
Process description of SWQN 
A simplified hydraulic model

A.A.M.F.R. Smit 
C. Siderius
L.P.A van Gerwen

1

Alterra-Report 1226.1   ISSN 1566-7197



 

 



 

2                                                                           Alterra Report 1226.1 

Process description of SWQN 
 
A simplified hydraulic model 
 
 
 
A.A.M.F.R. Smit 
C. Siderius 
L.P.A. van Gerven 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Alterra Report 1226.1 
 
 
Alterra, Wageningen, 2009 



 

 

ABSTRACT 
 
Smit A.A.M.F.R., C. Siderius, L.P.A. van Gerven, 2009. Process description of SWQN; A simplified 
hydraulic model. Wageningen, Alterra Report 1226.1. 52 pp.; 12 figs.; 2 tables; 18 refs.  
 
 

SWQN is a simplified hydraulic model for surface water systems which computes water levels and 
flows in a network of nodes labelled as ‘volumes’ and segments labelled as ‘connectors’. The user 
can specify a variety of connectors like open water courses or structures such as weirs, gates, 
culverts or pumps. Water levels are calculated in the ‘volumes’ driving the one dimensional flows 
through the ‘connectors’ linking up the ‘volumes’. The assumption is that the flow between two 
nodes with an open connection in between is linearly dependent on the difference in water level, if 
necessary augmented with the difference in velocity head, the wetted profile, and a given resistance.  
Each structure, on the other hand, has its own specific stage-discharge relation and is linearized 
using a number of intervals. The internal computational time step is usually set from one to several 
hours, but strongly depends on the water storage capacity associated with the volumes and the 

dynamic behaviour of the modelled system. SWQN has proven to be widely applicable and relatively 
fast for large networks. 
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Preface 

The basic concepts of SWQN were formulated in 1984 at the start of the “Reuse of 
Drainage Water Project”, a joint venture between the Drainage Research Institute, 
Cairo, Egypt, and the ‘Instituut voor Cultuurtechniek en Waterhuishouding (ICW)’, 
one of the predecessors of Alterra. WATDIS, as it was called in those days, formed an 
integral part of the SIWARE model package with which water management options in 
the Nile Delta were simulated for policy support of the Egyptian Ministry of Water 
Resources and Irrigation. 
 
The reason to embark on developing such a model was the lack of knowledge and 
data on water distribution in the Nile Delta. Simplification of the hydraulic concepts 
was a prerequisite caused by the complexity and application scale of the SIWARE 
package together with limited hardware capacity at that stage of personal computing. 
Numerous calibrations that WATDIS could produce sufficiently accurate results.  
 
In 2001 SWQN was wrapped in a new FORTRAN shell as part of the NL-CAT model 
package developed for the EU-EuroHarp project (www.euroharp.org). In EuroHarp 
a comparison was made between a number of European models simulating nutrients 
outflows at catchment scale. The NL-CAT package also formed the core of the Alterra 
instrument used in the Dutch government funded project “Monitoren 
Stroomgebieden” (www.monitoringstroomgebieden.nl). In this project water and 
nutrient flows were traced and analyzed in four typical Dutch water systems.  
 
For further questions about the contents of this report the reader is referred to the 
authors Mr. A.A.M.F.R. Smit (robert.smit@wur.nl) and Mr. C. Siderius 
(christian.siderius@wur.nl). 
 
 
 
Wageningen, September 2009 
 
 
 
 

http://www.euroharp.org/
http://www.monitoringstroomgebieden.nl/
mailto:robert.smit@wur.nl
mailto:christian.siderius@wur.nl
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 Introduction 1

Computing water levels and flows in very large schemes of open water courses 
requires a robust and relatively fast algorithm. To meet such requirements, Alterra 
has developed a model in which water courses are schematized into a network of 
nodes linked by segments. Water levels are computed in the nodes, whereas flows are 
calculated in the segments as a resultant of differences between water levels (and 
velocity head) in the adjacent nodes. The user can further specify structures, such as 
weirs, undershot gates, culverts, and pumps, in each of the segments. 
 
The earliest versions were used to compute the water distribution in large irrigation 
schemes, such as the complete Nile Delta (Rijtema et al., 1991). Performance was so 
good in terms of computation time and accuracy (on that particular scale), that it was 
decided to derive a version which could also be used for Dutch catchments, where 
unlike the Nile Delta drainage is the dominant driver for surface water systems. 
In order to fit in the new modeling framework developments at Alterra, it was 
decided to rebuild the original program into a Dynamic Link Library (DLL). Since 
then this DLL has been integrated in several software environments, such as the 
“Framework Integrated Water management” (Groenendijk et al., 1999), NL-CAT 

(Schoumans et al., 2009), and SWQN (Dik et al., 2009), where the abbreviation stands 
for Surface Water QuaNtity. SWQN is the most basic software application made up by 
the computational core and a shell handling in- and output. 
SWQN has been successfully applied in a variety of  areas, such as a number of Dutch 
polders and catchments (see: http://www.monitoringstroomgebieden.nl/ project 
phases 2 and 3, and Dik et al., 2004 and 2005) and several other catchments across 
Europe, like Odense in Denmark, Vansjo-Hobol in Norway and Zelivka in the 
Czech Republic (Schoumans et al., 2009). These catchments are all very different in 
topography, weather, and surface water management. 
 
The simple and straightforward approach, robustness and computational efficiency 
makes SWQN a very useful tool for calculating water flows within a wide range of 
conditions. Nevertheless, the model also faces some limitations due to its 
simplifications of the basic St. Venant equations which describe the flow in open 
water conduits (Ven te Chow, 1959). It is not designed to deal with flows through 
pressure conduits, situations with rapidly varied flows, or large rivers in floodplains 
with a very irregular morphology where 2D-aspects are important. In this technical 
description and the user manual (Dik et al., 2009) the possibilities and restrictions of 
SWQN are further highlighted.  
 
SWQN has been designed in a way that simplifies adding new functionality. The latest 
version allows for large network configurations up to thousands of nodes, depending 
on the internal memory of the computer used. The internal computational time step 
is usually set at one to several hours, but strongly depends on the water storage 
capacity associated with the volumes and the dynamic behavior of the modeled 

http://www.monitoringstroomgebieden.nl/
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system. Improvements in mathematical formulation and efficiency of algorithms are 
still ongoing.  
 
This report describes in detail the computational core of SWQN. In Chapter 2 the 
theoretical background behind the simplification of the St. Venant equestions and 
the flow through weirs, culverts, gates and pumps is briefly explained. In Chapter 3 
their implementation in SWQN is described, while Chapter 4 shows the solution 
scheme. Chapter 5 compares performance with other models by means of a mass-
conservation and ramp-discharge test.  
. 
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 Theory 2

2.1 Flow in open conduits - St. Venant equations 

The unsteady flow in open waters was first described by St. Venant in 1848. His well-
known St. Venant equations consist of two parts: i) the conservation of mass and ii) 
the energy or momentum balance in one dimension for a water body of infinitesimal 
length. The St. Venant equations are the basis for the description of unsteady flow in 
open waters but require intricate numerical schemes to solve and are therefore not 
used in SWQN. In Annex 1 they are explained in more detailed. Here we explain the 
main assumptions and in the next paragraph describe the simplification which lead 
from the St. Venant equations to the equations used in SWQN. 
 
 

 
 

 

Figure 1 Flow through a part (dx) of the surface schematization 

 
In Figure 1 a schematization of a short length (dx) of a prismatic surface water 
channel is shown. The continuity equation, describing the conservation of mass can 
be written as follows, when assuming no lateral inflow of water: 
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The dynamic (or momentum) equation, which constitutes the second part of the St. 
Venant equations and describes the energy or momentum balance in one dimension 
for a water body of infinitesimal length: 
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where: 
A cross sectional area [m2] 
v mean velocity at the section  [m2 s-1] 
b width of the section  [m] 
h water level  [m] 
t time  [s] 
g acceleration due to gravity  [m s-2] 
So bed slope  [-] 
Sf friction slope  [-] 
 
 
Equations 1 and 2 together form the St. Venant equations describing unsteady flow 
in open waters. These dynamic wave equations are considered to be the most 
accurate and comprehensive solution to 1-D unsteady flow problems in open 
channels. Nonetheless, these equations are based on specific assumptions, and 
therefore have limitations. The assumptions used in deriving the dynamic wave 
equations are as follows: 
 

 Velocity is constant and the water surface is horizontal across any channel 
section perpendicular to the longitudinal axis; 

 All flows are gradually varied with hydrostatic pressure prevailing at all points 
along the longitudinal axis, such that vertical accelerations can be neglected; 

 Channel boundaries are treated as fixed; therefore, no erosion or deposition 
occurs; 

 The slope of the channel bottom is small; 

 Water is of uniform density, and resistance to flow can be described by 
empirical   formulas, such as the Manning or the Chézy equations; 

 The flow is incompressible and homogeneous in density. 
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2.2 Simplification of the St. Venant equations  

Due to their mathematical complexity exact integration of the St. Venant equations is 
practically impossible (Ven Te Chow, 1959). Instead they may be solved numerically, 
given one initial and two boundary conditions. Numerous flood routing methods 
exist which all use the continuity equation in a similar manner but differ in their use 
of the momentum equation (Weinmann and Laurenson, 1979). Models that retain all 
terms are called complete dynamic models. In SWQN, like in many other flood 
routing models, several terms are neglected. In the following paragraphs the steps 
taken to simplify the momentum equation are explained. 
 
Equation 3 shows again the rewritten 2nd St. Venant or dynamic wave equation in a 
rearranged form. The first term describes the change in impulse over time, the 
second the net flux into the surface water section, and the third the change in 
pressure. So and Sf describe the friction and gravity forces working on the surface 
water section.   
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Not all terms in the dynamic equation are equal in size. Table 1 shows the relative 
importance of all terms related to the gravity force for a number of river catchments. 
 

Table 1 Relative importance of all dynamic equations terms to the friction force for 5 catchments (derived from 
Torfs, 2000), where A comes from Henderson (1966) and B and C come from Weinmann and Laurenson, 
(1979)). 

  Rhine Donau A B C 

oSg  Gravity 1 1 1 1 1 

fSg  Friction ≈1 ≈1 ≈1 ≈1 ≈1 

x

h
g



 

Pressure -0.025 0.063 -0.019 -0.03 -0.85 

x

v
v



 

Impulse flux 0.001 0.004 0.0075 0.012 0.07 

t

v




 

Change in impulse -0.002 -0.002 -0.0019 -0.013 -0.06 

 
 
From Table 1 it follows that several terms of the St. Venant equation may be 
disregarded without losing too much accuracy. When the impulse change and 
impulse flux are disregarded the dynamic equation changes in a diffusion wave 
description. When furthermore the pressure term is disregarded the equation 
describing a kinematic wave remains: 

Kinematic Wave

Diffusion Wave

Dynamic Wave



 

12                                                                           Alterra Report 1226.1 

 

fo
SS          (4)  

 
In the kinematic wave equation gravity and friction forces balance each other, or, in 
other words, the slope of the bed is equal to the friction slope. Using the well- 
known Chézy formula this friction slope can be described as: 
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where 
V velocity  [m s-1] 
C Chézy coefficient  [m½ s-1] 
R hydraulic radius  [m] 
A wetted cross profile of the segment  [m2] 

 
 
Combining Equation 4 with 5 gives: 
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Equation 6 describes the steady flow in open channels in which bed slope, water and 
energy levels are running parallel. To approximate non-uniform flows, the bottom 
slope in Equation 6 can be substituted by the slope of the water level in a longitudinal 
section j between points i and i+1: 
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 with: 
Sp,j,t         slope in pressure head for segment j at time t  [-] 
Δhi,i+1,t   difference in pressure head between nodes i and i+1  [m] 
hi,t           water level in node i  [m] 
hi+1,t       water level in node i+1  [m] 
ΔLj  distance between nodes i and i+1  [m] 

 
 
This approach brings back the pressure term in the equations and, hence, approaches 
the diffusion wave (see Eq. 3). Using the slope of the water level is the default option in 
the SWQN module. The estimation can be further improved by substituting the bottom 
slope by the slope of the energy line (Eq. 8), so that the impulse flux is also covered by 
the equations and the dynamic wave is partially approximated. Optionally the model 
provides this possibility. 
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with 
Se,j,t         slope in energy head for segment j at time t  [-] 
ΔHi,i+1,t   difference in energy head between nodes i and i+1  [m] 
hi,t           water level in node i  [m] 
hi+1,t       water level in node i+1  [m] 
vi,t         flow velocity in node i   [m s-1] 
vi+1,t      flow velocity in node i+1  [m s-1] 
g     gravity constant  [m s-2] 
ΔLj  distance between nodes i and i+1  [m] 
 
There are some constraints to the above described simplifications in addition to the 
limitations of the second St. Venant equation as some terms in the dynamic wave are 
neglected or approximated. A fair example of such a constraint is a large flood wave 
in a gently sloping area or open waters where rapid variations in flow velocity over 
time occur at cross sections.Chapter 4 will go into detail on the consequences of the 
here described simplifications. Chapter 5 will give a comparison with other surface 
water models.  
 
 

2.3 Structures 

In many open water systems discharges are also influenced by structures like weirs 
and culverts. In the following paragraphs the basic relations for the most common 
structures are given as well as the approach to linearize the originally non-linear 
equations. The following four kinds of structures are presently described by SWQN:  
 

 Weir 

 Undershot gate 

 Culvert 

 Pump 
  
Other types such as siphons can be easily added to the model code, if needed. 
 
 

2.3.1 Weir 

Weirs are predominantly used for upstream water level control, but can also be used 
for water distribution and flow measurements. A large variety of differently shaped 
and weirs with fixed and movable crests exist. In SWQN only rectangular weirs are 
accounted for. The general stage-discharge relation for a rectangular broad crested 
weirs reads (CTV, 1988, and Figure 2 left):   
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hdown,t hup,t 

hdown,t – hcrest 

hup,t – hdown,t 

hcrest 

      5.1

,,

5.05.1

3
2

, tcresttupcrestvdtweir hhWgCCQ                (4) 

  
where: 
Qweir,t   weir discharge at time t  [m3 s-1] 
Cd     discharge efficiency coefficient  [-] 
Cv     velocity correction coefficient [-] 
Wcrest  crest width  [m] 
hup,t        upstream water level  [m] 
hcrest,t    crest level [m] 
g    gravity constant  [m·s-2] 
  

A similar equations applies for sharp crested weirs (CTV, 1988, and Figure 2 middle): 
 

    5.1

,,

5.0

3
2

'', 2 tcresttupcrestvdtweir hhWgCCQ     (5) 

 
where: 
δ contraction coefficient  [-] 

 
The discharge efficiency coefficient Cd  is usually estimated between 1.0 and 1.25 for 
a sharp crested weir and 0.848 for a broad crested weir under common flow 
conditions (CTV, 1988). This coefficient, however, will be influenced significantly by 
the crest shape of the sharp crested weir and the degree of aeration. The velocity 
correction coefficient Cv   ranges from 1.0 to 1.1 for sharp and broad crested weirs, 
respectively (Bos, 1978). The contraction coefficient is often set at unity.  
 
 
 
 
   

     
  
 
 
 
 

Figure 2 Broad crested weir (left),  sharp crested weir (middle), and submerged weir (right) 

 
 
A special case exists when the water level at the downstream side rises above the 
crest level (Figure 2 right). In such cases the weir is considered drowned and 
Equation 9 is combined with an equation for submerged flow through an orifice as 
presented in Equation 22:                                 
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The first part of Equation 11 represents the free flow over a weir where hcrest  is 
replaced by hdown,t (see also Figure 2). The second part describes the submerged flow 
over the weir, where the submerged part is given by (hup,t – hdown,t). 

 

2.3.2 Undershot gate 

Undershot gates are classified as an opening in a plate or a bulkhead of which the top 
is placed well below the upstream water level. They are used for water regulation. 
Depending on up- and downstream water levels, five different situations of stage-
discharge relations can be distinguished as illustrated in Figure 3: 
 
  
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 

Figure 3 Freely discharging underflow (a), submerged underflow (b), partially submerged underflow (c), freely 
discharging broad crested weir type of flow (d), and submerged broad crested weir type of flow (e). 

 
Each of these situations can be expressed as follows:  
 
a) Freely discharging orifice (Gelok, 1969): 
  

    5.0

,,,

5.0

, 2 tcentretuptundershotvdtundershot hhAgCCQ     (7) 

  
with: 
Qundershot,t  discharge of free flow undershot gate at time t  [m3·s-1] 
Cd    discharge efficiency coefficient usually estimated at 0.61  [-] 
Cv  velocity correction coefficient usually estimated at 1.035  [-] 
Aundershot,t variable gate opening at time t  [m2] 
hcentre,t     level of the centre of the gate opening at the upstream side at time t  [m]       
  
  
b) Fully submerged orifices (CTV, 1988): 

a b c 

d e 
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c) Partially submerged orifices with a downstream water level below the top of 
the gate opening (CTV, 1988): 
 

    5.0

,,,

5.0

'''', 2 tcentretuptundershotvdtundershot hhAgCCQ    (9) 

 
 
d-e) In case both upstream and downstream water levels drop below the top of 
the gate opening, the structure no longer performs as an orifice but functions as a 
broad crested weir and Equation 9 then applies. 
 
 

2.3.3 Culvert 

Culverts are closed conduits generally used to under cross other infrastructure, such 
as roads, waterways, railroads, etc. Generally, no water level or flow control 
mechanisms are present. Various shapes exist and culverts are built with different 
construction materials. For straight culverts a similar equation as for undershot gates 
under submerged conditions is used (Equation 13) in which the coefficients Cd and 
Cv are replaced by a single resistance coefficient μ (Gelok, 1969; CTV, 1988): 
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ofe
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                                              (11) 

  
where: 
μ  combined resistance coefficient  [-] 

culvertA  cross sectional area of the culvert  [m2] 

ξe  entry resistance coefficient  [-] 
ξf  friction coefficient  [-] 
ξo  coefficient for outlet losses  [-] 

 
 
The CTV (1988) gives as entry resistance coefficient values of approximately 0.6 for 
round shaped culverts and 0.5 for square shaped culverts. The friction coefficient is 
calculated according to Equation 26 as a function of the length, hydraulic radius, and 
Manning roughness coefficient, usually set at 75 (Ven Te Chow, 1959; CTV, 1988). 
No provisions are made for curved culverts in Equation 16, but a ξb could easily be 
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added to the square rooted denominator, while values could be retrieved from tables 
(CTV, 1988). 
  

342
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Rk
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f
                                                                   (12) 

  
where: 
L length of culvert  [m] 
kM  Manning coefficient  [m1/3 s-1] 
R hydraulic radius  [m] 
 
 
The coefficient for energy losses at the outlet depends on the ratio between wetted 
cross section of the culvert and cross section of the downstream water course as 
described in the CTV (1988): 
 

  ka
o

2
1                                                                 (13) 

  
where: 
a  number of parallel culverts [-] 
α    wetted cross profile of the culvert divided by the wetted cross profile 

of the downstream water course 
[-] 

k    shape coefficient for the outlet  [-] 
  
 
The value for k is set at unity if all kinetic energy is dissipated at the outlet. If no 
energy losses occur k can be set at zero. 
 
 

2.3.4 Pump 

Pumps are usually found at locations where a negative head has to be bridged in the 
water system. This is often the case in (low-lying) polders where excess water has to 
be pumped out to higher elevated water courses. In such areas, operators or 
automated systems generally exercise control by observing water levels at the 
upstream side, i.e. a start level at which the pump starts and a stop level at which 
pumping is ceased. Another example for the use of pumps can be found in irrigated 
agriculture where a certain downstream demand has to be met and flow control 
instead of level control is usually practiced.  
 
Different types of pumps can be found each with their own advantages and 
disadvantages. Discharge may depend on the water levels at the suction and/or 
supply side, but for most pumps the relation between head and discharge does not 
deviate too much from linearity. Hence, SWQN either uses a linear relation or a 
constant discharge. 
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3. Implementation 

3.1 Introduction 

The SWQN module provides a method to compute flows and water levels in a 
schematized network of nodes labeled as ‘volumes’ and segments labeled as 
‘connectors’. Water levels are calculated in the nodes and the differences in water 
levels between connected nodes form the driving force behind the one-dimensional 
flow. 
 
The module is pseudo-dynamic in time, assuming that steady-state conditions prevail 
during a time step. A connector can be specified as an open watercourse or a 
structure like a weir, gate, pump, etc. It is assumed that the flow between two nodes 
is linearly dependent on the difference in water level (if desired with the velocity head 
included), the wetted profile, and a given resistance. Each structure has its own 
specific stage-discharge relation and is linearized using a number of intervals. 
  
The model is designed in a way that simplifies the addition of new functionality. Both 
the data transfer (through a structure block), and the internal structure of the model 
are prepared for this. New functionality will chiefly consist of different types of 
structures. The latest version allows for large network configurations up to several 
thousands of nodes, depending on the internal memory of the computer used and an 
acceptable computation time. The internal time step is usually set from one to several 
hours, but strongly depends on the water storage capacity associated with the 
volumes and the dynamic behavior of the modeled system. 
  
  

3.2 Nodes 

Each node in the network of water courses is associated with a storage volume. The 
nodes are the basic computational elements with a water level variable in time 
depending on the storage capacity and driven by in- and outgoing flows and 
boundary conditions, such as drainage, precipitation and evaporation. The actual 
water volume of a node is calculated based on the water depth in the node times half 
the surface water area of each connected segment (  Figure 4). 
 
Hence, the basic equation for a node i follows mass conservation and reads: 
  

 
i1ii,i1,-i

,
-- QQQ

dt

hAd

dt

dV iisurfacei      (14) 

  
 where: 
Vi           water volume in node i at time t  [m3] 
Asurface,i       water surface area of node i  [m2] 
hi        water level in node i  [m]   
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dt  time step  [s] 
Qi-1,i   flow from node i-1 to node i  [m3·s-1] 
Qi,i+1  flow from node i to node i+1  [m3·s-1] 
ΣQi    sum of sink and/or source terms for node i  [m3·s-1] 

 

 

  Figure 4 schematization in nodes and sections  

 
The surface water area of a node is calculated by multiplying half the section length 
times the width of the water area for each segment connected to the node after which 
they are all added up.  
 
In trapezoid channel segments the water surface is a function of the water level 
which can be expressed for k connected segments as: 
 

ijj

k

j

jisurface hnBLA 2
2

1

1

, 


      (15)  

 
with: 
∆Lj       length of segment j  [m]   
Bj bottom width of the segment j cross profile [m] 
nj   side slope of the segment j cross profile [-] 

 
For other cross shapes other functions will apply for Asurface. 
Sink and source terms may occur simultaneously and may be constant or time 
dependent. These terms are usually considered as boundary conditions (Paragraph 3.4) 
and may represent for instance: 

 Precipitation 

 Open water evaporation 

 Drainage from and infiltration into the subsoil 

 Run-off from the topsoil and/or subsurface drainage 

 Leakage to and seepage from the groundwater 
    

node 

segment 

i 

i+1 

i-1 

Ai 

Lj-1 

Lj 

Li= ½Lj + ½ Lj-1 
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3.3 Segments 

Nodes are connected by segments and each node can be linked up to ten other 
nodes. As shown in the previous chapter, the segments currently implemented in the 
SWQN module are: 
 

 Open connection 

 Weir 

 Undershot gate 

 Culvert 

 Pump 
  
 

3.3.1 Open connection  

The most commonly used connector is the open connection. The flow profile of an 
open connection may have various shapes as referred to in Paragraph 3.2. In the 
present version of the model, however, it is composed of linear line pieces. A widely 
used profile is the trapezoid. When describing the flow of water from one node to 
another through a segment j, while assuming uniform and steady-state flow 
conditions during a time step, Equation 6  can be written as: 
  

jtjtjjChezytj
sRACQ

,,,,
      (16)    

 
where: 
Qj,t       flow in segment j at time t  [m3 s-1] 
CChézy,j  de Chézy coefficient for segment j [m1/2 s-1] 
Aj,t       wetted cross profile of segment j [m2] 
Rj,t       hydraulic radius of segment j  [m] 
sj    slope in bottom level (longitudinal) [-] 

 
As flows are generally non-uniform, the bottom slope sj can be substituted by either 
Equations 7 or 16, where the former is used as default in SWQN as common flow 
velocities are rather low.  
 
 
Chézy or Manning  
A choice can be made between different friction coefficients, i.e. either the 
previously mentioned Chézy coefficient or the Manning coefficient km. In the latter 
case SWQN converts km into a Chézy coefficient using: 
 

mChezy
kRC 6

1

        (17) 

 
where: 
km Manning coefficient [m1/3 s-1] 
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Linearization 
It is assumed that over relatively small time steps and small distances the flow Q can  
be approximated by taking the difference  in water level as the ‘driving force’. Such 
an assumption would also yield a simple and quick numerical solution scheme. The 
principally non-linear flow Equation 6, combined with Equation 7, is therefore 
rewritten into a constant coefficient and a linear function in h following: 
  

tjtjtj hCQ ,

*

,,                                                                           (18) 

  
with: 
 

  
jtj

tj

tjjChezytj
Lh

R
ACC




1,

,

,,

*

,
                                        (19) 

                                                                                                  

tititj
hhh

,1,, 
        (20) 

 
in which: 

1 t,jh  difference in water level over segment j at the previous time step  [m] 

 

The wetted cross section and hydraulic radius of the segment are based on average 
values for slope and bottom width given at the beginning and end of each segment. 

As can be seen from Equation 24 Δh is still present in coefficient *

,tjC . Nevertheless 

flow equation 23 can be considered as linear to tjh ,  because Δh  is taken from the 

previous time-step ( 1,  tjh ) and is thus considered constant for the present time step. 

 
  

3.3.2 Weir 

In the surface water module Equation 9 describing free flow over a weir is simplified 
to: 
 

  5.1

,,, tcrestticrestweirtweir
hhWQ       (21) 

with 

  5.0

3
2

3
2

, gCC vdcrestedbroadweir       (22) 

  5.0

3
2

'', 2gCC vdcrestedsharpweir       (23) 

 
in which: 
hi,t Upstream water level (hup) [m] 

weir     Weir type dependent resistance [m0.5 s-1] 

 

weir is the user defined resistance, a combination of the discharge efficiency and 

velocity correction coefficients (Cd and Cv), which can be specified for sharp or broad 
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crested weirs using the various known discharge coefficients as described in 
Paragraph 2.2.1.  
 
A special case exists when the water level at the downstream side rises above the 
crest level and the weir becomes drowned. Under such conditions Equation 29 
applies, which is assembled from Equations 35 and 36 (or 37) for the ‘free flowing’ 
part and Equation 46 for the ‘submerged flowing’ part: 

      5.0

,1,,1

5.1

,1,, titicresttigatetitiweircresttweir hhhhhhWQ    (24) 

 
Linearization for a free flowing weir 
From Equation 26 it follows that for a maximum weir discharge: 
 

  5.1

min,max,max, cresticrestweirweir hhWQ       (25) 

 
with: 
Qweir,max  Maximum weir discharge  [m3 s-1] 
hi,max       Maximum upstream water level  [m] 
hcrest,min Minimum crest level  [m] 

 
Combining both Equations 26 and 30 yields: 
 

5.1

min,max,

,,

max,

,




















cresti

tcrestti

weir

tweir

hh

hh

Q

Q
     (26) 

 
This power function can now be piece-wise linearized into a number of intervals 
using: 
 




















min,max,

,,

max,max,,,

cresti

tcrestti

weirnweirnlineartweir
hh

hh
QbQaQ   (27) 

 
 
where: 
Qweir,t,linear       Linearized weir discharge  [m3 s-1] 
an Linearization factor [-] 
bn Linearization factor [-] 

 
Figure 5 presents an example of the general shape of the equation and the use of 
intervals. The linearization is divided in three parts between ‘no flow’, when the 
water level is at or below the lowest crest level, and ‘maximum flow’, when crest level 
is at its minimum and water level is at its maximum level.  
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Figure 5 Example of a three-stage linearization for the stage-discharge relation of a weir  

 
 
The three stages for the linearization of the stage-discharge relation for freely 
discharging weirs are: 
 

 stage 1: 131.0000.0
min,max,

,,







cresti

tcrestti

hh

hh
, with a=0 and b=0.3175 

 stage 2: 467.0131.0
min,max,

,,







cresti

tcrestti

hh

hh
, with a=-0.0641 and b=0.8084 

 stage 3: 000.1467.0
min,max,

,,







cresti

tcrestti

hh

hh
, with a=-0.269 and b=1.2471 

 
It is important that the trajectory hi,max – hcrest,min covers the range of calculated water 
levels. In case no maximum water levels are known, the soil surface can be taken as 
an approximation. When the water level exceeds hi,max the discharge is calculated by 
extrapolation of stage 3. 
 
Linearization for a submerged weir 
For the submerged weir the maximum discharge can be expressed in analogy to 
Equation 30, which combined with Equation 29 results in: 
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 (28) 

 
with: 

weir

gate




   

 
The first part of this equation expresses the flow over a freely discharging weir, while 
the latter part gives a correction function for submerged conditions: 
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 (29) 

 
 
Equation 42 is then linearized in four stages using Equation 41 for the first part and 
the following linear function cf,t is used for the second part (Equation 43): 
 






















tcrestti

tcrestti

tf
hh

hh
dcc

,,

,,1

,
      (30) 

 
where following conditions for the constants c and d apply: 
 

 stage 1: 3.00.0
,,

,,1









tcrestti

tcrestti

hh

hh
, with c=1.0 and d=0.0 

 stage 2: 6.03.0
,,

,,1









tcrestti

tcrestti

hh

hh
, with c=1.45 and d=-0.483 

 stage 3: 9.06.0
,,

,,1









tcrestti

tcrestti

hh

hh
, with c=1.505 and d=-1.083 

 stage 4: 0.19.0
,,

,,1









tcrestti

tcrestti

hh

hh
, with c=5.300 and d=-5.300 

 
The correlation between the original and linearized flow functions is well above 
0.999. Multiplication of the linearized free flow function and linearized correction 
function gives the linearized submerged flow function. 
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Level control 
Level control is usually exercised by adjusting the crest on top of the weir between a 
minimum and a maximum level. The model allows for the following controls: 

 Upstream water level hi,t,target set for a given period in time; 

 Downstream water level hi+1,t,target set for a given period in time; 

 Crest level hcrest,t, set for a given period in time. 
 
For the first two control settings a new crest level is determined based on the old 
level plus the difference in level between the given target level and the actual water 
level. For upstream control: 
 

 itargetweirdamptweirtweir hhfhh  ,,, 0
    (31) 

 
and for downstream control: 
 

 1,,, 0  itargetweirdamptweirtweir hhfhh     (37) 

 
with: 

 
 
 
 
 

 
The damping factor fdamp makes sure that weir levels do not fluctuate too rapidly and 
is based on empirical model use. Especially for wide broad weirs a small fluctuation 
in water can cause a large in- or decrease in discharge. The fdamp is therefore set as a 
function of the crest width: 
 

 crest

damp
W

f



2

1
       (32) 

 
A fixed crest level can always be assigned directly to the model. 
 
 

3.3.3 Undershot gate/orifice 

The stage-discharge relations for gates can also be further simplified following the 
different states of up- and downstream water levels: 
  
a) The flow through a freely discharging orifice can be written as (see Fig. 4a): 
  

  5.0

,,,, tcentretitgatefreetgate hhAQ       (33) 

  
with: 

tweirh ,  New weir level  [m] 

otweirh ,
 Weir level of previous time step [m] 

target
h  Target weir level  [m] 

dampf  Damping factor  [-] 
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  5.0
2gCC vdfree         (40) 

 
  
b) For fully submerged orifices the stage-discharge equation reads (Fig. 4b): 
  

  5.0

,1,,, tititgatesubtgate hhAQ                              (34) 

 
with 

 

  5.0

'' 2gCC vdsub         (35) 

 
 
c) While for partially submerged orifices the stage-discharge equation reads (Fig. 

4c): 
 

  5.0

,,,., tcentretitgatesubparttgate hhAQ                                 (36) 

 
with 

 

  5.0

''''. 2gCC vdsubpart        (37) 

 
 
d) In case the upstream water level drops below the top of the gate opening, the 

structure no longer performs as an orifice but functions as a weir and 
Equation 26 then applies with accompanying linearizations. 

 
Linearization 
The linearization methodology followed for undershot gates is comparable to the 
one presented for weirs. Distinction has to be made between freely discharging and 
submerged gates, where partially submerged structures can be combined with freely 
discharging orifices. 
From Equation 39 maximum discharge pertaining to freely and partially submerged 
orifices can be calculated as: 
 

  5.0

max,max,max,max,  gatecentreigategate hhAQ     (38) 

 
with: 
Qgate,max  Maximum discharge through orifice [m3·s-1] 
Agate,max       Maximum opening of the orifice [m] 
hcentre,gate-max Centre of orifice at maximum gate opening [m] 

 
 
Combining Equations 39 and 45 results in: 



 

28                                                                           Alterra Report 1226.1 

 

 

5.0

max,max,

,,

max,

,

max,

,




















gatecentrei

tcentreti

gate

tgate

gate

tgate

hh

hh

A

A

Q

Q
    (39) 

 
which subsequently can be linearized as: 
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where: 
Qgate,linear       Linearized gate discharge [m3·s-1] 
a Linearization factor [-] 
b Linearization factor [-] 

 
The four stages for piece-wise linearization of the stage-discharge relation for freely 
discharging or partially submerged gates are: 
 

 stage 1: 028.0000.0
max,max,

,,







gatecentrei

tcentreti

hh

hh
, with a=0 and b=7.050 

 stage 2: 158.0028.0
max,max,

,,







gatecentrei

tcentreti

hh

hh
, with a=0.159 and b=1.461 

 stage 3: 404.0158.0
max,max,

,,







gatecentrei

tcentreti

hh

hh
, with a=0.224 and b=1.049 

 stage 4: 000.1404.0
max,max,

,,







gatecentrei

tcentreti

hh

hh
, with a=0.401 and b=0.610 

 
A similar approach is taken for the submerged gates: 
 

  5.0

min,1max,max,max,  iigatesubgate hhAQ     (41) 

 
where: 
hi+1,min Minimum downstream water level (but above orifice) [m] 

 
which results in: 
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and which subsequently can be linearized as: 
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The four stages for piece-wise linearization of the stage-discharge relation for a 
submerged gate are finally: 
 

 stage 1: 028.0000.0
min,1max,
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 stage 2: 158.0028.0
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 stage 3: 404.0158.0
min,1max,
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 stage 4: 000.1404.0
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The correlation between both power functions and their linear approximations is 
higher than 0.999. 
 
Level control 
Level control is implemented by adjusting the vertical gate opening between a given 
minimum and maximum level. In the model four types of control can be set for a 
defined period in time: 

 Upstream water level hi,t,target 

 Downstream water level hi+1,t,target 

 Upstream water level and downstream water level simultaneously 

 Bottom level of the movable gate 
  
For up- or downstream water level control a new gate opening is determined based 
on Equation 51. The formula used for simultaneous up- and downstream control is 
given in Equation 52. A fixed bottom level of the movable gate can be supplied 
directly to the model. 
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3.3.4 Culvert 

Two kinds of culverts can be defined, square and round ones. Depending on the type 
of culvert, the width or diameter has to be defined. For the implementation of the 
culverts in SWQN the resistance coefficients are reduced to the most important term, 
the friction coefficient. The inflow and outflow resistance terms are thus neglected. 
The stage-discharge equation then reads: 
 

  5.0

,,,

'

, tculverttitculvertculverttculvert hhAQ      (46) 

 
with: 

L

RkM
culvert

342

'         (47) 

 
where: 

'

culvert  Lumped resistance factor for culverts  [-] 

 
The Manning friction coefficient has to be defined by the user. Values for the 
Manning friction coefficient for concrete culverts are given by Ven Te Chow (1959) 
and the CTV (1988). 
 
Linearization is similar to the approach followed for a freely discharging gate. 

 
 
3.3.5 Pump 

The stage-discharge relation for pumps is simplified to a linear relation: 
  

tpumptititpumptpump
AhhBQ

,,1,,,
)( 


                                      (48) 

  
with: 
Qpump,t     pump discharge  [m3·s-1] 
Bpump,t     slope of pump function  [m3·s-1] 
Apump,t     pump constant  [m3·s-1] 

 Apump,t and Bpump,t must be defined by the user. If Bpump,t is set to zero, the equation 
further simplifies to a constant given discharge equal to Apump,t.  
  
Pump control 
Three options for pump control can be applied: 
 

 Fixed discharge per period: 
For a certain period Apump is defined by the user. Bpump is set to 0. 

 

 Upstream start and stop level per period: 
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If )1(,,  iupstreamstartti hh  pumping is started using Apump and Bpump  until 

)1(,,  iupstreamstopti hh  

 

 Downstream start and stop level per period: 

If )1(,,1   idownstreamstartti hh  pumping is started using Apump and Bpump  until 

)1(,,1   idownstreamstopti hh  

 
Moreover, the pump discharge is linearly reduced when the upstream water depth 
drops below 0.5 m. Below a depth of 0.25 m pumping is stopped completely. 

 

3.4 Boundary conditions 

Several boundary conditions can be imposed on the nodes, being the basic 
computational units in SWQN. At present six different boundary conditions are 
included that can act, in principle, simultaneously on a node. The boundary 
conditions can be defined in two groups, imposed heads and fluxes.  
 
Head 

1.  Fixed water level calculated with:  
 

ttnode
constanth 

,
   in [m]                 (49) 

 
Fluxes 

2.    A sink/source can be calculated with the method:  
 

ttnode
constantQ 

,
   in [m3 s-1]     (50) 

 
An example of a source is the discharge of effluent by a factory. A sink could 
be a withdrawal from a drinking water plant (if not modeled as a pump). 

 
3.    Infiltration or drainage (in exchange with the subsoil) per m2 of wetted 
profile can be calculated with the method:  

 

 
constant

c

hh
q

drain

node,trgroundwatephreatic

eon/drainaginfiltrati 


    in [m s-1] (58) 

 
where cdrain stands for the drainage resistance [s] while the constant usually is 
set to zero. The function can be made constant by letting cdrain approach 
infinity and giving the constant a value per time period. Multiplication with 
the wetted profile gives the total in- or outgoing flux. 

 
4.    Leakage or seepage (interaction with the groundwater) per m2 of wetted 
profile is calculated with a different method in which the groundwater head is 
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not explicitly expressed. Instead a linear function is defined based on the 
surface water level in the node itself according to:  

 

2,1/ ChCq tnodeseepageleekage   in [m s-`1]    (51) 

 
Multiplication with the wetted profile gives again the total in- or outgoing 
flux. 

 
5.    A fixed Q-h relation is calculated as:  

 

2,1, ChCQ tnodethQ    in [m3 s-1]   (52) 

 
Examples are for instance an external pump. 

 
6.     Precipitation and evaporation from open water can be important 
components in the water balance. They are usually expressed in mm, but are 
here given in m per unit time. By multiplying the terms with the surface area 
and time step the model calculates the net precipitation volume per time step: 

 

constantionprecipitatP tnode ,  in [m] per time interval  (61) 

 

constantnevaporatiowateropenE twateropen ,  in [m] per time interval 

(71) 
 

For the surface area the area at MAXLEVEL is taken ( 

 

 

 

  Figure 6). Hence, rainfall and evaporation from the (variable) 
freeboard are included in the nodal water balance. 

 
 

 

 

 

 

  Figure 6 Catchment area for precipitation and evaporation 

 
The precipitation and evaporation are specified per meteorological region. 
The region has to be specified per node. 

 
 

Area at surface level (MAXLEVEL) 
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For all flux boundary conditions cut-off values are included when water 
levels approaches the bottom of the water course or the land surface level. 
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 Solution scheme  4

4.1 Mathematical solution for the flow equations 

The equation for mass conservation reads on nodal basis as: 
 





ki nb

k
ki

n

ijj
ji

i QbQ
dt

dV

1
,

,1
,

      (53) 

 
where: 
Vi Water volume in node i m3 
Qi,j Incoming waterflow for node i from node j m3 s-1  
Qbi,k Incoming waterflow for node i from boundary k m3 s-1 
ni Number of adjacent nodes to node i - 
nbk Number of boundary flows to node i - 

 
The water volume in node i  is a function of time. The linearized relation can be 
written as: 
 

)()()(
0,

thhAtV
iiii

        (54) 

 
where 0,ih is the water level at the start of the time step. The water flow between node 

i and its neighbor node j follows from: 
 

 
ijjijiji

hhhhQ  ),(
0,0,,,

      (55) 

 
The conductance coefficient ),( 0,0,, jiji hh  in m2 s-1 is calculated from the linearized 

Chézy equation (Eq. 23). Its value is based on the initial water level for the current 
time step. The boundary flows for node i can be written as: 
 

kiikiikiki
hphQb

,,0,,,
))((       (56) 

 
where  

)( 0,, iki h

 

Linearized conductance coefficient for a water level 
dependent boundary flow  

m2 s-1 

kip ,  Water level at the boundary k for node i m 

ki,  Boundary flow independent from the water level at node i m3 s-1 

 
Substitution of equations (63), (64) and (65) into (62) yields: 
 

   



ki nb

k
kiikiiki

n

ijj
ijjiji

i

ii
hphhhhh

dt

dh
hA

1
,,0,,

,1
0,0,,0,

))((),()(  (57) 

 



 

Alterra Report 1226.1 35 

Rewriting gives: 
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   (58) 

 
With time averaged values jh for the water levels of the adjacent nodes and some 

rewriting again Eq. 67 morphs into: 
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    (59) 

 
The solution of this first order differential equation reads: 
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  (60) 

 
with  equal to: 
 

)(

)(),(

0,

,1 1
0,,0,0,,
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ikijiji

i
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hhh
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A time averaged value for the water level at node i is then found by integration and 
division by the length of the time step T: 
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 (61) 

 
For all nodes within a network these interdependencies of water levels can be 
expressed as a set of linear equations: 
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(62) 
 
where the coefficients of the matrix are given by: 
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and the coefficients of the right hand side vector by: 
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In a very simplified way Eq. 81 can also be written as: 
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     BhA 


                                                                      (63)       

 
The matrix [A] has a sparse shape with unity on the main diagonal and as many non-
zero coefficients on row i as node i has connections to neighboring nodes. Optimum 
use of these properties is made when such a scheme is solved with an appropriate 
solver based on Gauss elimination or other methods. 
 
For each time step T Equation 71 (or 72) is solved for all nodes and the time 
averaged water levels are substituted in Equation 69 to obtain the water levels at the 
end of the time step. Due attention, however, should be given to the fact that water 
surface Ai is based on the initial water level at the beginning of the time step (Eq. 
67). For cross sections where this area depends on the water level itself (e.g. 
trapezoids), changes in these levels will cause errors in the nodal water balance when 
not corrected. To circumvent such errors, an iteration procedure is applied that uses 
an averaged water level. This scheme converges rapidly towards minimal water 
balance deviations, generally within three iteration steps. 
 

 

4.2 Notes on the solution scheme 

The solution for Equations 71-72 is robust but causes problems when the matrix [A] 
becomes singular. Such a situation will occur when two nodes are linked by two 
parallel connectors with the same hydraulic properties. Solutions can be applied in 
the software or the input data by, for instance, slightly modifying the properties of 
one of the convectors or removing one or more of them all together.  
 
In surface water systems water courses dry up frequently. When the water level 
approaches the bottom of the water course flow will stop. Under such conditions the 
numerical schemes could result in new computed water levels below the nodal 
bottom. This results then in a negative storage in the node together with an over-
estimated flow to neighboring nodes. 
 
Several correctional procedures can be applied, each with its own advantages and 
disadvantages. A simple workaround is to a priori reduce the length of the time when 
the water level approaches a preset critical level. As this measure will affect the whole 
computational scheme model performance will degrade.  
 
Another, posterior, measure is to correct flows from node i after dry fall has 
occurred. This would affect performance less, but requires a re-calculation of the 
complete scheme to refill the dried up nodes.   
 
A third widely used procedure, which has not yet been made operational in SWQN, is 
to modify the cross profile into a conical shape after a threshold water depth has 
been reached. Such a shape will sharply reduce flows and therefore also limit negative 
storage.  
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5. Model verification  

5.1 Introduction 

To gain insight in the accuracy and stability of the solution yielded by the SWQN 
model in comparison to other, more sophisticated models, we followed the approach 
presented in the article by Contractor and Schuurman (1993). The first test in this 
article checks the models ability to conserve mass. The second test concerns the so-
called ‘ramp-discharge’ test. Both tests are applied to five different models based on 
the full Saint-Venant equations. All models use an implicit solution scheme and are, 
therefore, unconditionally stable. It is also shown in the article that the accuracy 
depends on the Courant number, in which time-step size, distance-step size, wave 
celerity and flow velocity are represented. Courant numbers approaching unity yield 
the most accurate solutions for models with implicit solution schemes. In practice, 
the time-step size is used to control the desired accuracy. 
 
 

5.2 Setup 

Mass-conservation test 
The mass-conservation test shows the ability of a model to conserve mass. A 
sinusoidal boundary condition is applied for one period onto a horizontal trapezoidal 
channel with a dead-end. This results in a net inflow of zero. The calculation is then 
continued with no inflow, and after the wave activity has ceased, the final water 
depth is compared with the initial depth. Ideally the error should be zero. The details 
of the mass-conservation test are as follows: 
 

 Canal Geometry: horizontal, prismatic canal 10 km in length, trapezoidal 
cross section, base width = 10 m, side slopes of 2 horizontal to 1 vertical. 
Manning coefficient = 0.04; 

 Numerical Discretization: 11 computational points, spaced at equal intervals 
of 1 km. Constant time step of 6 minutes; 

 Initial Condition: zero flow, constant water depth of 7 m above canal invert; 

 Boundary Conditions: no downstream discharge (i.e. dead-end canal); 
upstream we have Q = 200 sin(2πt/21600) m3/s where t is in seconds, for a 
period between 0 ≤ t ≤ 6 hours; Q = 0 m3/s for t > 6 h. A positive Q means 
that flow is pumped into the canal and a negative Q means that water is 
pumped out of the canal. 

 
Ramp-discharge test 
The ramp-discharge test shows how various models react to a fivefold flow increase 
within a 10 minutes period in a prismatic mildly sloping canal. Output at various 
time-step sizes is studied. The article by Contractor and Schuurman (1993) also 
included the DUFLOW model. Since its results appeared rather bad it was decided to 
include the latest version in the simulations. 
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The details of the test with ramp discharge as inflow are as follows: 

 Canal Geometry: trapezoidal section; base width = 9.144 m (30 ft); side 
slopes of two horizontal to one vertical; length = 3219 m (2 mi); longitudinal 
slope = 1 in 2000; Manning coefficient = 0.02; 

 Numerical Discretization: 21 computational point, spaced at equal intervals 
of 160.9 m (0.1 mi); time step Δt = 10, 5, 2 and 1 min; weighting factor θ = 
0.60; 

 Initial Condition: Q = 28.32 m3/s (1000 cfs); normal depth of 1.707 m (5.6 
ft) along the canal; 

 Boundary Condition: upstream flow increases linearly from 28.32 m3/s (1000 
cfs) to 141.6 m3/s (5000 cfs); downstream Manning equation satisfied. 

 
The downstream boundary (condition satisfying the Manning equation) is not 
directly available as an option in both SURFACEWATER and DUFLOW. Therefore we 
fulfilled this condition by extending the canal tenfold with at the downstream end a 
constant level boundary. Is has been proven that this set-up does not affect the flow 
at the 21st node, hence satisfying the Manning boundary condition. 
 
 

5.3 Results 

Mass-conservation test 
Because SURFACEWATER is based on mass-conservation, the model shows no mass-
balance errors. This result was only achieved by two other models: DUFLOW and 
MODIS (Table 2). 
 

Table 2: Results of Mass Conservation Test (after Contractor and Schuurman (1993); extended) 

Name of model Error (%) Remarks 
CANAL 0.004  
CARIMA 0.91 θ = 1.0; no iterations 
 0.023 θ = 0.55; <3 iterations 
USM 0.05  
SNUSM 0.07 Amplitude of Q = 20 m3/s 
DUFLOW (old version) 0.90 θ = 1.0; no iterations 
 0.0 θ = 0.55; <3 iterations 
MODIS 0.0 For 2 iterations/time step 
 0.57 For one iteration 
SURFACEWATER 0.0  

 
 
Ramp-discharge test 

To enable a direct comparison we scanned the graphs from the original article and 
superimposed our new results onto them (Figure 7 to 12). Due to its solution scheme 
based on the method of characteristics, USM is considered as the most accurate 
model and is hence used as a reference. For the largest time-step of 10 minutes two 
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models show oscillations (old DUFLOW and MODIS). The models CANAL and CARIMA 
show minor numerical dispersion, while DUFLOW 3.6 and SURFACEWATER 
demonstrate somewhat more numerical dispersion. A further decrease in time-step 
size till 2 minutes and finally 1 minute gives acceptable results for all models with the 
exception of the old DUFLOW (still major numerical dispersion) and to a minor extent 
DUFLOW 3.6 which shows some slight dispersion.  
 
Other tests with SURFACEWATER have demonstrated that even for time-step sizes of 
30 minutes and beyond, the numerical solution scheme produces stable, i.e. non-
oscillating, results (see Figure 11). However, large numerical dispersion under such 
conditions should be accepted. 
 
 

 

Figure 7 Comparison of model outputs: Time Step = 10 min; Courant Number = 18.4 
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Figure 8 Comparison of model outputs: Time Step = 5 min; Courant Number = 9.22 

 
 
 

 

Figure 9 Comparison of model outputs: Time Step = 2 min; Courant Number = 3.69 

 
 
 

Duf low 3.6

SurfaceWater 2.7.5

Duf low 3.6

SurfaceWater 2.7.5



 

42                                                                           Alterra Report 1226.1 

 

Figure 10 Comparison of model outputs: Time Step = 1 min; Courant Number = 1.84 

 
 
 

 

Figure 11 Comparison of SURFACEWATER results at various time steps 
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5.4 Domain assessment for application 

Clearly, SURFACEWATER can produce a similar accuracy as the best models based on 
the full Saint-Venant equations for time-step sizes in the order of one to several 
minutes for simple non-steady state non-uniform flows in prismatic channels. Its 
robustness has been demonstrated by using very large time steps which still result in 
smooth solutions without oscillations or, in extreme cases, model crashes. However, 
use of larger time-steps does lead to significant numerical dispersion, which may not 
always be acceptable. On the other hand, elongated time steps together with the 
linearized solution scheme warrants fast computations for extended networks. 
 
SURFACEWATER cannot solve supercritical flow and associated hydraulic jumps and 
bore waves, although it can handle the advance on a dry bed, channel de-watering, 
reverse flows, negative flows at structures, and rapid flow changes. 
 
So far, its use remained restricted to the simulation of large irrigation schemes and  
(scenario type) regional studies within the Netherlands and Europe with a focus on 
discharges based on daily or 10-daily averaged inputs, such as drainage and 
abstractions (Smit and Abdel Gawad, 1993; Schoumans et al., 2005). This application 
scale implies that effects from local hydraulic phenomena or numerical dispersion 
would hardly play a role. In addition, water management in irrigated agriculture and 
in the Netherlands require due attention for water level or discharge control at the 
dense network of structures. These have been fully incorporated in SWQN. 
 
Considering these aspects, the major field of application for the SWQN model lies in 
regional studies. However, also more detailed studies on smaller time- and spatial 
scales appear feasible, where significant improvements over other models in 
execution time could be obtained. This would allow for instance assessments of lag-
time distributions of water quality parameters after loading the water system with 
point loads, insofar no complicated hydraulic phenomena are encountered. 
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Appendix 1 Parameters 

Aj,t       wetted cross profile of the segment [m2]   
Ai,i       water surface area of node i [m2]  
Aundershot,t   gate opening [m2]  
Apump,t     pump constant [m3·s-1]  
A   NxN matrix [-]  
a  number of parallel culverts[-]  
α    wetted cross profile of the culvert divided by the wetted cross profile 

of the downstream water course[-] 
 

αi+1,t       iterative factor for node i (0≤αi+1,t≤1) [-]  
Bpump,t     slope of pump function [m3·s-1]  
bj          Width at the bottom of section j [m]  
Cd     discharge efficiency coefficient [-] 

                 ~ 1.0 to 1.25 for short crested weir  
                 ~ 0.848 for broad crested weir (Bos, 1978) 

 

Cv     velocity correction coefficient[-] 
                 ~ 1.0 to 1.1 for short and broad crested weirs (Bos, 1978) 

 

Cd    discharge efficiency coefficient estimated at 0.85 [-]  
Cv  velocity correction coefficient estimated at 1.035[-]  
CChézy,j  de Chézy coefficient [m1/2 s-1]  
g Acceleration due to gravity [ms-2]  
ΔHi,i+1,t   difference in energy head between nodes i and i+1 [m+ref]  
h Water level [m]  
hi,t,corrected        corrected water level in node i [m+ref]    
hi,t        upstream water level [m]  
hcrest,t    crest level [m]  
hcentre,t       level of the centre of the gate opening at the upstream side [m]        

tjh ,  Difference in water level over segment j [m]  

h    vector with the solution for the water levels hi,t at time t=t+Δt [m]  
hi+1,t,av    average approximated water depth in section j+1 [m]  
hi+1,t+Δt   water depth in section k+1 at time t = t +Δt [m]  
km Manning coefficient  [m1/3 s-1], same as 

manningn
1   

L length of culvert [m]  
ΔLj  distance between nodes i and i+1 [m]  
Lj           Length of section j [m]  
Qi-1,i,t   flow from node i-1 to node i [m3·s-1]  
Qi,i+1,t  flow from node i to node i+1 [m3·s-1]  
ΣQi,t    sum of sink and/or source terms for node i [m3·s-1]  
Qj,t       flow in segment j at time t [m3 s-1]  
Qundershot,t  discharge of free flow undershot gate at time t [m3·s-1]  
Qweir,t   weir discharge at time t  
Qpump,t     pump discharge [m3·s-1]  
Qj,t       flow in segment j at time t [m3 s-1]  
R Hydraulic radius [m]  
RHS   vector with the Right Hand Side of the equations [m]  
Sj,begin Slope at the begin of section j [-]  
sj    slope in bottom level [-]  
Sj-1,end Slope at the end of section j-1 [-]  
So Bed slope [-]  
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s1
e,j,t         slope in energy head for segment j at time t [-]  

Δt  time step [s]  
v Velocity [ms-1]  
Vi,t           water volume in node i at time t [m3]  
Wcrest  crest width [m]  
z height to reference level (m)  
   
k    shape coefficient for the outlet [-] 

-         k=1 if all kinetic energy is dissipated 
-         k=0 if no energy losses occur 

 

μ  combined resistance coefficient [-]  
ξe  entry resistance [-] 

          ~ 0.6 for round shaped culverts (CTV, 1988) 
          ~ 0.5 for square shaped culvert 

 

ξf  friction coefficient [-]  
ξo  coefficient for outlet losses [-]  
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Appendix 2 Flow in open conduits - St. Venant equations 

The unsteady flow in open waters was first described by St. Venant in 1848. His well-
known St. Venant equations consist of two parts: i) the conservation of mass and ii) 
the energy or momentum balance in one dimension for a water body of infinitesimal 
length.  
 
 

The continuity equation 

In Figure 1 a schematization of a short length (dx) of a prismatic surface water 
channel is shown.  
 

 

Figure 12 Flow through a part (dx) of the surface schematization 

 

The continuity equation, describing the conservation of mass, can easily be derived 
for this section. In unsteady flow in open water the discharge changes with distance:  
 

dx
x

Q
QQ
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
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        (1)          

 

where: 
Q1 discharge through section 1  [m3 s-1] 
Q2 discharge through section 2  [m3 s-1] 
 

which can also be described as: 
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where: 

Q1 

 

Q2 

h 

dx 

Bed 

Water level 

A 

b 

V1 

 

V2 

 



 

52                                                                           Alterra Report 1226.1 

A cross sectional area [m2] 
v mean velocity at the section  [m2 s-1] 
 

At the same time the volume of water between sections 1 and 2 changes with time at 
a rate: 
 

dx
t

h
bdx

t

A









         (3)          

 
where: 
b width of the section  [m] 
h water level  [m] 
t time  [s] 

 
The continuity equation, when assuming no lateral inflow of water, then becomes: 
 

0
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



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





t

h
b

x

v
A

x

A
v        (4)          

 
 

The dynamic equation 

Next to the mass of conservation rule Newton’s second law can be applied: 
 
Force = mass x acceleration 
 
Due to the change in velocity over time there will be work done by an acceleration 
force over a distance dx:  
 

dx
t

v

g

w
dxFW

aa



         (5)          

where: 
Wa work done by acceleration force  [Nm] 
Fa acceleration force  [kg m s-2] 
w weight  [kg m s-2] 
g acceleration due to gravity  [m s-2] 
v velocity  [m s-1] 
 
Dividing by mass (w) gives the head loss (h) (Error! Reference source not found.). 
Similar to steady flow there will also be a frictional resistance of channel walls and 
bed. The total loss in head will thus consist of two parts:  
 
the loss due to acceleration: 
 

dx
t

v

g
h

a





1
          (6)          
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and the loss due to friction:  
 

dxSh
ff

          (7)          

 
where Sf is the friction slope (-). A change in head can be described by these two 
terms as is shown in Error! Reference source not found. and equation 8. 
 

 

Figure 13 Simplified representation of energy in unsteady flow  

 
 
By the energy principle it follows: 
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where: 
z height above reference level  [m] 
So bed slope  [-] 
v velocity  [m s-1] 
h water level  [m] 
g acceleration due to gravity  [m s-2] 
 
 
Simplifying gives: 
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     (9)          

 

The left side represents the change in total head. The two terms on the right are the 
head losses due to acceleration and friction. Dividing by dx, multiplying by g and 
rearranging gives the dynamic (or momentum) equation, which constitutes the 
second part of the St. Venant equations: 
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Equations 4 and 10 together form the St. Venant equations describing unsteady flow 
in open waters. These dynamic wave equations are considered to be the most 
accurate and comprehensive solution to 1-D unsteady flow problems in open 
channels. Nonetheless, these equations are based on specific assumptions, and 
therefore have limitations. The assumptions used in deriving the dynamic wave 
equations are as follows: 
 

 Velocity is constant and the water surface is horizontal across any channel 
section perpendicular to the longitudinal axis; 

 All flows are gradually varied with hydrostatic pressure prevailing at all points 
along the longitudinal axis, such that vertical accelerations can be neglected; 

 Channel boundaries are treated as fixed; therefore, no erosion or deposition 
occurs; 

 The slope of the channel bottom is small; 

 Water is of uniform density, and resistance to flow can be described by 
empirical   formulas, such as the Manning or the Chézy equations; 

 The flow is incompressible and homogeneous in density. 
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