When climate change enters an entrenched Science-Policy interface

Knowledge production for climate adaptation policy in the Netherlands

Daan Boezeman, d.boezeman@fm.ru.nl Martijn Vink, martinus.vink@wur.nl

Berlin Conference on the Human Dimensions of Global Environmental Change Friday October 5th 2012

Outline presentation

- Research problem
- Institutional perspective on co-production of knowledge
- Approach
- Case study
- Wrap up and discussion

Research problem

 The ultimate complexity, all-pervasiveness and sensitivity of climate change is - or needs to - changing science-policy relations

"societal participation, mutual learning and opening up pre-existing organizational and institutional boundaries are among the key words here to ensure a more responsible, more legitimate and more effective science-policy interface"

(Leroy et al., 2010, p. 28. In: From Climate Change to Social Change)

- Climate adaptation is especially interesting
- 1. Taken up by pre-existing policy fields ("mainstreaming")
- 2. Requires knowledge production in direct context of application ("downscaling")

Research questions

- how is climate knowledge translated into knowledge claims on the changing environment?
- Are science-policy relations indeed changing towards processes that are more interdisciplinary, participatory and facilitate learning? If so, how?
- Case study: Droge Voeten 2050
 - Regional water governance
 - 'Routinized' science-policy interface
 - Regional initiative
 - Ambition to integrate climate change
 - Ambition for more participation

Institutional perspective on knowledge production

- Scott (2008) institutions have regulative, normative and cognitive elements empowering and constraining action
- Jasanoff (2004) Societies have institutionalized ways of knowing, constantly reproduced in new contexts
- Focus on institutionalized tools, procedures, routines and sciencepolicy boundaries in risk governance arrangements invoked to respond to climate change
- Changes towards interdisciplinarity, participation and learning

Methodological approach

- Following the project since March 2011 until now
- Qualitative case study research
 - Participant observations (project meetings)
 - Interviews
 - Document analysis
 - Historical reconstruction of previous projects (roughly 1998 now)

Geographical scope

- Regional issue
- North Netherlands
- A 'Boezem' system

Regional water policy

- Focusing events in 90ties: flooding '98
- Respons: HighWater project (1999-2003)
 - Assign regional water barriers
 - Set safety norms
 - Advise policies (dike improvement, water retention), worth € 165-232 million
 - Top down, technocratic process and public controversies (law suits running until now)
- Early 2011 new study announced
 - Improve safety
 - Study consequences of climate change and soil subsidence
 - Propose policy to meet norms in 2025, maintain safety until 2050, contribute in 2100
 - Ambition to do it more participatory
 - Roughly same organizational setting, budget €875.000 for external studies
- What happens?

Translating climate change: three reductions

1. Disciplinary reduction in pre-appraisal phase

- Dutch Water management is cut up and institutionalized in specializations
- Embedded from start in a "hydrological quantity" problem framing
- HOWA → "water system management 2050" → "dry feet 2050"
- Possible climate effects outside framing are considered beyond scope -> other projects
- Only when relevant for flooding the 'boezem'
- So no integral analysis of excess, not shortage of quality

Translating climate change: three reductions

- 2. Fitting climate change into the **risk assessment** regime
 - The Risk Approach: risk = chance x effect
 - High degree of formalization in national and regional law + series of guidelines, procedures and tools
 - Continuous investment and development of very sophisticated hydrological models
 - Empowers a relative quick, comprehensive and detailed analysis of the boezem
 - But...
 - Focus on threshold probabilities
 - Discussions focus on peak water levels
 - How about other possible climate effects?
 - Dike collapse?
 - Increased soil subsidence?

Translating climate change: three reductions

- 3. Organizing stakeholder participation in knowledge production
 - Classical arguments: innovative solutions, acceptance, local knowledge, good government
 - Knowledge participation on different levels → different sub groups
 - Technical and participatory trajectory
 - Clear demarcation between risk assessment and risk management
 - Speaking for nature (problem identification) remains sole domain of hydrologists, risk management procedures aims to consider stakeholder alternatives
 - Participation resembles corporatist patterns, actors can push knowledge production
 - Delimited by other procedures (EIA)

Conclusions

- Complexity of climate change is tamed to fit the pre-existing machinery of risk governance, which both empowers and delimits analysis
- Translating climate change is a stepwise process...
- ... and has to be integrated and harmonized with other processes in timeframe of a single project
- This science-policy interface is strongly institutionalized in terms of maturity, size, formalization, and harmonization: sophisticated models, procedures, standardized sources, routines, etc
- Moderate shifts to organization interdisciplinarity, participation and reflexivity in this science-policy interface

Discussion

- How specific is this translation of climate change? Other policy fields?
- **Do we indeed need** shifts in transdisciplinarity, participation and reflexifity on the level of all adaptation projects?
- How to better integrate climate change in routinized adaptation projects?
 - Here, we would say e.g.:
 - Not develop new guidelines, but integrate in existing assessment procedures
 - Focus on integrating climate knowledge in standardized objects instead of on level of single projects

Thank you for your attention!

Daan Boezeman, d.boezeman@fm.ru.nl Martijn Vink, martinus.vink@wur.nl