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ABSTRACT 
 

The light use efficiency (LUE) approach is often used with remotely sensed data products and 
meteorological data to estimate net primary production (NPP) from local to global scales. To 
estimate local NPP, detailed information of spatial and temporal dynamic change on 
vegetation within local landscape is increasingly important. Recently, the advancement of 
technology in sensor web has shown to be promising for improving the estimation of local 
NPP due to its ability to provide real-time data. Still the challenge ahead to researchers is how 
to integrate remote sensing and the sensor web data with variability in spatial and temporal 
scale for better estimation of NPP at local level. The objective of this study was to 
demonstrate a method for acquiring local NPP estimations by integrating remote sensing and 
sensor web data at Gendt location. 
 
The light use efficiency model has been found to be more appropriate for NPP estimation at 
local scale level in comparison to other methods and was adopted in this thesis. Spatial 
variability in remote sensing datasets were harmonized into common resolution based on 
aggregation technique while temporal variability in sensor web datasets were harmonized into 
daily time step based on integration and average techniques. Therefore, LUE method was 
used to integrate the remote sensing and sensor web data and the results were investigated by 
comparing them with two coarse scale MODIS standard products. The results attained from 
LUE model shows that high annual NPP values were obtained for cropland and grassland 
compared to other vegetation types. The comparison was done based on the derived daily 
GPP and annual NPP 2007 with MODIS product 8 days GPP (MOD17A2) and annual NPP 
(MOD17A3) 2006. Correlations were found at some locations with cropland and grassland for 
GPP while no correlation was found for annual NPP, though at some locations with grassland 
and cropland the values of NPP seemed to be much closer.  Sources for the difference in 
results were identified as change in management of the parcel/size or land use types at some 
locations within the study area since the comparison was based on different years. The use of 
different light use efficiencies in the estimation of daily GPP is also considered as a source of 
differences. Additionally, the use of different parameters in the estimation of growth and 
maintenance respiration were recognized as sources. The demonstrated method was 
successful for data integration but the validity of the results obtained need further study. 
 
Keywords: Gross primary production, Net primary production, Light use efficiency, MODIS, 
Remote sensing, In-situ sensing (sensor web). 
 
 
 



1 

1 INTRODUCTION 
 

1.1 Background 
Net primary production (NPP) is the net amount of solar energy converted to plant organic 
matter through photosynthesis. It is the rate at which vegetation in an ecosystem fixes CO2 
from the atmosphere (gross primary productivity, GPP) minus the rate at which the vegetation 
returns CO2 to the atmosphere through plant respiration. In recent years, modeling NPP of 
terrestrial ecosystems has been a subject of increasing interest because of concerns about the 
global terrestrial carbon cycle in relation to climate change.  
The practical importance of NPP is in its utility as a measure of crop yield, forest production 
(Milner et al., 1996), and other economically and socially significant product of vegetation 
growth. Regular monitoring of global terrestrial net primary production (NPP) and gross 
primary production (GPP) is needed for the purposes of evaluating trends in biospheric 
behavior (Nemani et al., 2003), and investigating large-scale patterns in food and fiber 
production(Running et al., 2004). Consequently, estimating global primary productivity and 
monitoring changes will play an important role in detecting the state of biosphere. 
 
At the global scale, terrestrial NPP is one of the most-modeled ecological parameters, with 
models that differ markedly in approach and complexity often yielding comparable estimates 
(Field et al., 1995). Field et al. (1995) also noted that similarities at global scale reveal little 
about a model's ability to estimate local or regional NPP, NPP for subannual time increments, 
or NPP under conditions of changed climate or species distributions (Field et al., 1995). 
At the local scale, NPP can be defined and measured in two experimental ways as biomass 
produced during the growing season or as net gas exchange of plants, namely, the difference 
between gross primary production (GPP) and autotrophic respiration (Churkina and Running, 
1998). However, measurements based on biomass data are by far the most common. 
Measurements based on biomass must confront the challenge of quantifying below ground 
processes, including root production and exudation (Sala et al., 1988). Measurements based 
on gas exchange are complicated by the fact that it is very difficult to measure either GPP or 
autotrophic respiration (Ra) in isolation. Gas exchange measurements at the leaf scale 
typically measure the sum of photosynthesis and leaf respiration. 
 
Satellite remote sensing is an attractive tool for crop area and NPP estimates because it 
provides spatial and temporal information on the location and state of crop canopies. Recent 
advances in remote sensing, in terms of both new sensors and algorithm development for data 
processing, have shown a promising potential for doing near real-time monitoring of key 
biophysical parameters of vegetation, for input into an ecosystem model. This includes 
consistent and timely availability of land surface products from EOS/MODIS.  
In the last few years, a coordinated strategy has been developed to improve estimates of 
terrestrial net and gross primary productivity by integrating multiple, complementary and 
independent data sources. This is because environmental conditions change over the earth’s 
surface, consequently, NPP of terrestrial vegetation varies over space and time. Spatial 
variations of NPP are related to factors such as climate, vegetation distribution, and land use 
across the planet from local to global scales (Cao et al., 2004). The advanced technologies of 
today make it possible to develop integrated approaches to Earth sensing that encompass both 
remote and in-situ sensing. The ongoing challenge to scientific researchers is how to develop 
the approach that integrates an in-situ sensor web and remote sensing imagery data to provide 
superior estimates and predictions of biomass, and crop yield. 
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Different approaches have been used to estimate carbon exchange from regional to global 
scales (Goetz and Prince, 1999). Ecosystem models play an important role in synthesizing 
such disparate time/space data into single coherent analysis of terrestrial carbon fluxes. 
However, the applicability of such models at an operational level is often limited by the 
fundamental drawback of large input parameter requirements, for which some may require 
acquisition in near real time (Hazarika et al., 2005).  
 
The recent advancement of sensor web technology has shown a promising potential in the 
analysis of temporal dynamic change on vegetation conditions within local landscape. 
Information/measurement from sensor web is one of the key variables driving ecosystems at 
local to global scales. Sufficient availability of real-time sensor web data has increased the 
understanding and detection of vegetation status of varied landscape. This has increased the 
opportunity of better estimation local NPP where land use variability is dominant across 
landscape. 
 

1.2 Problem definition 
Net primary production is highly variable in space and time. Spatial variations of NPP are 
related to factors such as climate, vegetation distribution, and land use across the planet from 
local to global scales (Cao et al., 2004). In understanding the spatial variability of NPP at the 
local scale level, detailed information in particular vegetation distribution and climatology at 
large spatial scale is highly important. Therefore, NPP estimation at local scale level has 
much influence on detailed and finer resolution dataset both spatial and temporal. 
 
Different literature sources have tried to documents several methods used to estimate NPP 
from regional to global. Some of these methods are used remote sensing data while others are 
combined remote sensing and meteorological data. However, application of these datasets can 
easily be distinguished based on local or global scaling. Detection of current status of 
vegetation growth or net primary productivity at local level can only be determined with 
detailed information on landscape variability and highly temporal resolution datasets. Such 
information is difficult to acquire based on one type of dataset either remote sensing or 
meteorological data. Though remote sensing is now days available in real time such as 
MODIS product but its coarse scale has been a drawback in use at local level. Their resolution 
ranges from 250m to 1km for the MODIS instruments and to 1km and above for the other 
instruments (Chien et al., 2005). In general remote sensing is still recognized for providing 
spatial detailed information at local level though in low temporal scaling. Recently, the 
advancement of sensor web technology has been recognized for providing real time data 
which is useful in temporal scientific application. Based on local NPP estimation, these sensor 
web data with high temporal scaling is more significant in detecting current vegetation 
condition. Therefore, local NPP can be better estimated by combining or integrating different 
data sources.  
 
In the past, carbon budgets and estimates of NPP have mostly been calculated on a yearly 
basis. Recent technological developments in continuous measurements have made it possible 
to make NPP estimates with a daily time resolution. This is more profound in detecting 
temporal dynamic change of vegetation within local landscape. The advancement of today’s 
technologies has made it possible to develop integrated approaches to Earth sensing that 
encompass both remote and in-situ sensing (Teillet et al., 2005). So far there is only limited 
number of published literatures on methods for combining real-time sensor web data and 
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remote sensing data for improving NPP estimation. Therefore it is the aim of this research to 
develop a method that will integrate sensor web and remote sensing for the purpose of better 
estimation of NPP productivity at local scale level. It is the intent of this research to apply the 
method at Gendt area as a test case and examine the possibility of implementing the same 
approach elsewhere. The derived NPP productivity will be compared with MODIS product 
(MOD17A2/A3). This is an important step for this research in order to understand and 
quantify the quality and accuracy of the results.  
 

1.3 Research objectives 
The aim of this thesis is to demonstrate a method for integrating remote sensing and sensor 
web for estimation of NPP at the Gendt area along the Waal (near the city of Nijmegen). This 
objective is achieved by: 
 

• Assessing the potential of combining real-time sensor web data with earth observation 
data for mapping NPP (with the purpose of estimating crop productivity). 

• Generating a time series of NPP maps for vegetation area. 
 

1.4 Research questions 
1. Which possibilities existing for integration of remote sensing data and sensor web data 

for NPP estimation? 
2. Which method can be implemented for NPP estimation in the present study and how 

can this method be parameterized? 
3. Which methods can be used to deal with differences in spatial and temporal resolution 

of different data sources? 
4. Are the results consistent with MODIS products (MOD17A2 and MOD17A3)? In case 

of differences can these be explained? 
5. Which are the possibilities for data comparison and Validation to assess the quality of 

the developed NPP estimation method? 
6. Can the method approach of the research be applied elsewhere? 

 

1.5 Report outline 
The general background information of the research was introduced in chapter one. This 
includes the problem definition, research objectives, research questions, and report outline. 
Chapter two reviews methods for integration remote sensing data and sensor web data for 
NPP estimation. Model parameterization and data requirements are also discussed in this 
chapter. The implementation of the method used in this study is discussed in Chapter three. 
Preprocessing of meteorological data, the implementation of a local light use efficiency model 
for GPP/NPP estimation, and methods comparison are all documented in this chapter. Chapter 
four presents the results of the application of the method on the Gendt area. Also a 
comparison of the derived GPP/NPP with (standard) MODIS products is made. Chapter five 
discusses the results of the case study. Finally, chapter 6 lists the conclusions and 
recommendations raised from the study. In the conclusion, the results are discussed with 
regards to the research questions. The appendices given at the end of the report contained the 
scripts used in this thesis. 
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2 LITERATURE REVIEW 
 

2.1 Overview - NPP model  
For many years remote sensing techniques have been recognized for NPP estimation at 
regional to global scale levels. Recently, much attention has been given to the development of 
method(s) that can integrate different data sources to improve NPP estimation. Since then, 
different methods have been developed for NPP estimation and these methods differ in terms 
of on factors such as the resolution of the input data, global or regional scale, use of 
biophysical factors or climate variables parametric models, ways of processing, and general 
assumptions. The method used for NPP estimates can be discussed in three broad categories, 
namely; light-use efficiency (LUE) approach, climate dependent approach and other (land-
biosphere) models. Light use efficiency approach uses remote sensing and meteorological 
data in the estimation of NPP. The climate dependent approach uses empirical relationships 
between climate variables and vegetation attributes such as cover types, allowing NPP to be 
estimated as a function of climate variables such as temperature, precipitation, and 
evapotranspiration. This thesis will explore and review the method that is capable of 
integrating remote sensing and sensor web.   
 

2.2 NPP modeling approach 
There are now a large number of efficiency models which differ in their detail and 
complexity, but all are based on the idea that knowledge of incident radiation and light-
absorbing properties of the plant canopy can determine the maximum potential photosynthesis 
for that canopy. The models which use the LUE approach can be categorized as production 
efficiency model (PEM) or a light-use efficiency (LUE) model. Each group has different 
strategies adopted by each model. According to (Ruimy et al., 1999, Cramer et al., 1999b), 
production efficiency models were identified as CASA, GLO-PEM, TURC and SDBM all of 
them derived NPP at global scale level. The light use efficiency model has been used to 
estimate GPP and net primary production (NPP) at various spatial and temporal scales.    
 

2.2.1 LUE (Light Use Efficiency) model  
Predicting the gross primary productivity (GPP) of terrestrial ecosystems has been a major 
challenge in quantifying the global carbon cycle (Canadell et al., 2000). Among all the 
predictive methods, the light use efficiency (LUE) model may have the most potential to 
adequately address the spatial and temporal dynamics of GPP because of its theoretical basis 
and practicality (Running et al., 2000). Light-use efficiency (LUE) approach is a concept used 
for NPP estimation and was explored by Monteith (1972, 1977). Now days this approach has 
been used in many models to estimate carbon uptake by vegetation. The light-use efficiency 
(LUE) approach is widely used to estimate NPP at large scales because it is conceptually 
simple and can be directly parameterized with remote sensing data (Ahl et al., 2005, Gower et 
al., 1999). According to Gower et al. (1999), the LUE approach has two advantages, namely 
1) it is simple and some evidence exists to suggest that maximum light use efficiency may be 
conservative within major vegetation classes. 2) The fraction of photosynthetically active 
radiation absorbed by green leaves in a canopy (fAPAR) can be remotely sensed, as has been 
shown in both empirical (Daughtry et al., 1992, Landsberg and Waring, 1997) and theoretical 
studies (Myneni et al., 1995).  
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The light use efficiency model described here is the concept used by Turner et al. (2005) for 
estimating GPP and NPP respectively. The specific components of the algorithm that 
produces the NPP/GPP products include climate and satellite-based inputs as well as a look-
up table for biome-specific parameters related to photosynthesis and autotrophic respiration. 
The components of the model NPP/GPP algorithm are described by Running et al. (2000). 
Gross primary production is derived on daily basis as: 
  

GPP = ↓PAR × fPAR × (εg-max × STmin × SVPD),                                                                   (1) 
 
where GPP is gross primary production (gC m−2day−1), ↓PAR is incoming photosynthetically 
active radiation (Wm-2 or MJ m-2), fPAR is fraction of ↓PAR absorbed by the plant canopy, 
εg-max is maximum light use efficiency (gC MJ−1), STmin is minimum temperature scalar (0 −1), 
and SVPD  is vapor pressure deficit scalar (0 −1). 
 
Net primary production is derived on daily basis and next on annual basis as the total daily net 
primary production. 
 
NPPdaily = GPP – Ra,                                                                                                                 (2) 
 
Ra = Rm + Rg                                                                                                                              (3) 
  

∑
=

=
365

1i
dailyAnnual NPPNPP                                                                                                             (4) 

 
where NPP is net primary production (gC m−2day−1), Ra is autotrophic respiration (gC 
m−2day−1), Rm is maintenance respiration (gC m−2day−1), a function of biomass (derived from 
LAI) and temperature, summed across biomass compartments, and Rg is growth respiration 
(gC m−2day−1), a function of biomass growth, summed across biomass compartments. 
 

2.2.2 CASA (Carnegie-Ames-Stanford-Approach) model  
The CASA (Carnegie-Ames-Stanford-Approach) model is a production efficiency model 
introduced by (Potter et al., 1993). This model estimates NPP based on the LUE approach. It 
uses a combination of ecological principles, satellite data, and surface data to predict 
terrestrial NPP on a monthly time step. This model is driven by satellite data as well as by 
temperature, precipitation, solar radiation, land cover and soil classifications (Hicke et al., 
2002). CASA computes NPP as a function of the absorbed photosynthetically active radiation 
(APAR), a maximum potential light-use efficiency variable ε, temperature (Ts) and moisture 
(Ws) scalars that represent climate stresses on vegetation light-use efficiency. The CASA 
model incorporates a structure that allows LUE to vary seasonally. The potential LUE value is 
empirically derived, and may be reduced by environmental constraints (Field et al., 1995). 
The CASA model estimates NPP for each time step as: 
 

tfAPARPARNPP ∆=∑ *** ε                                                                                               (5) 

 
where PAR is the total incident photosynthetically active radiation (MJ), fAPAR the fraction 
of PAR absorbed by photosynthetic tissues (unitless), ε the light use efficiency (LUE) (g MJ-

1PAR), and the summation is taken over the growing season. 
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Light use efficiency ε is calculated as the product of an optimal ε* and its temperature and 
water stressors (Tao et al., 2005) as stated below:  
 
ε = ε* T1 T2 Ws                                                                                                                        (6) 
 
where ε* is the global maximum light use efficiency for above-ground biomass when the 
environmental conditions are optimal, and T1, T2 and Ws are scalars representing 
environmental stressors that reduces LUE (Field et al., 1995).  
 

2.2.3 GLO-PEM (Global Production Efficiency Model) model 
GLO-PEM was developed to simulate GPP and NPP over large areas using algorithms driven 
entirely with remotely sensed measurements. This model is a semi-mechanistic plant 
photosynthesis and respiration model driven entirely with satellite observation from the 
Advanced Very High Resolution Radiometer (AVHRR). The GLO-PEM approach developed 
by Prince and Goward (1995) was the first attempt to model both global net and gross primary 
production using satellite data to measure both absorption of photosynthetically active 
radiation (APAR) and also environmental variables that affect APAR in primary production. 
The model estimates a wide range of biophysical variables at 10-day intervals including air 
temperature, vapor pressure deficit, soil moisture, biomass, autotrophic respiration, canopy-
absorbed photosynthetically active radiation, gross primary production, and light use 
efficiency (Goetz et al., 2000). According to Prince and Goward (1995) GLO-PEM is unique 
in its use of visible, near-infrared and thermal channels of the AVHRR to obtain continuous 
fields of driving variables (e.g., air temperature, humidity, canopy light absorption) rather 
than using the sparse network of meteorological stations or coarse resolution climate model 
results. The model is also referred to as a mechanistic model of primary production which 
uses variables that can be remotely sensed at a global scale (Goetz et al., 1999). The model in 
its simplest form is summarized as follows: 
 

])*)(*[( mgtt t YYPARfAPARgLUENPP ∑= σ                                                                        (7) 

 
Where σt is the reduction factor due to environmental stressors in time interval t (a 
proportion), LUE*gt is the potential LUE in terms of gross production (gC MJ-1), it is 
identified with the quantum yield of a leaf, a well-known variable with defined values and 
dependency on particular biochemical carbon fixation pathway and temperature, fAPAR the 
fraction of incident photosynthetic active radiation (PAR) absorbed by the canopy and Yg, Ym 
are measures of respiration.  
 

2.2.4 TURC (Terrestrial Uptake and Release of Carbon) model 
The terrestrial uptake and release of carbon (TURC) approach, is a diagnostic model for the 
estimation of continental GPP and NPP (Ruimy et al., 1996). TURC computes NPP as the 
difference between photosynthesis (i.e. gross primary productivity GPP) and carbon released 
by autotrophic respiration (Ra). Time varying inputs of the model are the incoming solar 
radiation (300-4000 nm), air and soil temperature and satellite vegetation index (NDVI). 
Normalized difference vegetation index (NDVI) is used to estimate the fraction of incoming 
photosynthetically active radiation (fPAR) that is absorbed by vegetation and leaf biomass. 
This model uses meteorological forcings (air temperature, incoming solar radiation), together 
with satellite observations (Normalized Difference Vegetation Index, NDVI) and a map of 
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ecosystem biomass. For the maintenance respiration, different plant organs are distinguished: 
leaves, fine roots and wood (Lafont et al., 2002). TURC assume one constant light-use 
efficiency (LUE) value for the estimation of the GPP, and applied environmental constraints 
on the estimation autotrophic respiration (Ra). According to Ruimy et al. (1996) TURC model 
is used the concept of Monteith (1972, 1977) which defined NPP as the product of incident 
solar radiation by several factors, or efficiencies: 
 
Pn = ε * f * c * Sg                                                                                                                      (8) 
 
where Pn is net primary productivity, ε is the efficiency of conversion of absorbed PAR into 
dry matter or “conversion efficiency”, f is the efficiency of radiation absorption by the canopy 
or “absorption efficiency”; c is the ratio of incident photosynthetically active radiation (PAR), 
Sg is climatic efficiency. Also f has been related to vegetation indices calculated from 
reflectances in the red and near-infrared channels of NOAA-advanced very high resolution 
radiometer (AVHRR). 
 

2.2.5 SDBM (Simple Diagnostic Biosphere Model) model 
The Simple Diagnostic Biosphere Model (SDBM) uses the satellite-derived normalized-
difference vegetation index (NDVI) to calculate the photosynthetically active radiation 
absorbed by the canopy. Knorr and Heimann (1995) calibrated SDBM in two steps. First, they 
determined two global parameters, the light-use efficiency in NPP and the temperature 
sensitivity of heterotrophic respiration (RH) to match the seasonal atmospheric CO2 signal at 
five northern monitoring stations. Land use is implicitly considered in SDBM, since it is 
based on NDVI. SDBM considered a potential LUE, which is reduced by a drought factor 
(AET/PET) (Nemry et al., 1999). The calculation is performed on the basis of measured 
Normalized Differential Vegetation Index (NDVI), incoming solar radiation, and surface 
temperature. 
 

2.2.6 Model comparison 
Production efficiency models (PEMs) and LUE model both use a light-use efficiency 
approach to estimate NPP. These models are distinguished according to their strategies 
adopted in the NPP estimation. The strategies can be summarized as spatial and temporal 
resolution of the input data used, scale level applicable, use of biophysical factors or climate 
variables and ways of processing. Table 1 below indicates the comparison between production 
efficiency models and light use efficiency model. 
 
Table 1 Comparison of characteristics for production efficiency models and light use efficiency model 
NA. Production efficiency models (PEM) Light-use efficiency model 
1. Applied at global scale level Applied at local/regional and global scale level 
2. Used input data (applicable) at coarse spatial 

resolution 
Used input data (applicable) at fine spatial resolution 

3. Generate GPP/NPP at coarse temporal 
resolution (e.g. 10days, monthly)  

Generate GPP/NPP at fine temporal resolution 
(daily). 

4 Used meteorological data (applicable) at coarse 
scale  

Use local meteorological data (applicable) at fine 
scale 

5 Model utilizes variables retrieved entirely with 
remotely sensed observations including 
environmental factors ( e.g. temperature) 

Model utilized variable retried from both remote 
sensing and in-situ data 
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Regarding to the objective of the research, several criteria were identified and used to evaluate 
the appropriate model in this study. The identified research requirements are 1) model should 
be able to generate GPP/NPP on daily basis 2) model should be capable of estimating 
GPP/NPP at large scale 3) model should be applied at local scale level 4) model should 
generate GPP/NPP separately, and 5) restriction in the data availability was also taken into 
consideration. Based on these requirements, each model characteristics was explored and 
compare for the best fit to the requirements. Light-use efficiency model seems to be more 
appropriate for better estimation of GPP/NPP in this study. This is because of its ability to 
utilize large spatial and temporal data, generate GPP/NPP on daily basis, applied the model at 
local scale level, and the ability to handle the integration of in-situ data of fine resolution and 
remote sensing data with varied scale. Table 2 below describe in detailed on the strategies for 
calculating GPP/NPP (Cramer et al., 1999a, Running et al., 2000).  
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Table 2 Spatial and temporal variation in different models for estimation GPP/NPP 
Model  Full name 

 
Spatial 
resolution 
of NPP 

Temporal 
resolution 
of NPP 

NPP 
calculated 
as: 

Model parameters  No. of 
VEGC 
pools  

strategy 

CASA Carnegie-Ames-
Stanford-
Approach model 

 
1° x 1° 
 

1 month 
 

NPP 
 

NPP = f(SRad, FPAR, Temp, AET/PET) 
 

0 PEM, LUE derived empirically, applied 
to NPP 

GLO-
PEM 

Global 
Production 
Efficiency model 

8km x 8km 
 

10 days 
 

GPP- R A 
 

GPP = f(SRad, FPAR, Temp, SW, VPD) 
R A = f(VegC, GPP) 

2 PEM, LUE derived from mechanistic 
model, applied to GPP 

TURC 
 

Terrestrial 
Uptake and 
Release of 
Carbon Model 

 
1° x 1° 
 

1 month 
 

GPP- R A 
 
 

GPP = f(SRad, FPAR) 
R A = f(VegC, Temp) 
 

3 PEM, LUE derived empirically (global 
value), applied to GPP, environmental 
constraints applied to RA 

SDBM  
 

Simple 
Diagnostic 
Biosphere Model 

0.5° x 0.5° 
 

1 month NPP 
 

NPP = f(SRad, FPAR, CO2) 4 PEM, LUE derived empirically, applied 
to NPP 

LUE Light-Use 
Efficiency  

Both large 
and small 
spatial 
resolution 

daily GPP- R A 
 

GPP= (Fpar, PAR, ε,Temp,VPD) 
R A = Rm + Rg 

3  

 
Note: SRad is solar radiation, SW is soil water, VPD is vapour pressure deficit, Ra is autotrophic respiration, AET is actual evapotranspiration, 
PET is potential evapotranspiration, Rm is maintenance respiration, Rg is growth respiration and ε is conversion efficiency. 
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2.3 LUE model input and parameterization 
In the LUE model, the processes of gross primary production (GPP) and autotrophic 
respiration (Ra) are treated separately. Each input parameters used to generate gross primary 
production (GPP) and net primary production (NPP) is also derived separately. The 
parameterization of individual variable in the equations has been reviewed in the following 
sections.    
 

2.3.1 Fraction of photosynthesis active radiation 
According to (Running et al., 2000, Running et al., 2004), the fraction of photosynthetically 
active radiation (fPAR) can be estimated from remote sensing data. Spectral vegetation 
indices derived from remotely sensed data have several forms, the most widely used currently 
is the normalized different vegetation index (NDVI) which uses reflectance from red and 
near-infrared (NIR) wavelengths as: 
 

REDNIR

REDNIR
NDVI

+
−=                                                                                                                 (9) 

 
A spectral vegetation indexes such as NDVI (ranging from 0 to 1) can be used as an estimate 
for fPAR (Prince and Goward, 1995):  
 
fPAR ≈ NDVI                                                                                                                         (10) 
 
According to (Prince and Goward, 1995) the spectral vegetation index measurements 
produced by calculating the NDVI have shown, empirically and theoretically, to be related to 
the fraction of incident PAR absorbed (fPAR) in vegetation canopies.  
 
Alternatively, fPAR can be derived from leaf area index (LAI). According to (Turner et al., 
2003) the conversion of the ground-based LAI to fPAR used a simple Beer’s Law approach 
(Jarvis & Leverez, 1983). 
 
fPAR = 1- (e(LAI*(-k)) )                                                                                                               (11) 
 
where k is the canopy light extinction coefficient. This approach requires a reliable estimation 
of k, which is mainly related to leaf optical properties, distribution, and orientation. The 
canopy extinction coefficient is determined by the angle distribution of leaves in the canopy 
and the incidence angle of the radiation. The equation describing this is: 
 

733.0

22

)182.1(744.1
tan  −++

+=
xx

xk θ
                                                                                                         (12) 

 
where x is the leaf angle distribution parameter and θ� is the angle of incidence of the radiation. 
 

2.3.2 Photosynthetic active radiation 
Plants require solar radiation for photosynthesis, and their growth rate is proportional to the 
amount received. Photosynthetically active radiation (↓PAR) consists of wavelengths utilized 
by the plant biochemical processes in photosynthesis to convert light energy into biomass. 
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The PAR can be defined as quantum units of light energy, and expressed as the number of 
photons of light received on a unit area (Kania and Giacomelli, 2005). When measuring light 
by quanta (or number of photons), the common unit reported is micromoles per second per 

square meter (µmol s
-1 

m
-2

). This is an instantaneous rate, and is measured by a quantum 
sensor for example every 15 minutes. The fraction of PAR absorbed by the plant canopy is an 
essential parameter relating the available visible solar radiation to its absorption by the 
chlorophyll for plant photosynthesis. PAR data is normally obtained from a meteorological 
station. Instantaneous PAR is very useful for NPP estimation, but the LUE model requires a 
daily time step and thus instantaneous data must be integrated.  
 
The PAR also can be estimated from the incidence shortwave radiation. It has been assumed 
in various applications that incident PAR is half of the incident shortwave radiation 
(insolation) that is routinely measured at weather stations. However, several studies indicated 
that this ratio is not constant in time. Jacovides et al. (2003) found that this ratio varied 
between 0.460 and 0.501 in hourly measured values. The conversion factor varies seasonally 
and by geographical location on Earth. For example Pinker et al. (1995) found a factor of 0.45 
best approximates the PAR fraction in shortwave radiation for the eastern United States.  
 

2.3.3 Maximum conversion efficiency  
Maximum light-use efficiency (εg-max) is a key parameter for estimation of net primary 
productivity (NPP). Estimation  of NPP from LUE models may be improved if vegetation 
specific εg-max  values are used (Goetz and Prince, 1999). The maximum light use efficiency or 
conversion efficiency varies widely with different vegetation types (Prince and Goward, 
1995). According to Running et. al. (2000), there are two principal sources of this variability. 
First, with any vegetation, some photosynthesis is immediately used for maintenance 
respiration. Running and Hunt (1993) and Hunt (1994) hypothesized that lower εg-max values 
for woody vegetation (0.2 to 1.5 gCMJ-1), is the result of respiration from the living cells in 
the sapwood of woody stems. The second source of variability in εg-max is due to suboptimal 
climate conditions.  
 
Various publications have documented the derived values of εg-max per land use type (Ahl et 
al., 2004), other individual studies have suggested factors such as stand age, species 
composition, soil fertility, and foliar nutrients (Gower et al., 1999). Information about εg-max 
for individual vegetation types can be obtained from a survey of the literature for example the 
εg-max values as published by (Gower et al., 1999, Ahl et al., 2004). Table 3 below is an 
example of the derived values of  εg-max per land use type extracted from (Ahl et al., 2005).  
 
Table 3 Conversion efficiency per land-use type  
Land use Conversion efficiency (gC/MJ) 
Forested wetland 0.41 
Forest 0.53 
Wetland 0.27 
Grassland 0.30 
Cropland 3.0 
 
This retrieved εg-max applied to a maximum value established for each vegetation type is 
attenuated by two controls. These controls are 

• Stomatal closure due to cold night temperature (TMIN) and 
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• Stomatal control due to daytime vapour pressure deficiency (VPD) 
The two parameters for TMIN and the two parameters for VPD are used to calculate two 
scalars that attenuate εg-max to produce the final conversion efficiency (ε) used to predict GPP.  
 
Photochemical Reflectance Index 
The photochemical reflectance index (PRI), derived from narrow band reflectance at 531 and 
570 nm has been related with some success to photosynthetic light-use efficiency (LUE). The 
photochemical reflectance index (PRI) is a reflectance measurement that is sensitive to 
changes in the carotenoid pigments (particularly xanthophyll pigments) in living foliage. 
Carotenoid pigments are indicative of photosynthetic light use efficiency, or the rate of carbon 
dioxide uptake by foliage per unit energy absorbed (Gamon et al., 1992, Gamon et al., 1997). 
Recent studies have shown that the photochemical reflectance index (PRI), derived from 
narrow waveband reflectance at 531 and 570 nm, can be used as a remote measure of 
photosynthetic light-use efficiency (LUE). Previous studies have shown that the relationship 
between the PRI and LUE can be used to estimate photosynthetic performance at both leaf 
and canopy scales (Gamon et al., 1992). The relationship between vegetation reflectance at 
531 nm and photosynthetic light-use efficiency (LUE) has been studied for leaf and small 
vegetation plots showing that the PRI provides a widely applicable index of vegetation LUE 
across species, functional types, and nutrition levels (Gamon et al., 1997). According to 
Gamon et al. (1992), PRI tracks both diurnal and seasonal variation in photosynthetic activity. 
The PRI is defined by the following equation: 
 

570531

570531

ρρ
ρρ

+
−=PRI                                                                                                                    (13) 

 
where ρ531 indicates reflectance at 531nm ( the waveband of the “xanthophyll signal”), and 
ρ570 indicates the reflectance at 570nm ( a reference waveband) (Gamon et al., 1992). 
 
PRI has been correlated with both the epoxidation state of the xanthophyll cycle pigments and 
LUE in several field studies at the leaf and ecosystem levels (Gamon et al., 1992). 
Correlations between PRI and ecosystem LUE were recently found when PRI was obtained 
from hyperspectral data acquired by aircraft (Rahman et al., 2001). More recently, (Rahman et 
al., 2004) used MODIS reflectance data from bands originally intended for ocean observations 
and calculated PRI over a temperate deciduous forest. Rahman et al. (2004) was estimating 
“continuous field” LUE of terrestrial vegetation using the MODIS ocean bands #11 
(bandwidth 526-536 nm) and #12 (546-556 nm) over a forested terrestrial ecosystem, in 
which all requisite data are obtained directly from satellite sensors. They found a high 
correlation of MODIS-PRI with daily NPP that was derived from Eddy Covariance data 
(Guillaume et al., 2005). 
 

2.3.4 Temperature  
Temperature measurements for NPP estimation are obtained from meteorological stations and 
have been separated as minimum air temperature and mean air temperature. Both minimum 
and mean air temperature are instantaneous measurements and are measured for example, 
every hour.  
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2.3.5 Vapor pressure deficit 
Vapor Pressure Deficit (VPD) is the difference (deficit) between the amount of moisture in 
the air and how much moisture the air can hold when it is saturated. For plants to preserve 
essential moisture, stomata respond to the relative difference between the vapor pressure (a 
measure of the amount of water) inside a leaf and that of the outside air. This difference in 
vapor pressure inside and outside a leaf is termed the vapor pressure deficit (VPD). It is an 
index of the drying capacity of the air, and it varies with temperature and humidity conditions. 
VPD strongly affects photosynthetic rates. In dry conditions, leaves may be unable to 
maintain adequate moisture and respond by closing stomatal pores. Stomatal closure restricts 
not only the diffusion of water out of the leaf but also carbon dioxide diffusion into the leaf, 
resulting in reduced photosynthesis. Plants respond differently to VPD depending on the 
environment to which they have adapted. 
 
VPD can be estimated using an online VPD calculator with input requirements as mean air 
temperature and relative humidity 
(http://www.autogrow.com/1_information/1_vpd/info_vpd.html) or using the following 
formulas (14 – 16).  To compute the VPD we need the ambient (greenhouse) air temperature, 
the relative humidity and if possible, the canopy air temperature (Wikipedia). 
 
• Calculate the saturation vapor pressure of the air (VPsat) 

 

T

T

eVPsat += 97.240

*502.17

61365.0                                                                                              (14) 
 
where VPsat is saturation vapor pressure (kPa) and T is average temperature (ºC). The above 
equation can be find from the following link; 
http://www.licor.com/env/Products/li6400/6400_manuals.jsp click on “instruction manual” 
and go to book 3 pg 14-10. 

 
• Calculate the VPsat of the canopy: Same as above, T – Temperature of the canopy in ºK . If 

canopy temperature is unknown, proceed to step below. 
 
• Calculate vapor pressure in the air (VPair) at the actual relative humidity. 

 
VPair = VPsat * relative humidity                                                                                 (15) 
 

• Calculate VPD as difference between saturation vapor pressure and vapor pressure in the 
air.  
 

VPD = VPsat – VPair                                                                                                     (16) 
 

Or  VPD = VPcanopy sat − VPair                                                                                            (17) 
 

2.3.6 Autotrophic respiration 
In the user guide of MOD17A2/MOD17A3 Heinsch et al. (2003) has describe in detail an 
algorithm to derive autotrophic respiration, Ra. In their method, the maintenance respiration 
(Rm) and growth respiration (Rg) components are derived from allometric relationships which 
have been developed from an extensive literature review, and incorporate the same parameters 
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as those used in the BIOME-BGC ecosystem process model (White et al., 2000). Therefore, 
autotrophic respiration is estimated as the sum of maintenance respiration, Rm, from the three 
live vegetation components (leaves, stem, and root) and growth respiration, Rg. 
 
Ra = Rm + Rg                                                                                                                           (18) 
 
Recently, Tao et al. (2005) used a simple approach in the estimation of autotrophic 
respiration. In their work, the autotrophic growth respiration is expressed as 25% of the GPP 
while maintenance respiration algorithm is modeled using a semi-empirical relationship with 
standing above ground biomass (W, Mg m-2). Above-ground biomass was estimated based on 
the following expression; 
 

)(1.7166 6.2
min
−= ρW                                                                                                                    (19) 

 
where W is the above-ground standing biomass (Mg m-2), and ρ is the minimum reflectance 
(ρmin, %) in AVHRR channel 1. According to Tao et al. (2005), maintenance respiration can 
be estimated based on biomass and the deviation of T from climatological air temperature Tc. 
 

)
25

(*)
50

(*53.0 5.0 TTc
e

W

W
Rm

−
+

=                                                                                        (20)                                                      

 
where Tc is the base temperature and is constant at 25ºC, and T is the daily average 
temperature. Therefore, the approach used by Tao et al. (2005) in the estimation of 
autotrophic respiration was adopted in this thesis. 
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3 MATERIALS AND METHODS 
 

3.1 Study area 
The study area is located within the polder of Gendt which is along the Waal near the city of 
Nijmegen. It covers approximately an area of 25 km2. The area is north of river Waal, about 7 
kilometers east from Nijmegen. The nearest node in the sensor web is located at 
51°52´16.88´´N and 5°56´42.79´´E. According to weather station (KNMI, 2003-2004) the 
temperature variation ranges between -10.6 minimum and 35 maximum per year and the 
annual precipitation ranges between 750 and 775mm. This area is prone to flooding risks 
when water levels in the river are high. This situation leads to seepage through dikes and the 
land in the polder may become flooded (Abdi et al., 2007). Figure 3 is an aerial photograph of 
the study area. 
 

 
 
Figure 1 Arial photograph of the study area, which is indicated in red  
 

3.2 Data 
 

3.2.1 Remote sensing data 
In this thesis a Dutch land use database (LGN4) dataset was used. The LGN4 dataset is a 
Dutch land use database and it is based on satellite imagery from 2003 and 2004 and 
additional data. The nomenclature of the database includes crop types, forest types, water, 
various urban classes and several ecological classes. Satellite imagery for LGN4 is a 
combination of Landsat ETM7 and TM5, LISS-1c and ERS-SAR images. According to 
(Hazeu, 2006) the images were georeferenced and cubic convolution was used to resample the 
images to 25m grid size. 
 

3.2.2 Sensor web data 
Within the study area, in-situ measurements are being collected by a set of sensors and the 
acquired data are distributed to users for different applications. These data are available to 
Wageningen University who participate in a team which is involved in a RGI (Space for Geo-
information) project called “Sensor as a data source”. Minimum and mean air temperature, 
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photosynthetic active radiation (PAR), and relative humidity are examples of meteorological 
data that were required in this research.  
However, an examination of the first data delivered by the sensors revealed that the radiance 
and relative humidity sensors were mal-functioning. Therefore, an alternative time series of 
meteorological data from the Haarweg location in Wageningen was chosen. At this location 
there is no direct measurement data available for PAR. Therefore, this was estimated from the 
measurement of the shortwave incoming radiance (Wm-2) which is collected every hour. The 
air temperature dataset used in the estimation of VPD was from the Gendt and Haarweg 
weather stations. Data from January to June was from Haarweg and July till December was 
from Gendt. Because of some limitation in the availability of data from June to December,  a 
nearby weather station was used as an alternative.  
 

3.2.3 Surface reflectance product  
MOD09 GQ is a MODIS/Terra surface reflectance product which provides band 1(range 620-
670 nm) and band 2 (range 841-876 nm) at 250-meter resolution in a daily gridded L2G 
product in the Sinusoidal projection. The surface reflectance product is a major input utilized 
in the generation of several land products: vegetation indices, BRDF, land cover, snow cover, 
thermal anomalies, and LAI/fPAR. For the purpose of this research the product was used to 
generate NDVI (normalized difference vegetation index).  
 

3.2.4 MODIS 8 days GPP product   
MOD17A2 is an 8-day composite at 1-kilometer spatial resolution provided as a gridded 
level-4 product in the Sinusoidal projection. This product produces gross primary production 
of vegetation every day, and sums to net primary production, essentially vegetation growth, at 
the end of the year. The product is computed with daily MODIS land cover, FPAR/LAI and 
global GMAO surface meteorology at 1km for the global vegetated land surface. This product 
provides an accurate measure of terrestrial vegetation growth and production activity. The 
product can be searched and ordered via the following web link 
http://edcimswww.cr.usgs.gov/pub/imswelcome/.  
 

3.2.5 MODIS annual NPP product  
MOD17A3 is an Annual Net Primary Productivity product. The vegetation production 
product is designed to provide an accurate regular measure of the growth of the terrestrial 
vegetation. This product produces gross primary production of vegetation every day, and 
sums to net primary production, essentially vegetation growth, at the end of the year. The 
product is computed with daily MODIS land cover, FPAR/LAI and global GMAO surface 
meteorology at 1km for the global vegetated land surface. These variables provide the initial 
calculation for growing season and carbon cycle analysis, and are used for agriculture, range 
and forest production estimates. 
 
Spatially, MODIS has a much coarser resolution than some other satellite sensors (1km x 
1km). Data from MODIS are well-suited to large regional or global analyses. Temporally, 
MODIS is much better than many satellite sensors, with its daily overpasses and 8-day 
compositing of the data, which can be used to look at annual productivity and inter-annual 
variability of both GPP and NPP. There is no other satellite that can provide a global, 8-day 
look at vegetative productivity and carbon balance on an annual basis. In addition, these data 
are available in near-real time, which will allow users to make comparisons with their own 
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research data during the growing season, often within weeks of the actual data collection. 
Periodic reprocessing of the data will allow for interpolation of missing data, resulting in a 
more complete, and more accurate product (Heinsch et al., 2003). MOD17A3 product can be 
searched and ordered via the web link http://edcimswww.cr.usgs.gov/pub/imswelcome/. 
 

3.3 Data integration conceptual model  
Several literature sources have published different methods for data integration to estimate 
NPP over large area. However, this thesis intends to integrate data from different sources to 
estimate NPP over a small area. The thesis aims to adapt a light use efficiency model in the 
estimation of NPP. Figure 4 summarizes the approach used for data integration in a light use 
efficiency model to estimate daily GPP and NPP. This conceptual model also included the 
comparison of MODIS products (MOD17A2/3) with the derived GPP/NPP. 
 

 
 
Figure 2 Conceptual model indicates connection in research strategies for NPP estimation   
 

3.4 Preprocessing of meteorological data - Instanta neous 
temporal Scaling 

The term scaling refers to data, processes, or models. Scaling addresses the process of 
translating information from one scale to another. It requires the definition of a source and a 
target scale including grain and extent. Scaling from small to large scale is called up-scaling, 
in the other direction downscaling. Up-scaling and downscaling are also referred to as 
“aggregation” and “disaggregation” respectively. Scaling is needed for a variety of reasons. 
One is incompatibility of data gathered at different scales. To make such data compatible, 
they must be transformed to a common target scale. Scaling is also necessary to translate 
model processes from one to another scale. For example, the lack of small scale data or 
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restricted computing resources can impede large scale model simulations. Then the model’s 
process functions or the data should be adapted to the coarser scale.  
 
Many of the available meteorological data varies in temporal scale. The LUE model as 
proposed for this study requires a daily time step to derive GPP productivity. Preprocessing of 
meteorological data based on temporal scaling is an important step in this research in order to 
harmonize the available datasets that were available on a hourly basis and adapted to a daily 
basis as model input requirement. Similarly, some meteorological datasets are not directly 
used as input into the model rather they need to be either averaged or integrated or combined 
with others dataset to derive the input variables for the model. Therefore, processing is 
considered as a necessary and important step for this research. Temporal scaling was done to 
the following meteorological datasets; photosynthetic active radiation (PAR), air temperature 
and relative humidity.     
 

3.4.1 Daily photosynthetic active radiation 
PAR is an instantaneous flux measurement and is very useful for NPP estimation, but many 
models (e.g. the LUE model) requires a daily time step and thus the daily PAR product is 
more desirable. The daily PAR was estimated based on shortwave radiations which were 
measured on a hourly basis by the sensor. A conversion factor of 0.45 was used to convert 
shortwave radiation to PAR. This factor has been reported in different literature sources as 
suitable for conversion purpose (Pinker et al., 1995). The unit for shortwave radiation from 
the data provider is Wm-2 and was converted to MJ m-2 to comply with the input model unit. 
Hourly shortwave radiation measurements were converted into PAR and integrated into daily 
basis as expressed below.  
 

∑=
n

i
dailyPAR 610/3600*)45.0*SWRad(                                                                                (21) 

 
Where PARdaily is the daily PAR (MJ m-2), SWRad in the incoming shortwave radiation (Wm-

2), and n is the number of measurements over a day. 
 

3.4.2 Daily minimum temperature scalar 
Light use efficiency model requires scalar values (0 – 1) for minimum temperature as input in 
the model. Therefore, the available minimum temperature from meteorological data can not 
be used as direct input in that model. Minimum temperature scalar was estimated based on 
simple linear ramp functions as presented in Figure 3. The values for TMINmin and TMINmax 
per land use type were extracted from the look up table compiled by Heinsch etal., 2003 as 
presented in table 4.  
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Figure 3 Simple linear ramp function for STmin estimation 
 
where TMINmin (ºC) is the daily minimum temperature at which ε = 0.0 and TMINmax (ºC) is 
the daily minimum temperature at which ε = εmax. When TMIN scalar >1, then TMIN scalar 
=1 assuming that no influence on vegetation growth similarly, when TMIN scalar < 0, then 
TMIN scalar = 0 also no vegetation growth taking place. 
The scalar values for the measured minimum temperature (Tmin) were derived as follows; if 
Tmin is lower than TMINmin then scalar value is 0 or if Tmin is higher than TMINmax then 
scalar value is 1, otherwise a simple mathematical expression was used: 
 

minmax

minmin
min

TMINTMIN

TMINT
ST

−
−=                                                                                           (22) 

 
where STmin is the scalar value for minimum temperature range between 0 and 1. Table 4 
below summarized the extracted values of TMINmin, TMINmax, VPDmin and VPDmax per 
land use type. These values were extracted from a look up table as compiled by Heinsch et al. 
(2003).    
 
Table 4 Values for daily TMINmin, TMINmax, VPDmin, VPDmax per land use type 
Land use type (LU) TMINmin(ºC) TMINmax(ºC) VPDmin(Pa) VPDmax(Pa) Source 
Grassland -8 12.02 650 3500 Heinsch etal., 2003 
Cropland -8 12.02 650 4100 Heinsch etal., 2003 
Mixed forest -8 8.5 650 2500 Heinsch etal., 2003 
Deciduous broadleaf 
forest 

-8 7.94 650 2500 Heinsch etal., 2003 

Open wetland/ open 
shrubland 

-8 8.8 650 3600 Heinsch etal., 2003 

Natural herbaceous 
vegetation  

-8 12.02 650 3500 Heinsch etal., 2003 

 

3.4.3 Daily vapour pressure deficit scalar 
The daily vapor pressure deficit scalar is derived from daily VPD. This VPD is estimated 
from daily average relative humidity and air temperature. Relative humidity and air 
temperature are meteorological datasets which are collected in every one hour. Therefore, 
relative humidity and air temperature were averaged into daily basis in order to derive daily 
VPD. The average of both air temperature and relative humidity was based on simple 
expression as illustrated below.  
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where Tavg is average temperature (ºC) over a day, Ti is instantaneous temperatures measured 
at every moment of time (e.g. 60minutes) and n is the number of observations over a day.  
The average air temperature was used in equation 14 to derive VPsat, average relative 
humidity was applied in equation 15 to derive VPair and finally VPD was derived based on 
equation 16. The VPD scalar value was estimated based on simple linear ramp functions. 
Figure 4 illustrate the simple linear function used to estimate daily vapour pressure scalar. The 
values for VPDmin and VPDmax per land use type were extracted in a look up table as compiled 
by Heinsch et al. (2003). 
 

 
 
Figure 4 Simple linear ramp function for SVPD estimation 
 
Where VPDmin (Pa) is the daylight average vapor pressure deficit at which ε = 0.0 and VPDmax 
(Pa) is the daylight average vapor pressure deficit at which ε = εmax. When VPDmin scalar >1, 
then VPDmin scalar =1 there is no influence on vegetation growth also when VPDmax scalar < 
0, then VPDmax scalar = 0, no vegetation growth taking place.  
The scalar values for the estimated VPD is derived based on the following assumption. If 
VPD is lower than VPDmin then scalar value is 1 or if VPD is higher than VPDmax then scalar 
value is 0, otherwise a simple mathematical expression was applied as follows. 
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Where Svpd is the scalar value for vapour pressure deficit range between 0 and 1. 
 

3.5 Processing – Modelling of GPP and NPP  
Figure 5 below indicates the structure/flowchart of the entire LUE model implementation. It 
indicates how remote sensing and sensor web data were integrated. Different software’s were 
used in the implementation of the model such as ArcMap, Erdas Imagine, and Modis 
Reprojection Tool (MRT). The output of this model is the time series daily GPP, time series 
daily NPP and annual NPP.   
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Figure 5 LUE model implementation 
 

3.5.1 Aggregation of land Use classes 
Spatial scaling was considered as an important step during model implementation in this 
thesis. Since model implementation involved integration of different datasets, transformation 
of those data to a common target output scale is inevitable at this stage. For example, LGN4 
and surface reflectance are datasets incompatible in spatial scaling namely 25m and 250m 
respectively. But these datasets needs to be integrated for the purpose of generating GPP. 
Upscaling of LGN4 from 25m to 250m was performed during model implementation at a 
stage where scaling compatibility was necessary. Before the aggregation process is applied, 
reclassification of LGN4 was performed based on seven lasses rather than original twenty 
classes. The reclassification is intended to combine a particular land use class together such as 
crops and forests. The classified seven classes are grassland, cropland, mixed forest, 
deciduous forest, open wetland and natural herbaceous vegetation and urban.  
 
Aggregation technique 
The aggregate technique theoretically just aggregates a series of cells to the same value to 
produce a single, coarser resolution cell. The aggregate function resamples an input raster to a 
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coarser resolution based on a specified technique (Sum, Min, Max, Mean, or Median). 
Conceptually, the aggregate function works as follows: 
• It multiplies the cell resolution of the input raster by the factor specified in the techniques. 

The resulting value correspond to the cell resolution of the output raster 
• It maps the spatial extent of the output cells onto the input raster. Figure 6 shows an 

example of the output cell with thick line and input raster with thin line.  
 
 Cell1                    Cell2 
 

          
          
          
          
          
          
          
          
          
          

           Figure 6 Output cell on top of input cell 
 
• It identifies the cells on which to perform the aggregation calculations. Cell locations 

from the input raster that fall within the extent of an output cell are included in the 
calculations for determining that cell's output value 

• It calculates the output value by determining the sum, minimum, maximum, mean, or 
median value of the cells from the input raster that fall within the output cell's spatial 
extent 

 
The aggregation process was performed for the reclassified seven classes and was based on 
pixels aggregation from 25 to 250m. This process is expressed in a simple mathematical way 
as can see below: 
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Where A is total number of pixels per land use type based on output scale, ε is the final light 
use efficiency (results of εg-max, STmin and SVPD) per land use type, Np is the total number of 
pixel contained in the output scale (250m) and n is the number of classified land use type. 
 

3.5.2 Derived NDVI from Surface reflectance  
Before ordering the surface reflectance data MOD09, assessment of image quality was 
performed using MODIS Global browse images. The MODIS global browse images system 
was developed by the MODIS Land Science Team as coarse 5km versions of selected 
products to enable synoptic quality assessment on the internet prior to ordering the data. The 
site is located at http://landqa2.nascom.nasa.gov/cgi-bin/browse/browse.cgi. This site is useful 
to detect whether the image of a particular day is cloud or free from cloud. After assessing the 
quality of the image, sixty one images were ordered for the entire period of 2007. The surface 
reflectance image is in a new map projection called the Integerized Sinusoidal (ISIN) 
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projection. This product is supplied in hdf data format. The product contains several bands 
such as QC_250m_1, obscov_1, sur_refl_b01_1, sur_refl_b02_1, and num_observations. But 
for deriving NDVI only two bands are needed sur_ref_b01_1 and sur_ref_b02_1 the rest is 
not used.  
The MODIS Reprojection Tool (MRT) was used to clip, georeference the image to the known 
projection system and split the bands of the modis data. The results were projected to UTM 
and stored in tiff format. NDVI was then derived using equation 9. ERDAS IMAGINE 
software was used to implemented the equation for NDVI calculation (equation 9). Figure 7 
below indicate days over a year for which surface reflectance images were selected with less 
or no clouds. Zero represents day where no image is selected while one represents day where 
image is selected. In total sixty one surface reflectance images were ordered and used in this 
research.  
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Figure 7 Available MODIS surface reflectance images (selected = 1) over the year 2007 for the Gendt area 
 

3.5.3 Derive Light Use Efficiency 
The light use efficiency ε was calculated from εg-max (the biome-specific maximum conversion 
efficiency), which is reduced by the temperature modifier when low temperatures limit plant 
function, and a vapor pressure deficit (VPD) modifier, which reduces the maximum 
conversion efficiency when VPD is sufficiently higher enough to inhibit photosynthesis. The 
maximum light use efficiency value was extracted from different literature sources. The 
values of εg-max per land use type were investigated as reported from different literature sources 
and it was found that for the same vegetation type these values vary from place to place. 
Therefore, two assumptions were applied in the selection of final εg-max in this thesis. The 
value was chosen based on the location/country where the climate is comparable with 
Netherlands and in case of variation the average was used to get the final value. Table 5 below 
indicates the extracted values of maximum light use efficiency per land use type as compiled 
by Ahl et al. (2005) and Running et al. (2000). 
            
Table 5 Maximum light use efficiency 
Land use type (LU) Maximum light use efficiency(εg-max) source 

Grassland 0.3 Ahl et al., 2005 
Cropland 3.0 Ahl et al., 2005 
Mixed forest 0.42 Ahl et al., 2005 
Deciduous broadleaf forest  0.53 Ahl et al., 2005 
Open wetland/open shrubland 0.27 Ahl et al., 2005 
Natural herbaceous vegetation 1.4 Running et al., 2000 
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The light use efficiency (ε) per land use type was derived based on scalar minimum 
temperature, scalar vapour pressure deficit and maximum light use efficiency as expressed 
below. 
 

)**( minmax VPDg SST−= εε                                                                                                         (26) 

 
This equation was implemented in excel and the results are shown in appendix 2. These 
results were used as an input in (equation 25) the aggregation of LGN4 from 25m to 250m 
scale to obtain the final conversion efficiency. 
 

3.5.4 Calculation of Daily GPP time series  
Daily Gross primary production was derived based on the LUE model as the product of daily 
PAR, NDVI (equivalent to fPAR) and final conversion efficiency (equation 1). The 
calculation for single day GPP was done in ArcMap while time series of GPP were computed 
using a python script see appendix 1. The python script is very useful in GPP calculation since 
it helps to generate multiple results at once.    
  

3.5.5 Calculation of Autotrophic respiration 
The calculation for autotrophic respiration was separated in growth respiration (Rg) and 
maintenance respiration (Ra) components. Different literature sources (Heinsch et al., 2003, 
Running et al., 2000) have described the estimation of autotrophic respiration as the sum of 
maintenance respiration, Rm, from the three live vegetation components (leaves, stem, and 
root) and growth respiration, Rg. However, this thesis did not take into account vegetation 
components. A simple approach used by (Tao et al., 2005) was adopted in this thesis for 
estimation both growth and maintenance respiration. The autotrophic growth respiration was 
expressed as a proportion of GPP and assumed to be constant at 0.25. The estimation of 
growth respiration as 25% of GPP was implemented using the programmed python script and 
the results were generated to all available datasets (see appendix 3). The maintenance 
respiration algorithm used by Tao et al., (2005) requires above ground biomass of the 
vegetation. The biomass is derived based on minimum visible reflectance. Many authors have 
demonstrated that visible reflectance is positively related to standing biomass and canopy 
closure (Prince and Goward, 1995). Above-ground biomass was estimated based on the 
following expression; 
 

)(1.7166 6.2
min
−= ρW                                                                                                                    (27) 

 
Where W is the above-ground standing biomass (Mg m-2), and ρ is the minimum reflectance 
(ρmin, %) in AVHRR channel 1. The AVHRR channel 1 is ranging between 0.57 – 0.71 µm, 
however, this was not used to calculate biomass in this thesis. The MODIS surface reflectance 
band 1 range between 0.62 – 0.67 was used in the estimation of biomass. This band was used 
because its range is similar to AVHRR channel 1. The surface reflectance band 1 product was 
multiplied with scale factor of 0.0001 as provided in a product description and the results 
were then reduced to percentage to obtain the final minimum surface reflectance (ρmin, %). 
The calculation for the biomass (W) was performed in ERDA IMAGINE. Therefore, 
maintenance respiration was estimated based on the approach used by Tao et al., (2005). 
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Where Tc is the base temperature and is assumed to be constant at 25ºC, and T is the daily 
average temperature. The calculation for maintenance respiration is implemented in ERDA 
IMAGINE. Autotrophic respiration is then estimated as the sum of growth and maintenance 
respiration. The calculation was performed using the programmed python script (see appendix 
5 and 6) to have the results for the all available datasets. 
 

3.5.6 Calculation of Daily NPP time series and annual NPP 
Daily NPP was estimated as the difference between daily GPP and autotrophic respiration. 
The calculation for daily NPP time series was implemented using python script (see appendix 
7and 8) at a scale of 250m. Annual NPP was estimated as the sum of all the derived daily NPP 
over the year 2007. This calculation was implemented using ArcMap. 
 

3.6 Comparison 
Several methods can be used for comparison purposes, among them are maps comparison, 
point to point comparison or pixel to pixel comparison, and also comparison based on a 
particular land use type (Pan et al., 2006). This thesis was intended to do a comparison based 
on eight days GPP MODIS products (MOD17A2) with the derived daily GPP for the year 
2007. Similarly, annual NPP MODIS product (MOD17A3) aimed for comparison with the 
derived annual NPP. However, due to the limitation in the availability of MODIS data for the 
year 2007, comparison was done based on the MODIS products of 2006. Because of the 
transformation of MODIS product from collection 4 to collection 5, MOD17A2/3 for the year 
2007 was not available during research period until summer 2008. Therefore, the product of 
2006 was used as an alternative for the comparison purposes. Two methods of comparison 
were adopted in this thesis: 1) map to map comparison and 2) pixel to pixel comparison based 
on temporal variability over a year.  
Map to map comparison was done based on the results (maps) of time series of the derived 
daily GPP over the year 20007 with MOD17A2 2006. The map of the derived annual NPP 
2007 was also compared to the map of the annual MODIS product (MOD17A2) 2006.  
Pixel comparison was done only to the derived daily GPP 2007 and the MOD17A2 2006. 
Land use class per pixel was identified to the whole map by overlay with the reclassified 
LGN4. Pixel representing a single land use class was selected on the map and creating the 
time series of change in GPP over the year. Then pixel to pixel comparison was done based on 
the time series of the same selected land use class. 
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4 RESULTS  
 

4.1 Photosynthetic active radiation 
Figure 8 shows the time series of incoming photosynthetic active radiation (↓PAR) over the 
year 2007. The graph of ↓PAR follows the general incoming solar radiation pattern with 
spikes. The pattern appeared to be raised with short temporal range fashion from DOY1 until 
DOY126 (May 6) then started to have inconsistency variation with short and high temporal 
range until DOY221 (August 9) and started again having short temporal range fashion until 
DOY 365. The incoming PAR for the year 2007 appeared to be at maximum in DOY170 
which is June 19. In general the entire pattern illustrates the seasonal changes in ↓PAR over a 
year 2007.  
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Figure 8 PAR time series over the year 2007 at Haarweg weather station 
 

4.2 Vapor pressure deficit 
Figure 9 shows the graph of vapor pressure deficit time series for the year 2007. The pattern 
of figure 9 shows a similar pattern to solar energy with short temporal range in winter seasons 
and both short and high temporal range during the summer. An interesting part in this figure is 
the sudden rise in VPD at the start of DOY85 until DOY90 and DOY102 till DOY124. After 
DOY124 the VPD suddenly fall and became lower with short temporal range until DOY365.  
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Figure 9 VPD time series 2007 at WUR weather station                                                  
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4.3 GPP variability based on LUE approach 
Figure 10 shows the results of time series daily GPP 2007 for grass, crop and deciduous 
forest. The time series of daily GPP per land use class is based on one pixel per land use type. 
Grass, crop and deciduous forest seems to follow a similar pattern at different seasons over a 
year. However, the magnitude of GPP for grass and crop are much related in the entire 
seasons while for deciduous forest is much closer with grassland and cropland in winter 
season and differs in summer period. Figure 10 indicates lower GPP in winter season and high 
GPP in summer. The maximum value of GPP for grass is 18 gC m-2, crop is 20 gC m-2, and 
deciduous forest is 8 gC m-2. In summer there is a sudden drop of GPP at DOY162, DOY200 
and DOY213 for all three vegetation types. 
Figure 11 shows the time series of NDVI for grass, crop and deciduous forest in 2007. The 
pattern of all three vegetation types is similar for the entire period of 2007. The highest peak 
of NDVI for all vegetation types is the same (0.8). DOY100, 162 and 200 shows the sudden 
fall of NDVI with respect to regular pattern of the season. 
Figure 12 shows the time series of light use efficiency for grassland, deciduous forest and 
cropland in 2007. The light use efficiency for deciduous forest shows to be much lower 
compared to grassland and cropland.  
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Figure 10 Daily GPP for grass, crop and deciduous forest 2007     
 
 



28 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 50 100 150 200 250 300 350
Days over a year

N
D

V
I

Grassland Deciduous forest Cropland                                      
 
      Figure 11 NDVI for Grassland, cropland and deciduous forest 2007 
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Figure 12 Light use efficiency for Grassland, Deciduous forest and Cropland  
 

4.4 NPP variability based on LUE approach 
Figure 13 shows the result of time series daily NPP for grassland, cropland and deciduous 
forest over the year 2007. The time series of daily NPP per land use class is based on one 
pixel per land use type. The pattern of the graph follows the sinusoidal pattern of PAR over 
the year. The estimated daily NPP became lower than the estimated daily GPP. The maximum 
values of NPP for grass and crop are 14 gC m-2 and for deciduous forest is 6gC m-2. Figures 
14, 15, and 16 indicate the comparison of net primary production and autotrophic respiration 
for crop, deciduous forest and grass respectively. Figure 15 indicates few days with NPP 
below zero for deciduous forest in winter season. Figure 17 shows the results of the derived 
annual NPP 2007 range between 44 and 391gC m-2.  
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Figure 13 Derived daily NPP for grassland, cropland and deciduous forest 2007 
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Figure 14 Net primary production and autotrophic respiration for crop 
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Figure 15 Net primary production and autotrophic respiration for deciduous forest 
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Figure 16 Net primary production and autotrophic respiration for grass 
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Figure 17 A derived map of annual NPP 2007 
 

4.5 Comparison of MODIS product 8-days GPP 2006 and  
derived daily GPP 2007 

 

4.5.1 Map to Map comparison 
Figure 18 shows the graph of correlation between time series of MODIS product 8 days GPP 
2006 (MOD17A2) against the derived daily GPP 2007. Each point on the figure represents 
GPP (gC m-2) and the equation indicates linear correlation between MODIS product GPP and 
the derived GPP. The linear correlation between the two products indicates the slope of 0.72 
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with R2 of 0.11. The values for MOD17A2 range from 0 – 63 gC m-2 while the derived GPP 
range from 0 – 23 gC m-2. 
Figure 19 shows the result of GPP map derived by subtracting MOD17A2 2006 and the 
derived GPP 2007. These maps were selected for single day (June 2) which appeared to have 
the highest values of GPP for MOD17A2. The result of the GPP map between MOD17A2 and 
derived GPP indicates the range from 7 – 58 gC m-2. White pixels in figure 19 were regarded 
as no data after discovered that their GPP values for MOD17A2 are greater than 30000.  
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Figure 18 MOD 17A2 2006 and derived GPP 2007                                                
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Figure 19 Map of difference between MOD17A2 2006 and derived GPP 2007 
 

4.5.2 Comparison of individual land cover classes 
Figure 20 shows the time series of MODIS product 8 days GPP 2006 (MOD17A2) and 
derived daily GPP 2007 for grassland based on a single pixel. The pattern for the two products 
has much similarity in temporal variation and differs in the maximum range of GPP. Figure 
21 shows the correlation graph based on the comparison of MOD17A2 2006 and derived daily 
GPP 2007 for grassland. Each point on the graph indicates the magnitude of GPP and the 
equation also indicate slope of 0.81 with R2 of 0.406. 
Figure 22 shows the time series of MODIS product and derived daily GPP for cropland also 
based on single pixel. The pattern for the two products seems to be similar for the entire 
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season but differs slightly in maximum range. Figure 23 shows the correlation graph based on 
comparison of MODIS product (MOD17A2) and derived daily GPP for cropland. Each point 
on the graph indicates the amount of GPP and the equation also indicate slope of 0.77 with R2 

of 0.5055.  
Figure 24 shows the time series of MODIS product and derived daily GPP for deciduous 
forest based on single pixel. The graphs for deciduous forest indicate similar pattern but 
differs in the scale of GPP. Figure 25 shows the correlation graph of MODIS product 
(MOD17A2) 2006 and derived daily GPP 2007 for deciduous forest. Each point on the graph 
indicates the scale of GPP and the equation also indicate slope of 2.30 with R2 of 0.522. 
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Figure 20 Comparison of MOD17A2 2006 and Derived GPP 2007 for grassland 
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Figure 21 Pixel correlation for grassland between MOD17A2 2006 and derived GPP 2007                         
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Figure 22 Comparison of MOD17A2 2006 and Derived GPP 2007 for Cropland                     
 

y = 0.7684x + 3.1963
R2 = 0.5055

0.00

5.00

10.00

15.00

20.00

25.00

0.00 5.00 10.00 15.00 20.00 25.00

Derived GPP 2007(g C m-2)

M
O

D
17

A
2 

20
06

(g
 C

 m
-2

)

 
 
Figure 23 Pixel correlation for cropland between MOD17A2 and derived GPP   
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Figure 24 Comparison of MOD17A2 2006 and derived GPP 2007 for deciduous forest         
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Figure 25 Pixel correlation for deciduous forest between MOD17A2 and derived GPP  
                                                                                     

4.6 Comparison of MODIS product annual NPP 2006 and  
derived annual NPP 2007 

Figure 26 shows the graph of correlation between MODIS product annual NPP 2006 
(MOD17A3) and the derived annual NPP 2007. Each point on this figure represents the 
values of annual NPP. The distributions of points on the graph are scattered horizontal and the 
equation indicates a slope of -0.06 with R2 of 0.005.  
Figure 27 shows the result of NPP map derived by subtracting MOD17A3 2006 and the 
derived annual NPP 2007. White pixels in this figure were regarded as no data after 
discovered that their NPP values for MOD17A2 are greater than 30000. 
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Figure 26 Correlation between MOD 17A3 2006 and derived annual NPP 2007   
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Figure 27 Map of difference between MOD17A3 2006 and derived annual NPP 2007 
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5 DISCUSSION 
 

5.1 Photosynthetic active radiation 
The pattern of figure 8 indicates seasonal changes in ↓PAR similar to general pattern of 
incoming solar radiation. The seasonal pattern of ↓PAR over a year is appeared due to the 
variations in the earth-sun distance cause small alterations in the solar constant, and the tilt of 
the earth's axis results in variations in day length as well as the angle of incidence, similar to 
latitudinal effects. The Netherlands are located towards northern hemisphere where intensity 
is reduced by the low sun angles of the winter and increased by the higher angles of the 
summer. 
The short temporal range in the amount of ↓PAR as have seen on figure 8 varies with latitude 
and time of day.  Within a day, the sun travels across the sky with a change in its altitude from 
sunrise to sunset. The intensity and spectrum of direct sunlight depend strongly on the path 
length of the beam and on the solar angle. 
The short and high temporal range of ↓PAR as have seen in figure 8 from DOY126 (May 6) 
until DOY221 (August 9) is due to transmission conditions in the atmosphere (cloud cover, 
aerosols). Clouds are the largest modulators of the solar radiative flux reaching the Earth’s 
surface. The amount and type of cloud cover prevailing at a given time and location largely 
determines the amount of solar radiation received at the Earth’s surface. Although solar 
radiation is relatively constant at the top of the atmosphere, all of these processes combine to 
create large variations in the amounts of PAR and solar energy available at the surface of the 
earth. The effect of clouds is much bigger in summer (e.g. DOY126 – DOY221) since the 
amount of ↓PAR on the Earth surface is much higher in summer with clear sky.   
 

5.2 Temperature and vapor pressure deficit 
Figure 9 shows the pattern of VPD with short temporal range in winter season and both short 
and high temporal variation is summer. The measurements used to derive VPD were 
examined relative to winter and summer seasons. The investigation has revealed that the 
temperature and relative humidity measured in winter season have small variation. However, 
the change in weather such as free sky (cloudiness) can also determine the scale of 
temperature and relative humidity measured in winter season. In general relative humidity is 
usually high at midnight and in the early morning, drops rapidly, after the sun rises, until it is 
lowest just after midday depending on the climate/weather. Figure 9 shows the reality of how 
weather can determine the scale of VPD though the season is winter.  It indicates the high 
value of VPD from DOY85 (March 26) until DOY90 (March 31) and DOY102 (April 12) till 
DOY124 (May 4). This period in Netherlands usually is winter season but in 2007 the climate 
was dry results in high values of VPD. Between DOY85 and DOY90 the average temperature 
was 11°C while average RH was 65% and DOY102 to DOY124 the average temperature was 
16°C while average RH was 62%. Figure 10 also indicates relatively high temperatures for the 
same corresponding days. 
The pattern of VPD over the year with both short and high temporal range is also caused by 
the variation in weather. However, the effect in summer is bigger due to high temperature and 
low relative humidity during a day. 
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5.3 GPP variability based on LUE approach 
The pattern of figure 10 for daily GPP over the year 2007 is related with parameters used in 
its derivation. This pattern seems to be similar with sinusoidal pattern of PAR over the year. 
The increase in PAR is proportional to the increase in GPP for all vegetation types. Figure 10 
also shows lower GPP of deciduous forest compared to grassland and cropland. The lower 
values of GPP for deciduous forest was caused by the low values of light use efficiency as 
indicated in figure 12. Cropland appeared to have high GPP than grassland though the light 
use efficiency for cropland is lower than grassland as can see figure 12. This effect was 
caused by the high values of NDVI for cropland compared to grassland however the 
difference between them is smaller as indicated in figure 11. 
Figure 10 shows the suddenly fall of GPP at DOY125, DOY162, and DOY200 similar to 
figure 11 which also indicates the suddenly falls of NDVI for the same corresponding days. 
The sudden fall of GPP and NDVI was caused by the effect of cloudiness to surface 
reflectance on the vegetation cover. Cloud-contaminated measurements produce lower NDVI 
values, as clouds reflect strongly in both the red and near-infrared wave bands. The low values 
of NDVI caused the same effect to GPP since these two are linear related. 
The validity of the derived GPP results based on selected land use classes were assessed by 
examines the reported values of GPP in different literature sources with similar land use type. 
This thesis did not perform any validation rather it just compared the range of the reported 
value of GPP. MODIS products are validated using the measured data from eddy covariance 
flux tower. Turner et al. (2005) has reported the range of GPP for cropland to be 0 and 13gC 
m-2 as measured by eddy covariance flux tower. The range of the derived GPP in this thesis 
for cropland is 0 and 20gC m-2 which comply with flux tower GPP. The range for deciduous 
forest from flux tower reported GPP of 0 and 12gC m-2 while the thesis derived GPP is 0 and 
8gC m-2 which also shows similarity.     
 

5.4 NPP variability based on LUE approach 
The results of the derived daily NPP for grass, crop and deciduous forest are lower than the 
derived daily GPP. This is because of autotrophic respiration factor. Figure 13 shows the 
graph of time series daily net amount of primary production for different land use types after 
take out the maintenance and growth respiration. Figures 14, 15 and 16 indicate the rate of 
autotrophic respiration increases with respect to growth of plant. Higher values of NPP and Ra 
both appeared in summer season. Low values of NPP and Ra appeared in winter season 
because of stoppage of vegetation growth at this period. The NPP below zero for deciduous 
forest shown in figure 15 during winter season is an indicative to the effect of using similar 
parameters in derived autotrophic respiration to all land use type. For this study the effect 
appeared to deciduous forest only. This effect is due to estimation of biomass for deciduous 
forest. Figure 17 indicates higher annual NPP for cropland and grassland compared to other 
land use type such as deciduous forest. This is because of higher light use efficiency for both 
crop and grass compared to deciduous forest as can see figure 12. Lower annual NPP values 
are shown to water and urban area as expected.  
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5.5 Comparison of MODIS product 8 days GPP 2006 and  
derived daily GPP 2007 

 

5.5.1 Map to Map comparison 
Figure 18 shows that the correlation between the derived daily GPP and MOD17A2 is poor 
with R2 equal to 0.11. This relation indicates that temporal variation of GPP over the year 
between 2006 for MOD17A2 and 2007 for derived GPP were inconsistency. However, the 
difference in range of temporal GPP between the two products is low as the slope close to one 
(0.71). Figure 19 spot specific pixel and the land use type with higher difference of GPP 
between the two products. Three pixels with land use type were identified to have higher 
difference in GPP. The land use type belong to these pixels are water and natural vegetation. 
Considering components used in derived GPP algorithm, the higher difference between the 
two products are due to 1) maximum light use efficiency were used to generate GPP at the 
identified pixels was different. The maximum light use efficiency used to derive GPP in this 
thesis was based on LGN4 (25m resolution) which signifies heterogeneity landscape while for 
MOD17A2 product is derived based on land cover MODIS product (MOD12Q2) at 1km 
resolution. 2) Change in management of land use to the pixels identified as natural vegetation 
is the source of higher difference. This is because the comparison of the two products was 
based on different years 2006 and 2007.  
Turner et al. (2005), reported that MODIS products are underestimated GPP for crop because 
of the low value of εg-max used from the biome properties lookup table. He pointed out that the 
value of εg-max used by MODIS for crop is 0.68gC MJ-1 while based on tower flux 
measurements is on the order of 3gC MJ-1. After examine the εg-max used in MODIS product 
for different land use classes it is clear that this thesis has used different εg-max. Heinsch et al. 
(2003) has reported the εg-max used in MODIS product as 0.68gC MJ-1 for crop, 1.01 gC MJ-1 
for deciduous forest, 0.68 gC MJ-1 for grass, 0.77 gC MJ-1 for open shrub and 1.11 for mixed 
forest. None of the reported εg-max used by MODIS complies with εg-max used in this study. The 
εg-max of 3gC MJ-1 for crop based on flux tower complies with the research εg-max used to derive 
GPP for crop.  
  

5.5.2 Comparison of individual land cover classes 
The results of the comparison between MOD17A2 2006 and the derived daily GPP 2007 for 
grassland, cropland, and deciduous forest indicate a good correlation with R2 of 0.406, 0.505, 
and 0.52 respectively. Figures 20, 22, and 24 have shown similar pattern for both MODIS 
product and derived GPP for the entire seasons. The comparison of difference in values of 
temporal GPP for crop and grass is very small with slope close to 1. Grass shows the slope of 
0.81, and crop shows the slope of 0.77. For deciduous forest the comparison shows much 
deference in the values of GPP. Figure 25 shows the slope of 2.30 which gives an indication 
that the derived GPP is lower than MODIS to the factor of 2.30. This difference is caused by 
lower εg-max for deciduous forest used in this study (0.53gC MJ-1) compared to higher εg-max 

used in derived MODIS GPP (1.04gC MJ-1).  
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5.6 Comparison of MODIS product annual NPP 2006 and  
derived annual NPP 2007 

The result of figure 26 shows no correlation on the comparison of annual NPP MODIS 
product (MOD17A3) 2006 and the derived annual NPP 2007 with R2 of 0.005. This is an 
expected result because in the comparison of daily GPP no correlation was found between the 
two products. The sources of uncorrelated in annual NPP for MODIS product and derived 
NPP is similar as happened for GPP. These sources were described in detailed in section 5.5.1 
map to map comparison. However, this research is also considered autotrophic respiration as 
another source because different approach was used to derived growth and maintenance 
respiration.  
Figure 27 was used as an indicative to identify land use type with higher values appeared in 
figure 26 for MOD17A3. The land use classes with higher values of NPP were identified as 
water and natural vegetation. In reality pixel with water is not supposed to have higher NPP 
than other land use type. That means MODIS product was used different maximum light use 
efficiency to derive GPP to pixel belong to water. For natural vegetation both maximum light 
use efficiency and management of land use parcel are the sources of this difference. 
Figure 27 shows white pixels which were regarded as no data because in the MOD17A3 
product four pixels were found to have value >30000. According to Heinsch et al (2003), 
pixel with value greater than 3000 is referred to as non-modelled, thus should not used in the 
analysis.  
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6 CONCLUSIONS AND RECOMMENDATIONS 
 

6.1 Conclusions 
The objective of this research was to demonstrate a method for integrating remote sensing and 
sensor web data for estimation of NPP at the Gendt location. The research reviewed different 
approaches for NPP estimation, i.e. LUE, CASA, GLO-PEM, TURC, and SDBM. The 
strategies for each model were identified and compared with respect to research objective and 
the light use efficiency (LUE) model was found to satisfy the criteria used to evaluate the 
appropriate model for the research. Therefore, this approach was adopted in this thesis. 
 
Literature review has revealed different possibilities of parameterized light use efficiency 
model. In depth study was done for each model parameters including their limitation in terms 
of data availability and appropriate method was selected for parameterization.  
 
Modeling implementation in this research was involved different data sources with varied 
spatial and temporal scaling. Scaling compatibility both spatial and temporal was inevitable 
during model implementation. Aggregation and resampling techniques was used in 
harmonizing spatial scaling while integration and average techniques was used to harmonize 
temporal scaling. Both techniques have proved to work properly in this research on both 
spatial and temporal scaling. 
 
The results obtained from the derived daily GPP 2007 shows no consistency with MODIS 
product 8 days GPP 2006 (MOD17A2) for the entire map. However, similarities were found 
on land use class identified at some locations in the study area. Grassland and cropland has 
proved to be more consisted while other land use types show inconsistency such as natural 
vegetation, mixed forest and deciduous forest. The difference in result between MOD17A2 
2006 and derived daily GPP 2007 were identified as; 1) the use of different maximum light 
use efficiency in the estimation of GPP, 2) change in management of land use parcel at some 
locations within the study area and 3) comparison was done based on products of different 
years.  
The results obtained from the derived annual NPP 2007 shows inconsistency with MODIS 
product annual NPP 2006. Sources of their difference were identified to be the same as for 
GPP. The parameters used for estimation growth and maintenance respiration were different 
for each product and was considered as the source of their difference in NPP estimation.  
 
The literature review has revealed three different ways of comparison the result obtained from 
the derived daily GPP and MODIS product. These methods are map to map comparison, pixel 
to pixel comparison and the comparison based on land use type. The first two methods were 
adapted in this thesis based on temporal variation over a year and has proved to be very useful 
for comparison purpose. This thesis did not perform any validation but possibilities to validate 
the results are to compare with data collected in eddy covariance flux tower and to compare 
with annual yield collected by farmer or institution. The validation process based on data from 
flux tower need to be setup in advance since it has some limitations. These limitations are 1) 
the validation data sets should be wall-to-wall surfaces 2) The spatial and temporal resolution 
of the validation products should closely match those of the derived products and 3) The 
components of the derived NPP/GPP algorithm should be analyzed along with the products 
themselves so as to interpret possible errors or limitations.    
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This research has produced different kind of results which were enough to be examined the 
possibility of applied the GPP/NPP approach elsewhere. The study has revealed that using 
coarse scale data at local level results in underestimation or overestimation of GPP/NPP. The 
effect of underestimation and overestimation differs in spatial and temporal scale. Spatially, 
the study has revealed that coarse scale data misleading the perfect location to apply 
maximum light use efficiency to derived GPP. This research has revealed that the pixel with 
high annual NPP for MODIS product was covered by water. Therefore, generalization 
performed to coarse spatial information increases uncertainty when applied in local level. In 
temporal scale, the study has revealed that the result of the daily change in GPP was direct 
related to environmental change. The amount of GPP for every single day in this thesis was 
changed according to the change in weather condition. Therefore, real time information 
provides a better estimation of current status of GPP.  
The uncertainty detected in this thesis based on the results obtained is the application of 
autotrophic respiration parameters to all land use type. The results of NPP for deciduous 
forest in winter season was indicate values below zero. Though the values were found to be 
small but it was against the expectation.  
The results of the derived daily GPP in 2007 have shown similarity in range with the results 
based on flux tower for cropland and deciduous forest. The approach used to generate the 
results for GPP indicates success in this thesis. This is because the method was used large 
scale spatial information and high temporal scale information. No limitations were found for 
implementation of each parameter used to derive GPP. Therefore, the method can be used 
anywhere at local level if sensor information and large scale remote sensing data is available. 
   

6.2 Recommendations   
This research has shown that the demonstrated methods for GPP/NPP estimation based on 
remote sensing and sensor web data at local scale level is feasible. Nevertheless, the 
demonstrated method was the first step to assess its applicability and efficiency at local scale 
level. Some recommendations are: 

1. Further research need to be undertaken on NPP estimation to understand the effect of 
algorithm used for maintenance and growth respiration as applied to all vegetation 
type. 

2.  It would be of much interest in future if the result obtained from similar approach 
being validated using data from eddy covariance flux tower.  

 
The demonstrated method in this thesis can be useful in future to avoid the problem of 
underestimate and overestimate GPP/NPP at local scale level.  
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Appendix 
 

Appendix 1. Daily GPP  
# --------------------------------------------------------------------------- 
# gpp_result.py 
# Created on: do jan 24 2008 03:23:27  
#   (generated by ArcGIS/ModelBuilder) 
# --------------------------------------------------------------------------- 
 
# Import system modules 
import sys, string, os, arcgisscripting 
 
# Create the Geoprocessor object 
gp = arcgisscripting.create() 
 
# Check out any necessary licenses 
gp.CheckOutExtension("spatial") 
 
# Load required toolboxes... 
gp.AddToolbox("C:/Program Files/ArcGIS/ArcToolbox/Toolboxes/Spatial Analyst Tools.tbx") 
 
 
# Local variables... 
v23sep_lue_par = "E:\\chuma_thesis\\TOP_tendata\\Emax\\LUE_PAR\\23sep_lue_par" 
reclass_lgn4 = "E:\\chuma_thesis\\TOP_tendata\\reclass_lgn4" 
value0 = "E:\\chuma_thesis\\TOP_tendata\\sep_lgn4\\value0" 
noveg = "E:\\chuma_thesis\\TOP_tendata\\sep_lgn4\\noveg" 
Cell_factor = "10" 
Aggregation_technique = "SUM" 
value_27 = "E:\\chuma_thesis\\TOP_tendata\\sep_lgn4\\value_27" 
oshrub = "E:\\chuma_thesis\\TOP_tendata\\sep_lgn4\\oshrub" 
value_30 = "E:\\chuma_thesis\\TOP_tendata\\sep_lgn4\\value_30" 
grass = "E:\\chuma_thesis\\TOP_tendata\\sep_lgn4\\grass" 
value_42 = "E:\\chuma_thesis\\TOP_tendata\\sep_lgn4\\value_42" 
mx_forest = "E:\\chuma_thesis\\TOP_tendata\\sep_lgn4\\mx_forest" 
value_300 = "E:\\chuma_thesis\\TOP_tendata\\sep_lgn4\\value_300" 
cropland = "E:\\chuma_thesis\\TOP_tendata\\sep_lgn4\\cropland" 
value_53 = "E:\\chuma_thesis\\TOP_tendata\\sep_lgn4\\value_53" 
dbf_forest = "E:\\chuma_thesis\\TOP_tendata\\sep_lgn4\\dbf_forest" 
value_140 = "E:\\chuma_thesis\\TOP_tendata\\sep_lgn4\\value_140" 
nherb_veg = "E:\\chuma_thesis\\TOP_tendata\\sep_lgn4\\nherb_veg" 
 
#read input file 
file = open("E:\\chuma_thesis\\conv_efftable\\LUETminVPD.txt", "r") 
file.readline() 
 
while 1: 
    try: 
        rd_line = file.readline() 
        if not line: 
            break       
        line = string.split(rd_line, "\t") 
        col1 = string.strip(line[0]) 
        col2 = string.strip(line[1]) 
        col3 = string.strip(line[2]) 
        col4 = string.strip(line[3]) 
        col5 = string.strip(line[4]) 
        col6 = string.strip(line[5]) 
        col7 = string.strip(line[6]) 
        col8 = string.strip(line[7]) 
        col9 = "E:\\chuma_refdata\\ref_data\\NDVI_GRID\\ndvi_grid\\" + string.strip(line[8]) 
 
        output_location = "E:\\chuma_thesis\\TOP_tendata\\Emax\\final_GPP\\LP" + col1 
 
        # Process: Single Output Map Algebra... 
        term1 = "(%s * %s)" % (grass, col3) 
        term2 = "(%s * %s)" % (oshrub, col7) 
        term3 = "(%s * %s)" % (dbf_forest, col6) 
        term4 = "(%s * %s)" % (mx_forest, col5) 
        term5 = "(%s * %s)" % (cropland, col4) 
        term6 = "(%s * 0)" % (noveg) 
        term7 = "(%s * %s)" % (nherb_veg, col8) 
        
        expression = "((((%s + %s + %s + %s + %s + %s + %s) * 0.01) * %s) * %s)" % (term1, 
                                term2, term3, term4, term5, term6, term7, col2, col9)        
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        gp.SingleOutputMapAlgebra_sa(expression, output_location) 
 
        print "finished %s ...." % (col1) 
               
    except: 
        print gp.GetMessage(1) 
        print gp.GetMessage(2) 

 
Appendix 2. Table of ε per land use type and PAR (LUETminVPD)  
date PAR grass(ε) Cropland(ε) mx_forest(ε) dbf_forest(ε) Oshrub(ε) nherb_veg(ε) NDVI_names 
20070114 3.6920 0.1424 1.4236 0.2418 0.3159 0.1527 0.6643 ndvi2_jan14 
20070203 5.8450 0.0614 0.6144 0.1044 0.1363 0.0659 0.2867 ndvi2_feb3 
20070215 7.4514 0.0989 0.9890 0.1680 0.2194 0.1061 0.4615 ndvi2_feb15 
20070310 10.7438 0.0929 0.9291 0.1578 0.2061 0.0996 0.4336 ndvi2_mr10 
20070312 12.4766 0.1124 1.1239 0.1909 0.2494 0.1205 0.5245 ndvi2_mr12 
20070313 11.4025 0.0809 0.8092 0.1375 0.1795 0.0868 0.3776 ndvi2_mr13 
20070314 8.2526 0.0554 0.5544 0.0942 0.1230 0.0595 0.2587 ndvi2_mr14 
20070315 11.7738 0.0689 0.6893 0.1171 0.1529 0.0739 0.3217 ndvi2_mr15 
20070325 11.6274 0.1903 1.9031 0.3233 0.4223 0.2041 0.8881 ndvi2_mr25 
20070326 14.7067 0.1935 1.9428 0.3248 0.4243 0.2077 0.9032 ndvi2_mr26 
20070327 14.6830 0.2065 2.0787 0.3437 0.4489 0.2218 0.9638 ndvi2_mr27 
20070328 14.8554 0.0989 0.9890 0.1680 0.2194 0.1061 0.4615 ndvi2_mr28 
20070331 14.1763 0.1903 1.9031 0.3233 0.4223 0.2041 0.8881 ndvi2_mr31 
20070401 15.9074 0.1959 1.9776 0.3227 0.4215 0.2105 0.9140 ndvi2_apr1 
20070402 15.2377 0.1415 1.4240 0.2354 0.3074 0.1519 0.6602 ndvi2_apr2 
20070404 16.8613 0.0869 0.8691 0.1476 0.1928 0.0932 0.4056 ndvi2_apr4 
20070405 14.7906 0.0614 0.6144 0.1044 0.1363 0.0659 0.2867 ndvi2_apr5 
20070406 15.3489 0.0884 0.8841 0.1502 0.1962 0.0948 0.4126 ndvi2_apr6 
20070408 16.5007 0.0809 0.8092 0.1375 0.1795 0.0868 0.3776 ndvi2_apr8 
20070412 17.1367 0.1214 1.2138 0.2062 0.2693 0.1302 0.5664 ndvi2_apr12 
20070413 14.4789 0.2087 2.0887 0.3534 0.4617 0.2238 0.9738 ndvi2_apr13 
20070414 17.7552 0.1620 1.6559 0.2560 0.3343 0.1745 0.7558 ndvi2_apr14 
20070415 18.9608 0.1598 1.6384 0.2504 0.3271 0.1723 0.7459 ndvi2_apr15 
20070416 18.1210 0.1439 1.4386 0.2444 0.3192 0.1543 0.6713 ndvi2_apr16 
20070419 19.3159 0.0674 0.6743 0.1145 0.1496 0.0723 0.3147 ndvi2_apr19 
20070422 20.0757 0.0914 0.9141 0.1553 0.2028 0.0980 0.4266 ndvi2_apr22 
20070423 15.3800 0.1338 1.3476 0.2222 0.2902 0.1437 0.6244 ndvi2_apr23 
20070425 16.1951 0.2487 2.5340 0.3566 0.4500 0.2444 1.1606 ndvi2_apr25 
20070426 18.7389 0.2158 2.1578 0.3665 0.4788 0.2314 1.0070 ndvi2_apr26 
20070427 19.7335 0.1409 1.4431 0.2216 0.2894 0.1519 0.6577 ndvi2_apr27 
20070428 20.0517 0.1757 1.7925 0.2794 0.3650 0.1891 0.8197 ndvi2_apr28 
20070429 21.6613 0.2474 2.5153 0.3631 0.4582 0.2471 1.1545 ndvi2_apr29 
20070430 22.6959 0.1763 1.8001 0.2796 0.3653 0.1898 0.8226 ndvi2_apr30 
20070501 22.2086 0.1835 1.8701 0.2930 0.3827 0.1975 0.8562 ndvi2_may1 
20070502 22.6327 0.1584 1.6261 0.2465 0.3220 0.1707 0.7390 ndvi2_may2 
20070503 20.2873 0.1229 1.2288 0.2087 0.2726 0.1318 0.5734 ndvi2_may3 
20070504 18.6822 0.1433 1.4421 0.2389 0.3120 0.1539 0.6689 ndvi2_may4 
20070505 21.5709 0.1783 1.7832 0.3029 0.3957 0.1913 0.8322 ndvi2_may5 
20070523 24.4934 0.1513 1.5135 0.2571 0.3358 0.1623 0.7063 ndvi2_may23 
20070524 24.1137 0.1866 1.8701 0.3150 0.4115 0.2002 0.8710 ndvi2_may24 
20070530 22.6570 0.1364 1.3636 0.2316 0.3026 0.1463 0.6364 ndvi2_may30 
20070602 19.4688 0.1991 1.9992 0.3339 0.4361 0.2137 0.9291 ndvi2_jun2 
20070608 20.3232 0.2838 2.8661 0.3850 0.4859 0.2559 1.3243 ndvi2_jun8 
20070611 14.8424 0.3000 3.0000 0.4200 0.5300 0.2700 1.4000 ndvi2_jun11 
20070619 25.2697 0.1940 1.9521 0.3234 0.4224 0.2083 0.9055 ndvi2_jun19 
20070708 19.8631 0.2962 2.9624 0.4200 0.5300 0.2700 1.3825 ndvi2_july8 
20070719 19.0632 0.2843 2.8513 0.4097 0.5170 0.2659 1.3269 ndvi2_july19 
20070801 21.8457 0.2538 2.5376 0.4200 0.5300 0.2700 1.1842 ndvi2_aug1 
20070804 22.7785 0.2890 2.9029 0.4042 0.5101 0.2637 1.3488 ndvi2_aug4 
20070805 23.1430 0.2435 2.5333 0.2982 0.3763 0.2209 1.1364 ndvi2_aug5 
20070811 20.2921 0.2860 2.8599 0.4200 0.5300 0.2700 1.3346 ndvi2_aug11 
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20070923 11.4774 0.2450 2.4497 0.4161 0.5300 0.2627 1.1432 ndvi2_sep23 
20071006 11.6497 0.2289 2.2886 0.3888 0.5078 0.2455 1.0680 ndvi2_oct6 
20071007 10.8031 0.1922 1.9224 0.3266 0.4266 0.2062 0.8971 ndvi2_oct7 
20071013 8.8504 0.2201 2.2007 0.3738 0.4883 0.2360 1.0270 ndvi2_oct13 
20071014 10.0492 0.1966 1.9664 0.3340 0.4363 0.2109 0.9176 ndvi2_oct14 
20071015 8.1470 0.2201 2.2007 0.3738 0.4883 0.2360 1.0270 ndvi2_oct15 
20071022 8.5345 0.1498 1.4976 0.2544 0.3323 0.1606 0.6989 ndvi2_oct22 
20071115 5.0641 0.0663 0.6627 0.1126 0.1470 0.0711 0.3093 ndvi2_nov15 
20071122 4.1005 0.1893 1.8931 0.3216 0.4201 0.2030 0.8835 ndvi2_nov22 
20071216 3.2264 0.0692 0.6920 0.1175 0.1535 0.0742 0.3229 ndvi2_dec16 

 
Appendix 3. January-September growth respiration(Rg) 
# --------------------------------------------------------------------------- 
# 1A_dailyemax_ORIGINAL.py 
# Created on: di jan 15 2008 02:49:22  
#   (generated by ArcGIS/ModelBuilder) 
# --------------------------------------------------------------------------- 
 
# Import system modules 
import sys, string, os, arcgisscripting 
 
# Create the Geoprocessor object 
gp = arcgisscripting.create() 
 
# Enable overwrite output 
gp.OverWriteOutput = 1 
 
# Check out any necessary licenses 
gp.CheckOutExtension("spatial") 
 
# Load required toolboxes... 
gp.AddToolbox("C:/Program Files/ArcGIS/ArcToolbox/Toolboxes/Spatial Analyst Tools.tbx") 
 
i = 110 
while i <= 999: 
     try: 
         # Set local variables 
         OutRaster = "E:/chuma_thesis/TOP_tendata/Emax/Rg_resp2007/R20070" + str(i) 
         InExpression = "E:/chuma_thesis/TOP_tendata/Emax/final_GPP/lp20070" + str(i) 
         InExpression += " * 0.25" 
         Input_raster = "E:/chuma_thesis/TOP_tendata/Emax/final_GPP/lp20070" + str(i) 
 
         print InExpression 
         print "output location: " + OutRaster 
 
         # Process: Single Output Map Algebra...        
         gp.SingleOutputMapAlgebra_sa(InExpression, OutRaster, Input_raster) 
         i += 1 
                  
         print "finished OutRaster" 
                 
     except: 
         # If an error occurred while running a tool, then print the messages. 
         print gp.GetMessages(1) 
         print gp.GetMessages(2) 
         i += 1 

 
Appendix 4. October-December growth respiration(Rg) 
# --------------------------------------------------------------------------- 
# 1A_dailyemax_ORIGINAL.py 
# Created on: di jan 15 2008 02:49:22  
#   (generated by ArcGIS/ModelBuilder) 
# --------------------------------------------------------------------------- 
 
# Import system modules 
import sys, string, os, arcgisscripting 
 
# Create the Geoprocessor object 
gp = arcgisscripting.create() 
 
# Enable overwrite output 
gp.OverWriteOutput = 1 
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# Check out any necessary licenses 
gp.CheckOutExtension("spatial") 
 
# Load required toolboxes... 
gp.AddToolbox("C:/Program Files/ArcGIS/ArcToolbox/Toolboxes/Spatial Analyst Tools.tbx") 
 
i = 1000 
while i <= 1231: 
     try: 
         # Set local variables 
         OutRaster = "E:/chuma_thesis/TOP_tendata/Emax/Rg_resp2007/R2007" + str(i) 
         InExpression = "E:/chuma_thesis/TOP_tendata/Emax/final_GPP/lp2007" + str(i) 
         InExpression += " * 0.25" 
         Input_raster = "E:/chuma_thesis/TOP_tendata/Emax/final_GPP/lp2007" + str(i) 
 
         print InExpression 
         print "output location: " + OutRaster 
 
         # Process: Single Output Map Algebra...        
         gp.SingleOutputMapAlgebra_sa(InExpression, OutRaster, Input_raster) 
         i += 1 
                  
         print "finished OutRaster" 
                 
     except: 
         # If an error occurred while running a tool, then print the messages. 
         print gp.GetMessages(1) 
         print gp.GetMessages(2) 
         i += 1 

 
Appendix 5. January-September Autotrophic respiration(Ra) 
# Import system modules 
import sys, string, os, arcgisscripting 
 
# Create the Geoprocessor object 
gp = arcgisscripting.create() 
 
# Check out any necessary licenses 
gp.CheckOutExtension("spatial") 
 
# Load required toolboxes... 
gp.AddToolbox("C:/Program Files/ArcGIS/ArcToolbox/Toolboxes/Spatial Analyst Tools.tbx") 
gp.AddToolbox("C:/Program Files/ArcGIS/ArcToolbox/Toolboxes/Data Management Tools.tbx") 
 
 
 
i = 110 
while i <= 999: 
     try: 
         # Set local variables 
         InExpression = "E:/chuma_thesis/Biomass/Rm_GRID/20070" + str(i) 
         InExpression += "_ra + E:/chuma_thesis/TOP_tendata/Emax/Rg_resp2007/lp20070" + str(i) 
         InExpression += "g" 
         OutRaster = "E:/chuma_thesis/TOP_tendata/Emax/RmRgnew/rmrg20070" + str(i) 
 
         print InExpression 
         print "output location: " + OutRaster 
  
         # Process: MapAlgebraStatement 
         gp.SingleOutputMapAlgebra_sa(InExpression, OutRaster) 
         i += 1 
 
         print "finished OutRaster" 
           
     except: 
         # If an error occurred while running a tool, then print the messages. 
         print gp.GetMessages() 
         i += 1 
 
 

Appendix 6. October-December Autotrophic respiration(Ra) 
# Import system modules 
import sys, string, os, arcgisscripting 
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# Create the Geoprocessor object 
gp = arcgisscripting.create() 
 
# Check out any necessary licenses 
gp.CheckOutExtension("spatial") 
 
# Load required toolboxes... 
gp.AddToolbox("C:/Program Files/ArcGIS/ArcToolbox/Toolboxes/Spatial Analyst Tools.tbx") 
gp.AddToolbox("C:/Program Files/ArcGIS/ArcToolbox/Toolboxes/Data Management Tools.tbx") 
 
 
 
i = 1000 
while i <= 1231: 
     try: 
         # Set local variables 
         InExpression = "E:/chuma_thesis/Biomass/Rm_GRID/2007" + str(i) 
         InExpression += "_ra + E:/chuma_thesis/TOP_tendata/Emax/Rg_resp2007/lp2007" + str(i) 
         InExpression += "g" 
         OutRaster = "E:/chuma_thesis/TOP_tendata/Emax/RmRgnew/rmrg2007" + str(i) 
 
         print InExpression 
         print "output location: " + OutRaster 
  
         # Process: MapAlgebraStatement 
         gp.SingleOutputMapAlgebra_sa(InExpression, OutRaster) 
         i += 1 
 
         print "finished OutRaster" 
          
     except: 
         # If an error occurred while running a tool, then print the messages. 
         print gp.GetMessages() 
         i += 1 

       
Appendix 7. January-September Daily NPP 
# Import system modules 
import sys, string, os, arcgisscripting 
 
# Create the Geoprocessor object 
gp = arcgisscripting.create() 
 
# Check out any necessary licenses 
gp.CheckOutExtension("spatial") 
 
# Load required toolboxes... 
gp.AddToolbox("C:/Program Files/ArcGIS/ArcToolbox/Toolboxes/Spatial Analyst Tools.tbx") 
gp.AddToolbox("C:/Program Files/ArcGIS/ArcToolbox/Toolboxes/Data Management Tools.tbx") 
 
 
i = 110 
while i <= 999: 
     try: 
         # Set local variables 
         InExpression = "E:/chuma_thesis/TOP_tendata/Emax/final_GPP/lp20070" + str(i) 
         InExpression += " - E:/chuma_thesis/TOP_tendata/Emax/RmRgnew/rmrg20070" + str(i) 
         OutRaster = "E:/chuma_thesis/TOP_tendata/Emax/NPPdaily/npp20070" + str(i) 
 
         print InExpression 
         print "output location: " + OutRaster 
  
         # Process: MapAlgebraStatement 
         gp.SingleOutputMapAlgebra_sa(InExpression, OutRaster) 
         i += 1 
 
         print "finished OutRaster" 
          
     except: 
         # If an error occurred while running a tool, then print the messages. 
         print gp.GetMessages() 
         i += 1 
 
 

Appendix 8. October-December Daily NPP 
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# Import system modules 
import sys, string, os, arcgisscripting 
 
# Create the Geoprocessor object 
gp = arcgisscripting.create() 
 
# Check out any necessary licenses 
gp.CheckOutExtension("spatial") 
 
# Load required toolboxes... 
gp.AddToolbox("C:/Program Files/ArcGIS/ArcToolbox/Toolboxes/Spatial Analyst Tools.tbx") 
gp.AddToolbox("C:/Program Files/ArcGIS/ArcToolbox/Toolboxes/Data Management Tools.tbx") 
 
 
i = 1000 
while i <= 1231: 
     try: 
         # Set local variables 
         InExpression = "E:/chuma_thesis/TOP_tendata/Emax/final_GPP/lp2007" + str(i) 
         InExpression += " - E:/chuma_thesis/TOP_tendata/Emax/RmRgnew/rmrg2007" + str(i) 
         OutRaster = "E:/chuma_thesis/TOP_tendata/Emax/NPPdaily/npp2007" + str(i) 
 
         print InExpression 
         print "output location: " + OutRaster 
  
         # Process: MapAlgebraStatement 
         gp.SingleOutputMapAlgebra_sa(InExpression, OutRaster) 
         i += 1 
 
         print "finished OutRaster"       
  
     except: 
         # If an error occurred while running a tool, then print the messages. 
         print gp.GetMessages() 
         i += 1 
 

Appendix 9. January-September Daily GPP upscaling (1000m)  
# --------------------------------------------------------------------------- 
# GPPupscaling.py 
# Created on: ma feb 11 2008 09:30:03  
#   (generated by ArcGIS/ModelBuilder) 
# --------------------------------------------------------------------------- 
 
# Import system modules 
import sys, string, os, arcgisscripting 
 
# Create the Geoprocessor object 
gp = arcgisscripting.create() 
 
#Enable overwrite output 
gp.OverWriteOutput = 1 
 
# Check out any necessary licenses 
gp.CheckOutExtension("spatial") 
 
# Load required toolboxes... 
gp.AddToolbox("C:/Program Files/ArcGIS/ArcToolbox/Toolboxes/Spatial Analyst Tools.tbx") 
 
 
i = 110 
while i <= 999: 
    try: 
        # Local variables... 
        OutRaster = "E:\\chuma_thesis\\TOP_tendata\\Emax\\GPPmean1000m\\lp20070" + str(i) 
        InExpression = "E:\\chuma_thesis\\TOP_tendata\\Emax\\final_GPP\\lp20070" + str(i) 
        Cell_factor = "4" 
        Aggregation_technique = "MEAN" 
 
        print InExpression 
        print "output location: " + OutRaster         
 
        # Process: Aggregate... 
        gp.Aggregate_sa(InExpression, OutRaster, Cell_factor, Aggregation_technique, "EXPAND", 
"DATA") 
        i += 1 
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        print "finished OutRaster"       
  
    except: 
        # If an error occurred while running a tool, then print the messages. 
        print gp.GetMessages(2) 
        i += 1 
         
 

Appendix 10. October-December Daily GPP upscaling (1000m)  
# --------------------------------------------------------------------------- 
# GPPupscaling.py 
# Created on: ma feb 11 2008 09:30:03  
#   (generated by ArcGIS/ModelBuilder) 
# --------------------------------------------------------------------------- 
 
# Import system modules 
import sys, string, os, arcgisscripting 
 
# Create the Geoprocessor object 
gp = arcgisscripting.create() 
 
#Enable overwrite output 
gp.OverWriteOutput = 1 
 
# Check out any necessary licenses 
gp.CheckOutExtension("spatial") 
 
# Load required toolboxes... 
gp.AddToolbox("C:/Program Files/ArcGIS/ArcToolbox/Toolboxes/Spatial Analyst Tools.tbx") 
 
 
i = 1000 
while i <= 1231: 
    try: 
        # Local variables... 
        OutRaster = "E:\\chuma_thesis\\TOP_tendata\\Emax\\GPPmean1000m\\lp2007" + str(i) 
        InExpression = "E:\\chuma_thesis\\TOP_tendata\\Emax\\final_GPP\\lp2007" + str(i) 
        Cell_factor = "4" 
        Aggregation_technique = "MEAN" 
 
        print InExpression 
        print "output location: " + OutRaster         
 
        # Process: Aggregate... 
        gp.Aggregate_sa(InExpression, OutRaster, Cell_factor, Aggregation_technique, "EXPAND", 

"DATA") 
        i += 1 
 
        print "finished OutRaster"       
  
    except: 
        # If an error occurred while running a tool, then print the messages. 
        print gp.GetMessages(2) 
        i += 1 
 

Appendix 11. January-September Daily NPP upscaling 
# --------------------------------------------------------------------------- 
# NPPupscaling.py 
# Created on: ma feb 11 2008 09:30:03  
#   (generated by ArcGIS/ModelBuilder) 
# --------------------------------------------------------------------------- 
 
# Import system modules 
import sys, string, os, arcgisscripting 
 
# Create the Geoprocessor object 
gp = arcgisscripting.create() 
 
#Enable overwrite output 
gp.OverWriteOutput = 1 
 
# Check out any necessary licenses 
gp.CheckOutExtension("spatial") 
 
# Load required toolboxes... 
gp.AddToolbox("C:/Program Files/ArcGIS/ArcToolbox/Toolboxes/Spatial Analyst Tools.tbx") 
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i = 110 
while i <= 999: 
    try: 
        # Local variables... 
        OutRaster = "E:\\chuma_thesis\\TOP_tendata\\Emax\\NPPdaily1000m\\lp20070" + str(i) 
        InExpression = "E:\\chuma_thesis\\TOP_tendata\\Emax\\NPPdaily\\npp20070" + str(i) 
        Cell_factor = "4" 
        Aggregation_technique = "MEAN" 
 
        print InExpression 
        print "output location: " + OutRaster         
 
        # Process: Aggregate... 
        gp.Aggregate_sa(InExpression, OutRaster, Cell_factor, Aggregation_technique, "EXPAND", 
"DATA") 
        i += 1 
 
        print "finished OutRaster"       
  
    except: 
        # If an error occurred while running a tool, then print the messages. 
        print gp.GetMessages(2) 
        i += 1 
         

 
Appendix 12. October-December Daily NPP upscaling  
 
# --------------------------------------------------------------------------- 
# NPPupscaling.py 
# Created on: ma feb 11 2008 09:30:03  
#   (generated by ArcGIS/ModelBuilder) 
# --------------------------------------------------------------------------- 
 
# Import system modules 
import sys, string, os, arcgisscripting 
 
# Create the Geoprocessor object 
gp = arcgisscripting.create() 
 
#Enable overwrite output 
gp.OverWriteOutput = 1 
 
# Check out any necessary licenses 
gp.CheckOutExtension("spatial") 
 
# Load required toolboxes... 
gp.AddToolbox("C:/Program Files/ArcGIS/ArcToolbox/Toolboxes/Spatial Analyst Tools.tbx") 
 
 
i = 1000 
while i <= 1231: 
    try: 
        # Local variables... 
        OutRaster = "E:\\chuma_thesis\\TOP_tendata\\Emax\\NPPdaily1000m\\lp2007" + str(i) 
        InExpression = "E:\\chuma_thesis\\TOP_tendata\\Emax\\NPPdaily\\npp2007" + str(i) 
        Cell_factor = "4" 
        Aggregation_technique = "MEAN" 
 
        print InExpression 
        print "output location: " + OutRaster         
 
        # Process: Aggregate... 
        gp.Aggregate_sa(InExpression, OutRaster, Cell_factor, Aggregation_technique, "EXPAND", 
"DATA") 
        i += 1 
 
        print "finished OutRaster"       
  
    except: 
        # If an error occurred while running a tool, then print the messages. 
        print gp.GetMessages(2) 
        i += 1 
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Appendix 13. MOD17A2 Unit Conversion (gC m-2) 
# --------------------------------------------------------------------------- 
# MOD17A2.py 
# Created on: do feb 14 2008 05:55:12  
#   (generated by ArcGIS/ModelBuilder) 
# --------------------------------------------------------------------------- 
 
# Import system modules 
import sys, string, os, arcgisscripting 
 
# Create the Geoprocessor object 
gp = arcgisscripting.create() 
 
# Check out any necessary licenses 
gp.CheckOutExtension("spatial") 
 
# Load required toolboxes... 
gp.AddToolbox("C:/Program Files/ArcGIS/ArcToolbox/Toolboxes/Spatial Analyst Tools.tbx") 
 
i = 100 
while i <= 999: 
    try: 
        # Local variables... 
        OutRaster = "E:\\chuma_thesis\\TOP_tendata\\Emax\\MOD17A2_final\\c20070" + str(i) 
        expression = "E:\\chuma_thesis\\TOP_tendata\\Emax\\MOD17A2_Rename1\\c20070" + str(i) 

 expression += " * 0.1" 
        In_raster = "E:\\chuma_thesis\\TOP_tendata\\Emax\\MOD17A2_Rename1\\c20070" + str(i) 
 
        print Map_Algebra_expression 
        print "output location: " + OutRaster         
 
       # Process: Single Output Map Algebra... 
        gp.SingleOutputMapAlgebra_sa(expression, OutRaster, In_raster) 
        i += 1 
 
        print "finished OutRaster" 
            
    except: 
        # If an error occurred while running a tool, then print the messages. 
        print gp.GetMessages(2) 
        i += 1 
 
 
        print "finished OutRaster" 
            
    except: 
        # If an error occurred while running a tool, then print the messages. 
        print gp.GetMessages(2) 
        i += 1 
 


