. 2¢ Tiaction of photosynthetically active
radiation absorbed by green leaves in a canfAd®yAR) can be remotely sensed, as has been
shown in both empirical (Daughtry et al., 1992, dsimerg and Waring, 1997) and theoretical
studies (Myneni et al., 1995).



The light use efficiency model described here esdbncept used by Turner et al. (2005) for
estimating GPP and NPP respectively. The speciiimponents of the algorithm that

produces the NPP/GPP products include climate atellise-based inputs as well as a look-
up table for biome-specific parameters relatedhot@synthesis and autotrophic respiration.
The components of the model NPP/GPP algorithm esertbed by Running et al. (2000).

Gross primary production is derived on daily basis

GPP =|PAR x fPAR X €g-max* Stmin X Svpp), 1)

where GPP is gross primary production (gCday ), |PAR is incoming photosynthetically

active radiation (W or MJ m?), fPAR is fraction of|PAR absorbed by the plant canopy,
eg-max IS Maximum light use efficiency (gC MY, Srmin is minimum temperature scalar (0 -1),
andSypp is vapor pressure deficit scalar (0 —1).

Net primary production is derived on daily basigl aext on annual basis as the total daily net
primary production.

NPPyiy = GPP R, (@)

Ra=Rn + Ry 3)
365

NPPy i = Z NPP, (4)
i=1

where NPP is net primary production (gC%day?), R. is autotrophic respiration (gC
m2day ), Ry is maintenance respiration (gC%ay %), a function of biomass (derived from
LAI) and temperature, summed across biomass compats, andRy is growth respiration
(gC mi*day™), a function of biomass growth, summed across BEstompartments.

2.2.2 CASA (Carnegie-Ames-Stanford-Approach) model

The CASA (Carnegie-Ames-Stanford-Approach) modekigproduction efficiency model
introduced by (Potter et al., 1993). This modeinestes NPP based on the LUE approach. It
uses a combination of ecological principles, sidgeltdata, and surface data to predict
terrestrial NPP on a monthly time step. This madadriven by satellite data as well as by
temperature, precipitation, solar radiation, lamder and soil classifications (Hicke et al.,
2002). CASA computes NPP as a function of the diembphotosynthetically active radiation
(APAR), a maximum potential light-use efficiencyriadble ¢, temperature (Ts) and moisture
(Ws) scalars that represent climate stresses oatatian light-use efficiency. The CASA
model incorporates a structure that allows LUE&py\seasonally. The potential LUE value is
empirically derived, and may be reduced by envirental constraints (Field et al., 1995).
The CASA model estimates NPP for each time step as:

NPP = Z PAR* fAPAR* £* At (5)
where PAR is the total incident photosyntheticaltyive radiation (MJ), fAPAR the fraction

of PAR absorbed by photosynthetic tissues (unitjesthe light use efficiency (LUE) (g MJ
'PAR), and the summation is taken over the groweagsn.



Light use efficiency is calculated as the product of an optirfabnd its temperature and
water stressors (Tao et al., 2005) as stated below:

e=¢* TLT2Ws (6)

where ¢* is the global maximum light use efficiency for@aie-ground biomass when the
environmental conditions are optimal, and T1, T2d aWs are scalars representing
environmental stressors that reduces LUE (Field.ef1995).

2.2.3 GLO-PEM (Global Production Efficiency Model) model

GLO-PEM was developed to simulate GPP and NPP lavge areas using algorithms driven
entirely with remotely sensed measurements. Thiglenaos a semi-mechanistic plant
photosynthesis and respiration model driven emtingith satellite observation from the
Advanced Very High Resolution Radiometer (AVHRRheTGLO-PEM approach developed
by Prince and Goward (1995) was the first attemphddel both global net and gross primary
production using satellite data to measure bothorgitien of photosynthetically active
radiation (APAR) and also environmental variablest taffect APAR in primary production.
The model estimates a wide range of biophysicabbtes at 10-day intervals including air
temperature, vapor pressure deficit, soil moistbremass, autotrophic respiration, canopy-
absorbed photosynthetically active radiation, grgssnary production, and light use
efficiency (Goetz et al., 2000). According to Perand Goward (1995) GLO-PEM is unique
in its use of visible, near-infrared and thermahmhels of the AVHRR to obtain continuous
fields of driving variables (e.g., air temperatuheymidity, canopy light absorption) rather
than using the sparse network of meteorologicdiostsa or coarse resolution climate model
results. The model is also referred to as a mestiannodel of primary production which
uses variables that can be remotely sensed abalgloale (Goetz et al., 1999). The model in
its simplest form is summarized as follows:

NPP =" [(0,LUE* g,)(fAPAR* PAR)Y,Y, | (7)

Where o; is the reduction factor due to environmental ses in time intervalt (a
proportion), LUE*qg; is the potential LUE in terms of gross productiayC(MJY), it is
identified with the quantum yield of a leaf, a wkilown variable with defined values and
dependency on particular biochemical carbon fixapathway and temperature, fAPAR the
fraction of incident photosynthetic active radiati®>AR) absorbed by the canopy angd Y
are measures of respiration.

2.2.4 TURC (Terrestrial Uptake and Release of Carbon) model

The terrestrial uptake and release of carbon (TU&fproach, is a diagnostic model for the
estimation of continental GPP and NPP (Ruimy et196). TURC computes NPP as the
difference between photosynthesis (i.e. gross pyirpeoductivity GPP) and carbon released
by autotrophic respiration (Ra). Time varying inpwf the model are the incoming solar
radiation (300-4000 nm), air and soil temperatune gatellite vegetation index (NDVI).
Normalized difference vegetation index (NDVI) isedsto estimate the fraction of incoming
photosynthetically active radiation (fPAR) thatabsorbed by vegetation and leaf biomass.
This model uses meteorological forcings (air terapee, incoming solar radiation), together
with satellite observations (Normalized Differen¢egetation Index, NDVI) and a map of



ecosystem biomass. For the maintenance respiratifberent plant organs are distinguished:
leaves, fine roots and wood (Lafont et al., 200RBJRC assume one constant light-use
efficiency (LUE) value for the estimation of the BPRand applied environmental constraints
on the estimation autotrophic respiration)(FAccording to Ruimy et al. (1996) TURC model
is used the concept of Monteith (1972, 1977) widefined NPP as the product of incident
solar radiation by several factors, or efficiencies

Pa=e*f*c*§ ®8)

wherePy, is net primary productivitys is the efficiency of conversion of absorbed PAR in
dry matter or “conversion efficiencyf,is the efficiency of radiation absorption by tleopy
or “absorption efficiency”g is the ratio of incident photosynthetically actnagliation (PAR),
S is climatic efficiency. Alsof has been related to vegetation indices calculateh f
reflectances in the red and near-infrared chanoieMOAA-advanced very high resolution
radiometer (AVHRR).

2.2.5 SDBM (Simple Diagnostic Biosphere Model) model

The Simple Diagnostic Biosphere Model (SDBM) uske satellite-derived normalized-
difference vegetation index (NDVI) to calculate tiplotosynthetically active radiation
absorbed by the canopy. Knorr and Heimann (1998)reted SDBM in two steps. First, they
determined two global parameters, the light-usécieficy in NPP and the temperature
sensitivity of heterotrophic respiration {Rto match the seasonal atmospheric,Gfgnal at
five northern monitoring stations. Land use is iiwigy considered in SDBM, since it is
based on NDVI. SDBM considered a potential LUE, akhis reduced by a drought factor
(AET/PET) (Nemry et al., 1999). The calculationperformed on the basis of measured
Normalized Differential Vegetation Index (NDVI), aaming solar radiation, and surface
temperature.

2.2.6 Model comparison

Production efficiency models (PEMs) and LUE modelthb use a light-use efficiency
approach to estimate NPP. These models are dighepl according to their strategies
adopted in the NPP estimation. The strategies easummarized as spatial and temporal
resolution of the input data used, scale leveliagple, use of biophysical factors or climate
variables and ways of processing. Table 1 belovcatds the comparison between production
efficiency models and light use efficiency model.

Table 1 Comparison of characteristicsfor production efficiency models and light use efficiency model

NA. | Production efficiency models (PEM) Light-use efficiency model

1. Applied at global scale level Applied at locadfional and global scale level

2. Used input data (applicable) at coarse spatidded input data (applicable) at fine spatial resotu
resolution

3. Generate GPP/NPP at coarse tempofaénerate GPP/NPP at fine temporal resolution
resolution (e.g. 10days, monthly) (daily).

4 Used meteorological data (applicable) at coardse local meteorological data (applicable) at fine
scale scale

5 Model utilizes variables retrieved entirely wittModel utilized variable retried from both remate
remotely sensed observations includingensing and in-situ data
environmental factors ( e.g. temperature)




Regarding to the objective of the research, seweitaria were identified and used to evaluate
the appropriate model in this study. The identifiedearch requirements are 1) model should
be able to generate GPP/NPP on daily basis 2) mshi@lld be capable of estimating
GPP/NPP at large scale 3) model should be appliddcal scale level 4) model should
generate GPP/NPP separately, and 5) restrictidherdata availability was also taken into
consideration. Based on these requirements, eadelnuharacteristics was explored and
compare for the best fit to the requirements. Ligée efficiency model seems to be more
appropriate for better estimation of GPP/NPP is gtudy. This is because of its ability to
utilize large spatial and temporal data, gener&@/MPP on daily basis, applied the model at
local scale level, and the ability to handle thegnation of in-situ data of fine resolution and
remote sensing data with varied scale. Table 2ibdkescribe in detailed on the strategies for
calculating GPP/NPP (Cramer et al., 1999a, Runeirad., 2000).



Table 2 Spatial and temporal variation in different models for estimation GPP/NPP

M odel Full name Spatial Temporal | NPP Model parameters No. of | strategy
resolution resolution | calculated VEGC
of NPP of NPP as. pools
CASA Carnegie-Ames- 1 month NPP NPP = f(SRad, FPAR, Temp, AET/PET) 0 PEM, LUE derived empirically, applied
Stanford- 1°x 1° to NPP
Approach model
GLO- Global 8kmx 8km | 10 days GPP- Ry GPP = f(SRad, FPAR, Temp, SW, VPD)) 2 PEM, LUE derived from mechanistjc
PEM Production R a = f(VegC, GPP) model, applied to GPP
Efficiency model
TURC | Terrestrial 1 month GPP- R, GPP = f(SRad, FPAR) 3 PEM, LUE derived empirically (global
Uptake and 1°x1° R A =f(VegC, Temp) value), applied to GPP, environmental
Release of constraints applied to R
Carbon Model
SDBM | Simple 0.5°x0.5° | 1 month NPP NPP = f(SRad, FPAR CQ,) 4 PEM, LUE derived empirically, applied
Diagnostic to NPP
Biosphere Model
LUE Light-Use Both large | daily GPP- Ry GPP= (Fpar, PAR, ¢, Temp,VPD) |3
Efficiency and small Ra-Rm+ Rg
spatial
resolution
Note: SRad is solar radiation, SW is soil waterDMB vapour pressure deficit, Ra is autotrophigirasion, AET is actual evapotranspiration,

PET is potential evapotranspiration, Rm is mainteeaespiration, Rg is growth respiration and conversion efficiency.



2.3 LUE model input and parameterization

In the LUE model, the processes of gross primargdpction (GPP) and autotrophic
respiration Ra) are treated separately. Each input parameters tosgenerate gross primary
production (GPP) and net primary production (NPB)aiso derived separately. The
parameterization of individual variable in the etijpras has been reviewed in the following
sections.

2.3.1 Fraction of photosynthesis active radiation

According to (Running et al., 2000, Running et 2004), the fraction of photosynthetically
active radiation (fPAR) can be estimated from remeénsing data. Spectral vegetation
indices derived from remotely sensed data haverakfgms, the most widely used currently
is the normalized different vegetation index (NDWhich uses reflectance from red and
near-infrared (NIR) wavelengths as:

NDVI = NIR-RED )
NIR+ RED

A spectral vegetation indexes such as NDVI (randiog O to 1) can be used as an estimate
for fPAR (Prince and Goward, 1995):

fPAR = NDVI (10)

According to (Prince and Goward, 1995) the spectrafjetation index measurements
produced by calculating the NDVI have shown, engpity and theoretically, to be related to
the fraction of incident PAR absorbd®AR) in vegetation canopies.

Alternatively, fPAR can be derived from leaf areaex (LAI). According to (Turner et al.,
2003) the conversion of the ground-based LAI to RPdsed a simple Beer's Law approach
(Jarvis & Leverez, 1983).

fPAR = 1- (8-A"Ck)) (11)

wherek is the canopy light extinction coefficient. Thigpaioach requires a reliable estimation
of k, which is mainly related to leaf optical propestiaistribution, and orientation. The
canopy extinction coefficient is determined by Hmgle distribution of leaves in the canopy
and the incidence angle of the radiation. The eguatescribing this is:

k= Vx2+tarf 0

T xL744x+1182 70738 (12)

wherex is the leaf angle distribution parameter ghd the angle of incidence of the radiation.

2.3.2 Photosynthetic active radiation

Plants require solar radiation for photosynthesig] their growth rate is proportional to the
amount received. Photosynthetically active radia{id®’AR) consists of wavelengths utilized
by the plant biochemical processes in photosynth&siconvert light energy into biomass.
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The PAR can be defined as quantum units of liglergyy and expressed as the number of
photons of light received on a unit area (Kania @mcomelli, 2005). When measuring light
by quanta (or numb?r 01; photons), the common wpbrted is micromoles per second per

square meteryfnol s m ). This is an instantaneous rate, and is measuyed guantum
sensor for example every 15 minutes. The fractidAAR absorbed by the plant canopy is an
essential parameter relating the available visgar radiation to its absorption by the
chlorophyll for plant photosynthesis. PAR data esmally obtained from a meteorological
station. Instantaneous PAR is very useful for NBfhstion, but the LUE model requires a
daily time step and thus instantaneous data muisitbgrated.

The PAR also can be estimated from the incidenogtwhve radiation. It has been assumed
in various applications that incident PAR is halff e incident shortwave radiation
(insolation) that is routinely measured at weastations. However, several studies indicated
that this ratio is not constant in time. Jacovié¢sal. (2003) found that this ratio varied
between 0.460 and 0.501 in hourly measured vallles.conversion factor varies seasonally
and by geographical location on Earth. For exarRer et al. (1995) found a factor of 0.45
best approximates the PAR fraction in shortwavéatamh for the eastern United States.

2.3.3 Maximum conversion efficiency

Maximum light-use efficiency ef.may IS @ key parameter for estimation of net primary
productivity (NPP). Estimation of NPP from LUE nedsl may be improved if vegetation
specificeg-max Values are used (Goetz and Prince, 1999). Thenmuax light use efficiency or
conversion efficiency varies widely with differenegetation types (Prince and Goward,
1995). According to Running et. al. (2000), there tvo principal sources of this variability.
First, with any vegetation, some photosynthesisinsnediately used for maintenance
respiration. Running and Hunt (1993) and Hunt (399¢othesized that loweg max Values
for woody vegetation (0.2 to 1.5 gCMJ is the result of respiration from the living lsein
the sapwood of woody stems. The second sourcer@bilty in eg.max is due to suboptimal
climate conditions.

Various publications have documented the derivddegofey.max per land use type (Ahl et
al.,, 2004), other individual studies have sugged@tiors such as stand age, species
composition, soil fertility, and foliar nutrient&spwer et al., 1999). Information abotgtmax

for individual vegetation types can be obtainedrfra survey of the literature for example the
gg-max Values as published by (Gower et al., 1999, Ahblet 2004). Table 3 below is an
example of the derived values ef.maxper land use type extracted from (Ahl et al., 2005

Table 3 Conversion efficiency per land-usetype

Land use Conversion efficiency (gC/MJ)
Forested wetland 0.41

Forest 0.53

Wetland 0.27

Grassland 0.30

Cropland 3.0

This retrievedeg.max applied to a maximum value established for eachetatipn type is
attenuated by two controls. These controls are
» Stomatal closure due to cold night temperature (Y)Vnd
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» Stomatal control due to daytime vapour pressuridety (VPD)
The two parameters for TMIN and the two parametersVPD are used to calculate two
scalars that attenuatgmaxto produce the final conversion efficieney ¢sed to predict GPP.

Photochemical Reflectance | ndex

The photochemical reflectance index (PRI), derifrech narrow band reflectance at 531 and
570 nm has been related with some success to pimbbesic light-use efficiency (LUE). The
photochemical reflectance index (PRI) is a reflecea measurement that is sensitive to
changes in the carotenoid pigments (particularlptixaphyll pigments) in living foliage.
Carotenoid pigments are indicative of photosynthieght use efficiency, or the rate of carbon
dioxide uptake by foliage per unit energy absor{g&@amon et al., 1992, Gamon et al., 1997).
Recent studies have shown that the photochemidigctance index (PRI), derived from
narrow waveband reflectance at 531 and 570 nm, bsamused as a remote measure of
photosynthetic light-use efficiency (LUE). Previosisidies have shown that the relationship
between the PRI and LUE can be used to estimatogjhetic performance at both leaf
and canopy scales (Gamon et al.,, 1992). The raklip between vegetation reflectance at
531 nm and photosynthetic light-use efficiency (QUtas been studied for leaf and small
vegetation plots showing that the PRI provides delyi applicable index of vegetation LUE
across species, functional types, and nutritiorele\(Gamon et al., 1997). According to
Gamon et al. (1992), PRI tracks both diurnal araseral variation in photosynthetic activity.
The PRI is defined by the following equation:

PRI = Ps31~ Pszo (13)
Psz1 T Pszo

where psz; indicates reflectance at 531nm ( the wavebandef‘kanthophyll signal”), and
ps7o indicates the reflectance at 570nm ( a refereraesthand) (Gamon et al., 1992).

PRI has been correlated with both the epoxidatiate ©f the xanthophyll cycle pigments and
LUE in several field studies at the leaf and ectmyslevels (Gamon et al., 1992).
Correlations between PRI and ecosystem LUE werentgcfound when PRI was obtained
from hyperspectral data acquired by aircraft (Ratetaal., 2001). More recently, (Rahman et
al., 2004) used MODIS reflectance data from bamagnally intended for ocean observations
and calculated PRI over a temperate deciduoustfdRediman et al. (2004) was estimating
“continuous field” LUE of terrestrial vegetation ing the MODIS ocean bands #11
(bandwidth 526-536 nm) and #12 (546-556 nm) ovdoprasted terrestrial ecosystem, in
which all requisite data are obtained directly fraatellite sensors. They found a high
correlation of MODIS-PRI with daily NPP that wasridged from Eddy Covariance data
(Guillaume et al., 2005).

2.3.4 Temperature

Temperature measurements for NPP estimation aagénelbt from meteorological stations and
have been separated as minimum air temperaturenaad air temperature. Both minimum
and mean air temperature are instantaneous measure@nd are measured for example,
every hour.
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2.3.5 Vapor pressure deficit

Vapor Pressure Deficit (VPD) is the difference (déf between the amount of moisture in
the air and how much moisture the air can hold wihés saturated. For plants to preserve
essential moisture, stomata respond to the reldlifference between the vapor pressure (a
measure of the amount of water) inside a leaf &adl of the outside air. This difference in
vapor pressure inside and outside a leaf is teriinedrapor pressure deficit (VPD). It is an
index of the drying capacity of the air, and itiearwith temperature and humidity conditions.
VPD strongly affects photosynthetic rates. In dignditions, leaves may be unable to
maintain adequate moisture and respond by closorgatal pores. Stomatal closure restricts
not only the diffusion of water out of the leaf kalso carbon dioxide diffusion into the leaf,
resulting in reduced photosynthesis. Plants respdiffdrently to VPD depending on the
environment to which they have adapted.

VPD can be estimated using an online VPD calculaiitin input requirements as mean air
temperature and relative humidity
(http://www.autogrow.com/1_information/1_vpd/info duptml) or wusing the following
formulas (14 — 16). To compute the VPD we needathéient (greenhouse) air temperature,
the relative humidity and if possible, the canopy@mperature (Wikipedia).

» Calculate the saturation vapor pressure of th@v&ig,)

17.502T

VPsat = 0.6136524097+T (14)

whereVPsat is saturation vapor pressure (kPa) dnid average temperature (°C). The above
equation can be find from the following link;
http://www.licor.com/env/Products/li6400/6400_malsuap click on “instruction manual’
and go to book 3 pg 14-10.

* Calculate th&/Pg; of the canopy: Same as above, T — Temperatureeafahopy in °K . If
canopy temperature is unknown, proceed to stembelo

» Calculate vapor pressure in the aiP§) at the actual relative humidity.
VP, = VP« * relative humidity 15]

» Calculate VPD as difference between saturation vapessure and vapor pressure in the
air.

VPD =VPg — VP {16

Or VPD :Vpcanopy sat™ VPair (17)

2.3.6 Autotrophic respiration

In the user guide of MOD17A2/MOD17A3 Heinsch et @003) has describe in detail an
algorithm to derive autotrophic respiration.. R their method, the maintenance respiration
(Rm) and growth respiration grcomponents are derived from allometric relatigpshwhich
have been developed from an extensive literatwiewe and incorporate the same parameters
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as those used in the BIOME-BGC ecosystem procesinfd/hite et al., 2000). Therefore,
autotrophic respiration is estimated as the sumahtenance respiration,;Rfrom the three
live vegetation components (leaves, stem, and soat)growth respiration,R

Ra=Rn+ Ry (18)

Recently, Tao et al. (2005) used a simple approachhe estimation of autotrophic
respiration. In their work, the autotrophic growdspiration is expressed as 25% of the GPP
while maintenance respiration algorithm is modealsthg a semi-empirical relationship with
standing above ground biomass (W, M@)mAbove-ground biomass was estimated based on
the following expression;

W =71661(p2°) (19)
whereW is the above-ground standing biomass (M§),nandp is the minimum reflectance
(pmin, %) iIn AVHRR channel 1. According to Tao et alo@8), maintenance respiration can
be estimated based on biomass and the deviatidfiroi climatological air temperatufie.

Tc-T

=) (20

W
= 053* (——) * e
Ry (W + 58 (

where Tc is the base temperature and is constant at 259¢€,Tais the daily average
temperature. Therefore, the approach used by Taal.ef2005) in the estimation of
autotrophic respiration was adopted in this thesis.

14



3 MATERIALS AND METHODS

3.1 Study area

The study area is located within the polder of Gemwltich is along the Waal near the city of
Nijmegen. It covers approximately an area of 25.Kfime area is north of river Waal, about 7
kilometers east from Nijmegen. The nearest nodethe sensor web is located at
51°52°16.88'N and 5°56°42.79"E. According to vkeatstation (KNMI, 2003-2004) the
temperature variation ranges between -10.6 mininamth 35 maximum per year and the
annual precipitation ranges between 750 and 775Wmms area is prone to flooding risks
when water levels in the river are high. This dituraleads to seepage through dikes and the
land in the polder may become flooded (Abdi et2007). Figure 3 is an aerial photograph of
the study area.

Figure 1 Arial photograph of the study area, which isindicated in red

3.2 Data

3.2.1 Remote sensing data

In this thesis a Dutch land use database (LGN4asg#twas used. The LGN4 dataset is a
Dutch land use database and it is based on satatiagery from 2003 and 2004 and
additional data. The nomenclature of the databaskides crop types, forest types, water,
various urban classes and several ecological dasSatellite imagery for LGN4 is a
combination of Landsat ETM7 and TM5, LISS-1c andSERAR images. According to
(Hazeu, 2006) the images were georeferenced and coibvolution was used to resample the
images to 25m grid size.

3.2.2 Sensor web data

Within the study area, in-situ measurements aragbeollected by a set of sensors and the
acquired data are distributed to users for diffegplications. These data are available to
Wageningen University who participate in a teamahtis involved in a RGI (Space for Geo-
information) project called “Sensor as a data sgurMinimum and mean air temperature,
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photosynthetic active radiation (PAR), and relativenidity are examples of meteorological
data that were required in this research.

However, an examination of the first data delivelbbgdhe sensors revealed that the radiance
and relative humidity sensors were mal-functionimberefore, an alternative time series of
meteorological data from the Haarweg location ingéfangen was chosen. At this location
there is no direct measurement data available Aét.F herefore, this was estimated from the
measurement of the shortwave incoming radiance Mmhich is collected every hour. The
air temperature dataset used in the estimation PD Was from the Gendt and Haarweg
weather stations. Data from January to June was flaarweg and July till December was
from Gendt. Because of some limitation in the alality of data from June to December, a
nearby weather station was used as an alternative.

3.2.3 Surface reflectance product

MODOQ9 GQ is a MODIS/Terra surface reflectance pobavhich provides band 1(range 620-
670 nm) and band 2 (range 841-876 nm) at 250-nmresmiution in a daily gridded L2G
product in the Sinusoidal projection. The surfaeiectance product is a major input utilized
in the generation of several land products: vegetahdices, BRDF, land cover, snow cover,
thermal anomalies, and LAI/fPAR. For the purposehid research the product was used to
generate NDVI (normalized difference vegetatioreixjd

3.2.4 MODIS 8 days GPP product

MOD17A2 is an 8-day composite at 1-kilometer spatésolution provided as a gridded
level-4 product in the Sinusoidal projection. Thi®duct produces gross primary production
of vegetation every day, and sums to net primaoglpetion, essentially vegetation growth, at
the end of the year. The product is computed waitydODIS land cover, FPAR/LAI and
global GMAO surface meteorology at 1km for the glbbegetated land surface. This product
provides an accurate measure of terrestrial vagatagrowth and production activity. The
product can be searched and ordered via the faollpwi web link
http://edcimswww.cr.usgs.gov/pub/imswelcome/

3.2.5 MODIS annual NPP product

MOD17A3 is an Annual Net Primary Productivity pratu The vegetation production
product is designed to provide an accurate reguksasure of the growth of the terrestrial
vegetation. This product produces gross primarydgpcton of vegetation every day, and
sums to net primary production, essentially vegmtagrowth, at the end of the year. The
product is computed with daily MODIS land cover,AH7LAI and global GMAO surface
meteorology at 1km for the global vegetated landase. These variables provide the initial
calculation for growing season and carbon cycldyaisg and are used for agriculture, range
and forest production estimates.

Spatially, MODIS has a much coarser resolution teame other satellite sensors (1km x
1km). Data from MODIS are well-suited to large @l or global analyses. Temporally,
MODIS is much better than many satellite sensorngh ws daily overpasses and 8-day
compositing of the data, which can be used to labknnual productivity and inter-annual
variability of both GPP and NPP. There is no otsetellite that can provide a global, 8-day
look at vegetative productivity and carbon balaonean annual basis. In addition, these data
are available in near-real time, which will alloweus to make comparisons with their own
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research data during the growing season, oftenirwitleeks of the actual data collection.
Periodic reprocessing of the data will allow foteipolation of missing data, resulting in a
more complete, and more accurate product (Heinseh,e2003). MOD17A3 product can be
searched and ordered via the web it ://edcimswww.cr.usgs.gov/pub/imswelcome/

3.3 Data integration conceptual model

Several literature sources have published differeethods for data integration to estimate
NPP over large area. However, this thesis inteadstegrate data from different sources to
estimate NPP over a small area. The thesis aimasldpt a light use efficiency model in the
estimation of NPP. Figure 4 summarizes the approael for data integration in a light use
efficiency model to estimate daily GPP and NPP.sTdonceptual model also included the
comparison of MODIS products (MOD17A2/3) with therded GPP/NPP.

EO data SWE datc
I I
v v v v v
Land Use LGN4 Surface reflectance PAR/ SWRad Temperature Relative
(25m grid size) MODOQ9 (250m) Humidity
v v v v v
Table conversion Preprocessing Preprocessing Preprocessing Vapour Pressure
LOOK UP Table v g Deficit
v NDVI v v v
Light use efficiency Daily PAR STmin SVPD
(Sg-maﬁ v
FPAR
A 4
Aggregation :
250m > Daily GPP (250m) <
| Daily NPP MOD17A3
(250m) 1km by 1km
MOD17A2 v

1km by 1km
@ Comparison

v v 4
Comparison |4 Daily GPP Upscaling Daily NPP | Annual NPP
hl 1km x 1km 1km x 1km 1km x 1kn

Figure 2 Conceptual model indicates connection in resear ch strategiesfor NPP estimation

3.4 Preprocessing of meteorological data - Instanta  neous
temporal Scaling

The term scaling refers to data, processes, or Imo&ealing addresses the process of
translating information from one scale to anotlierequires the definition of a source and a
target scale including grain and extent. Scalimgnfismall to large scale is called up-scaling,
in the other direction downscaling. Up-scaling asmwnscaling are also referred to as
“aggregation” and “disaggregation” respectivelyalBwy is needed for a variety of reasons.
One is incompatibility of data gathered at diffarepsales. To make such data compatible,
they must be transformed to a common target s&idaling is also necessary to translate
model processes from one to another scale. For @earthe lack of small scale data or
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restricted computing resources can impede largle socadel simulations. Then the model’s
process functions or the data should be adaptdgktooarser scale.

Many of the available meteorological data variestemporal scale. The LUE model as

proposed for this study requires a daily time stegerive GPP productivity. Preprocessing of
meteorological data based on temporal scaling isn@ortant step in this research in order to
harmonize the available datasets that were availabla hourly basis and adapted to a daily
basis as model input requirement. Similarly, sometemrological datasets are not directly
used as input into the model rather they need teither averaged or integrated or combined
with others dataset to derive the input variables the model. Therefore, processing is
considered as a necessary and important stepiforetbearch. Temporal scaling was done to
the following meteorological datasets; photosynthattive radiation (PAR), air temperature

and relative humidity.

3.4.1 Daily photosynthetic active radiation

PAR is an instantaneous flux measurement and s wseful for NPP estimation, but many
models (e.g. the LUE model) requires a daily titepsand thus the daily PAR product is
more desirable. The daily PAR was estimated basedhortwave radiations which were
measured on a hourly basis by the sensor. A coiovefactor of 0.45 was used to convert
shortwave radiation to PAR. This factor has begomed in different literature sources as
suitable for conversion purpose (Pinker et al.,5)99he unit for shortwave radiation from
the data provider is Whand was converted to MJTto comply with the input model unit.
Hourly shortwave radiation measurements were coesteénto PAR and integrated into daily
basis as expressed below.

PAR, = Y (SWRad" 045 * 3600/10° (21)

Where PARLaiy is the daily PAR (MJ M), SWRad in the incoming shortwave radiation (Wm
?), and n is the number of measurements over a day.

3.4.2 Daily minimum temperature scalar

Light use efficiency model requires scalar valu@s- (1) for minimum temperature as input in
the model. Therefore, the available minimum temipeeafrom meteorological data can not
be used as direct input in that model. Minimum termafure scalar was estimated based on
simple linear ramp functions as presented in Figuréhe values for TMINi,» and TMINnax

per land use type were extracted from the lookalgbet compiled by Heinsch etal., 2003 as
presented in table 4.
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Figure 3 Simplelinear ramp function for STmin estimation

where TMINyi, (°C) is the daily minimum temperature at whichk 0.0 and TMINax (°C) is
the daily minimum temperature at whielx emax. When TMIN scalar >1, then TMIN scalar
=1 assuming that no influence on vegetation grosithilarly, when TMIN scalar < 0, then
TMIN scalar = 0 also no vegetation growth takingqgal.

The scalar values for the measured minimum tempergT min) were derived as follows; if
Tmin is lower than TMINmin then scalar value isOifoT min is higher than TMINmax then
scalar value is 1, otherwise a simple mathemagixpfession was used:

T min—TMIN min
TMIN max—TMIN min

ST min= (22)

where STmin is the scalar value for minimum tempgearange between 0 and 1. Table 4
below summarized the extracted values of TMINmiklINNmax, VPDmin and VPDmax per
land use type. These values were extracted framolaup table as compiled by Heinsch et al.
(2003).

Table4 Valuesfor daily TMINmin, TMINmax, VPDmin, VPDmax per land usetype

3

W w

Land use type (LU) TMINmMIn(°C) TMINmax(°C) VPDmin(Pa) P®max(Pa) | Source

Grassland -8 12.02 650 3500 Heinsch etal., 20(
Cropland -8 12.02 650 4100 Heinsch etal., 200
Mixed forest -8 8.5 650 2500 Heinsch etal., 200
Deciduous broadleaf -8 7.94 650 2500 Heinsch etal., 2003
forest

Open wetland/ open -8 8.8 650 3600 Heinsch etal., 2003
shrubland

Natural herbaceous -8 12.02 650 3500 Heinsch etal., 2003
vegetation

3.4.3 Daily vapour pressure deficit scalar

The daily vapor pressure deficit scalar is deritein daily VPD. This VPD is estimated
from daily average relative humidity and air tengiere. Relative humidity and air
temperature are meteorological datasets which altected in every one hour. Therefore,
relative humidity and air temperature were averageéal daily basis in order to derive daily
VPD. The average of both air temperature and rxaatiumidity was based on simple
expression as illustrated below.

(23)
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whereTay iS average temperature (°C) over a days instantaneous temperatures measured
at every moment of time (e.g. 60minutes) ansl the number of observations over a day.

The average air temperature was used in equatiomo lderive VPsat, average relative
humidity was applied in equation 15 to deriRair and finally VPD was derived based on
equation 16. The VPD scalar value was estimateédbas simple linear ramp functions.
Figure 4 illustrate the simple linear function useastimate daily vapour pressure scalar. The
values for VPR, and VPDhax per land use type were extracted in a look upetablcompiled

by Heinsch et al. (2003).

VPD Scalar

| I
VPDnin VPDax

Figure4 Simplelinear ramp function for S,pp estimation

Where VPLQhin (Pa) is the daylight average vapor pressure deficvhiche = 0.0 and VPR
(Pa) is the daylight average vapor pressure deftoithiche = gmax. When VPDLy, scalar >1,
then VPDyi, scalar =1 there is no influence on vegetation ginoaso when VPR.« scalar <
0, then VPRax scalar = 0, no vegetation growth taking place.

The scalar values for the estimated VPD is derivased on the following assumption. If
VPD is lower than VPR, then scalar value is 1 or if VPD is higher thanD¢Rx then scalar
value is 0, otherwise a simple mathematical expvassgas applied as follows.

(24)

Svpd :1_( VPD -VPD min j

VPD max—VPD min

WhereSvpd is the scalar value for vapour pressure deficigeabetween 0 and 1.

3.5 Processing — Modelling of GPP and NPP

Figure 5 below indicates the structure/flowchartled entire LUE model implementation. It
indicates how remote sensing and sensor web damintegrated. Different software’s were
used in the implementation of the model such asMam Erdas Imagine, and Modis
Reprojection Tool (MRT). The output of this modglthe time series daily GPP, time series
daily NPP and annual NPP.
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Figure5 LUE mode implementation

3.5.1 Aggregation of land Use classes

Spatial scaling was considered as an important dtemg model implementation in this
thesis. Since model implementation involved intégraof different datasets, transformation
of those data to a common target output scaleeigiteble at this stage. For example, LGN4
and surface reflectance are datasets incompatibgpatial scaling namely 25m and 250m
respectively. But these datasets needs to be atezhyfor the purpose of generating GPP.
Upscaling of LGN4 from 25m to 250m was performedimy model implementation at a
stage where scaling compatibility was necessarjorBehe aggregation process is applied,
reclassification of LGN4 was performed based oreselasses rather than original twenty
classes. The reclassification is intended to comhbiparticular land use class together such as
crops and forests. The classified seven classesgaassland, cropland, mixed forest,
deciduous forest, open wetland and natural herhesceegetation and urban.

Aggregation technique
The aggregate technique theoretically just aggesgatseries of cells to the same value to
produce a single, coarser resolution cell. The egape function resamples an input raster to a
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coarser resolution based on a specified techni@en( Min, Max, Mean, or Median).

Conceptually, the aggregate function works as vaito

» It multiplies the cell resolution of the input rasby the factor specified in the techniques.
The resulting value correspond to the cell resofutf the output raster

* It maps the spatial extent of the output cells om® input raster. Figure 6 shows an
example of the output cell with thick line and impaster with thin line.

Celll Cell2
NI NI
Y

Figure 6 Output cell on top of input cell

» It identifies the cells on which to perform the aggation calculations. Cell locations
from the input raster that fall within the exteritam output cell are included in the
calculations for determining that cell's outputueal

* It calculates the output value by determining the sminimum, maximum, mean, or
median value of the cells from the input rastet thll within the output cell's spatial
extent

The aggregation process was performed for the sgified seven classes and was based on
pixels aggregation from 25 to 250m. This processxjzressed in a simple mathematical way
as can see below:

n

YA @) (25)

Conversion — efficiency,,,, =
WhereA is total number of pixels per land use type basedutput scale; is the final light
use efficiency (results @fymax STmin and Sep) per land use typey, is the totalnumber of
pixel contained in the output scale (250m) ansl the number of classified land use type.

3.5.2 Derived NDVI from Surface reflectance

Before ordering the surface reflectance data MODé&gessment of image quality was
performed using MODIS Global browse images. The N®Dlobal browse images system
was developed by the MODIS Land Science Team asseoakm versions of selected
products to enable synoptic quality assessmenhernternet prior to ordering the data. The
site is located dtttp://landga2.nascom.nasa.gov/cgi-bin/browse/beocves This site is useful

to detect whether the image of a particular dasjasd or free from cloud. After assessing the
guality of the image, sixty one images were orddoedhe entire period of 2007. The surface
reflectance image is in a new map projection called Integerized Sinusoidal (ISIN)
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projection. This product is supplied in hdf datanfat. The product contains several bands
such as QC_250m_1, obscov_1, sur_refl b0l 1, durb@2 1, and num_observations. But
for deriving NDVI only two bands are needed sur b&1 1 and sur_ref b02 1 the rest is
not used.

The MODIS Reprojection Tool (MRT) was used to clyporeference the image to the known
projection system and split the bands of the mddis. The results were projected to UTM
and stored in tiff format. NDVI was then derivedings equation 9. ERDAS IMAGINE
software was used to implemented the equation fo¥INcalculation (equation 9). Figure 7
below indicate days over a year for which surfaeféectance images were selected with less
or no clouds. Zero represents day where no imagelécted while one represents day where
image is selected. In total sixty one surface otdlece images were ordered and used in this
research.
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Figure 7 Available MODI S surface reflectance images (selected = 1) over theyear 2007 for the Gendt area

3.5.3 Derive Light Use Efficiency

The light use efficiency was calculated frorgy.max(the biome-specific maximum conversion
efficiency), which is reduced by the temperaturedifier when low temperatures limit plant
function, and a vapor pressure deficit (VPD) maifi which reduces the maximum
conversion efficiency when VPD is sufficiently heghenough to inhibit photosynthesis. The
maximum light use efficiency value was extractednfrdifferent literature sources. The
values ofg.maxper land use type were investigated as reported different literature sources
and it was found that for the same vegetation tyse values vary from place to place.
Therefore, two assumptions were applied in thecsele of final eg.maxin this thesis. The
value was chosen based on the location/country evliee climate is comparable with
Netherlands and in case of variation the averageusad to get the final value. Table 5 below
indicates the extracted values of maximum light effieiency per land use type as compiled
by Ahl et al. (2005) and Running et al. (2000).

Table5 Maximum light use efficiency

Land use type (LV) Maximum light use efficiency-ma» source
Grassland 0.3 Ahl et al., 2005
Cropland 3.0 Ahl et al., 2005
Mixed forest 0.42 Ahl et al., 2005
Deciduous broadleaf forest 0.53 Ahl et al., 2005
Open wetland/open shrublang 0.27 Ahl et al., 2005
Natural herbaceous vegetation 1.4 Running et@DQ2
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The light use efficiencye] per land use type was derived based on scalammum
temperature, scalar vapour pressure deficit andmuamr light use efficiency as expressed
below.

&= (Eg—max* STmin * SIPD) (26)

This equation was implemented in excel and theltesue shown in appendix 2. These
results were used as an input in (equation 25atgregation of LGN4 from 25m to 250m
scale to obtain the final conversion efficiency.

3.5.4 Calculation of Daily GPP time series

Daily Gross primary production was derived basedhenLUE model as the product of daily
PAR, NDVI (equivalent to fPAR) and final conversioefficiency (equation 1). The
calculation for single day GPP was done in ArcMdplevtime series of GPP were computed
using a python script see appendix 1. The pythaptss very useful in GPP calculation since
it helps to generate multiple results at once.

3.5.5 Calculation of Autotrophic respiration

The calculation for autotrophic respiration was asefed in growth respiration gRand
maintenance respiration JRcomponents. Different literature sources (Heinstlal., 2003,
Running et al., 2000) have described the estimaifoautotrophic respiration as the sum of
maintenance respiration,,Rfrom the three live vegetation components (leagtsm, and
root) and growth respiration,;RHowever, this thesis did not take into accourgetation
components. A simple approach used by (Tao et28D5) was adopted in this thesis for
estimation both growth and maintenance respirafltve autotrophic growth respiration was
expressed as a proportion of GPP and assumed tmrisant at 0.25. The estimation of
growth respiration as 25% of GPP was implementé&ugute programmed python script and
the results were generated to all available dataéste appendix 3). The maintenance
respiration algorithm used by Tao et al., (2005quiees above ground biomass of the
vegetation. The biomass is derived based on minimisible reflectance. Many authors have
demonstrated that visible reflectance is positivediated to standing biomass and canopy
closure (Prince and Goward, 1995). Above-groundmbiss was estimated based on the
following expression;

W =71661(0,n) (27)
Where W is the above-ground standing biomass (MY, @ndp is the minimum reflectance
(pmin» %) iIn AVHRR channel 1. The AVHRR channel 1 isgag between 0.57 — 0.74im,
however, this was not used to calculate biomasdisisnthesis. The MODIS surface reflectance
band 1 range between 0.62 — 0.67 was used in timea¢gion of biomass. This band was used
because its range is similar to AVHRR channel e Strface reflectance band 1 product was
multiplied with scale factor of 0.0001 as provideda product description and the results
were then reduced to percentage to obtain the fimalmum surface reflectancen,, %).
The calculation for the biomass (W) was performed ERDA IMAGINE. Therefore,
maintenance respiration was estimated based apir@ach used by Tao et al., (2005).
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W

Tc-T
= 053* (———) *e®(———
Ro (W +58 (

) (28
WhereTc is the base temperature and is assumed to beacbrat25°C, and is the daily
average temperature. The calculation for maintemaaspiration is implemented in ERDA
IMAGINE. Autotrophic respiration is then estimatad the sum of growth and maintenance
respiration. The calculation was performed usirggglrogrammed python script (see appendix
5 and 6) to have the results for the all availalaasets.

3.5.6 Calculation of Daily NPP time series and annual NPP

Daily NPP was estimated as the difference betwesly 6PP and autotrophic respiration.

The calculation for daily NPP time series was impated using python script (see appendix
7and 8) at a scale of 250m. Annual NPP was estaragehe sum of all the derived daily NPP
over the year 2007. This calculation was implementgng ArcMap.

3.6 Comparison

Several methods can be used for comparison purpasgng them are maps comparison,
point to point comparison or pixel to pixel comgan, and also comparison based on a
particular land use type (Pan et al., 2006). Thésis was intended to do a comparison based
on eight days GPP MODIS products (MOD17A2) with thexived daily GPP for the year
2007. Similarly, annual NPP MODIS product (MOD17A&med for comparison with the
derived annual NPP. However, due to the limitatrothe availability of MODIS data for the
year 2007, comparison was done based on the MOBI8upts of 2006. Because of the
transformation of MODIS product from collection@l¢ollection 5, MOD17A2/3 for the year
2007 was not available during research period satthmer 2008. Therefore, the product of
2006 was used as an alternative for the compapsoposes. Two methods of comparison
were adopted in this thesis: 1) map to map compaidsd 2) pixel to pixel comparison based
on temporal variability over a year.

Map to map comparison was done based on the rgsugigs) of time series of the derived
daily GPP over the year 20007 with MOD17A2 2006e Thap of the derived annual NPP
2007 was also compared to the map of the annual I8@bBbduct (MOD17A2) 2006.

Pixel comparison was done only to the derived d&RP 2007 and the MOD17A2 2006.
Land use class per pixel was identified to the wholap by overlay with the reclassified
LGNA4. Pixel representing a single land use class sedected on the map and creating the
time series of change in GPP over the year. The#l {p pixel comparison was done based on
the time series of the same selected land use class
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4 RESULTS

4.1 Photosynthetic active radiation

Figure 8 shows the time series of incoming phottistic active radiation| PAR) over the
year 2007. The graph qQfPAR follows the general incoming solar radiatiorttgya with
spikes. The pattern appeared to be raised with séxmporal range fashion from DOY1 until
DOY126 (May 6) then started to have inconsistenagiation with short and high temporal
range until DOY221 (August 9) and started againifgaghort temporal range fashion until
DOY 365. The incoming PAR for the year 2007 appedre be at maximum in DOY170
which is June 19. In general the entire patteusithtes the seasonal change$RAR over a
year 2007.
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Figure 8 PAR time seriesover the year 2007 at Haarweg weather station

4.2  Vapor pressure deficit

Figure 9 shows the graph of vapor pressure deimg series for the year 2007. The pattern
of figure 9 shows a similar pattern to solar enesgiyn short temporal range in winter seasons
and both short and high temporal range during tinenser. An interesting part in this figure is
the sudden rise in VPD at the start of DOY85 uRfdY90 and DOY102 till DOY124. After
DOY124 the VPD suddenly fall and became lower \gitrt temporal range until DOY365.
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Figure9 VPD time series 2007 at WUR weather station
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4.3 GPP variability based on LUE approach

Figure 10 shows the results of time series dailyPG®07 for grass, crop and deciduous
forest. The time series of daily GPP per land uassds based on one pixel per land use type.
Grass, crop and deciduous forest seems to follsundar pattern at different seasons over a
year. However, the magnitude of GPP for grass ang@ are much related in the entire
seasons while for deciduous forest is much closén grassland and cropland in winter
season and differs in summer period. Figure 1Gatds lower GPP in winter season and high
GPP in summer. The maximum value of GPP for gmd8igC rif, crop is 20 gC M, and
deciduous forest is 8 gCmiIn summer there is a sudden drop of GPP at DOYDEY' 200
and DOY213 for all three vegetation types.

Figure 11 shows the time series of NDVI for gragsp and deciduous forest in 2007. The
pattern of all three vegetation types is similartfee entire period of 2007. The highest peak
of NDVI for all vegetation types is the same (0.BPY100, 162 and 200 shows the sudden
fall of NDVI with respect to regular pattern of teeason.

Figure 12 shows the time series of light use edficy for grassland, deciduous forest and
cropland in 2007. The light use efficiency for dkmus forest shows to be much lower
compared to grassland and cropland.
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Figure 10 Daily GPP for grass, crop and deciduous forest 2007
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Figure 12 Light use efficiency for Grassland, Deciduous forest and Cropland

4.4  NPP variability based on LUE approach

Figure 13 shows the result of time series daily N®Pgrassland, cropland and deciduous
forest over the year 2007. The time series of ddiBP per land use class is based on one
pixel per land use type. The pattern of the graglows the sinusoidal pattern of PAR over
the year. The estimated daily NPP became lower ttheestimated daily GPP. The maximum
values of NPP for grass and crop are 14 g&amd for deciduous forest is 6gC?nFigures

14, 15, and 16 indicate the comparison of net pynpaoduction and autotrophic respiration
for crop, deciduous forest and grass respectivéigure 15 indicates few days with NPP
below zero for deciduous forest in winter seasaguife 17 shows the results of the derived
annual NPP 2007 range between 44 and 3914C m
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Figure 13 Derived daily NPP for grassiand, cropland and deciduous forest 2007
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Figure 17 A derived map of annual NPP 2007

4.5 Comparison of MODIS product 8-days GPP 2006 and
derived daily GPP 2007

45.1 Map to Map comparison

Figure 18 shows the graph of correlation betweme tseries of MODIS product 8 days GPP
2006 (MOD17A2) against the derived daily GPP 2(Bach point on the figure represents
GPP (gC rif) and the equation indicates linear correlatiomieen MODIS product GPP and

the derived GPP. The linear correlation betweentwteproducts indicates the slope of 0.72
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with R? of 0.11. The values for MOD17A2 range from 0 —g&3 m” while the derived GPP
range from 0 — 23 gC

Figure 19 shows the result of GPP map derived Wytracting MOD17A2 2006 and the
derived GPP 2007. These maps were selected fdegilagy (June 2) which appeared to have
the highest values of GPP for MOD17A2. The restithe GPP map between MOD17A2 and
derived GPP indicates the range from 7 — 58 g€ Wihite pixels in figure 19 were regarded
as no data after discovered that their GPP valueBI©OD17A2 are greater than 30000.
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Figure 18 MOD 17A2 2006 and derived GPP 2007
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Figure 19 M ap of difference between MOD17A2 2006 and derived GPP 2007

4.5.2 Comparison of individual land cover classes

Figure 20 shows the time series of MODIS produadays GPP 2006 (MOD17A2) and
derived daily GPP 2007 for grassland based onglespixel. The pattern for the two products
has much similarity in temporal variation and difféen the maximum range of GPP. Figure
21 shows the correlation graph based on the cosgaaf MOD17A2 2006 and derived daily
GPP 2007 for grassland. Each point on the grapitates the magnitude of GPP and the

equation also indicate slope of 0.81 withaR0.406.

Figure 22 shows the time series of MODIS product derived daily GPP for cropland also
based on single pixel. The pattern for the two pobsl seems to be similar for the entire
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season but differs slightly in maximum range. FggBB shows the correlation graph based on
comparison of MODIS product (MOD17A2) and deriveadlyl GPP for cropland. Each point
on the graph indicates the amount of GPP and thatien also indicate slope of 0.77 with R
of 0.5055.

Figure 24 shows the time series of MODIS produat derived daily GPP for deciduous
forest based on single pixel. The graphs for demiduforest indicate similar pattern but
differs in the scale of GPP. Figure 25 shows thegetation graph of MODIS product
(MOD17A2) 2006 and derived daily GPP 2007 for daoigs forest. Each point on the graph
indicates the scale of GPP and the equation atlicdte slope of 2.30 with%f 0.522.
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Figure 20 Comparison of MOD17A2 2006 and Derived GPP 2007 for grassland
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Figure 21 Pixel correlation for grassland between MOD17A2 2006 and derived GPP 2007
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Figure 23 Pixel correlation for cropland between MOD17A2 and derived GPP
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4.6 Comparison of MODIS product annual NPP 2006 and
derived annual NPP 2007

Figure 26 shows the graph of correlation betweenDNVBO product annual NPP 2006
(MOD17A3) and the derived annual NPP 2007. Eachntpon this figure represents the
values of annual NPP. The distributions of poimidlee graph are scattered horizontal and the
equation indicates a slope of -0.06 withd® 0.005.

Figure 27 shows the result of NPP map derived Hbytraating MOD17A3 2006 and the
derived annual NPP 2007. White pixels in this fguvere regarded as no data after
discovered that their NPP values for MOD17A2 aeatgr than 30000.
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Figure 26 Correlation between MOD 17A3 2006 and derived annual NPP 2007
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5 DISCUSSION

5.1 Photosynthetic active radiation

The pattern of figure 8 indicates seasonal chamgedPAR similar to general pattern of
incoming solar radiation. The seasonal patterjf AR over a year is appeared due to the
variations in the earth-sun distance cause sntellagions in the solar constant, and the tilt of
the earth's axis results in variations in day lerag well as the angle of incidence, similar to
latitudinal effects. The Netherlands are locatesdlai@ls northern hemisphere where intensity
is reduced by the low sun angles of the winter snwdeased by the higher angles of the
summer.

The short temporal range in the amoun{BAR as have seen on figure 8 varies with latitude
and time of day. Within a day, the sun travel®ssithe sky with a change in its altitude from
sunrise to sunset. The intensity and spectrum refctlisunlight depend strongly on the path
length of the beam and on the solar angle.

The short and high temporal range|®AR as have seen in figure 8 from DOY126 (May 6)
until DOY221 (August 9) is due to transmission atinds in the atmosphere (cloud cover,
aerosols). Clouds are the largest modulators ofsttar radiative flux reaching the Earth’s
surface. The amount and type of cloud cover prevp@t a given time and location largely
determines the amount of solar radiation receivedha Earth’s surface. Although solar
radiation is relatively constant at the top of #tmosphere, all of these processes combine to
create large variations in the amounts of PAR aiar nergy available at the surface of the
earth. The effect of clouds is much bigger in sumfeeg. DOY126 — DOY221) since the
amount of PAR on the Earth surface is much higher in summtr glear sky.

5.2 Temperature and vapor pressure deficit

Figure 9 shows the pattern of VPD with short terapoange in winter season and both short
and high temporal variation is summer. The measentsnused to derive VPD were
examined relative to winter and summer seasons. ifbestigation has revealed that the
temperature and relative humidity measured in wiagason have small variation. However,
the change in weather such as free sky (cloudineas) also determine the scale of
temperature and relative humidity measured in wisgason. In general relative humidity is
usually high at midnight and in the early mornidgops rapidly, after the sun rises, until it is
lowest just after midday depending on the climaéafer. Figure 9 shows the reality of how
weather can determine the scale of VPD though #asan is winter. It indicates the high
value of VPD from DOY85 (March 26) until DOY90 (Mar 31) and DOY102 (April 12) till
DOY124 (May 4). This period in Netherlands usuadlyvinter season but in 2007 the climate
was dry results in high values of VPD. Between D6YS8d DOY90 the average temperature
was 11°C while average RH was 65% and DOY102 to D2fythe average temperature was
16°C while average RH was 62%. Figure 10 also atd relatively high temperatures for the
same corresponding days.

The pattern of VPD over the year with both shod aigh temporal range is also caused by
the variation in weather. However, the effect imsuer is bigger due to high temperature and
low relative humidity during a day.
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5.3 GPP variability based on LUE approach

The pattern of figure 10 for daily GPP over thery2@07 is related with parameters used in
its derivation. This pattern seems to be similahwginusoidal pattern of PAR over the year.
The increase in PAR is proportional to the incraaséPP for all vegetation types. Figure 10
also shows lower GPP of deciduous forest compavegtdssland and cropland. The lower
values of GPP for deciduous forest was caused éyotv values of light use efficiency as
indicated in figure 12. Cropland appeared to hagh IGPP than grassland though the light
use efficiency for cropland is lower than grasslasdcan see figure 12. This effect was
caused by the high values of NDVI for cropland camgol to grassland however the
difference between them is smaller as indicatedijure 11.

Figure 10 shows the suddenly fall of GPP at DOY1R®Y162, and DOY200 similar to
figure 11 which also indicates the suddenly fafisN®VI for the same corresponding days.
The sudden fall of GPP and NDVI was caused by tfiecte of cloudiness to surface
reflectance on the vegetation cover. Cloud-contateith measurements produce lower NDVI
values, as clouds reflect strongly in both theaed near-infrared wave bands. The low values
of NDVI caused the same effect to GPP since thesete linear related.

The validity of the derived GPP results based dacsed land use classes were assessed by
examines the reported values of GPP in differeatdture sources with similar land use type.
This thesis did not perform any validation rathejust compared the range of the reported
value of GPP. MODIS products are validated usirgrieasured data from eddy covariance
flux tower. Turner et al. (2005) has reported thege of GPP for cropland to be 0 and 13gC
m? as measured by eddy covariance flux tower. Thgeafi the derived GPP in this thesis
for cropland is 0 and 20gC m-2 which comply withixfltower GPP. The range for deciduous
forest from flux tower reported GPP of 0 and 12g€ while the thesis derived GPP is 0 and
8gC m? which also shows similarity.

5.4 NPP variability based on LUE approach

The results of the derived daily NPP for grasspaad deciduous forest are lower than the
derived daily GPP. This is because of autotropkspiration factor. Figure 13 shows the
graph of time series daily net amount of primargduction for different land use types after
take out the maintenance and growth respiratiogurés 14, 15 and 16 indicate the rate of
autotrophic respiration increases with respectroovth of plant. Higher values of NPP and R
both appeared in summer season. Low values of NfePRa appeared in winter season
because of stoppage of vegetation growth at thi®geThe NPP below zero for deciduous
forest shown in figure 15 during winter seasonnsralicative to the effect of using similar
parameters in derived autotrophic respiration tdaald use type. For this study the effect
appeared to deciduous forest only. This effectus tb estimation of biomass for deciduous
forest. Figure 17 indicates higher annual NPP fopland and grassland compared to other
land use type such as deciduous forest. This igusecof higher light use efficiency for both
crop and grass compared to deciduous forest asemfigure 12. Lower annual NPP values
are shown to water and urban area as expected.
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5.5 Comparison of MODIS product 8 days GPP 2006 and
derived daily GPP 2007

5.5.1 Map to Map comparison

Figure 18 shows that the correlation between theveld daily GPP and MOD17A2 is poor
with R? equal to 0.11. This relation indicates that tempweaiation of GPP over the year
between 2006 for MOD17A2 and 2007 for derived GRRewninconsistency. However, the
difference in range of temporal GPP between thepmaducts is low as the slope close to one
(0.71). Figure 19 spot specific pixel and the lars# type with higher difference of GPP
between the two products. Three pixels with land type were identified to have higher
difference in GPP. The land use type belong toetlpesels are water and natural vegetation.
Considering components used in derived GPP algoyithe higher difference between the
two products are due to 1) maximum light use efficy were used to generate GPP at the
identified pixels was different. The maximum ligige efficiency used to derive GPP in this
thesis was based on LGN4 (25m resolution) whichiSap heterogeneity landscape while for
MOD17A2 product is derived based on land cover M®[product (MOD12Q2) at 1km
resolution. 2) Change in management of land uskeagixels identified as natural vegetation
is the source of higher difference. This is becathgecomparison of the two products was
based on different years 2006 and 2007.

Turner et al. (2005), reported that MODIS prodwsts underestimated GPP for crop because
of the low value ot4.max used from the biome properties lookup table. Hatpd out that the
value of ggmax Used by MODIS for crop is 0.68gC MJwhile based on tower flux
measurements is on the order of 3gC'MAfter examine theg.max used in MODIS product
for different land use classes it is clear thas thiesis has used differentna. Heinsch et al.
(2003) has reported thg-maxused in MODIS product as 0.689C Mibr crop, 1.01 gC M3

for deciduous forest, 0.68 gC Mdor grass, 0.77 gC MJfor open shrub and 1.11 for mixed
forest. None of the reportegmaxused by MODIS complies witfy.maxused in this study. The
€g-max0f 3gC MJ* for crop based on flux tower complies with thee@shey-maxused to derive
GPP for crop.

5.5.2 Comparison of individual land cover classes

The results of the comparison between MOD17A2 2806 the derived daily GPP 2007 for
grassland, cropland, and deciduous forest indizageod correlation with Rof 0.406, 0.505,
and 0.52 respectively. Figures 20, 22, and 24 tsnevn similar pattern for both MODIS
product and derived GPP for the entire seasons.cdhgarison of difference in values of
temporal GPP for crop and grass is very small slitipe close to 1. Grass shows the slope of
0.81, and crop shows the slope of 0.77. For dedsldorest the comparison shows much
deference in the values of GPP. Figure 25 showsltpe of 2.30 which gives an indication
that the derived GPP is lower than MODIS to theédaof 2.30. This difference is caused by
lower gq.maxfor deciduous forest used in this study (0.53gC*Mcbmpared to highegy.max
used in derived MODIS GPP (1.04gC TJ
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5.6 Comparison of MODIS product annual NPP 2006 and
derived annual NPP 2007

The result of figure 26 shows no correlation on tmenparison of annual NPP MODIS
product (MOD17A3) 2006 and the derived annual NPB72with R of 0.005. This is an
expected result because in the comparison of G&Hli? no correlation was found between the
two products. The sources of uncorrelated in anihNRIP for MODIS product and derived
NPP is similar as happened for GPP. These soureaesdescribed in detailed in section 5.5.1
map to map comparison. However, this researchsis @nsidered autotrophic respiration as
another source because different approach was teosefbrived growth and maintenance
respiration.

Figure 27 was used as an indicative to identifydlase type with higher values appeared in
figure 26 for MOD17A3. The land use classes withhler values of NPP were identified as
water and natural vegetation. In reality pixel witater is not supposed to have higher NPP
than other land use type. That means MODIS prodast used different maximum light use
efficiency to derive GPP to pixel belong to wateor natural vegetation both maximum light
use efficiency and management of land use paregharsources of this difference.

Figure 27 shows white pixels which were regardech@sdata because in the MOD17A3
product four pixels were found to have value >300Q0cording to Heinsch et al (2003),
pixel with value greater than 3000 is referredganan-modelled, thus should not used in the
analysis.
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6 CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

The objective of this research was to demonstratethod for integrating remote sensing and
sensor web data for estimation of NPP at the Gledtion. The research reviewed different
approaches for NPP estimation, i.e. LUE, CASA, GBEBEM, TURC, and SDBM. The
strategies for each model were identified and costpavith respect to research objective and
the light use efficiency (LUE) model was found tatisfy the criteria used to evaluate the
appropriate model for the research. Therefore apmoach was adopted in this thesis.

Literature review has revealed different possiesitof parameterized light use efficiency
model. In depth study was done for each model patens including their limitation in terms
of data availability and appropriate method was&eld for parameterization.

Modeling implementation in this research was inedwifferent data sources with varied
spatial and temporal scaling. Scaling compatibitibth spatial and temporal was inevitable
during model implementation. Aggregation and redargp techniques was used in
harmonizing spatial scaling while integration anegrage techniques was used to harmonize
temporal scaling. Both techniques have proved tokwaoperly in this research on both
spatial and temporal scaling.

The results obtained from the derived daily GPP728Bows no consistency with MODIS
product 8 days GPP 2006 (MOD17A2) for the entirgontdowever, similarities were found
on land use class identified at some locationdqiendtudy area. Grassland and cropland has
proved to be more consisted while other land upesyshow inconsistency such as natural
vegetation, mixed forest and deciduous forest. difference in result between MOD17A2
2006 and derived daily GPP 2007 were identified1dghe use of different maximum light
use efficiency in the estimation of GPP, 2) chamgmanagement of land use parcel at some
locations within the study area and 3) comparis@s Wone based on products of different
years.

The results obtained from the derived annual NP®7 Zhows inconsistency with MODIS
product annual NPP 2006. Sources of their diffegewere identified to be the same as for
GPP. The parameters used for estimation growthnaaidtenance respiration were different
for each product and was considered as the sotitbeiodifference in NPP estimation.

The literature review has revealed three diffevesys of comparison the result obtained from
the derived daily GPP and MODIS product. These outhare map to map comparison, pixel
to pixel comparison and the comparison based oo lese type. The first two methods were
adapted in this thesis based on temporal variati@n a year and has proved to be very useful
for comparison purpose. This thesis did not perfany validation but possibilities to validate
the results are to compare with data collecteddmyecovariance flux tower and to compare
with annual yield collected by farmer or institutior he validation process based on data from
flux tower need to be setup in advance since itdoase limitations. These limitations are 1)
the validation data sets should be wall-to-walfasces 2) The spatial and temporal resolution
of the validation products should closely matchsth@f the derived products and 3) The
components of the derived NPP/GPP algorithm shbeldnalyzed along with the products
themselves so as to interpret possible errorsrotdiions.
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This research has produced different kind of reswhiich were enough to be examined the
possibility of applied the GPP/NPP approach elseath€he study has revealed that using
coarse scale data at local level results in untleraBon or overestimation of GPP/NPP. The
effect of underestimation and overestimation d#fer spatial and temporal scale. Spatially,
the study has revealed that coarse scale data adiiste the perfect location to apply
maximum light use efficiency to derived GPP. Thasearch has revealed that the pixel with
high annual NPP for MODIS product was covered byewaTherefore, generalization
performed to coarse spatial information increaserainty when applied in local level. In
temporal scale, the study has revealed that thdtresthe daily change in GPP was direct
related to environmental change. The amount of @PRvery single day in this thesis was
changed according to the change in weather condifitnerefore, real time information
provides a better estimation of current status BPG

The uncertainty detected in this thesis based enré¢isults obtained is the application of
autotrophic respiration parameters to all land tyg. The results of NPP for deciduous
forest in winter season was indicate values belem.zThough the values were found to be
small but it was against the expectation.

The results of the derived daily GPP in 2007 hawens similarity in range with the results
based on flux tower for cropland and deciduousdoréhe approach used to generate the
results for GPP indicates success in this thesis i because the method was used large
scale spatial information and high temporal scatermation. No limitations were found for
implementation of each parameter used to derive.3RBrefore, the method can be used
anywhere at local level if sensor information aadjé scale remote sensing data is available.

6.2 Recommendations
This research has shown that the demonstrated deefloo GPP/NPP estimation based on
remote sensing and sensor web data at local seakd Is feasible. Nevertheless, the
demonstrated method was the first step to asseapjlicability and efficiency at local scale
level. Some recommendations are:

1. Further research need to be undertaken on NPPat&tito understand the effect of
algorithm used for maintenance and growth respinatis applied to all vegetation
type.

2. It would be of much interest in future if the risobtained from similar approach
being validated using data from eddy covariance tibwver.

The demonstrated method in this thesis can be lugeftuture to avoid the problem of
underestimate and overestimate GPP/NPP at lodal levez!.
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Appendix

Appendlx 1. Daily GPP

# gpp_result. py
# Created on: do jan 24 2008 03:23: 27

# (generated by Arcd S/ Model Bui | der)
# I mport system nodul es
import sys, string, os, arcgisscripting

# Create the Geoprocessor object
gp = arcgisscripting.create()

# Check out any necessary |icenses
gp. CheckQut Ext ensi on("spatial")

# Load required tool boxes. ..

gp. AddTool box("C:/Program Fi | es/ Arcd S/ ArcTool box/ Tool boxes/ Spati al Anal yst Tool s.tbx")

# Local variables...

v23sep_lue_par = "E\\chunma_t hesi s\\ TOP_t endat a\\ Emax\ \ LUE_PAR\\ 23sep_| ue_par"
reclass_lgnd = "E:\\chuna_t hesi s\\ TOP_t endat a\\recl ass_| gn4"

val ue0 = "E:\\chuma_t hesi s\\ TOP_t endat a\ \ sep_| gn4\\ val ue0"

noveg = "E \\chume_t hesi s\\ TOP_t endat a\\ sep_I| gn4\\ noveg"

Cell _factor = "10"

Aggr egati on_t echni que = " SUM

val ue_27 = "E:\\chuna_t hesi s\\ TOP_t endat a\\ sep_| gn4\\val ue_27"
oshrub = "E:\\chuma_t hesi s\\ TOP_t endat a\\ sep_| gn4\\ oshr ub"

val ue_30 = "E:\\chunma_t hesi s\\ TOP_t endat a\\ sep_I| gn4\\val ue_30"
grass = "E:\\chuna_t hesi s\\ TOP_t endat a\\ sep_I gn4\\ grass"

val ue_42 = "E:\\chuna_t hesi s\\ TOP_t endat a\\ sep_| gn4\\ val ue_42"
mx_forest = "E:\\chuma_t hesi s\\ TOP_tendata\\sep_| gn4\\ nx_forest"
val ue_300 = "E:\\chuna_t hesi s\\ TOP_t endat a\\ sep_I gn4\\val ue_300"
cropland = "E:\\chuma_t hesi s\\ TOP_t endat a\\ sep_I| gn4\\ cr opl and"

val ue_53 = "E:\\chuna_t hesi s\\ TOP_t endat a\\ sep_I| gn4\\val ue_53"

dbf _forest = "E:\\chuna_t hesi s\\ TOP_t endat a\\ sep_| gn4\\ dbf _forest"
val ue_140 "E:\\chuna_t hesi s\\ TOP_t endat a\\ sep_I| gn4\\ val ue_140"
nherb_veg "E:\\chunma_t hesi s\\ TOP_t endat a\\ sep_I gn4\\ nherb_veg"

#read input file
file = open("E:\\chunma_thesis\\conv_efftabl e\\ LUETm nVPD. txt", "r")
file.readline()

while 1:
try:
rd_line = file.readline()
if not line:
br eak

line = string.split(rd_line, "\t")

coll = string.strip(line[0])

col2 = string.strip(line[1])

col 3 = string.strip(line[2])

col4 = string.strip(line[3])

col5 = string.strip(line[4])

col6 = string.strip(line[5])

col7 = string.strip(line[6])

col 8 = strl ng.strip(line[7])

col9 = "E:\\chuma_refdata\\ref_datal\\NDVI _GRID\\ ndvi _grid\\" + string.strip(line[8])

out put _l ocation = "E:\\chuma_t hesi s\\ TOP_t endat a\\ Emax\\ fi nal _GPP\\ LP"

# Process Single Qutput Map Al gebra...
terml = "(% * %)" % (grass, col3)
="(% * %)" % (oshrub, col?7)
="(% * %)" % (dbf_forest, col6)
="(% * %)" % (nx_forest, colb)
ternmb = "(% * %)" % (cropland, col4)
="(% * 0)" % (noveg)

="(% * %)" % (nherb_veg, col8)

expression = "((((¥%s + % + % + % + % + % + %) * 0.01) * %) * %)"
tern2, ternB, termd, ternb, tern6, ternv, col?2,
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gp. Si ngl eQut put MapAl gebr a_sa( expr essi on,

print

except :

"finished % ...."

% (col 1)

print gp.Get Message(1)
print gp.CGet Message(2)

out put _I| ocati on)

Appendix 2. Table of per land use type and PARTni nvrD)

date
20070114
20070203
20070215
20070310
20070312
20070313
20070314
20070315
20070325
20070326
20070327
20070328
20070331
20070401
20070402
20070404
20070405
20070406
20070408
20070412
20070413
20070414
20070415
20070416
20070419
20070422
20070423
20070425
20070426
20070427
20070428
20070429
20070430
20070501
20070502
20070503
20070504
20070505
20070523
20070524
20070530
20070602
20070608
20070611
20070619
20070708
20070719
20070801
20070804
20070805
20070811

PAR
3.6920
5.8450
7.4514
10.7438
12.4766
11.4025

8.2526
11.7738
11.6274
14.7067
14.6830
14.8554
14.1763
15.9074
15.2377
16.8613
14.7906
15.3489
16.5007
17.1367
14.4789
17.7552
18.9608
18.1210
19.3159
20.0757
15.3800
16.1951
18.7389
19.7335
20.0517
21.6613
22.6959
22.2086
22.6327
20.2873
18.6822
21.5709
24.4934
24.1137
22.6570
19.4688
20.3232
14.8424
25.2697
19.8631
19.0632
21.8457
22.7785
23.1430
20.2921

grass)
0.1424
0.0614
0.0989
0.0929
0.1124
0.0809
0.0554
0.0689
0.1903
0.1935
0.2065
0.0989
0.1903
0.1959
0.1415
0.0869
0.0614
0.0884
0.0809
0.1214
0.2087
0.1620
0.1598
0.1439
0.0674
0.0914
0.1338
0.2487
0.2158
0.1409
0.1757
0.2474
0.1763
0.1835
0.1584
0.1229
0.1433
0.1783
0.1513
0.1866
0.1364
0.1991
0.2838
0.3000
0.1940
0.2962
0.2843
0.2538
0.2890
0.2435
0.2860

Croplandg)
1.4236
0.6144
0.9890
0.9291
1.1239
0.8092
0.5544
0.6893
1.9031
1.9428
2.0787
0.9890
1.9031
1.9776
1.4240
0.8691
0.6144
0.8841
0.8092
1.2138
2.0887
1.6559
1.6384
1.4386
0.6743
0.9141
1.3476
2.5340
2.1578
1.4431
1.7925
2.5153
1.8001
1.8701
1.6261
1.2288
1.4421
1.7832
1.5135
1.8701
1.3636
1.9992
2.8661
3.0000
1.9521
2.9624
2.8513
2.5376
2.9029
2.5333
2.8599

mx_forest€)
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0.2418
0.1044
0.1680
0.1578
0.1909
0.1375
0.0942
0.1171
0.3233
0.3248
0.3437
0.1680
0.3233
0.3227
0.2354
0.1476
0.1044
0.1502
0.1375
0.2062
0.3534
0.2560
0.2504
0.2444
0.1145
0.1553
0.2222
0.3566
0.3665
0.2216
0.2794
0.3631
0.2796
0.2930
0.2465
0.2087
0.2389
0.3029
0.2571
0.3150
0.2316
0.3339
0.3850
0.4200
0.3234
0.4200
0.4097
0.4200
0.4042
0.2982
0.4200

dbf_forestf)

Oshrubg)
0.3159 0.1527
0.1363 0.0659
0.2194 0.1061
0.2061 0.0996
0.2494 0.1205
0.1795 0.0868
0.1230 0.0595
0.1529 0.0739
0.4223 0.2041
0.4243 0.2077
0.4489 0.2218
0.2194 0.1061
0.4223 0.2041
0.4215 0.2105
0.3074 0.1519
0.1928 0.0932
0.1363 0.0659
0.1962 0.0948
0.1795 0.0868
0.2693 0.1302
0.4617 0.2238
0.3343 0.1745
0.3271 0.1723
0.3192 0.1543
0.1496 0.0723
0.2028 0.0980
0.2902 0.1437
0.4500 0.2444
0.4788 0.2314
0.2894 0.1519
0.3650 0.1891
0.4582 0.2471
0.3653 0.1898
0.3827 0.1975
0.3220 0.1707
0.2726 0.1318
0.3120 0.1539
0.3957 0.1913
0.3358 0.1623
0.4115 0.2002
0.3026 0.1463
0.4361 0.2137
0.4859 0.2559
0.5300 0.2700
0.4224 0.2083
0.5300 0.2700
0.5170 0.2659
0.5300 0.2700
0.5101 0.2637
0.3763 0.2209
0.5300 0.2700

0.6643
0.2867
0.4615
0.4336
0.5245
0.3776
0.2587
0.3217
0.8881
0.9032
0.9638
0.4615
0.8881
0.9140
0.6602
0.4056
0.2867
0.4126
0.3776
0.5664
0.9738
0.7558
0.7459
0.6713
0.3147
0.4266
0.6244
1.1606
1.0070
0.6577
0.8197
1.1545
0.8226
0.8562
0.7390
0.5734
0.6689
0.8322
0.7063
0.8710
0.6364
0.9291
1.3243
1.4000
0.9055
1.3825
1.3269
1.1842
1.3488
1.1364
1.3346

nherb_veg{) NDVI_names

ndvi2_janl4
ndvi2_feb3
ndvi2_feb15
ndvi2_mr10
ndvi2_mrl2
ndvi2_mrl3
ndvi2_mrl4
ndvi2_mrl15
ndvi2_mr25
ndvi2_mr26
ndvi2_mr27
ndvi2_mr28
ndvi2_mr31
ndvi2_aprl
ndvi2_apr2
ndvi2_apr4
ndvi2_apr5
ndvi2_apr6
ndvi2_apr8
ndvi2_aprl2
ndvi2_aprl3
ndvi2_aprl4
ndvi2_aprl5
ndvi2_aprl6
ndvi2_aprl9
ndvi2_apr22
ndvi2_apr23
ndvi2_apr25
ndvi2_apr26
ndvi2_apr27
ndvi2_apr28
ndvi2_apr29
ndvi2_apr30
ndvi2_mayl
ndvi2_may?2
ndvi2_may3
ndvi2_may4
ndvi2_may5
ndvi2_may23
ndvi2_may24
ndvi2_may30
ndvi2_jun2
ndvi2_jun8
ndvi2_junll
ndvi2_junl9
ndvi2_july8
ndvi2_july19
ndvi2_augl
ndvi2_aug4
ndvi2_aug5
ndvi2_augl1l



20070923 11.4774 0.2450 2.4497 0.4161 0.5300 0.2627 1.1432
20071006 11.6497 0.2289 2.2886 0.3888 0.5078 0.2455 1.0680
20071007 10.8031 0.1922 1.9224 0.3266 0.4266 0.2062 0.8971
20071013 8.8504 0.2201 2.2007 0.3738 0.4883 0.2360 1.0270
20071014 10.0492 0.1966 1.9664 0.3340 0.4363 0.2109 0.9176
20071015 8.1470 0.2201 2.2007 0.3738 0.4883 0.2360 1.0270
20071022 8.5345 0.1498 1.4976 0.2544 0.3323 0.1606 0.6989
20071115 5.0641 0.0663 0.6627 0.1126 0.1470 0.0711 0.3093
20071122 4.1005 0.1893 1.8931 0.3216 0.4201 0.2030 0.8835
20071216 3.2264 0.0692 0.6920 0.1175 0.1535 0.0742 0.3229

# 1A dail yemax_ORI G NAL. py
# Created on: di jan 15 2008 02:49: 22
# (generated by Arcd S/ Model Bui | der)

# I nport system nodul es
import sys, string, os, arcgisscripting

# Create the Geoprocessor object
gp = arcgisscripting.create()

# Enabl e overwite output
gp. OverWiteQutput =1

# Check out any necessary licenses
gp. CheckQut Ext ensi on("spatial ")

# Load required tool boxes...

gp. AddTool box("C:/ Program Fi | es/ ArcG S/ ArcTool box/ Tool boxes/ Spati al Anal yst Tool s. tbx")

i = 110
while i <= 999:
try:
# Set |ocal variables
Qut Raster = "E:/chuma_t hesi s/ TOP_t endat a/ Enax/ Rg_r esp2007/ R20070" + str (i)
I nExpressi on = "E:/chunma_t hesi s/ TOP_t endat a/ Emax/ fi nal _GPP/ | p20070" + str (i)
| nExpression += " * 0.25"
I nput _raster = "E:/chuma_t hesi s/ TOP_t endat a/ Enax/ fi nal _GPP/ | p20070" + str(i)

print | nExpression
print "output |ocation: " + CQutRaster

# Process: Single CQutput Map Al gebra...
gp. Si ngl eCut put MapAl gebra_sa( |l nExpressi on, QutRaster, |nput_raster)
i +=1

print "finished QutRaster"

except:
# If an error occurred while running a tool, then print the nessages.
print gp. Get Messages(1)
print gp. CGet Messages(2)
i +=1

# 1A dail yemax_ORI G NAL. py
# Created on: di jan 15 2008 02: 49: 22
# (generated by Arcd S/ Model Bui | der)

# I mport system nodul es
import sys, string, os, arcgisscripting

# Create the Geoprocessor object
gp = arcgisscripting.create()

# Enabl e overwite output
gp. OverWiteQutput =1
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ndvi2_sep23
ndvi2_oct6

ndvi2_oct7

ndvi2_octl13
ndvi2_oct14
ndvi2_oct15
ndvi2_oct22
ndvi2_nov15
ndvi2_nov22
ndvi2_decl16



# Check out any necessary |icenses
gp. CheckQut Ext ensi on("spatial")

# Load required tool boxes. ..
gp. AddTool box("C:/Program Fi | es/ Arcd S/ ArcTool box/ Tool boxes/ Spati al Anal yst Tool s.tbx")

i = 1000
while i <= 1231:
try:
# Set local variables
Qut Raster = "E:/chuma_t hesi s/ TOP_t endat a/ Emax/ Rg_r esp2007/ R2007" + str (i)
I nExpressi on = "E:/chuma_t hesi s/ TOP_t endat a/ Enax/ fi nal _GPP/ | p2007" + str (i)
I nExpression += " * (Q.25"
I nput _raster = "E:/chuma_t hesi s/ TOP_t endat a/ Enax/ fi nal _GPP/ | p2007" + str(i)

print |nExpression
print "output location: " + QutRaster

# Process: Single Qutput Map Al gebra...
gp. Si ngl eCQut put MapAl gebra_sa( | nExpressi on, QutRaster, |nput_raster)
i +=1

print "finished QutRaster"

except :
# If an error occurred while running a tool, then print the nessages.
print gp. Get Messages(1)
print gp. Get Messages(2)
i +=1

Appendix 5. January-September Autotrophic resmirgiRa)
# I mport system nodul es
import sys, string, o0s, arcgisscripting

# Create the Geoprocessor object
gp = arcgisscripting.create()

# Check out any necessary licenses
gp. CheckQut Ext ensi on("spatial ")

# Load required tool boxes...
gp. AddTool box(" C:/Program Fi | es/ Arcd S/ ArcTool box/ Tool boxes/ Spati al Anal yst Tool s.tbx")
gp. AddTool box(" C:/ Program Fi | es/ Arcd S/ ArcTool box/ Tool boxes/ Dat a Managenent Tool s. t bx")

i =110
while i <= 999:
try:
# Set |ocal variables
I nExpressi on = "E:/chuma_t hesi s/ Bi omass/ Rm GRI DY 20070" + str (i)
I nExpression += "_ra + E:/chuma_t hesi s/ TOP_t endat a/ Emax/ Rg_r esp2007/1 p20070" + str (i)
| nExpressi on += "g"
Qut Raster = "E:/chuma_t hesi s/ TOP_t endat a/ Emax/ RrRgnew/ r nt g20070" + str (i)
print | nExpression
print "output location: " + QutRaster
# Process: MapAl gebr aSt at enent
gp. Si ngl eCut put MapAl gebra_sa( | nExpressi on, QutRaster)
i +=1
print "finished QutRaster"
except:

# If an error occurred while running a tool, then print the nessages.
print gp. Get Messages()
i +=1

Appendix 6. October-December Autotrophic respinatiRa)
# |l mport system nodul es
import sys, string, os, arcgisscripting
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# Create the Geoprocessor object
gp = arcgisscripting.create()

# Check out any necessary licenses
gp. CheckQut Ext ensi on("spatial ")

# Load required tool boxes...
gp. AddTool box(" C:/Program Fi | es/ Arcd S/ ArcTool box/ Tool boxes/ Spati al Anal yst Tool s.tbx")
gp. AddTool box(" C:/ Program Fi | es/ Arcd S/ ArcTool box/ Tool boxes/ Dat a Managenent Tool s. t bx")

i = 1000
while i <= 1231:
try:
# Set |ocal variables
I nExpressi on = "E:/chuma_t hesi s/ Bi omass/ Rm CGRI D/ 2007" + str (i)
I nExpression += "_ra + E:/chuma_t hesi s/ TOP_t endat a/ Enax/ Rg_r esp2007/1 p2007" + str (i)
| nExpressi on += "g"
Qut Raster = "E:/chuma_t hesi s/ TOP_t endat a/ Emax/ RmRgnew/ r nt g2007" + str (i)

print | nExpression
print "output location: " + QutRaster

# Process: MapAl gebr aSt at enent
gp. Si ngl eCQut put MapAl gebra_sa( | nExpressi on, QutRaster)
i +=1

print "finished QutRaster"

except :
# If an error occurred while running a tool, then print the nessages.
print gp.CGet Messages()
i +=1

Appendix 7. January-September Daily NPP
# I mport system nodul es
import sys, string, o0s, arcgisscripting

# Create the Geoprocessor object
gp = arcgisscripting.create()

# Check out any necessary licenses
gp. CheckQut Ext ensi on("spatial ")

# Load required tool boxes...
gp. AddTool box("C:/ Program Fi | es/ ArcG S/ ArcTool box/ Tool boxes/ Spati al Anal yst Tool s.tbx")
gp. AddTool box(" C:/ Program Fi | es/ Arcd S/ ArcTool box/ Tool boxes/ Dat a Managenent Tool s. t bx")

i =110
while i <= 999:
try:
# Set local variables
I nExpressi on = "E:/chunma_t hesi s/ TOP_t endat a/ Enax/ fi nal _GPP/ | p20070" + str (i)
I nExpression += " - E:/chuna_thesi s/ TOP_t endat a/ Emax/ RrRgnew/ r nt g20070" + str (i)
Qut Raster = "E:/chuma_t hesi s/ TOP_t endat a/ Emax/ NPPdai | y/ npp20070" + str (i)
print | nExpression
print "output location: " + QutRaster
# Process: MapAl gebr aSt at enent
gp. Si ngl eCQut put MapAl gebra_sa( | nExpressi on, Qut Raster)
i +=1
print “finished QutRaster"
except:

# If an error occurred while running a tool, then print the nessages.
print gp.Cet Messages()
i +=1

Appendix 8. October-December Daily NPP
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# I mport system nodul es
import sys, string, os, arcgisscripting

# Create the Geoprocessor object
gp = arcgisscripting.create()

# Check out any necessary licenses
gp. CheckQut Ext ensi on("spatial ")

# Load required tool boxes...
gp. AddTool box("C:/ Program Fi | es/ ArcG@ S/ ArcTool box/ Tool boxes/ Spati al Anal yst Tool s.tbx")
gp. AddTool box(" C:/Program Fi | es/ Arcd S/ ArcTool box/ Tool boxes/ Dat a Managenent Tool s. t bx")

i = 1000
while i <= 1231:
try:
# Set |ocal variables
I nExpressi on = "E:/chunma_t hesi s/ TOP_t endat a/ Emax/ fi nal _GPP/ | p2007" + str(i)
I nExpression += " - E:/chuna_thesi s/ TOP_t endat a/ Emax/ RmRgnew/ r nt g2007" + str (i)
Qut Raster = "E:/chuma_t hesi s/ TOP_t endat a/ Enax/ NPPdai | y/ npp2007" + str (i)

print | nExpression
print "output |ocation: " + CQutRaster

# Process: MapAl gebr aSt at enent
gp. Si ngl eQut put MapAl gebra_sa( |l nExpressi on, Qut Raster)
i +=1

print "finished CQutRaster"

except:
# |If an error occurred while running a tool, then print the nessages.
print gp.CGet Messages()
i +=1

# GPPupscal i ng. py
# Created on: na feb 11 2008 09: 30: 03
# (generated by Arcd S/ Model Bui | der)

# I nport system nodul es
import sys, string, os, arcgisscripting

# Create the Geoprocessor object
gp = arcgisscripting.create()

#Enabl e overwite out put
gp. OverWiteQutput =1

# Check out any necessary licenses
gp. CheckQut Ext ensi on("spatial ")

# Load required tool boxes...
gp. AddTool box(" C:/Program Fi | es/ Arcd S/ ArcTool box/ Tool boxes/ Spati al Anal yst Tool s.tbx")

i =110
while i <= 999:
try:
# Local variables...
Qut Raster = "E:\\chuma_t hesi s\\ TOP_t endat a\ \ Emax\ \ GPPmean1000m \ | p20070" + str (i)
I nExpression = "E:\\chuma_t hesi s\\ TOP_t endat a\\ Emax\\ fi nal _GPP\\| p20070" + str (i)
Cell _factor = "4"
Aggr egati on_t echni que = " MEAN'
print | nExpression
print "output location: " + QutRaster
# Process: Aggregate...
gp. Aggr egat e_sa( | nExpressi on, QutRaster, Cell_factor, Aggregation_technique, "EXPAND',
" DATA")

i +=1
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print "finished CQutRaster"

except:
# If an error occurred while running a tool, then print the nessages.
print gp. CGet Messages(2)
i +=1

# GPPupscal i ng. py
# Created on: ma feb 11 2008 09: 30: 03
# (generated by Arcd S/ Model Bui | der)

# I mport system nodul es
import sys, string, os, arcgisscripting

# Create the Geoprocessor object
gp = arcgisscripting.create()

#Enabl e overwrite out put
gp. OverWiteQutput =1

# Check out any necessary |icenses
gp. CheckQut Ext ensi on("spatial ")

# Load required tool boxes...
gp. AddTool box(" C:/ Program Fi | es/ Arcd S/ ArcTool box/ Tool boxes/ Spati al Anal yst Tool s.tbx")

i = 1000
while i <= 1231:
try:

# Local variables...
Qut Raster = "E:\\chunma_t hesi s\\ TOP_t endat a\ \ Emax\ \ GPPnmean1000m \ | p2007" + str (i)
I nExpression = "E:\\chuma_t hesi s\\ TOP_t endat a\\ Emax\\ fi nal _GPP\\ | p2007" + str (i)
Cell _factor = "4"
Aggr egati on_t echni que = " MEAN'

print | nExpression
print "output location: " + QutRaster

# Process: Aggregate...

gp. Aggr egat e_sa( | nExpressi on, QutRaster, Cell_factor, Aggregation_technique, "EXPAND',
" DATA")

i +=1

print "finished QutRaster"

except :
# If an error occurred while running a tool, then print the nessages.
print gp. Get Messages(2)
i +=1

# NPPupscal i ng. py
# Created on: na feb 11 2008 09: 30: 03
# (generated by Arcd S/ Model Bui | der)

# I nport system nodul es
import sys, string, os, arcgisscripting

# Create the Geoprocessor object
gp = arcgisscripting.create()

#Enabl e overwite out put
gp. OverWiteQutput =1

# Check out any necessary licenses
gp. CheckQut Ext ensi on("spatial ")

# Load required tool boxes...
gp. AddTool box("C:/ Program Fi | es/ ArcG S/ ArcTool box/ Tool boxes/ Spati al Anal yst Tool s.tbx")

54



i =110
while i <= 999:

try:
# Local variables...
Qut Raster = "E:\\chuma_t hesi s\\ TOP_t endat a\ \ Emax\ \ NPPdai | y1000m \ | p20070" + str (i)
I nExpressi on = "E:\\chuma_t hesi s\\ TOP_t endat a\ \ Emax\ \ NPPdai | y\\ npp20070" + str (i)
Cell _factor = "4"
Aggr egati on_t echni que = " MEAN'
print |nExpression
print "output location: " + QutRaster
# Process: Aggregate...
gp. Aggr egat e_sa( | nExpressi on, QutRaster, Cell_factor, Aggregation_technique, "EXPAND',
" DATA")
i +=1
print "finished QutRaster"
except:

# If an error occurred while running a tool, then print the nessages.
print gp. Get Messages(2)
i +=1

Appendix 12. October-December Daily NPP upscaling

# NPPupscal i ng. py
# Created on: ma feb 11 2008 09: 30: 03
# (generated by Arcd S/ Model Bui | der)

# I mport system nodul es
import sys, string, os, arcgisscripting

# Create the Geoprocessor object
gp = arcgisscripting.create()

#Enabl e overwite out put
gp. OverWiteQutput =1

# Check out any necessary |icenses
gp. CheckQut Ext ensi on("spatial ")

# Load required tool boxes...
gp. AddTool box("C:/ Program Fi | es/ Arcd S/ ArcTool box/ Tool boxes/ Spati al Anal yst Tool s.tbx")

i = 1000
while i <= 1231:
try:

# Local variables...
Qut Raster = "E:\\chuna_t hesi s\\ TOP_t endat a\ \ Emax\ \ NPPdai | y1000m \ | p2007" + str(i)
I nExpression = "E:\\chuma_t hesi s\\ TOP_t endat a\ \ Emax\ \ NPPdai | y\\ npp2007" + str (i)
Cell _factor = "4"
Aggr egati on_t echni que = " MEAN'

print | nExpression
print "output location: " + QutRaster

# Process: Aggregate...

gp. Aggr egat e_sa( | nExpressi on, QutRaster, Cell_factor, Aggregation_technique, "EXPAND',
" DATA")

i +=1

print "finished QutRaster"
except :
# If an error occurred while running a tool, then print the nessages.

print gp. Get Messages(2)
i +=1
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# MODL7A2. py
# Created on: do feb 14 2008 05:55:12
# (generated by Arcd S/ Model Bui | der)

# I mport system nodul es
import sys, string, os, arcgisscripting

# Create the Geoprocessor object
gp = arcgisscripting.create()

# Check out any necessary licenses
gp. CheckQut Ext ensi on("spatial ")

# Load required tool boxes...
gp. AddTool box("C:/ Program Fi | es/ ArcG@ S/ ArcTool box/ Tool boxes/ Spati al Anal yst Tool s.tbx")

i =100
while i <= 999:
try:

# Local variables...
Qut Raster = "E:\\chunma_t hesi s\\ TOP_t endat a\ \ Emax\\ MOD17A2_fi nal \\ c20070" + str (i)
expression = "E\\chuna_t hesi s\\ TOP_t endat a\ \ Emax\ \ MOD17A2_Renanel\\ c20070" + str (i)
expression += " * 0.1"
In_raster = "E:\\chuna_t hesi s\\ TOP_t endat a\\ Enax\\ MOD17A2_Renanel\\ c20070" + str(i)

print Map_Al gebra_expression
print "output location: " + QutRaster

# Process: Single Qutput Map Al gebra...
gp. Si ngl eCut put MapAl gebr a_sa(expression, QutRaster, In_raster)
i +=1

print "finished QutRaster"

except :
# If an error occurred while running a tool, then print the nessages.
print gp. Get Messages(2)
i +=1

print "finished QutRaster"
except :
# If an error occurred while running a tool, then print the nessages.

print gp. Get Messages(2)
i +=1
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