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Abstract  

When expression profiling is performed on individuals within a segregating population, it is 

possible to apply genetical mapping techniques by using the transcript abundances as quantitative 

traits. This enables the dissection of gene regulatory mechanisms on genetic scale. However the 

resulting regulatory regions, known as expression quantitative trait loci (eQTLs), can contain 

hundreds of candidate genes. For QTL studies, based on phenotypic traits, successful attempts 

have been made to interpret these huge gene lists computationally by means of gene function 

annotation and subsequent enrichment methods. In this project similar attempts are made on 

eQTL maps. A web application is written that automates the prioritization of candidate genes that 

underlie eQTL regions. A validation shows that this prioritization method is able to select the 

correct regulatory genes for particular target genes, where the target gene is a trait-of-interest and 

the regulatory gene is prioritized from a gene list that underlies preferably multiple eQTL regions.   
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Introduction  

For most organisms genetic variation can be found between individuals of a species, giving rise to 

differences not only in physical appearance but also in the regulation of gene expression. Most 

variation at DNA level is classified as small insertions and deletions (indels), copy number variation 

(CNV) and single nucleotide polymorphisms (SNPs) however for the dissection of genetic 

architectures and identification of quantitative traits usually SNPs are used. A SNP is any location on 

the genome where at least 2 different nucleotides are segregating within a population. When a 

phenotypic variation is continuous within a population, this variation in question can be classified as 

a quantitative trait. The associations of genomic regions with quantitative traits lead to the discovery 

of quantitative trait loci (QTLs). This is a powerful technique and has been used to gain biological 

insight in ecological and evolutionary mechanisms of plants[1]. 

QTLs are regions on the genome that show variability between individuals and are presumably 

responsible for variation in a quantitative trait. QTL analysis requires two parents that differ 

genetically for a trait of interest and genetic markers with which distinctions can be made between 

the parents. The parental lines are crossed which produces heterozygous F1 offspring. The offspring 

is crossed, resulting in a segregating F2 population, in order to produce a variety of phenotypes 

based on the initial trait of interest. Segregation within a population occurs due to splitting and 

possible recombination of the chromosomes during meiosis. During recombination genomic regions 

between chromosomes are inter-exchanged. When a causal SNP crosses over to the opposite 

chromosome, together with a marker, it could have an effect on the trait-of-interest. This is the 

reason that a segregating population is comprised of genetically diverse individuals. The eventual 

analysis is a statistical method that attempts the find non-random associations between traits and 

regions on the genome with the goal of identifying the QTLs that are causal for the variation in 

quantitative traits[2].  

Widely used populations that are used for QTL analysis are derived from Recombinant Inbred Lines 

(RILs). The construction of a RIL starts with crosses of individuals from the F2 population. Continuous 

inbreeding can add more crossing over events and produce more homozygous individuals and is 

usually done until a F8 population is achieved. This could potentially lead to an improvement of the 

QTL mapping resolution[3]. A RIL has advantages over normal populations; the same population can 

be used indefinitely to produce genetically similar offspring.  Obviously RIL construction is most easily 

performed on organisms that naturally procreate through self-pollination, like A. thaliana. 

When expression profiling is performed on individuals within a segregating population, it is possible 

to apply genetical mapping techniques by using the transcript abundances as quantitative traits. This 
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enables the dissection of gene regulatory mechanisms on genetic scale. Not unlike QTL analysis, the 

variation of quantitative traits can be used to map expression QTLs (eQTLs)[4]. This technique is 

called genetical genomics. Studies on A. thaliana RIL populations have proven to be able to identify 

genomic loci that control variation in expression [5-8]. Because the quantitative traits are related to 

gene expression, the resulting eQTLs are genomic regions that are causal for regulation of 

expression. 

The genetic linkages associated with transcript abundance enable a more thorough examination of 

the underlying biochemical processes. However the resolution of the mapped eQTLs depends on the 

number cross-overs and the number of genetic markers used; the lower the number of markers 

used, the bigger the eQTLs will be and thus the more genes there will be in the eQTLs. Attempting to 

dissect the molecular mechanisms that underlie eQTLs can be a daunting job for any lab researcher 

because a typical eQTL region can contain hundreds of genes. Therefor attempts have been made to 

handle this problem by means of computational annotation of gene functions and subsequent 

statistical analysis. Typically genes are annotated with Gene Ontology (GO) terms[9] based on their 

properties. The GO vocabulary consists of GO terms that can be divided in three sub-ontologies: 

cellular component(CC), molecular function(MF) and biological process(BP). For the elucidation of 

molecular mechanisms underlying QTL regions preference is given to use BP terms because they can 

be used to describe a network of molecular mechanisms. The Bayesian Markov Random Field 

method (BMRF)[10, 11] was developed to predict BP terms for genes based on sequence data and 

co-expression information. This method has been previously utilized by Bargsten et al to predict BP 

terms for traits of interest[12]. At the Critical Assessment of Function Annotation (CAFA)[13] BMRF 

proved to be a top contender when it came to the prediction of BP terms for Human and 

Arabidopsis. 

The annotation of gene sets with BP terms opens the door to statistical significance calculations 

known as functional enrichment analysis. Genes can be categorized based on being annotated to a 

specific BP term or not. By combining this categorization with a second categorizing strategy on the 

same genes, for instance whether a gene is inside of outside an eQTL, the association between the 

two categorƛŜǎ Ŏŀƴ ōŜ ǎǘŀǘƛǎǘƛŎŀƭƭȅ ǘŜǎǘŜŘ ǿƛǘƘ ǘƘŜ CƛǎƘŜǊΩǎ ŜȄŀŎǘ ǘŜǎǘ όC9¢ύΦ When this combined gene 

categorization and subsequent FET calculation is done for each BP term, enrichment is tested for 

each BP term. The trait-of-interest will be associated with the biological process as described by the 

enriched BP terms. The genes that are annotated to these BP terms are the prioritized QTL candidate 

genes. This gene prioritization method has been expanded by making sure that, per trait-of-interest, 

any enriched GO term is present in at least 50% of the identified eQTLs and that GO terms cannot be 

annotated to more than 1% of all genes in the genome. This prioritization strategy has been tested 
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on rice QTL data[12] and was validated by comparing the prioritization results with well-known 

causal genes.  

The objective of this project is to write a web application that integrates eQTL data with functional 

annotation and to test whether the described prioritization strategy is also successful when applied 

to A. thaliana eQTL data.  
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Material s & Methods  

The software  

All work was done in Ubuntu14.04 LTS which was running in a virtual machine. The virtual machine 

was VMware Player and ran on a Windows 7 Enterprise 64-bit service pack 1. The application was 

written in Python 2.7.6. The web framework used was Django 1.6. The database was built with 

MySQL server version 5.5.40-0 

The datasets 

The datasets, that were used to test and validate the application, came from genetical genomic 

experiments on A. thaliana Recombinant Inbred Line populations. The populations in question are 

derived from a cross between the Arabidopsis accessions Bayreuth-0 x Shadara (Bay-0 x Sha)[14] and 

Cape Verde Islands x Landsberg erecta (Cvi x Ler)[15]. Gene expression was measured under a 

constant environment and with environmental perturbations. 

Bay-0 x Sha RIL population  

This RIL population was mapped with 69 markers. It was specifically constructed to investigate seed 

germination[14]. Expression was measured with DNA microarray experiments for derived lines of this 

population under a constant environment and with environmental variation. For the environmental 

variations four developmental stages of seed germination were selected to be analyzed; 1:primary 

dormant seeds, 2:after ripened dry seeds, 3:six hour imbibed seeds and 4:seeds at the time of radicle 

protrusion. Each environmental variation was performed on a Bay-0 x Sha subpopulation of 41 

lines[16]. ¢Ƙƛǎ ŘŀǘŀǎŜǘ ƛǎ ƴŀƳŜŘ ƛƴ ǘƘŜ ŘŀǘŀōŀǎŜ ά[ƛƎǘŜǊƛƴƪψнлмпέ for the measurements under a 

Ŏƻƴǎǘŀƴǘ ŜƴǾƛǊƻƴƳŜƴǘ ŀƴŘ ά[ƛƎǘŜǊƛƴƪψнлмпψƎȄŜέ ŦƻǊ ǘƘŜ environmental variation measurements. 

Cvi x Ler RIL population  

This RIL population was mapped with 144 markers[15]. This population was analysed under a 

constant environment[5] and with an environmental variation by treating them with three hours of 

shade[6]Φ ¢ƘŜǎŜ ŘŀǘŀǎŜǘǎ ŀǊŜ ƴŀƳŜŘ ƛƴ ǘƘŜ ŘŀǘŀōŀǎŜ άYŜǳǊŜƴǘƧŜǎψнллтέŀƴŘ άSnoek_2012έ 

respectively. 

The application  

The database 

The web application is connected to a relational database that contains tables with information on 

genes, LOD scores, markers and experiments. The tables for genes, markers and experiments are 

connected through the table for LOD scores. This enables the application to request markers with a 

certain LOD score for a certain trait and experiment. 
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Parameter input  

The input of parameters can be mandatory or optional. The mandatory parameters are a trait of 

interest and a cutoff value for the LOD score. Without the mandatory input the application cannot 

take any action. The optional parameters are values that are set to a default when none are 

specified. 

 

eQTL identification  

 

 

Step 1: Markers are distributed over the genome and have a particular LOD score (figure 1A).  For a 

particular trait, markers are selected from the database when they have a higher LOD score than the 

cutoff value that was put in (figure 1B). This step produces a list of markers that will be used in the 

next step. 

Figure 1: Schematic representation of the eQTL identification process; A: With the markers on the x-axis and the LOD 
scores on the Y-axis each red dot represents a marker with a LOD score. The markers are in the order as they appear on 
the genome. B: A LOD score cutoff, indicated by a light blue horizontal line, separates the markers based on their LOD 
scores. C: The markers are grouped together if they are next to each other on the same chromosome. D: From each 
marker group the marker with the highest LOD score is selected. E: The adjacent markers of the highest scoring markers 
are used to create a definite marker region. F: The eQTLs are identified as the marker regions which defines regions on 
the genome. The genes from these regions are taken and joined in one list. 
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Step 2: The positions of the markers from step 1 are checked. Markers that are next to each other on 

a chromosome are considered as a marker region (figure 1C). 

Step 3: Markers with the highest LOD scores are selected from the identified marker regions (figure 

1D). This highest scoring marker is used as the middle point of an eQTL interval. The two adjacent 

markers (if possible) form the eQTL interval boundaries (figure 1E). When a border of the interval is 

located near the beginning or end of a chromosome, the beginning or end of an eQTL interval will 

respectively change to the first or last physical position of the chromosome. 

Step 4: Genes are requested from the database and pooled in one gene list (figure 1F).  

Gene Ontology enrichment  

Step 5: Genes are annotated with BP terms which were predicted with the BMRF method[10, 11].  

Step 6: GO enrichment is performed with FET using a python scipy package named άǎǘŀǘǎέ 

http://docs.scipy.org/doc/scipy/reference/stats.html.   

Step 7: Multiple testing correction is performed to control the False Discovery Rate (FDR) using the 

Benjamini-Hochberg (BH) method which is done with a python script obtained from 

http://pydoc.net/Python/sharepathway/0.5.0/sharepathway.correct_pvalues/. 

Post Processing for Extra Gene prioritization  

Step 8: Once enriched GO terms have been obtained, the resulting enriched gene list is divided 

amongst the eQTLs from which they came and amongst the GO terms for which they were enriched. 

This enables to make further restrictions on gene prioritization. 

Step 9: For each GO term the number of eQTL regions in which it occurs is counted. Then the fraction 

of each GO term among the eQTLs is calculated. Only the genes annotated with a GO term that is 

present in 50% or more of the eQTLs are prioritized. Note that 50% is the default value for this 

parameter as previously used by Bargsten et al[12]. 

Step 10: The number of genes that are annotated are counted for each GO term. Only the GO terms 

that were predicted for less than 1% of all genes in the genome are taken into account. Note that this 

step can also be implemented directly after step 5. 

 

 

  

http://docs.scipy.org/doc/scipy/reference/stats.html
http://pydoc.net/Python/sharepathway/0.5.0/sharepathway.correct_pvalues/
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The validation  

The following validation procedure has been performed on four datasets with three different LOD 

score cutoffs for each data set resulting in 12 separate runs. 

For the validation procedure three separate TG-TF-pair lists are derived from three different data 

sources, these will be referred to as first, second and third data source: 

1. Data from AtRegNet containing TG-TF pairs that are used as a reference. 

2. Data from the database containing traits of interest and their corresponding lists of genes 

that underlie its eQTL regions 

3. Data from the prioritization procedure containing traits of interest and their corresponding 

lists of genes that were prioritized. 

The performance of the application is tested by comparing the prioritized results with known A. 

thaliana Transcription Factors (TFs) and their direct target genes (TGs). To this end a list of paired TGs 

and TFs is obtained from AGRISΩǎ !ǘwŜƎbŜǘ in which 84 TFs are linked to 10082 TGs[17-19]. This 

AtRegNet version was obtained on the 15th of January of 2015. The relational information between 

TG and TF translates into a regulatory network in which 16109 direct interactions are known. This list 

of pairwise linked TGs and TFs, as supplied by AGRIS in the AtRegNet document, is compared to a 

similar list as predicted by the model. In the model data the TG is a trait of interest and the TF is 

located in one of the eQTLs. 

Data classification  

Data from the prediction model are compared to known TG-TF pairs. This enables the classification of 

data into a confusion matrix. When a prediction is made and it is confirmed by the reference data, it 

is a true positive (TP). When a prediction is made but it is not confirmed by the reference data, it is a 

false positive (FP). When the model does not predict a TG-TF relation but it is present in the 

reference data, it is a false negative (FN). When the model does not predict a TF-TG relation and it is 

not present in the reference data, it is a true negative (TN). 

Table 1: The Confusion Matrix 

 
Model predictions 

positive negative 

Reference data  
positive TP FN 

negative FP TN 

 

The TG-TF pairs were classified as followed: 

Step 1: Make a reference list of TG-TF pairs from AtRegNet (first data source). From this list derive 

two new lists. One list containing all TGs (TG-list) and one list containing all TFs (TF-list). 
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Step 2: Count the total amount of all possible data points; Iterate through all traits in the database 

(second data source) and check if a TF is present in its eQTL region(s). Create a TG-TF pair if a trait is 

present in the TG-list and the TF is present in the TF-list.  

Step 3: Perform the same procedures as in step 2 but this time for the data from the prioritization 

procedure (third data source) 

Step 4: Compare every TG-TF pair in the list from step 3 to the reference list (first data source). If a 

relation is present in the reference data it is classified as a TP. If a relation is not present in the 

reference data it is classified as a FP. 

Step 5: The FN is calculated by subtracting the TP from the total amount of TG-TF pairs that are in the 

reference list. 

Step 6: The TN are calculated by subtracting the TP, FP and FN from the total number of possible TG-

TF pairs that were counted in step 2.  

Step 7:  With the classified data points in the confusion matrix the recall and precision are calculated 

according to formulas 1 and 2. When no positives are identified in step 4 the denominators of 

formulas 1 and 2 equals zero. These cases are not taken into consideration since they no longer have 

any meaning. This loss of meaning can occur in the second and third data sources. 

(1)    ὙὩὧὥὰὰ  

(2)    ὖὶὩὧὭίὭέὲ  

Step 8: With the recall and precision the balanced F1 score is calculated (3). 

(3)    Ὂρ ςz  
 z 

  
 

Statist ical Significance 

The significance of the predictions was ascertained by means of random resampling of the genes that 

underlie the eQTL regions for any given trait. One thousand permutations were performed per 

dataset-cutoff combination 

The random resampling was done as followed: 

Step 1:  In order for the random resampling process to be reproducible a list of one thousand seeds 

was generated ǿƛǘƘ tȅǘƘƻƴΩǎ random.randint() method and stored in a text file. Each seed is a 

distinct integer of 8 digits. 

Step 2: In order to keep as many things the same as possible in the randomization, the random gene 

list samples are given the same size as the corresponding enriched gene list.  

Step 3: For any particular dataset-LOD score cutoff combination a list is created containing traits and 

corresponding eQTL gene lists. From these gene lists random samples are taken as described in step 

6. Note that the gene lists must contain a TF that is present in the reference. 
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Step 4: The F1 score is calculated for the original enriched dataset and stored for the corresponding 

dataset-cutoff combination. All F1 scores that result from the random resampling are compared to 

this one. 

Step 5: For every seed, in a list of one thousand seeds (see step 1), a random list of genes is extracted 

from the eQTL gene lists (see step 3). The random gene list has a predefined size (see step 2). 

Step 6: Each randomized resampling procedure consists of three stages:  

1. First, the seed is used ƛƴ tȅǘƘƻƴΩǎ ǎŜŜŘόύ ƳŜǘƘƻŘ ǘƻ ƛƴƛǘƛŀƭƛȊŜ the random number 

generator. 

2. Second, the gene list is shuffled ǳǎƛƴƎ tȅǘƘƻƴΩǎ random.shuffle() method.  

3. Third, the first part of the shuffled gene list is taken so that it has a size that is equal to 

the corresponding enriched gene list. 

Step 7: Steps 4 to 8 ŦǊƻƳ ǘƘŜ άŘŀǘŀ ŎƭŀǎǎƛŦƛŎŀǘƛƻƴέ ŀǊŜ ǊŜǇŜŀǘŜŘ ǘƻ ŎŀƭŎǳƭŀǘŜ ǘƘŜ Cм ǎŎƻǊŜ. Note that 

the list of enriched genes in step 3 is substituted by a list of random genes. The F1 score is compared 

to the corresponding F1 score of the original enriched dataset. The new F1 scores are assigned as 

being higher/equal or lower than the original F1 score. 

Step 8: The p-value is calculated according to formula 4.  

 (4)    ὖὺὥὰόὩ 
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Results 

Three sections are described; First a description about what the tool does and how it works, second a 

description of the results of the enrichment and third a description of the validation method. 

The application  

The tool is embedded in a web-application. It can receive input, request data from a database, 

manipulate the requested data and display the results on a web page. In short the tool integrates 

eQTL data with functional annotation and prioritization of candidate genes. The eQTL data is 

requested from a database with parameters that are specified on the input screen (figure 3). This 

tool can be used to identify QTL candidate genes for a given trait-of-interest. 

 

 

Figure 2: The starting site of the web application. ¢Ƙƛǎ ǎƻ ŎŀƭƭŜŘ άōŀǎŜ ǾƛŜǿέ ƛǎ ŀƭǿŀȅǎ ǾƛǎƛōƭŜ ŀōƻǾŜ ŀƭƭ ƻǘƘŜǊ 
sites of the web application. The Home link will redirect the browser to this page. The other four links 
direct the browser to a new screen where parameters can be specified. Data can be requested 
subsequently. 

Figure 3: ²ƘŜƴ ǘƘŜ ƭƛƴƪ ά{ŜŀǊŎƘ ƛƴŘƛǾƛŘǳŀƭ ǘǊŀƛǘέ ƛǎ ŎƭƛŎƪŜŘΣ ǘƘŜ ōǊƻǿǎŜǊ ƛǎ ŘƛǊŜŎǘŜŘ ǘƻ ǘƘƛǎ ǎƛǘŜΦ IŜǊŜ ǘƘŜ ǳǎŜǊ 
can input several parameters which have been divided into three sections of input; Mandatory, Semi-
mandatory and Optional. Data is retrieved and subsequently manipulated and displayed after pressing the 
search button. The data retrieval process and subsequent data manipulation is explained in the Materials 
and Methods section. After the data has been processed it is displayed on a new webpage. 
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Mandatory input  

The parameters in the mandatory input section are a trait of interest and a LOD score cutoff value. 

Without these parameters the application cannot make any request for data to the database. The 

trait of interest has to be put in as a locus identifier that is consistent with the TAIR guidelines 

(https://www.arabidopsis.org/submit/locus_identifier_request.jsp). The LOD score cutoff value can 

be specified as a number bigger than zero and with or without decimals. 

Semi-mandatory  

The parameters in the semi-mandatory input section are a choice for a dataset from a particular 

experiment and a choice between data from a normal gene expression experiment and an 

environmental perturbation experiment. This section is called semi-mandatory because data can be 

requested after pressing the search button without considering this section. However they can be 

changed according to the desired output. Initially the parameters are set to a default setting; the 

different datasets are presented in a dropdown box in which they are ordered alphabetically. The 

first dataset in the list will always be set as default. The option for the type of dataset is set to 

άƴƻǊƳŀƭ ƎŜƴŜ ŜȄǇǊŜǎǎƛƻƴέΦ /ǳǊǊŜƴǘƭȅ ǘƘŜ Řŀǘŀ ǘȅǇŜ άŜƴǾƛǊƻƴƳŜƴǘŀƭ ǇŜǊǘǳǊōŀǘƛƻƴέ ƛǎ ƻƴƭȅ ŀǾŀƛƭŀōƭŜ ŦƻǊ 

the Ligterink_2014 dataset. The Keurentjes_2007 and Snoek_2012 experiments used derivations of 

the same RIL population whereas Keurentjes_2007 performed the experiments under normal gene 

expression and Snoek_2012 under environmental perturbation. 

Optional input  

The parameters in the optional input section are p-value cutoffs for FET and the BH multiple testing 

correction and two separate values that are related to the post-process for extra gene prioritization 

ŀǎ ŘŜǎŎǊƛōŜŘ ƛƴ ǎǘŜǇ ф ŀƴŘ мл ǳƴŘŜǊ άPost Processing for Extra Gene prioritizationέ ƻŦ ǘƘŜ ƳŀǘŜǊƛŀƭǎ 

and methods section. 

Output  

¢ƘŜ ƻǳǘǇǳǘ ƻŦ ά{ŜŀǊŎƘ ƛƴŘƛǾƛŘǳŀƭ ǘǊŀƛǘέ is presented (figure 4-6) and described below.  

A. A mentioning of the used άoptional inputέ parameters. 

B. The trait of interest, LOD score cutoff value and experiment for which a query was made 

is given. The trait is a hyperlink that will open a google search page for the trait in a new 

tab. 

C. A description of the trait of interest (which is extracted from the database). 

D. A graphical display of all markers on the genome versus their LOD scores. The markers 

are on the x-axis and the LOD scores are on the y-axis. The markers are in order in which 

they are located on the genome for this particular dataset. The blue line is an indication 

https://www.arabidopsis.org/submit/locus_identifier_request.jsp
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of the genotype of this particular trait in this dataset. The red line indicates the LOD 

score cutoff value. 

E. An overview of the identified eQTLs. Each eQTL has a location on the chromosome, a 

physical start/end in base pairs and a list of genes. Each list contains genes that were 

annotated with a GO term that was enriched 

F. A list of enriched GO terms, GO names and the respective q values that result from the 

BH multiple testing correction. The terms have an ascending order by the number in the 

term. Each GO term is a hyperlink that will send the user to the location of that GO term. 

G. An overview of an enriched GO term and the genes that were annotated with this GO 

term. The genes are divided amongst the eQTLs in which they were found 
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Figure 4: Part one of the output of a query for the trait  ά!¢мDмфмулέ. The green circles indicate where a eQTLs will 
be identified.  

Figure 5: Part two of the output of a query for an individual trait. E: a table containing the chromosome number, 
physical start-end and the genes that were annotated to an enriched BP term for each identified eQTL.  F: a 
table containing GO terms from the BP subontology that were enriched, the GO term name and the q value. 
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Figure 1 Part three of the output of a query for an individual trait. This example is one of the 
many tables that are produced. The number of tables are listed under fig F 
Figure 6: Part three of the output of a query for an individual trait displaying in detail which genes 
were enriched for GO:0009606 and in which eQTL they were found. 
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Figure 7: A (partial) list of all markers, presented by order of appearance on the genome. Each marker is displayed with 
its LOD score, chromosomal number and physical position 

Figure 8: ²ƘŜƴ ǘƘŜ ƭƛƴƪ ά{ŜŀǊŎƘ ƳǳƭǘƛǇƭŜ ǘǊŀƛǘǎέ ƛǎ ŎƭƛŎƪŜŘΣ ǘƘŜ ōǊƻǿǎŜǊ ƛǎ ŘƛǊŜŎǘŜŘ ǘƻ ǘƘƛǎ ǎƛǘŜΦ IŜǊŜ ǘƘŜ ǳǎŜǊ Ŏŀƴ ƛƴǇǳǘ ŀ 
list of traits, a LOD score cutoff value and specify the dataset. The result will be a table with in each row a trait, the 
number of eQTL and the number of genes that underlie the eQTLs 
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If a user wants to know which markers were used to identify eQTLs, tƘŜ ǇŀƎŜ ǳƴŘŜǊ ά5ƛǎǇƭŀȅ ƻǳǘǇǳǘ 

Řŀǘŀέ Ŏŀƴ ōŜ ǳǎŜŘΦ ! ǉǳŜǊȅ ŦǊƻƳ ǘƘƛǎ ǇŀƎŜ ǿƛƭƭ ǇǊƻŘǳŎŜ output that is handled by backend python 

functions during the eQTL identification process. 

Figure 9: ¢ƘŜ ǊŜǎǳƭǘƛƴƎ ǇŀƎŜ ƻŦ ά{ŜŀǊŎƘ ƳǳƭǘƛǇƭŜ ǘǊŀƛǘǎέΦ ¢ƘŜ ŘƛǎǇƭŀȅ Ŏƻƴǘŀƛƴǎ ŀ ǘŀōƭŜ ŎƻƴǘŀƛƴƛƴƎ ǘƘŜ ǘǊŀƛǘǎ ŀƴŘ ŦƻǊ ŜŀŎƘ 
trait the number of eQTLs that were mapped for this trait and the number of genes that can be found in the eQTL 
regions. 

Figure 10: ²ƘŜƴ ǘƘŜ ƭƛƴƪ ά5ƛǎǇƭŀȅ ƻǳǘǇǳǘ Řŀǘŀέ ƛǎ ŎƭƛŎƪŜŘΣ ǘƘŜ ōǊƻǿǎŜǊ ƛǎ ŘƛǊŜŎǘŜŘ ǘƻ ǘƘƛǎ ǎƛǘŜ 
























