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ABSTRACT 

 

Leaf area index (LAI) and the fraction of absorbed photosynthetically active radiation 

(fAPAR) are both important vegetation structural variable for the quantitative analysis of 

biophysical processes in the terrestrial ecosystem. In the context of resource management 

goals, earth observation (EO) of these variables is the most effective means of collecting 

data on a regular basis. Estimates of LAI and fAPAR are required for modelling 

vegetation productivity, studies of land surface climatology, and agricultural resource 

management .Relationships between LAI, fAPAR and vegetation indices (VI) derived 

from the different processing data levels (L1b and L2) of MERIS were studied for the 

Netherlands. The study area consisted of five land cover classes in the Netherlands: 

deciduous forest, coniferous forest, grassland, natural vegetation and arable land. Several 

variants of each VI were derived from the MERIS image data (L1b and L2). For each 

biome, the VIs were derived from radiance (VIRAD), top of aerosol reflectance (VITOAr), 

and top of canopy reflectance (VITOC). To test the effects of spectral data processing and 

validate the MERIS biophysical products for the main vegetation land cover classes that 

occur in the Netherlands, ancillary data from the HyMap sensor and the Dutch land use 

database (LGN5) were used. The strength of the relationships between VIMERIS-VIHyMap, 

VIMERIS-LAI MERIS and VIMERIS-fAPARMERIS was examined. Observations in the present 

study suggest the importance of converting to top of canopy reflectances whenever VIs 

are estimated for different vegetation land cover types.  Image processing reduces the 

noise in the relationship of VI with biophysical variables and the VIHyMap. The top of the 

canopy reflectance was found to produce stronger LAI–VI, VI-fAPAR and VIMERIS-

VIHyMap relationships for both grass-dominated and arable land-dominated vegetation 

types of the Millingerwaard test site than the VIs based on top of atmosphere radiance, or 

top of aerosol reflectance. Thus, atmospheric correction is desirable in the formulation of 

LAI–VI and fAPAR-VI algorithms based on data derived from MERIS from the site of 

Millingerwaard. Further studies should include VI derived from digital numbers and 

TOA reflectance. In addition, a future study could perform a comparison at the multi-

pixel (patch) scale, where the derived products might be statistically more stable. 
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1.  INTRODUCTION  

 

 1.1. BACKGROUND 

 

Vegetation and land cover play a key role in terrestrial biogeochemical processes, and 

changes in land cover induced by human activity have profound implications for climate, 

the functioning of ecosystems, and biogeochemical fluxes at regional and global scales 

(Dickinson and Henderson-Sellers 1988, Lean and Warilow 1989). As a consequence, a 

wide range of problems require reliable and accurate information on global land cover, 

and in particular, the distribution and properties of vegetation. Estimates of vegetation 

fractional cover, leaf area index (LAI), and absorbed radiation are required for modelling 

vegetation productivity (Gower et al. 1999), studies of land surface climatology 

(Behrenfeld and Sellers 2001), and agricultural resource management (e.g., McVicar and 

Jupp 1998, Prince 1991a).  

 

Leaf area index (LAI), defined as the projected leaf area per unit of ground area (Ross 

1981), is a key biophysical variable influencing land surface processes such as 

photosynthesis, transpiration, and energy balance (Bonan 1993). It is a dimensionless 

index used to quantify the single-sided vegetation leaf area per unit of ground area. LAI 

and the fraction of absorbed, photosynthetically active radiation (fAPAR) (0.4–0.7 µm) 

strongly control water, carbon and energy exchanges between vegetation and the 

atmosphere (Agnihothri 1996).  On a global scale, both LAI and fAPAR are key variables 

in many climatic models (Sellers et al. 1996, Sellers et al. 1997) and models of net 

primary production (NPP) (Running et al. 1999). In the context of resource management 

goals, earth observation (EO) of these variables is the most effective means of collecting 

data on a regular basis. On a regional scale, EO estimates of LAI can provide valuable 

information for hydrological modelling (Andersen et al. 2002, Kite & Pietrorino 1996) 

and fAPAR is a key variable in the assessment of vegetation productivity (Prince 1991a 
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and Prince 1991b). Fractional vegetation cover, as first introduced by Deardorff (1978), 

is an important element for climate modeling. 

 

Remotely sensed data recorded in narrow visible/near infrared  wavebands can be used to 

estimate foliar biochemical content at local to regional scales (Curran 1989, Curran et al. 

1997). This information can, in turn, be used to quantify, understand and manage 

vegetated environments (Johnson 1999, Curran 2001, Lamb et al. 2002). One of the 

problems addressed in recent years is to relate observations acquired from space to 

biophysical surface parameters, such as the leaf area index (LAI) and the fraction of 

absorbed photosynthetically active radiation (fAPAR) (Asner 1998, Hall et al. 1995). The 

first global maps of LAI and fAPAR were produced from AVHRR data (Sellers et al. 

1996, Myneni et al. 1997). Medium spatial resolution satellite sensors operating in the 

solar domain (400-2500 nm) offer a unique way to monitor terrestrial surfaces over 

regional to global scales. Several applications are already using these data on an 

operational basis  with a more improved spatial resolution (Baret  et al. 2005). 

 

Although remotely sensed data are becoming more available, operational algorithms or 

procedures to convert radiometric measurements into biophysical variables, such as LAI 

and fAPAR, are still under deveopment. There are two common approaches to estimating 

biophysical parameters using remote sensing imagery. The use of empirical relationships 

between reflectance observed by sensors operating in the spectral, directional, temporal 

and spatial domain and biophysical properties of the vegetation is illustrated by VI (Baret 

et al. 1995, Best and Harlan 1985, Curran 1983, Asrar et al. 1985a,b, Peterson et al. 1987, 

Price and Bausch 1995). Most vegetation indices (VIs) are qualitatively related to the 

vegetation amount (LAI, % cover,) and have been used as an indicator of vegetation 

growth (Tucker 1979, Clevers 1989 and Baret and Guyot 1991). Nowadays, these 

techniques are increasingly being replaced by radiative transfer based models (Sellers et 

al. 1995, Myneni et al. 1997, Shabanov et al. 2003 , Verhoef and Bach 2003), and 

progressively complemented by sophisticated methods known as inverse techniques 
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(Privette et al. 1996, Zarco-Tejada et al. 2003, Gastellu-Etchegorry et al. 2004) and data 

assimilation (Weiss et al. 2001, Olioso et al. 2002). 

 

There are two major limitations in operational use of a modeling approach. The first one 

is related to the inversion process of the model. Some models may have multiple 

solutions, given a set of remote sensing measurements, and the inversion may not always 

converge (Jacquemoud 1993). This  would result in unreliable estimates of biophysical 

variables. The second limitation is the computation time involved in a large number of 

inversion processes, which is a major barrier when using large satellite images.  

 

A major limitation of the VI approach is the diversity of  proposed equations. These 

equations vary not only in mathematical form (linear, power, exponential, etc.), but also 

in their empirical coefficients, depending primarily on vegetation type. Because there is 

no universal LAI–VI equation applicable to diverse vegetation types, it is difficult to use 

this approach with large-scale remote sensing images. Another limitation of this approach 

is the sensitivity of VIs to nonvegetation related factors such as soil background 

properties (e.g., Huete 1989, Qi et al. 1993), atmospheric conditions (e.g., Kaufman 1989, 

Vermote et al. 1990), topography (Holben and Justice, 1980; Justice et al., 1981; Pinter et 

al., 1987), and bidirectional nature of surfaces (Kimes et al. 1985, Deering 1989, Jackson 

et al. 1990 Roujean et al. 1992, Burgess and Pairman 1997). Of these categories the VI 

approach, introducing empirical relationships between ground-based biophysical values 

and various forms of multispectral and hyperspectral data, is the most successful and 

widely used ( Pu et al 2003). 

 

1.2. PROBLEM DESCRIPTION 

 

The Medium Resolution Imaging Spectrometer (MERIS), one of the payloads on the 

European Space Agency’s Envisat, is radiometrically a very accurate imaging 

spectrometer in space (Curran and Steele 2004). It has 15 programmable (2.5–20 nm 
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wide) wavebands in the 390–1040 nm region and a spatial resolution of 300 m. Because 

of its fine spectral and moderate spatial resolution and three-day repeat cycle, MERIS is a 

valuable sensor for the measurement and monitoring of terrestrial environments at 

regional to global scales (Verstraete et al. 1999). In the standard band setting, it has five 

discontinuous wavebands in red and near-infrared (NIR) wavelengths with band centres 

at 665 nm, 681.25 nm, 708.75 nm, 753.75 nm, 760.625 nm, 778, 865 and 885 nm. 

Derived products that have been developed (Verstraete et al. 1999) include the MERIS 

Global Vegetation Index (Gobron et al. 1999) and a MERIS Normalized Difference 

Vegetation Index. In addition, ESA is also considering the Fraction of Absorbed 

Photosynthetically Active Radiation (FAPAR) in vegetated areas as described by 

Govaerts et al. (1999) and a red-edge index as presented by Curran et al. (1995). 

 

Various authors investigated NDVI from remote sensing imagery with the purpose of 

assessing biophysical plant canopy properties (Pinty et al. 1993), establishing its 

relationship to Leaf Area Index (Clevers 1988). Although commonly used, several 

drawbacks of the NDVI were found. The perpendicular vegetation index (PVI; 

Richardson and Wiegand 1977) was introduced to compensate to background effects. The 

index assumes that the perpendicular distance between pixels from the soil line (in the 

red–near-infrared space) is linearly related to the vegetation cover. For a given soil, the 

red (red) and near-infrared (NIR) reflectances are related by the equation of the soil line 

as NIR=a×red+b  where a is the slope and b is the offset of the soil line. An index related 

to the PVI is the Weighted Difference Vegetation Index (WDVI) of Clevers (1988). 

Alternative indices have thus been developed using near-infrared and red bands. Pinty 

and Verstraete (1991) developed the Global Environmental Monitoring Index (GEMI) to 

compensate for atmospheric and illumination conditions. Huete (1988) introduced the 

Soil Adjusted Vegetation Index (SAVI) to take into account the reflectance contributions 

from background substrates. An alternative vegetation index is developed by Baret et al. 

(1989) and Baret and Guyot (1991): the Transformed Soil Adjusted Vegetation Index 

(TSAVI). This index minimizes the soil background effect (Baret et al. 1989). Finally Qi 

et al. (1994) introduced the Modified Soil Adjusted Vegetation Index (MSAVI) and the 

second Modified Soil Adjusted Vegetation Index (MSAVI2). For MERIS, a standard 



                                                                                                                               

 5

product based on the Global Vegetation Index (MGVI) is developed following a physical 

and mathematical model description using three MERIS bands (Gobron et al. 1999).  

 

For space observations in the solar spectrum, the presence of the atmosphere substantially 

modifies the intrinsic contribution of the surface to the signal. Both gaseous absorption 

and molecular or aerosol scattering reduce the available downward irradiance at ground 

level, as well as the reflected radiance in the upward path to the sensor. The increasing 

interest in the extraction of physical parameters from remote sensing data, for comparison 

of results from different sensors, obtained over different locations or at different times of 

the year require the need reliable and accurate recovery of surface reflectance. 

 

 Most atmospheric correction schemes are based on simplified formulations of the signal 

in order to ease inversion of Top of Atmosphere (TOA) radiances. Generally, gaseous 

absorption is separated from the rest. This correction requires integrated values of gas 

contents in the atmospheric column (mainly water vapour and ozone). The Rayleigh 

correction requires knowledge of barometric pressure. The correction for aerosols is more 

problematic, first because of their variable nature and abundance, and second because of 

their weak contribution to TOA radiances. Of course, this contribution is emphasized 

over dark surfaces, and the use of so-called Dark Dense Vegetation (DDV) is generally 

proposed (see, for the AVHRR, Holben et al. (1992)).  

 

Generally, in this study, near-infrared and red band VI were used to investigate the 

effects of the radiometric processing applied to the MERIS image data on the VIs.  The 

properties of VI depending on whether VI is defined in terms of top of the atmosphere 

radiances (MERIS Level 1b product), top of the aerosol reflectances, or top of canopy 

reflectances(MERIS Level 2 product) was examined. Their performance at the spatial 

scale of observation of MERIS, was investigated in terms of their comparisons with VI 

derived from the HyMap sensor. Furthermore, the VI relationships with LAI and fAPAR 
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derived from MERIS and the analysis of the their mutual relations for the vegetation land 

cover types that occur in the Netherlands was also a scope of our research.  

  

1.3. RESEARCH OBJECTIVES 

 

General objective 

• Analysis of the effects of radiometric and spatial characteristics of MERIS on 

vegetation indices and on the estimation(and their relation with the LAI and 

fAPAR for the Netherlands) of LAI and fAPAR for the Netherlands 

 

Specific objective 

� A comparison of the different vegetation indices derived from the different 

radiometric MERIS data types (Top of Atmosphere Radiances, Top of 

Atmosphere Rectified Reflectances and Top of Canopy Reflectances) for the 

vegetation land cover types of the Netherlands 

� Accuracy assessment of the biophysical parameters (LAI, FAPAR) derived 

from MERIS for the site of Millingerwaard,  

� Specify the effects of the different radiometric MERIS data types and of the 

different vegetation indices to their relationship with the biophysical products 

(LAI, fAPAR) obtained for the different land cover classes. 

 

Research questions 

� What are the effects of atmospheric correction to the derivation of the 

vegetation indices for the different land cover classes in the Netherlands? 

� What is the accuracy of LAI, fAPAR derived from MERIS when we validate 

these products using the HyMap derived LAI and fAPAR products for the site 

of Millingerwaad? 
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� Do the VI values observed at different stages of image processing suggest 

differential sensitivity to surface biophysical properties (LAI, fAPAR) across 

different vegetation land cover types? 

 

1.4. STRUCTURE OF THE REPORT 

 

Chapter one of this report comprises an introduction about the general background, 

overview of the context, definition of the topic and the importance of leaf area index and 

fAPAR as a key biophysical parameter.  Description and definition of the problem is also 

main part of this chapter. The objectives of this study and research questions are covered 

in this chapter, as well. Chapter two deals with a review of the relevant literature and 

discusses similar studies conducted in the field of the study area. The third chapter 

describes the materials that were used and the methods that were followed in order to 

achieve the research objectives. The results of this study are presented in chapter four and 

discussed in chapter five. Conclusion and recommendations are given in the sixth 

chapter. 
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2. LITERATURE  REVIEW  

 

2.1. Leaf  Area Index: Definition and Common Methods of Determination 

 

The Leaf Area Index (LAI) may be described most simply as:  

LAI = s/G  

where s is the functional (green) leaf area of the canopy standing on ground area G 

(terminology after Beadle 1993). Because both s and G are normally measured as areas 

(m2), LAI is dimensionless, although it is sometimes presented in units of m2/m2.  

 

Care should be taken when making comparisons between LAI determinations that may 

not necessarily use the same methodology or even the same definition of LAI (Chen and 

Black 1992, Beadle 1993).  

 

LAI is the major factor determining the amount of light intercepted by the plant canopy, 

but it varies greatly with species and canopy structure. Under optimum conditions for 

growth, its value for a closed canopy is related to the ability of the lower leaves in the 

canopy to intercept sufficient light to maintain a positive carbon balance (regardless of 

whether they are of the same stem, the same species, or competing/coexisting species. 

Table 1 presents some LAI maxima that have been observed from earlier studies.  Many 

types of vegetation react to stress in the environment by producing canopies with lower 

LAI. Thus the LAI of a particular plot compared with typical values for such a 

biome/land cover type may provide an indicator of stresses, such as drought, flooding, 

nutrient deficiency, excessive heat or cold, as well as disease, phenology, etc.  
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Table 1. LAI maxima observed  from earlier studies 

 

Vegetation type                LAI maxima              

 

Coniferous canopies                                    

 

>15 

Deciduous forests             

 

6-8 

Annual crops                     

 

6-7 

 

 

It is important to note that LAI measured for large sample plots or satellite image pixels, 

comprises the average of a range of point values of LAI, often including different species 

and canopy types, as well as bare ground. In general, therefore, such area-weighted LAI 

values may be expected to display lower maximum values and lower variance than point 

measurements.  

 

According to Barclay (1998), there are at least five common measures of LAI, which 

partly reflect the different purposes for which LAI is determined (determination of 

vegetation growth, estimation of potential physiological activity, study of light 

attenuation under plant canopies, etc.). The four most common of these are defined.  

 

Definition (1): Total LAI is based on the total outside area of the leaves, taking leaf shape 

into account, per unit area of horizontal land below the canopy.  

Definition (2): One-sided LAI is usually defined as half the total LAI, even if the two 

sides of the leaves are not symmetrical.  
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Definition (3): Horizontally projected LAI is the area of “shadow” that would be cast by 

each leaf in the canopy with a light source at infinite distance and perpendicular to it, 

summed up for all leaves in the canopy.  

 

Definition (4): Inclined projected LAI, or “silhouette” LAI, represents the projected area 

of leaves taking into account individual leaf inclinations. An additional fifth definition, 

according to Barclay (1998), is a variation on this approach, counting overlapping leaf 

areas only once.  

 

Most published values of LAI appear to use definition (2) or definition (3), with an 

increasing number of definition (4) in the literature (Barclay 1998). Definition (1) is 

rarely used (see discussion following description of methodologies). Definition (2) 

suffers from the problem that the meaning of “one-sided” is unclear for coniferous 

needles, highly clumped foliage, or rolled leaves (Chen and Black 1992). Chen and Black 

(1992) suggest that the LAI of non-flat leaves should be defined as half the total 

intercepting area per unit ground area, and that definition (3) should be abandoned. LAI 

according to definition (2) may exceed LAI according to definition (3) by a factor 

ranging from 1.28 (hemi-circular cylinders representing conifer needles), through 1.57 

(representing cylindrical green branches) to 2.0 (spheres or square bars representing 

highly clumped shoots and some spruce needles) (Chen and Cihlar 1996). Regrettably, 

many individual reports of LAI in the literature fail to provide any details of the LAI 

definition assumed, and a significant fraction do not even describe the methodology used.  

 

In this study, LAI is defined as one half the total leaf area per ground surface area as 

being used for flat leaves in current studies (Chen and Black 1992, Chen 1996, Liu et al 

1997, Brown et al. 2000, Leblanc et al. 2002). 
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2.2. FAPAR Definition 

 

FAPAR is inferred from the energy conservation law, and proportional to the difference 

between the downward solar energy at the top of the canopy plus the energy scattered 

upward from the soil to the canopy (at the bottom of the canopy) and the energy 

transmitted through the canopy to the soil plus the upward energy which is scattered by 

the canopy at its top:  

      (1) 

 

Where Qin is the incident PAR flux, Qb is the PAR reflected into the canopy from the 

soil background, Qt is the PAR transmitted through the canopy, and Qr is the above 

canopy reflected PAR (Hipps et al. 1983, Goward and Huemmrich 1992). PAR fluxes 

may be measured as energy fluxes (Wm-2) or as counts of photons with units of (µmolm-2 

s-2). 

 

Productivity of a vegetated surface is closely related, among other factors, to the fraction 

of incident photosynthetically active radiation (0.4-0.7 µm) absorbed by the 

photosynthesizing tissue in a canopy (FAPAR). Ground cover and leaf area are perhaps 

the two most significant variables determining canopy PAR absorption. FAPAR (or its 

surrogate) can be determined from remote observations of surface spectral reflectance on 

the premise that surface structural and optical properties govern both these processes 

(Tucker, 1979). 

 

Earlier studies have provides empirical evidence that fAPAR is related to top of the 

canopy spectral vegetation indices (Daughtry et al., 1983; Asrar et al., 1984; Hatfield et 

al., 1984; Gallo et al., 1985; Wiegand et al., 1991, 1992, among others). 
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2.3. Biophysical Variables Estimation Methods 

 

Satellite remote sensing provides a unique way to obtain LAI over large areas . Current 

methods for estimating LAI from optical remotely sensed data are classified into several 

categories : 

1) Using the empirical relationship of LAI and vegetation indices (VI);  

2) Through the inversion of a radiative transfer (RT) model; 

3) Lookup table (LUT) method and Neural network (NN) algorithms.  

The two main methods to estimate biophysical variables from RS data are exposed in this 

section. The first method in becoming operative was the use of “Vegetation Indices”, but 

since it has many drawbacks a second one is being introduced with success in operational 

RS applications. This method is known as physically-based model inversion.   

 

2.3.1 Vegetation Indices for LAI-fAPAR Estimation 

 

The theoretical basis for ‘empirical-based’ vegetation indices is derived from 

examination of typical spectral reflectance signatures of leaves (Figure 1). The reflected 

energy in the visible is very low as a result of high absorption by photosynthetically 

active pigments with maximum sensitivity in the blue (470 nm) and red (670 nm) 

wavelengths. Nearly all of the near-infrared radiation is scattered (reflected and 

transmitted) with very little absorption, in a manner dependent upon the structural 

properties of a canopy (LAI, leaf angle distribution, leaf morphology). As a result, the 

contrast between red and near-infrared responses is a sensitive measure of vegetation 

amount, with maximum red - NIR differences occurring over a full canopy and minimal 

contrast over targets with little or no vegetation (Figure 1). For low and medium amounts 

of vegetation, the contrast is a result of both red and NIR changes, while at higher 

amounts of vegetation, only the NIR contributes to increasing contrasts as the red band 

becomes saturated due to chlorophyll absorption. 
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FIGURE 1. SPECTRAL REFLECTANCE SIGNATURE OF A PHOTOSYNTHETICALLY ACTIVE LEAF WITH A SOIL 

SIGNATURE TO SHOW CONTRAST (TUCKER AND SELLER 1986). 
 

The red-NIR contrast can be quantified through the use of ratios (NIR/red), differences 

(NIR-red), weighted differences (NIR-k*red), linear band combinations (x1 * red + x2 * 

NIR), or hybrid approaches of the above. Vegetation indexes are measures of this 

contrast and thus are integrative functions of canopy structural (%cover, LAI, LAD) and 

physiological (pigments, photosynthesis) parameters. 

 

Vegetation indices (VIs) are dimensionless, radiometric measures (radiances values, 

reflectance values and satellite DN) of vegetation exploiting the unique spectral 

signatures and behaviour of canopy elements, particularly in the red and NIR portions of 

the spectrum. Data from different wavebands (often visible and near-infrared 

wavelengths) have been combined to produce spectral VIs, which are sensitive measures 

of both spatial and temporal variations in vegetation photosynthetic activity and canopy 

structural variations. Each of the radiometric measurements results into a different, but 

correct, vegetation index value for the same surface conditions (Jackson and Huete 1991). 

So in the case of NDVI, (qNIR-qred)/(qNIR+qred), q is reflectance), the values will 
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differ as a function of the radiometric processing applied to the image data as it is 

presented in figure 2 (Teillet et al 1997). 

 

FIGURE 2. DIFFERENT RADIOMETRIC REPRESENTATIONS OF NDVI ILLUSTRATED IN THE CONTEXT OF 

POSSIBLE DATA PROCESSING FLOWS.  (TEILLET ET AL, 1997) 
 

VIs are, therefore, used to assess temporal and spatial variation of biophysical data , such 

as LAI (Best and Harlan 1985, Friedl et al. 1994, Curran and Williamson 1985) and the 

fraction of the photosynthetically active radiation absorbed by the plant canopy (Asrar et 

al. 1984, Epiphanio and Huete 1995).  

 

Myneni et al. (1995) reported that there are more than 12 vegetation indices in the optical 

region and that they have been correlated with vegetation amount, fAPAR, unstressed 

vegetation conductance, and photosynthetic capacity. The choice and suitability of a VI is 

generally determined by its sensitivity to the characteristics of interest, and/or its 

sensitivity to disturbing factors (atmosphere, soil background, canopy architecture, 

topography). According to the effects that they are able to address a general classification 

is: 

• Intristic indices based on the ratios of 2 or more bands. They are difficult to 

interpret for low LAI values (Rondeaux et al. 1996) and they are very sensitive to 

soil background 

• Soil–line vegetation indices: improving the resistance to soil effects 

• Atmospherical resistant indices, by adding to the index atmospheric 

characteristics for minimizing these effects. 
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Generally, vegetation indices approach a saturation level asymptotically for a certain 

range of LAI (Sellers 1985) and respond linearly to fAPAR. However, a biophysical 

explanation of the relationship between these indices and observable vegetation 

phenomena is still subject to much discussion. Many studies have concluded that VI to 

LAI/ fAPAR relationships are canopy structure and land cover dependent, varying with 

changes in leaf angle distribution, vegetation clumping, row orientation, spacing, and 

optical properties of canopy components (leaf, stem, etc.) (Asrar et al. 1992, Baret and 

Guyot 1991, Choudhury 1987, Goward and Huemmrich 1992, Roujean and Breon 1995). 

Different canopy types exhibit drastic variations in canopy structures and reflectance 

properties, which can produce different VI values while having identical LAI or fAPAR 

values. If satellite data are to be used as a measuring tool to determine LAI/fAPAR over 

large areas where there are differences in canopy characteristics, then an understanding of 

these relationships specific to a given type of canopy must be developed. 

 

In addition, solar zenith angle, sensor view angle, atmospheric conditions, and 

background influences from soil and litter alter remotely sensed spectral signatures and 

the derived vegetation indices significantly (Baret et al. 1991, Huete 1987, Deering et al. 

1992, Deering et al. 1994). As noted in numerous studies, darker soil substrates result in 

much higher vegetation index values for a given amount of vegetation when the ratio 

vegetation index (qNIR/qred, q is reflectance) or the normalized difference vegetation 

index  were used as vegetation measures, while opposite soil brightness influences occur 

with the perpendicular vegetation index (PVI) (Huete et al. 1985, Elvidge et al. 1985). 

Atmospheric turbidity generally inhibits reliable measures of vegetation and sometimes 

renders atmosphere-induced variations on canopy spectra to exceed those due to 

vegetation development. These effects make the accurate and quantitative translation of 

VIs more difficult and complicated. 

 

Finally, VIs can estimate only one parameter at a time, because it was specifically 

developed for each case and parameter.  The fitted equation varies not only in 

mathematical way but also in its empirical coefficients, depending on the studied 
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parameter and the sensor characteristics (geometry, bands, bandwidth, etc). This 

disadvantage implies that there is not a universal equation, making it difficult to apply 

this methodology at large scales (Qi et al. 2000). 

 

2.3.2 Radiative Transfer Models 

 

An alternative to empirical relationships is a modelling approach based on a set of 

radiative transfer equations or models. In this approach the inversion of a vegetation 

reflectance model may be used to estimate the biophysical characteristics of the canopy, 

provided sufficient information can be obtained from the combined remote sensing and 

ancillary data. Inversion involves adjusting model parameters until the model reflectance 

best matches the measured reflectance (Goel 1988, Privette et al. 1994). 

 

Inversion of a canopy radiative transfer model is usually achieved numerically by 

minimizing the difference between measured canopy reflectance samples and modelled 

values using an optimization routine (Goel 1988, Privette et al 1994). Canopy radiative 

transfer model inversions are a robust approach to access canopy structural information 

using remotely sensed data, yet they are limited by the potential lack of reflectance 

information needed to successfully execute the model inversion (Asner et al. 1998c,d). 

However, hyperspectral data has been shown to provide sufficient reflectance 

information from which canopy attributes can be estimated via inverse modelling.  

 

2.4. Validation of MERIS Moderate Resolution Products 

 

Researchers have long been concerned with the need to quantify the accuracy of remotely 

sensed land cover classifications at the local scale but with the increase in data sets from 

coarse resolution sensing systems, attention has turned to the challenge of global product 

‘validation’ (Justice and Townshend 1994, Justice et al. 1998). ‘Validation’ is the process 



                                                                                                                               

 17

of assessing by independent means the accuracy of the data products derived from the 

system outputs. ‘Validation’ is distinguished from calibration which is the process of 

quantitatively defining the system response to known, controlled signal inputs (WWW 1). 

In general, ‘validation’ refers to assessing the uncertainty of higher level, satellite sensor 

derived products (e.g. VIs, fAPAR, LAI) by analytical comparison to reference data, 

which is presumed to represent the target value. Intercomparison of data products or 

model outputs provides an initial indication of gross differences and possibly insights into 

the reasons for the differences. However independent ‘validation’ data are needed to 

determine product accuracy. Whereas there are accepted standards for instrument 

calibration, standards for ‘validation’ of higher order products have yet to be developed. 

 

Currently, the space agencies have several moderate and coarse spatial resolution (250m–

4 km) sensing systems in orbit,  providing similar land products, e.g. vegetation indices, 

albedo, leaf area index (LAI), fAPAR e.g. from MERIS, MODIS, AATSR, 

VEGETATION. Establishing standard methods and protocols for ‘validation’ of these 

products will enable a broader participation in ‘validation’ campaigns and programs, the 

sharing and multiple-use of ‘validation’ data, and comparisons and inter-use between 

products. Common field sites and standard methods for data collection and presenting 

product accuracy can be expected to foster product standardization and synergy from 

these various sensors. 

 

Initiated in 1984, the Committee Earth Observing Satellites’ Working Group on 

Calibration and Validation (CEOS WGCV) pursues activities to coordinate, standardize 

and advance calibration and validation of civilian satellites and their data (Baret et al. 

2005, Morisette et al. 2005). One subgroup of CEOS WGCV, Land Product Validation 

(LPV), was established in 2000 to define standard validation guidelines and protocols and 

to foster data and information exchange relevant to the validation of land products.  
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Having multiple global LAI products and validation activities related to these products it 

suggests that a direct comparison between ground measurements and corresponding 

global or large regional satellite products (VIs,LAI, fAPAR) is not recommended because 

of scale-mismatch, geolocation errors and vegetation heterogeneity at the resolution of 

the large swath satellite data. Thus, an intermediate step that involves a fine resolution 

map of the variable of interest is introduced. This map is generated with field data and 

high resolution satellite data (ETM+, SPOT, ASTER, etc.) When aggregated to the 

moderate resolution, this map serves as the ground-truth (Tan et al. 2005, Wang et al. 

2004). Therefore, the validation of moderate resolution VIs, LAI, fAPAR products 

includes these steps (Figure 3) - ground sampling of vegetation variables during field 

campaigns, generation of a fine resolution map of the variables and comparison of the 

aggregated fine resolution map with moderate products. The achievement of this global 

validation activity is known as a bottom-up approach (Figure 3). 

 

 

FIGURE 3.THE GENERAL VALIDATION PROCEDURE APPLIED TO LAI ACCORDING TO CEOS LAI 
INTERCOMPARISON OVERVIEW CAN BE DESCRIBED SCHEMATICALLY (BARET ET AL., 2005; 
MORISETTE ET AL., 2005) 
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3. MATERIALS AND METHODS 

 

3.1. Study Area and Methodology 

 

Relationships between LAI, fAPAR and vegetation indices derived from the different 

processing data levels of MERIS were studied for the Netherlands. The study area 

consisted of five vegetation classes in the Netherlands: deciduous forest, coniferous 

forest, grassland, natural vegetation and arable land (Figure 5). The decision to work with 

these classes was based on the availability of the necessary input data: land cover data 

and remote sensing data.  

 

The general methodology was divided in three phases: preparation, processing and 

analysis. In the preparation phase we defined and prepared all necessary input data 

(remote sensing and land cover data). The processing phase involved the processing of 

the remote sensing data (MERIS L1b, L2 and HyMap). Four main processing blocks 

were necessary for our research objectives : 1) estimation of VI from the available L1b 

and L2 MERIS data, 2) estimation of LAI and fAPAR from MERIS 3) estimation of VI 

from the HyMap data and finally assessment of the LAI and fAPAR from the HyMap 

sensor. An overview of the general methodology steps is shown in the Figure 4: 
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Figure 4. Flowchart of the Methodology 

 

3.2. LGN-5 

 

3.2.1. Description of the Dataset 

For the analysis of the relations between the VIs-LAI-fAPAR for specific land use types 

in the Netherlands, a training dataset, the Dutch land use database (LGN), was used. 

LGN5 is a geographical database that describes the land use in The Netherlands for the 

period 2003-2004. It has a grid structure of 25 meters cell size, with an application scale 

of 1:50.000. The nomenclature of the LGN5 database consists of 39 classes covering 

urban areas, water, forest, various agricultural and natural land cover types. LGN is 

produced from multi-temporal classification of satellite imagery with ancillary data. 

Currently, the version 5 is based on satellite data of the year 2003 for the provinces of the 

east of the Netherlands and satellite data of 2004 for the provinces of the western part of 

the country. The overall classification accuracy for all provinces is 78% with values 

ranging from 46% till 93% (Hazeu 2005). The 39 classes of the LGN5 were recoded into 

nine classes (grassland, deciduous forest, coniferous forest, arable land, natural 

vegetation, water, built-up areas, greenhouses, bare-soil) as it is shown in Figure 5.  
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FIGURE 5. THE DUTCH LAND USE DATABASE AGGREGATED TO 9 CLASSES AND 300 M PIXEL SIZE AND 

FINALLY MASKED FOR THE STUDY AREA.  
 

3.2.2. Preprocessing  

 

The LGN-5 dataset were georeferenced to the map projection UTM (Zone 31 N, geodetic 

datum WGS84). Subsequently, the LGN5 was aggregated from 25 meters to 300 meters 

cell size displaying the largest cover type fraction per pixel. The resampling was done by 

majority fraction with the erdas imagine software. 

 

3.3. MERIS 

 

3.3.1. Description of the Dataset 

MERIS is a medium-spectral resolution, imaging spectrometer operating in the solar 

reflective spectral range. Fifteen spectral bands are routinely acquired in the 390 nm to 

1040 nm spectral range (Table 2). MERIS allows a global coverage of the Earth in 3 
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days. As compared to other medium resolution instruments, the spectral sampling is very 

unique and the algorithms developed take full advantage of this design.  

 

Table 2 . MERIS spectral characteristics: band centre and width  

 

#  Centre (nm)  Width (nm)  Potential Applications  

1  412.5  10  Yellow substance and detrital pigments  

2  442.5  10  Chlorophyll absorption maximum  

3  490  10  Chlorophyll and other pigments  

4  510  10  Suspended sediment, red tides  

5  560  10  Chlorophyll absorption minimum  

6  620  10  Suspended sediment  

7  665  10  Chlorophyll absorption and fluo. reference  

8  681.25  7.5  Chlorophyll fluorescence peak  

9  708.75  10  Fluo. Reference, atmospheric corrections  

10  753.75  7.5  Vegetation, cloud  

11  760.625  3.75  Oxygen absorption R-branch  

12  778.75  15  Atmosphere corrections  

13  865  20  Vegetation, water vapour reference  

14  885  10  Atmosphere corrections  

15  900  10  Water vapour, land  

 

The MERIS instrument is one of the payload components of the European Space 

Agency’s (ESA) environmental research satellite Envisat, launched in March 2002. It is 

onboard the ENVISAT platform. It’s helio-synchronic near polar orbit definition and 

some additional instrument characteristics are defined in Table 3 .  
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Table 3. Characteristics of the ENVISAT  instrument and orbit definition  

 

Orbit altitude (km)  799.8  

Repeat cycle (days)  35  

Period (min)  100.59  

Inclination (°)  98.55  

Equatorial descending node crossing time (hr)  10:00  

Band-to-band registration <0.1 pixel 

Band-centre knowledge accuracy <1 nm  

Polarisation sensitivity <0.3% 

Radiometric accuracy <2% 

Band-to-band accuracy <0.1% 

Dynamic range Up to albedo 1.0  

 

MERIS scans the Earth's surface by the “push broom” method. CCD arrays provide 

spatial sampling in the across track direction, while the satellite's motion provides 

scanning in the along-track direction. The Earth is imaged with a spatial resolution of 300 

m (at nadir) that provides the full resolution data (FR). This resolution is reduced to 1200 

m (reduced resolution: RR) by the on board combination of four adjacent samples across 

track over four successive lines. The instrument's 68.5
o 
field of view around nadir covers 

a swath width of 1150 km.  

 

MERIS data is provided at three levels of processing: level 0, level 1 and level 2. Level 0 

consists of the core information recorded in packets by the instrument. This information 

is not generally available to users and it serves as basis for level 1. Level 1 comprises 

geo-coded top of atmosphere (TOA) data radiances [Wsr-1m-2µm-1] and it is the base for 

level 2. Level 2 provides reflectance values for the different kinds of data products. Level 
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2 reflectances are different in nature depending on the surface (WWW 2 MERIS-Envisat 

2005): 

 

• over clouds, they are TOA reflectances, 

• over land, they are  Top Of Aerosol (TOAr) reflectances corrected only for 

Rayleigh diffusion but not corrected for the diffusion by aerosols. The correction 

for aerosol partially has been addressed by using values in the blue region namely 

band 2 (442 nm) and one band in the red and near infrared, namely band 8 (681 

nm) and band 13 (865 nm). 

• over water, they are surface reflectances. 

 

For our study we used the full resolution data L1b products and the products over land of 

MERIS level 2. 

 

3.3.2. Level 1b  

 

The MERIS Level 1b data products consist of calibrated top of the atmosphere radiances, 

geolocated and resampled on a regular grid. The full resolution geolocated and calibrated 

TOA Radiance high-level structure of the product is shown in Appendix 1.  

 

A variety of images from the year 2004 was available for our study. A cloud free image 

from August 8th 2004 was finally selected as an input for this study (Figure 6). More 

details concerning this dataset can be observed in Appendix 2.  
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FIGURE 6.MERIS L1B FULL RESOLUTION IMAGES OF AUGUST 8TH
 2004. BANDS 14, 8 AND 3 ARE 

DEPICTED IN RGB. 
 

 

3.3.3. Level 2  

MERIS level 2 land surface products provide TOAr reflectance in 13 bands. Bands 11 

and 15 were excluded from the official L2 product for the following reasons:  

 

 • Band 11. This very narrow band is just located in the oxygen absorption band at 

the end of chlorophyll absorption. It would bring only marginal additional 

information on leaf and background optical properties while conveying errors due 

to uncertainties in oxygen pressure values.  

            • Band 15. This water absorption band will not bring very significant information 

on canopy characteristics as compared to bands 12 to 13, while also conveying errors due 

to uncertainties in water vapour values.  
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 The Rayleigh correction is organised in several steps: knowing the surface pressure 

above a pixel, the Rayleigh optical thickness is computed. With the knowledge of this 

optical thickness and the geometry of the pixel, the Rayleigh reflectance is then derived 

from a lookup table (WWW 3). MERIS level 2 has partially addressed the correction for 

aerosols by using values in the blue region, namely band 2 (442 nm) and one band in the 

red and near infrared, namely band 8 (681 nm) and band 13 (865 nm). This combination 

has generated rectified bands that would have been measured in the red and near infrared 

at the top of canopy (TOC) (Gobron et al. 2004). Reflectance data per pixel is expressed 

as [%*100].  

  

In addition, MERIS level 2 land surface products includes the MERIS Global Vegetation 

Index (MGVI) (Gobron et al. 2004), the MERIS Terrestrial Chlorophyll Index (MTCI) 

(Dash and Curran 2004). The MGVI algorithm is calculated as: 

 

12,0211,0110,0219,0
2
28,0

2
17,0

6,025,014,0213,0
2
22,0

2
11,0

lBlBlBBlBlBl

lBlBlBBlBlBl
MGVI

+++++
+++++

=     (2)  

where 1B and 2B are the rectified spectral bands for the red and near infrared, 

respectively, and nl ,0 are the coefficients for the polynomial provided in Gobron et al. 

(2004). The design of MGVI is based on a two step procedure where the spectral 

radiances measured in the red and near-infrared bands are first, rectified in order to 

ensure their decontamination from atmospheric and angular effects. Second, they are 

combined together in a mathematical formula that generates fAPAR values (Gobron 

2003). The overall scientific objective of the MGVI is to exploit the spectral reflectance 

measurements acquired by the instrument to provide users with reliable qualitative and 

qualitative information on the state of the plant cover over terrestrial areas.  

 

In addition the MTCI is defined as: 
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bandband

bandbandMTCI
ρρ
ρρ

−
−=                              (3)      

where ρ are reflectance values for different bands. 

 

For this study the full resolution MERIS level 2 reflectance values, MGVI and MTCI for 

the Netherlands, from 2004 was used. Specifications of the spectral bands of MERIS 

Level 2 are given in Table 4.  

 

Table 4. The bands of the MERIS level 2. 

Band nr. Band centre [nm] Bandwidth [nm] 

1 412.5 9.9 

2 442.4 10.0 

3 489.7 10.0 

4 509.7 10.0 

5 559.6 10.0 

6 619.6 10.0 

7 664.6 10.0 

8 680.9 7.5 

9 708.4 10.0 

10 753.5 7.5 

12 778.5 15.0 

13 864.8 20.0 

14 884.8 10 

Rectified red 681 7.5 

Rectified near infrared 865 20.0 
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A cloud free image from August 8th 2004 was delivered as an input for this study. 

Reflectance data per pixel is expressed as [%*100].  More details concerning this dataset 

can be observed in Appendix 3.  The image is shown in Figure 7. 

 

   

 

FIGURE 7. MERIS L2 FULL RESOLUTION IMAGES OF AUGUST 8TH
 2004. BANDS 14, 8 AND 3 ARE 

DEPICTED IN RGB. 
 
 

3.3.4. Preprocessing of the L1b and L2 MERIS Datasets 

 

Effective analysis and treatment of the images required several preprocessing steps. 

These steps were carried out to assure that the measurements from each sensor (MERIS 

and HyMap) were as closely comparable as possible. Before any analysis, the satellite 

images need some correction procedures due to the geometric and radiometric distortions 

during the acquisition process. These corrections can be divided in two categories: 

geometric and radiometric corrections. The same procedure was applied for both L1b and 

L2 MERIS datasets. 
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 Selection of MERIS datasets 

Our goal was to acquire image pairs of MERIS and HyMap as nearly time coincident as 

possible with the July 28th (acquisition date of HyMap dataset), constrained by the 

requirement that each image needed to be "essentially cloud-free" for the comparison. For 

the year 2004 a large number of MERIS images were available. The most appropriate 

MERIS image was the one of  August 8th. 

 

Geometric corrections 

Geometric corrections are necessary to reduce the effect of geometric distortions and they 

enable us to match the datasets with the resampled LGN5 database. For both MERIS 

datasets we assign the map projection UTM (Zone 31 N, geodetic datum WGS84) 

through the use of the BEAM software.  However, observable differences existed 

between the resampled LGN5 and satellite images. Therefore we performed an image to 

image co-registration between each MERIS dataset and the resampled LGN5. For each 

image to image co-registration 27 ground control points were recorded between the two 

images. At last, a nearest neighbour resampling function was used because it preserves 

the information of the image pixels most closely.   

 

 Radiometric corrections 

As we are using radiance and reflectance values from the MERIS level 1b and level 2 

products, radiometric corrections are already performed (WWW 3): 

Level 1b radiometric processing: the valid MERIS samples are digital counts resulting 

from the acquisition by MERIS of passive optical spectral radiance remote sensing. The 

objective of the radiometric processing is to estimate, by an inverse model, the spectral 

radiance which caused these counts. The radiance sensed by MERIS is, for a given set of 

target physical parameters and illumination and observation angles, proportional to the 

extraterrestrial sun spectral fluxx, (WWW 4). 
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 Level 2 corrections: The atmospheric correction scheme is a simple but robust modelling 

of the signal which yields simple conversions of TOA radiance into surface reflectance. 

The signal decomposition involves three steps. In the first stage, gaseous absorption is 

removed from the signal (oxygen, ozone and water vapour).  

 

The second step address corrections related with the Rayleigh scattering: The objectives 

of the Rayleigh corrections is twofold: first it allows to estimate the Rayleigh reflectance 

that will eventually be retrieved from the total Top Of Atmosphere signal to have an 

estimate of the Top Of Aerosol reflectance from which vegetation indices are later 

retrieved, secondly it allows to estimate all the Rayleigh transmittance factors that are 

used to bring down the Top Of Atmosphere signal down to the surface. 

 

The correction for aerosols is more problematic, due to their variable nature and 

abundance, and their weak contribution to TOA radiances. Because their contribution is 

emphasized over dark surfaces, the use of so-called Dark Dense Vegetation (DDV) is 

generally proposed (see, for the AVHRR, Holben et al. (1992)). 

 

3.4. HyMap Sensor   

 

3.4.1. HyMap sensor characteristics 

 

The HyMap sensor is an airborne imaging system that is used for earth resources remote 

sensing. It records a digital image of the earth’s sunlit surface underneath the aircraft . 

Unlike standard aerial cameras, the HyMap records images in a large number of 

wavelengths. In essence, the HyMap sensor is an airborne spectrometer. 

 

The HyMap records an image of the earth’s surface by using a rotating scan mirror which 

allows the image to build line by line as the aircraft flies forward. The reflected sunlight 
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collected by the scan mirror is then dispersed into different wavelengths by four 

spectrometers in the system. 

 

For the present study, a single HyMap image is used. The flight was carried out on July 

28th, 2004, over the Milingerwaard floodplain along the river Waal near the city of 

Nijmegen.  

 

The input image for this study was delivered geocoded in the map projection UTM (Zone 

31 N, geodetic datum WGS84), band simulated (to MERIS bands), radiometrically and 

atmospherically corrected. Reflectance data per pixel is expressed as [%*100].  

 

For further processing of the airborne data, data outside the study area was masked out, in 

order to save memory space and computational time.  

 

3.4.2. Preprocessing  

 

Before any analysis, the satellite image needs some correction procedures due to the 

geometric and radiometric distortions during the acquisition process. Because the input 

image for this study was already geocoded in the map projection UTM (Zone 31 N, 

geodetic datum WGS84), radiometrically and atmospherically corrected and simulated to 

MERIS bands the preprocessing stage involves only the co-registration. 

 

Aggregation 

Comparison of the MERIS and HyMap derived VIs, LAI, fAPAR products, required 

aggregation of the HyMap measurements to a spatial resolution equivalent to the MERIS 

measurements. Numerous aggregation methods have been used in remote sensing, 

including averaging all values, sampling every nth pixel and choosing the "dominant" 

value (Bian 1997). In this case, since we are attempting to approximate the integrated 
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VIs, LAI, fAPAR that the MERIS instrument measures, we employ the averaging 

approach. 

 

Geometric corrections 

Examining the relative performance of HyMap and MERIS requires, as much as possible, 

that individual compared pixels are from the same location on the Earth's surface. One of 

the largest potential sources of error is relief displacement caused by the two sensors 

viewing the same variable elevation terrain from two different look angles [Bernstein, 

1983 and Slama, 1980].  

  

A comparison between the HyMap image resampled to 300m pixel size and LGN-5 

image, revealed observable differences. One should note that the resampling of the 

original HyMap image to the aggregated 300 m pixel size also contribute to the geometric 

inaccuracy. Therefore, geographic reference points were extracted by locating clearly 

observed points in the HyMap image and the MERIS image. Nearest neighbour re-

sampling was employed in the co-registration process to preserve as much as possible the 

radiometry of the imagery. Some residual misalignment between HyMap and MERIS is 

still evident in the resultant products, probably the result of the differing spatial resolution 

of the HyMap sensor and MERIS instrument.  

 

3.5. Vegetation  Indices  

 

The MERIS (L1b, L2) and HyMap reflectance derived VIs was examined in this study. 

These results can provide a check on the use of MERIS derived VIs and their correlation 

to the LAI, fAPAR variables for the Netherlands. At the same time a comparison with VI 

derived from the HyMap sensor is important because it relates to the spatial correlation 

between the two sensors and can stand as an evaluation of the performance of the TOA 

Radiances, TOAr Reflectances and TOC reflectances derived vegetation indices The 
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MERIS derived VIs have a spatial resolution of 300m. The inputs are red and near-

infrared, top of atmosphere (TOA) data radiances, top of aerosol (TOAr) reflectances and 

top of canopy (TOC) data reflectances that corresponds to the bands 8 and 13, 

respectively. The HyMap derived VI have a spatial resolution of 5m. The 5m VIs are 

aggregated to 300m by employing the averaging approach. 

 

 Among the many different VIs found in the literature, some of the classical ones, soil 

adjusted and atmospherically resistant ones, were selected. In addition some other VIs 

specific for being applied to the MERIS bands were also studied. 

 

The vegetation index values were calculated for the MERIS and HyMap scenes for 

selected vegetation targets: grassland, arable land, deciduous forest, coniferous forest, 

natural vegetation.   

 

• The Normalized Difference Vegetation Index (NDVI), was calculated by Tucker 
(1979) as:     

 

 (NIR-RED)/(NIR+RED)                                                                                      (4)  

 

• The Weighted Difference Vegetation Index (WDVI), was calculated by Clevers 
(1988) as: 

 

NIR-g*Red                                                                                                            (5) 

Where, g=slope of soil line  

 

The parameter g was calculated and corresponds to 1 for the radiances and 1.2 for the 
reflectances of  L1 and L2 MERIS images, respectively . For the HyMap images the 
same parameter corresponds to 1. 

 

• The Modified Soil Adjusted Vegetation Index (MSAVI) was calculated by Qi et 
al.(1994) as: 
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(2NIR+1-[(2NIR+1) 2 -8(NIR-RED)] 0.5 )/2                                                       (6) 

 

• The Perpendicular Vegetation Index (PVI) was calculated by Richardson and 
Wiegand (1977) as: 

 

  [NIR-a (RED)-b]/ [1+ (-a) 2] 0.5                                                                          (7) 

Where a=slope of soil line and b is the soil line intercept 

 

• The Global Environmental Monitoring Index (GEMI) was calculated by (Pinty 
and Verstraete (1991) as: 

 

 [eta(1- 0.25×eta)]- [(red- 0.125)/ (1- red)]                                                                 (8) 

Where eta is defined as: [2[ (NIR)2 –(RED)2 ] + (1.5 NIR) + (0.5 RED)] / 
(NIR+RED+0.5) 

 

 

3.5. Soil Line Concept 

 

The soil line is a linear relationship between the NIR and R reflectance of bare soil 

originally discovered by Richardson and Wiegand (1977):  

 

NIR = ß1* R + ß0                                                                                                                                                                       (9) 

where ß1
 is the soil line slope and ß0 is the intercept. The soil line for a particular soil type 

"...results from the combined variations of its surface status characterized by its 

roughness and moisture" (Baret et al., 1993). Jasinski and Eagleson (1989) demonstrate 

that three unique soil lines result by varying soil type, moisture content, and roughness.  

Soil line slope and intercept are subsequently used in the VI equation to minimize soil 

background effects. A global soil line representing all soil types is not possible because 

such a line will only be linear in portions of the entire range due to variations caused by 
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different soil conditions (soil type, moisture content, organic matter content, soil 

roughness, etc.)  

 

In this study MERIS images (L1b, L2) and the HyMap image were used to determine the 

soil line for each case of derived vegetation indices. 

 

3.7.  MERIS Measurements of Leaf Area Index and fAPAR 

 

The calculation of the LAI for the study area was implemented by the use of the BEAM 

software. This MERIS-specific software makes use as inputs the top of atmosphere 

radiance values as derived from MERIS L1b images. The algorithm that is used for the 

derivation of LAI is the TOA_VEG algorithm (Baret, Pavageau et al., 2006). 

 

The algorithm is based on the training of neural networks over a data base simulated 

using radiative transfer models. The SAIL, PROSPECT and SMAC models are coupled 

and used to simulate the reflectance in the 13 MERIS bands considered (412 nm, 442 nm, 

490 nm, 510 nm, 560 nm, 620 nm, 665 nm, 681.25 nm, 708.75 nm, 753.75 nm, 778.75 

nm, 865 nm, 885 nm). The oxygen and water absorption bands have not been used 

because they would convey significant uncertainties associated while providing only 

marginal information on the surface. The LAI product retrieved from the algorithm 

represent values for green leaves under direct solar illumination, with LAI being half the 

total leaf surface area per unit ground area. 

 

The LAI product is sensitive to the green leaves in the canopy. Green leaves have large 

differences in radiation absorption between the red and near-infrared bands, while in dead 

leaves and soil, that difference is decreased. The algorithm uses this difference to 

determine LAI. The simulation in the 13 MERIS bands requires 15 input variables. They 

were drawn randomly according to an experimental plan aiming at getting a more evenly 



                                                                                                                               

 37

populated space of canopy realization. To provide more robust performances of the 

network, the distributions of each input variable was close to the actual distributions and, 

when possible realistic co-distributions were also used. Back-propagation neural 

networks were trained for each variable considered. The use of the MGVI, described at 

the MERIS L2 product, was the approach for the estimation of fAPAR.  

 

3.8.  HyMap Measurements of Leaf Area Index and fAPAR 

 

The LAI map was generated with field data and high resolution satellite data of HyMap 

based on a model (between that RSR and LAI (Liras 2005) : 

LAI= - 3.86 ln[1-(RSR/9.5)]                                                                                         (10) 

 When aggregated to the 300m resolution, this map serves as the ground-truth (Tan et al. 

2005, Wang et al. 2004).  

 

The fAPAR map was derived based on the MGVI algorithm. In particular, this MERIS 

algorithm was used, but previously a resampling of the HyMap bands into the MERIS 

bands took place. 

 

3.9 Validation of Aggregated Fine-Resolution Map and MERIS Product 

 

To investigate the accuracy of individual pixel LAI, fAPAR values, a comparison was 

made between LAI, fAPAR values in MERIS and those in the matching HyMap image. 

The LAI values in MERIS images were calculated at 300-m resolution from the 

TOA_VEG algorithm. The LAI and fAPAR values in the HyMap image were calculated 

at 5-m resolution and aggregated to 300-m resolution using image-resampling techniques. 

The main purposes of the validation were to assess the accuracy of the pixel-level LAI, 
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fAPAR values in terms of the RMSR divided by the average LAI, fAPAR value, 

respectively. 

 

3.10. Analysis of the LAI, fAPAR, VIHyMap–VIMERIS Relationships  

 

Several variants of each VI were derived from the image data (Table 2). For each biome, 

the VI was derived from radiance (VIRAD), top of aerosol reflectance (VITOAr), and top of 

canopy reflectance (VITOC). This was done to test the effects of spectral data processing 

level on the strength of the relationships between VIMERIS-VIHyMap ,VI-LAI and VI-

fAPAR. Least squares regression analysis (SAS Institute Inc. 1990) with LAI as the 

independent variable was used to evaluate the relationships between VIHyMap, LAI, 

fAPAR and each of the VIMERIS. The models investigated were linear and potential. The 

results are reported in terms of the R2. To evaluate the relative influence of red and near-

infrared reflectance of MERIS (bands 8 and 13) on the LAI–SVI, fAPAR relationships, 

plots of LAI and fAPAR against RedTOC (Band 8 of MERIS) and NIRTOC (Band 13 of 

MERIS) were also inspected.  
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4. RESULTS 

 

4.1. Image Characteristics 

 

The two MERIS datasets (Level 1b and Level 2) and the resampled and aggregated   

LGN-5 dataset (300m) were georeferenced to UTM (Zone 31 North, geodetic datum 

WGS 84). However a comparison of the images of the three datasets exposed observable 

differences. For this reason, we performed an image to image co-registration using 20 

ground control points (Figure 8) recorded between the LGN-5 (base image) and each of 

the MERIS images (warp images). This permitted direct overlay of land cover and LAI 

data products from MODIS and HyMap. The georegistration showed that both MERIS 

images have a shift of less a pixel (Table 5). 

 

 

FIGURE 8. THE GROUND CONTROL POINTS OF THE LGN IMAGE THAT WERE SELECTED AS A REFERENCE 
FOR THE CO-REGISTRATION OF THE MERIS DATASETS. 
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Table 5. Root mean square errors RMS (in fractions of a pixel) of the georeferencing to the UTM 31 North, 
WGS-84 coordinate system using the information of 27 image tie points between MERIS images and the 
aggregated LGN-5. 

Images RMS error (total) 

MERIS L1b (08-08-2004) 0.571 

MERIS L2   (08-08-2004) 0.480 

 

The calculated to 5m and aggregated to 300m pixel size VIs of the HyMap images were 

also georeferenced to the UTM (Zone 31 North, geodetic datum WGS 84). A comparison 

of them with the LGN-5 exposed also some clear and observable differences (Figure 9). 

In order to achieve a better overlay with the VIs of the MERIS images, we performed an 

image to image co-registration using 16 ground control points recorded between the VIs 

of HyMap (aggregated to 300m) and the MERIS images. Although we should do the co-

registration of the VIs of HyMap with the LGN-5, the need for direct spatial comparisons 

between MERIS and HyMap has guide us to make the co-registration of VIHyMap with the 

MERIS image as a reference. 

 

 VI derived from the geocorrected MERIS images exposed also some clear and 

observable differences. Therefore we performed an image to image co-registration using 

16 ground control points recorded between the VIs of HyMap (aggregated to 300m) and 

the VIs of the MERIS images. Although we can expect modest errors of coregistration, 

overlay in this way provided confidence in making direct spatial comparisons at the site 

level of Millingerwaard. 
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FIGURE 9.COMPARISON OF THE GEOMETRY OF THE HYMAP (5 M PIXEL SIZE) IMAGE AUGUST 28TH
 , TO 

THE LEFT AND THE  LGN-5 DATABASE (25 M PIXEL SIZE) TO THE RIGHT 
 

 

Table 5. Root mean square errors RMS [in fractions of a pixel] of the georeferencing to the UTM 31 North, 
WGS-84 coordinate system using the information of 16 image tie points between the VIs of HyMap 
(aggregated to 300m) and the VIs of the MERIS images. 

Images RMS error (total) 

VIs of HyMap (27-07-2004) 0.699 

 

The georegistration showed that the HyMap image had a shift of less then a pixel (Table 

5). 

 

4.2. Effects of the Atmosheric Correction in the Spectral Profiles and Derivation of 

VI for the Different Vegetation Biomes in the Netherlands 

 

4.2.1 Spectral Profiles 

 

Although all vegetation types have relatively similar spectral properties (large absorption 

in the red and large reflectance in NIR), different biomes have special characteristics 

depending on the canopy architecture. These characteristics can be distinguished by 
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comparing the spectral signatures. Figure 10, presents the mean spectral signatures of the 

TOAr reflectances in the spectrum of the bands of MERIS as a function of biome type 

derived MERIS data (TOA radiances and TOC reflectances are shown in Appendix 4 and 

5, respectively). 
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FIGURE 10. SPECTRAL SIGNATURES FOR THE MAIN LGN LAND COVER TYPES DERIVED FROM MERIS 
LEVEL 2 TOAR REFLECTANCES FOR AUGUST 8TH 2004 

 

After plotting the spectral signatures for the different vegetation land cover types the 

general pattern of TOA radiance, TOAr reflectance and TOC reflectance was as 

expected. All vegetation classes showed a steep slope between red and NIR TOA 

radiances at 762 nm and a steep increase at the 754 nm for the TOAr reflectances (Figure 

8 and Appendix 1, respectively). 

 

The spectral profiles have also shown the high degree of correlation for the visible (400 – 

700 nm) and NIR (750 – 900 nm) wavelength of MERIS (L1b-L2) spectrum. In order to 

describe these relations, a correlation matrix for the spectral bands of MERIS was 

calculated and the results are presented in the Table 5 and Appendix 6. For MERIS TOA 

radiances bands 11, 15 were not used because at 762nm (band 11) absorption occurs by 

oxygen of the atmosphere resulting in a dip. Band 15, at 900 nm, is related to the water 

vapour determination.  
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Table 5. Correlation matrix for the L1b MERIS image of August 8th, 2004.  

Band 1 2 3 4 5 6 7 8 9 10 12 13 14 

[nm] 413 443 490 510 560 620 665 681 708 753 778 865 885 

1 1             

2 1 1            

3 0.97 0.98 1           

4 0.96 0.98 1 1          

5 0.92 0.94 0.95 0.97 1         

6 0.93 0.95 0.97 0.98 0.97 1        

7 0.92 0.94 0.97 0.97 0.94 1 1       

8 0.92 0.94 0.97 0.97 0.94 0.98 1 1      

9 0.70 0.72 0.75 0.78 0.88 0.82 0.78 0.78 1     

10 -0.30 -0.30 -0.31 -0.28 -0.10 -0.27 -0.34 -0.34 0.21 1    

12 -0.32 -0.32 -0.32 -0.30 -0.13 -0.31 -0.36 -0.37 0.18 1 1   

13 -0.36 -0.36 -0.36 -0.32 -0.14 -0.32 -0.39 -0.39 0.18 0.99 1 1  

14 -0.36 -0.36 -0.36 -0.33 -0.14 -0.32 -0.39 -0.39 0.18 0.99 0.99 1 1 

 

 

4.2.2. Vegetation Indices Derivation 

 

VI images were determined for the main vegetation biomes of the Netherlands are NDVI, 

WDVI, PVI, MSAVI and GEMI. Several variants (Table 6) of each SVI were derived 

from the image data. For each vegetation biome, the VIs were derived from TOA 

radiances (VITOARAD), TOAr reflectance (VITOArREF), and TOC reflectance (VITOCREF).  
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Table 6. Summary of VIs images prepared by stage of image processing for the vegetation biomes (Grass, 
Arable land, Deciduous forest, Coniferous forest, Natural vegetation) of the Netherlands.  

 

Stage of image processing 

TOA radiances    TOAr reflectances    TOC reflectances 

NDVI                 NDVI                          NDVI 

WDVI                WDVI                         WDVI 

MSAVI             MSAVI                       MSAVI 

PVI                    PVI                             PVI 

GEMI                GEMI                         GEMI 

 

In order to facilitate the visualization of the 5 vegetation land cover types and compare 

the effects of the different radiometric MERIS data on the distribution of an index, we 

choose the WDVI (Figure 11). 

a)                                                                              b) 
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FIGURE 11. HISTOGRAM OF THE WDVI DERIVED FROM THE DIFFERENT RADIOMETRICAL DATA OF MERIS 

FOR THE BANDS 8 AND 13. a)WDVI from TOA Radiances, b)TOAr Reflectances, c)TOC 

Reflectances 

 

Table 7 shows a comparison of the mean and standard deviation values of the VIs per 

biome.  

 

Table 7. Mean values and standard deviation for the VI estimated for the vevegetation biomes of the 
Netherlands. 

 

 

 

                                                            Vegetation Indices 

Biome 

type 

Mean/ Stdev WDVI Mean/ Stdev MSAVI Mean / Stdev NDVI 

 TOA 

Rad. 

TOAr 

Refl. 

TOC Refl TOA 

Rad. 

TOAr 

Refl. 

TOC 

Refl. 

TOA 

Rad. 

TOAr 

Refl.s 

TOC 

Refl. 

Grass 52.15/18 0.26/0.07 0.29/0.07 0.64/0.25 0.47/0.11 0.50/0.11 0.37/0.15 0.60/0.13 0.75/0.09 

 

Arable 47.49/18 0.25/0.07 0.27/0.06 0.60/0.23 0.42/0.11 0.45/0.11 0.38/0.16 0.57/0.18 0.69/0.12 

Deciduous 

for 

44.82/17 0.23/0.07 0.25/0.07 0.63/0.20 0.41/0.11 0..44/0.10 0.48/0.22 0.69/0.10 0.83/0.10 
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Coniferous 

for. 

40.20/13 

 

0.21/0.05 0..21/0.05 0.65/0.11 0.37/0.08 0.38/0.09 0.50/0.20 0.71/0.07 0.84/0.07 

Natural 

veg 

34.66/19 

 

0.20/0.07 0.21/0.07 0.52/0.20 0.34/0.11 0.37/0.10 0.40/0.19 0.61/0.11 0.78/0.11 

 

 

 

                                        Vegetation Indices 

Biome type Mean/ Stdev GEMI Mean/ Stdev PVI 

 TOA Rad TOAr 

Refl. 

TOC 

Refl. 

TOA 

Rad. 

TOAr 

Refl. 

TOC 

Refl. 

Grass 0.45/0.35 0.72/0.11 0.72/0.11 36.15/18 0.27/0.07 0.33/0.07 

Arable 0.46/0.31 0.70/0.11 0.69/0.11 31.48/18 0.25/0.07 0.31/0.06 

Deciduous for. 0.58/0.26 0.68/0.10 0.66/0.12 28.80/17 0.24/0.07 0.29/0.07 

Coniferous for. 0..50/0.23 0.64/0/08 0.61/0.09 24.20/13 0.22/0.05 0.25/0.05 

Natural veg. 0.43/0.25 0.61/0.13 0.58/0.14 76.52/19 

 

0.20/0.07 0.25/0.07 

 

Relationships between the indices 

 

As it is mentioned in the literature review VIs can be clustered into categories according 

to the effects that they are able to address: 

• Intristic indices based on the ratios of 2 or more bands: NDVI, MSAVI  

• Soil–line vegetation indices: improving the resistance to soil effects: WDVI, PVI 

• Atmospherically resistant indices, by adding to the index atmospheric 

characteristics for minimizing these effects: GEMI 
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To test the mutual relationship between these five VIs, they were calculated from the 

same data set. To minimize the effects of sensor geometry to the derivation of VI, we use 

a subset of the image in the eastern part. All possible pairs of VIs (ten combinations) 

were plotted (Figure 12). The Figures show that WDVI, PVI, MSAVI, and GEMI 

individually differ in concept and contain different information than NDVI, while WDVI 

and PVI are closely correlated. The comparison of WDVI and PVI with MSAVI, showed 

a similarity to the information content.  
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FIGURE 12. GRAPHICAL DETERMINATION OF THE MUTUAL DEPENDENCY OF NDVI, PVI, SAVI, WDVI AND 

GEMI. EACH DATA POINT CORRESPONDS TO A VI VALUE CALCULATED FOR THE PIXELS OF THE 

TOAR REFLECTANCE IMAGE.  
 

Beside the investigation of the mutual dependency of the VIs, it is of interest to compare 

VIs for the TOA radiance, TOAr reflectance and TOC reflectance spectral vegetation 

indices and investigate how their mutual relationship is influenced due to the atmospheric 

correction. 

 

We found it appropriate, having in mind the similarities that were revealed in the 

previous VI comparison, to use for this step three representative VI (NDVI, WDVI, 

GEMI) that are not functionally equivalent. All possible pairs of VIs (three combinations) 

were plotted and correlation matrices (Figure 13, Table 8, Appendix 7 and 8) were 

created for each VI.  
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a)                                                                    b) 

  

c) 

 

 

FIGURE 13. SCATTERPLOTS OF THE COMPARISON OF a)WDVITOArRefl. and WDVI TOC Refl., b) 

WDVITOA Rad. and WDVITOC Refl., c) WDVITOA Rad. and WDVITOC Refl. 
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Table 8. Correlation matrix for the WDVI 

 

Correlation  WDVI TOA Rad.  WDVI   TOAr Refl. WDVI  TOC Refl. 

WDVI  TOA Rad. 1   

WDVI  TOAr Refl. 0.96  1  

 WDVI  TOC Refl. 0.95             0.99 1 

 

   In general a high correlation (0.99, Table 13) between WDVITOC and WDVITOAr can be 

observed. In contrast the correlation of WDVITOC and WDVITOA seems to be lower (0.95, 

Table 13).  

 

4.3. Comparison of the VIs Derived from MERIS with the ones of HyMap   

 

Subsequently, the vegetation indices derived from MERIS were related to the ones 

derived from HyMap for the main vegetation types (arable land and the grass) of the 

Millingerwaard area. VI derivation affected the result and strength of the VIMERIS-VIHyMap 

relationships (Table 9, 10, Figure 14, 15 and Appendix 9, 10). This comparison is 

important because it is used as an evaluation of the performance (r2) of the TOA 

Radiances, TOAr Reflectances and TOC reflectances from MERIS, although it relates to 

the spatial correlation between the two sensors due to the different scale that they operate.  

 

The VIs were derived from TOA radiance, TOAr reflectance, and TOC reflectance 

MERIS data for the arable land dominated and grass-dominated pixels of Millingerwaard. 

The VI values in MERIS images were calculated at 300-m resolution. The VI values for 

the HyMap image were calculated at 5-m resolution and aggregated to 300-m resolution. 
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Two regression analysis results are displayed for each vegetation cover type. One is an 

“unforced” regression, which tends to create a positive intercept on the vertical axis when 

data scatter is considerable, and the other is a “forced” regression with the intercept fixed 

at the origin of the coordinates. Only the R2 values of the unforced regression are 

reported to avoid confusion. The best correlation is found for the MSAVI derived from 

TOC (R2=0.56) for the arable land-dominated biome. Results for MSAVI are presented 

as a case study in Table 14, 15 and in Figure 12, 13. 

 

Table 9. The Linear model and the R2 for the VIMERIS-VIHyMap Relationship using three Derivations of 
VIMERIS  TOA radiances (TOA rad.), TOAr reflectances (TOAr refl.) and TOC reflectances (TOC refl.) for 
the arable land-dominated pixels of Millingerwaard.   

 

 

VI                                          TOArad.                                                       TOAr refl.                                                        TOC refl.              

 

MSAVI                                0.07                                                                       0.54                                                          0.56 

WDVI                                   0.18                                                                       0.46                                                          0.51                                                            

PVI                                       0.18                                                                        0.46                                                          0.51 

NDVI                                     0.08                                                                     0.48                                                            0.55 

GEMI                                  0.21                                                                      0.44                                                           0.46             
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FIGURE 14. SCATTERPLOTS OF THE MSAVI DERIVED FROM MERIS AND HYMAP. RELATIONSHIP USING 

THREE DERIVATIONS OF MSAVIMERIS:  TOA RADIANCES (TOA RAD.), TOAR REFLECTANCES (TOAR 

REFL.) AND TOC REFLECTANCES (TOC REFL.) FOR THE ARABLE LAND-DOMINATED PIXELS OF 
MILLINGERWAARD. 
 

 

Table 10. The Linear model and R2 for the VIMERIS-VIHyMap Relationship using three Derivations of 
VIMERIS  TOA radiances(TOA rad.), TOAr reflectances (TOAr refl.) and TOC reflectances(TOC refl.) for 
the grass land-dominated pixels of Millingerwaard.   

 

 

VI                                            TOA rad.                                                     TOAr refl.                                                            TOC refl.         

 

MSAVI                                    0.18                                                                         0.39                                                    0.44 

WDVI                                      0.21                                                                         0.31                                                     0.33                                                           

PVI                                           0.21                                                                          0.32                                                    0.34 

NDVI                                     0.12                                                                          0.24                                                      0.27 

GEMI                                    0.23                                                                          0.33                                                     0.35             
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FIGURE 15. SCATTERPLOTS OF THE MSAVI DERIVED FROM MERIS AND HYMAP. RELATIONSHIP USING 

THREE DERIVATIONS OF MSAVIMERIS:  TOA RADIANCES (TOA RAD.), TOAR REFLECTANCES (TOAR 
REFL.) AND TOC REFLECTANCES (TOC REFL.) FOR THE GRASS-DOMINATED PIXELS OF 

MILLINGERWAARD. 
 

4.4. LAI Derived from MERIS 

 

After the derivation of LAI (Figure 16) using the plug-in of the BEAM software (Baret 

2006), the purpose of validation to assess the accuracy of the pixel-level LAI was 

implemented. 
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4.4.1. LAI Map Production 

 

The LAI values across all the vegetation biomes in the Netherlands ranged from 0 to 4 

(Table 11). Among the forested areas, the deciduous forest had the highest LAIs. At the 

same level were the LAI values of grass and arable land. The coniferous forest and the 

natural vegetation had lower LAIs. 

 

Table 11. Summary of LAI information, derived from Level 1b image (8th August 2004) using BEAM 
plug-in (Baret 2006), for the Netherlands. 

 

 Vegetation Types LAI range Std.Dev. Mean Median 

Grass 0.01- 4.03 0.67 2.60 2.76 

Coniferous forest 0.09-3.8 0.45 2.16 2.16 

Deciduous forest 0.07-4.04 0.60 2.45 2.53 

Arable land 0-4.05 0.66 2.39 2.48 

Netherlands 

Natural vegetation 0-3.66 0.66 1.90 1.92 

 

a)                                                                                b) 
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c)                                                                                d)                                  

                                

e)  

 

 

FIGURE16. LAI MAPS DERIVED FROM MERIS IMAGE USING BEAM PLUG-IN (BARET, 2006) FOR a) LAI 

of grass, b)LAI of Arable land) LAI of Coniferous forest, d) LAI of Deciduous forest, e) 

LAI of Natural vegetation 

 

4.4.2 Validation of MERIS LAI Using LAI Estimated f rom HyMap 

 

To investigate the accuracy of individual pixel LAI values derived from MERIS, a 

comparison was made between LAI values in MERIS images and those in the matching 
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HyMap image for the Mllingerwaard area. The LAI values in MERIS images were 

calculated at 300-m resolution. The LAI values in the HyMap image were calculated at 5-m 

resolution using a function: 

 LAI= -3.86 ln[1-(RSR/9.5)]                                                                                  (11) 

 between RSR and LAI (Mengesha 2005) and aggregated finally to 300-m resolution. 

Figure 17, Figure 18 and Table 12 shows this comparison between MERIS and HyMap 

LAI images with matching dates (August 8th  2004 for MERIS and July 28th 2004  for 

HyMap composite).  

 

The range of LAIs across Millingerwaard was from 0.16 to 3.19 (Table 12).  Among the 

two main vegetation lands cover types grass had the highest mean LAI (2.13) with a 

standard deviation of 0.78. The arable land-dominated type had a lower mean value (2.01) 

but with a bigger standard deviation (0.89). 

 

The error of individual pixel LAI values in the MERIS image is in the range of 35–39%, 

taken as the ratio of the RMSE to the average LAI of the scene (see Table 13 for the 

values of RMSE). 

 

Table 12. Summary of LAI statistics of the MERIS and HyMap over the scene of Millingerwaard 

  

                                             Arable land                Grass 

MERIS        Mean                2.01                            2.13 

                    Std. Dev.           0.89                           0.78 

                    LAI range         0.20-3.19                   0.16- 3.13 

HyMap        Mean                1.60                            1.56 

                    Std. Dev.           0.81                           0.83 

                    LAI range         0.76-3.40                   0.04- 3.43 
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Table13.Correlation of LAI of MERIS with LAI of HyMap in terms of coefficient of determination (R2) 
and root mean square error (RMSE). 

 

MERIS              R2                  RMSE 

Arable land       0.29                0.78 

Grass                 0.10               0.75 

 

All LAI images are resampled to 300-m resolution before any statistical analysis 

 

a) b) 

 

FIGURE17. LAI MAPS FOR THE AREA OF MILLINGERWAARD AS DERIVED FROM A) MERIS 300-M PIXEL 

SIZE AND B) HYMAP AGGREGATED TO 300-M PIXEL SIZE 
 

 

 

 

 



                                                                                                                               

 58

a)                                                              b) 
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FIGURE 18. COMPARISON OF LAI DERIVED FROM MERIS WITH HYMAP DERIVED LAI FOR THE SCENE OF 

MILLINGERWAARD RESAMPLED TO THE RESOLUTION OF 300M. a)grass, b)arable land 

 

4.5. FAPAR Derived from MERIS 

One of the official vegetation products of the L2 MERIS dataset is the MGVI. The 

performance of the MGVI is associated to fAPAR values (Gobron 1999). The estimation 

of MGVI was the basis for the derivation of the fAPAR map for the vegetation types of 

the Netherlands.  

 

4.5.1. FAPAR Map for Different Biomes 

 

The range of fAPAR across all the vegetation biomes in the Netherlands sites was from 0 

to 0.73 (Table 14).  
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Table 14.Summary of fAPAR information for the Netherlands 

 Vegetation Types fAPAR range Std. dev. Mean Median 

Grass 0- 0.73 0.16 0.60 0.63 

Coniferous forest 0.02-0.70 0.13 0.46 0.42 

Deciduous forest 0 -0.72 0.16 0.54 0.53 

Arable land 0-0.73 0.17 0.54 0.55 

Netherlands 

Natural vegetation 0-0.70 0.15 0.43 0.40 

 

The resulting maps for the calculation of fAPAR for the different vegetation biomes 

types are given in Figure 19.  

a)                                             b)                                      c) 

        

d)                                           e)     

  

 

FIGURE19. FAPAR MAPS DERIVED FROM MERIS IMAGE FOR a) grass, b)Arable land, c) 

Coniferous forest, d)Deciduous forest, e) Natural vegetation 
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4.5.2. Validation of MERIS FAPAR Using FAPAR Estimated from HyMap 

 

Similarly to LAI, a comparison was made between fAPAR values in the MERIS images 

and those in the matching HyMap image. The fAPAR values in the MERIS images were 

calculated at 300-m resolution. The fAPAR values in the HyMap image were calculated 

at 5-m resolution using the same formula as MGVI and aggregated to 300-m resolution. 

Figure 20 and 21 shows this comparison between MERIS and HyMap fAPAR images 

with matching dates (August 8 for MERIS and July 28 for HyMap composite).  

 

The range of fAPAR, derived from MERIS, across Millingerwaard is from 0.14 to 0.78  

(Table 15).  The fAPAR range in the case of the HyMap sensor is 0.02-1.19. The observed 

up to 1 value isn’t consistent with the nature of fAPAR since its measures in the range 0-1. 

The cause of this error might occur due to the applied systematic calculation of MGVI 

(formula, coefficient, etc). This error will influence the validation approach and the results 

should take this under account.  

 

Among the two main vegetation lands cover types grass had the highest mean fAPAR 

(0.50) with a standard deviation of 0.17. The arable land-dominated type had a lower mean 

value (0.43) but with a bigger standard deviation (0.15). The error of individual pixel 

fAPAR values in the MERIS image is in the range of 23–28% (see Table 16 for RMSE 

values). 
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Table 15.Summary of fAPAR statistics from MERIS and HyMap over the scene of Millingerwaard 

 

                                             Arable land                Grass 

MERIS        Mean                0.43                            0.50 

                    Std. Dev.           0.15                           0.17 

                    fAPAR range   0.14-0.68                   0.15- 0.78 

HyMap        Mean                0.77                            0.76 

                    Std. Dev.           0.28                           0.33 

                    fAPAR range    0.38-1.18                   0.02- 1.19 

 

 

 

Table 16. FAPAR correlation of MERIS with HyMap in terms coefficient of determination (R2) and root 
mean square error (RMSE) 

 

 

MERIS             R 2              RMSE 

Arable land      0.50             0.10     

Grass                0.29            0.14      

 

All fAPAR images are resampled to 300-m resolution before any statistical analysis. 
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a)                                                                    b) 

      

FIGURE20. FAPAR MAPS FOR THE AREA OF MILLINGERWAARD AS DERIVED from a) MERIS 300-m 

pixel size and b) HyMap aggregated to 300-m pixel size 
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FIGURE 21. COMPARISON OF FAPAR DERIVED FROM MERIS WITH HYMAP DERIVED FAPAR FOR THE 

SCENE OF MILLINGERWAARD RESAMPLED TO THE RESOLUTION OF 300M. a) grass, b)arable land 

 



                                                                                                                               

 63

4.6. Relationships Between VIS and Biophysical Products 

 

4.6.1. LAI –VI Relationships for the MERIS Image  

 

After correlating the values of the vegetation indices, derived from TOA radiances, TOAr 

and TOC reflectances, of the pixels with the LAI values for the Millingerwaard site, VI-

LAI relationships were built. VI derivation affected the shapes and strength of the LAI–

VI relationships. Trends were similar across the VIs. Results that gave the best fit (R2), 

with NDVI as a case study are presented in Table 17, Figures 22 and 23. For all 

derivations, a linear model gave a better fit (R2) for the LAI–VI relationship than did the 

potential. In addition TOC gave stronger VI-LAI relationships. The R2 for NDVI WITH 

TOC reflectance was higher than those of the other derivations. 

 

Table 17. The Linear model, R2  for the VIMERIS-VIHyMap Relationship using Three Derivations of 
VIMERIS  TOA radiances (TOA rad.), TOAr reflectances (TOAr refl.) and TOC reflectances(TOC refl.). 
a) Arable land, b) Grass 

 

a) 

 

VI                                            TOA rad.                                               TOAr refl.                                                                      TOC refl.           

 

NDVI                                    0.05                                                                    0.40                                                                 0.42 

MSAVI                                      0.04                                                                    0.33                                                                  0.36                                                                        

WDVI                                      0.09                                                                    0.26                                                                 0.34                                                         

 PVI                                         0.09                                                                    0.25                                                                  0.33                                                        

GEMI                                     0.13                                                                    0.28                                                                   0.23                            

MTCI                                           -                                                                         -                                                                      0.15                                                                            
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b) 

 

VI                                            TOA rad.                                         TOAr refl.                                                                      TOC refl.           

 

NDVI                                     0.01                                                            0.28                                                             0. 29 

MSAVI                                       0.01                                                           0.22                                                              0.23   

WDVI                                     0.02                                                            0.12                                                              0.22                                              

PVI                                         0.02                                                             0.11                                                             0.21                                      

GEMI                                0.03                                                             0.25                                                               0.21                                                                     

MTCI                                         -                                                                      -                                                                 0.28                                                                                        

 

Where y is the SVI and x is the LAI. The parameters of the equations a and b corresponds 

to: 

Linear: y=ax+b 

Potential: y= a x
b
 

 

These models were used in several studies (Holben et al. 1980, Chen and Cihlar 1996, 

Fassnacht et al. 1997). The potential model was used due to the asymptotic nature that the 

LAI–VIs may present (Spanner et al.1990, Nemani et al. 1993, Turner et al. 1999).  

 

A similar general pattern in the relationship of LAI to the TOC derived SVI can be 

observed for all the VIs and for both arable land and grass pixels of Millingerwaard 

(Figures 22 and 23 and Appendix 11 and 12). For both arable land and grass the VI 

initially increased at low LAIs, continued to increase at intermediate values, and peaked 

at the highest LAIs.  
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FIGURE 22. EFFECTS OF DIFFERENT STAGES OF MERIS PROCESSING ON THE LAI–NDVI RELATIONSHIP 

FOR THE ARABLE LAND: a) TOA radiance, b) TOAr reflectance, c) TOC reflectance. See 

Table 17 for the model R2 . 
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FIGURE 23. EFFECTS OF DIFFERENT STAGES OF MERIS PROCESSING ON THE LAI–NDVI RELATIONSHIP 

FOR THE GRASS LAND: a) TOA radiance, b) TOAr reflectance, c) TOC reflectance. See Table 

17  for the model R2 in each case. 

 

Figures 24 (a, b) shows the relationship between LAI and surface reflectance for 

individual bands [RED (Band 8) and NIR (Band 13)]. 
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a) b) 

 

FIGURE 24. RELATIONSHIP ACROSS ALL POINTS FOR LAI AND TOC REFLECTANCE: a) red (MERIS-8), 

b) near-infrared (MERIS-13). 

 

R2 values at the Table 18 do not reveal strong relationships between NIR-LAI or RED-

LAI, although red influence is stronger comparable to the NIR. 

Table 18. The Linear model and R2 for the REDMERIS-LAI MERIS and NIRMERIS-LAI MERIS relationship for 
arable land and grass. RED and NIR corresponds to the MERIS bands 8 and 13, respectively 

 

Y                                            Model                                                              R2
                                                                                    

RED (arable)                                  -0.01x +0.07                                                      0.27                                                                                            

RED (grass)                                  -0.005x +0.05                                                      0.11                                                                                           

NIR (arable)                                  0.03x +0.21                                                      0.16                                                                                            

NIR (grass)                                    0.02x +0.22                                                      0.06                                                                                            

 

4.6.2. VI-FAPAR Relationships for the MERIS Image 

 

After correlating the values of the vegetation indices, derived from TOA radiances, TOAr 

and TOC reflectances, of the pixels with the fAPAR values for the Millingerwaard site, 

VI-fAPAR relationships were also built. Results that gave the best fit (R2), with MSAVI 

as a case study are presented in Table 19 and appendix 13 and 14. For the most of the 
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derivations, the potential model gave a better fit (R2) for the fAPAR–VI relationship than 

did the linear. In addition TOC gave stronger VI-fAPAR relationships. The R2 for 

MSAVI derived from TOC reflectance was higher than those of the other derivations. 

 

Table 19. The best model fit, in terms of R2 for the VIMERIS-MGVI Relationship using Three Derivations 
of VIMERIS TOA radiances (TOA rad.), TOAr reflectances (TOAr refl.) and TOC reflectances (TOC 
refl.). a)Arable land b)Grass 

 

a) arable 

 

VI                                            TOA rad.                                               TOAr refl.                                                                      TOC refl.           

 

MSAVI                                  0.172                                                               0.96                                                            0.985                                                   

GEMI                                      0.382                                                              0.885                                                           0.939                                                                            

 WDVI                                    0.367                                                               0.897                                                          0.937                                                         

NDVI                                           0.170                                                 0.776                                                          0.906                                                                        

PVI                                            0.358                                                              0.897                                                          0.941                                                        

MTCI                                                 -                                                                       -                                                            0.816                                                                           

 

b) grass 

 

VI                                            TOA rad.                                               TOAr refl.                                                                      TOC refl.           

 

MSAVI                                      0.223                                                              0.956                                                         0.989                                                   

GEMI                                         0.41                                                                0.935                                                          0.984                                                                            

WDVI                                          0.352                                                              0.945                                                          0.985                                                          

NDVI                                         0.219                                                  0.78                                                         0.906                                                                        

PVI                                              0.362                                                               0.943                                                          0.985                                                         

MTCI                                            -                                                                          -                                                              0.64                                                                           
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Where y is the SVI and x is the fAPAR. The parameters of the equations a and b 

corresponds to: 

 

Linear: y=ax+b 

Potential: y= a x
b
 

 

The near linear relationship between VIs and fAPAR has been introduced by a lot of 

researches (Choudhury 1987, Sellers 1987). Field measurements showed both linear 

(Wiegand et al., 1991; Daughtry et al., 1992) and non linear relationships (Wiegand et 

al.1991, 1992, Ridao et al. 1998). 

 

A similar general pattern in the relationship of fAPAR to the TOC derived VI can be 

observed for all the VIs and for both arable land and grass pixels of Millingerwaard 

(Appendix 13, 14). For both arable land and grass the VI initially increased at low LAIs, 

continued to increase at intermediate values, and peaked at the highest fAPARs 

                                                                      

The dynamic range for NIR across all plots (Figure 27) had generally increasing values as 

fAPAR increased. The variation in NIR was the dominant factor contributing to the 

changes in fAPARs, for both the vegetation types, over the whole range of fAPARs. The 

dynamic range for NIR across the grass and arable plots was from 14% to 41% with 

generally increasing values as LAI increased. The range for RED was from 5% to 12%.  
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a)                                                                        b) 

 

 

FIGURE 27. RELATIONSHIP ACROSS ALL POINTS FOR MGVI AND TOC REFLECTANCE: A) RED, B) NEAR-
INFRARED. 

 

R2 values given in the Table 20, shows a strong relationship between NIR-fAPAR and a 

weak for RED-fAPAR. 

Table 20. The Linear model, R2 for the REDMERIS-MGVI  and NIRMERIS-MGVI relationship for arable 
land and grass. RED and NIR corresponds to the MERIS bands 8 and 13, respectively  

Y                                            Model                                                              R2 

 

RED (arable)                                - 0.05x +0.10                                                       0.16                                                                                            

RED (grass)                                  -0.02x +0.08                                                      0.09                                                                                           

NIR (arable)                                 0.48 x0.54
                                                      0.78                                                                                            

NIR (grass)                                    0.46 x0.63
                                                      0.93                                                                                            
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5. DISCUSSION  

 

5.1. Image Corrections 

 

The geometric registration that was applied for the geometric correction of the two 

MERIS images showed that have a shift of less than a pixel compared to the LGN-5 

(Table 8). All in all this error appeared to be systematic for both MERIS images. This 

shift error could be explained by the geolocation inaccuracy during the tie point location 

in MERIS Level 1 as quoted by the Product Control Facility of ESRIN (Goryl and 

Saunier 2004). Another element that has to be taken into account is that the resampling of 

the original LGN-5 dataset with 30m pixel size to the aggregated one with a 300m pixel 

size also had a geometric inaccuracy of less than a pixel. 

 

In the case of the aggregated 300m VI images derived from HyMap image of the 

Millingerwaard area, there was also a shift of less than a pixel (Table 9). A possible 

explanation is the resampling of the original HyMap with 5-m pixel size to the 

aggregated 300m.  

 

5.2 Effects of the Atmospheric Correction in the Spectral Profiles and Derivation of 

VI for the Different Vegetation Biomes in the Netherlands 

 

5.2.1. Spectral Profiles 

 

The spectral signatures for the MERIS TOA radiances, TOAr reflectances and TOC 

reflectances show clear overlap between the land cover types. Grassland and arable land 

showed a clear vegetation spectrum with high reflectance in the near infrared (NIR). 

Coniferous forest and natural vegetation had a similar spectrum over the MERIS 
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wavelengths but their reflectance in the NIR was much lower than the grass and arable 

land ones. An intermediate spectral behaviour was showed by the spectra of deciduous 

forest. Both in red and more evidently in NIR part of the spectrum, deciduous forest had a 

clearly distinguished profile compared to the ones of grass, arable land, coniferous forest 

and natural vegetation.  

 

Comparing the results from the spectral profiles of TOAr reflectances and TOC 

reflectances, we conclude that the atmospheric correction at the top of canopy level cause 

a decrease of reflectance in the red bands and an increase in the NIR bands. This effect 

occurs for all the vegetation land cover types. 

 

The spectral profiles also showed the high degree of correlation for the visible (400 – 700 

nm) and NIR (750 – 900 nm) wavelength bands of MERIS (L1b-L2) spectrum. The only 

exception was band 9 (708nm and 705nm for L1b and L2 respectively), designed for the 

red-edge region, witch illustrates a moderate correlation with visible and NIR bands. 

Clevers et al. (2004) calculated principal component analysis for a MERIS image and 

showed that most of the information (99.71%) was captured by the first two components 

meaning the red and NIR. The third component exhibited the contrast between band 9 

and other bands, however it contains only 0.16% of the variance of the dataset. Hence, 

most of the information from a MERIS image could be comprised in two bands: one in 

the red (TOA radiance or TOAr reflectance or TOC reflectance) and one in the NIR 

(TOA radiance or TOAr reflectance or TOC reflectance). 

 

5.2.2. Vegetation Indices Derivation 

 

Vegetation indices typically capture the absorption contrast across the 650-850 nm 

wavelength intervals through combinations of RED and NIR reflectance. They are 

measures of chlorophyll abundance and energy absorption (Myneni et al. 1995). Figure 9 

demonstrates the distribution of WDVI, values derived from MERIS TOA radiance 
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TOAr reflectances and TOC reflectances data. In general, grass have the highest mean 

WDVI values, around 52.15, 0.26 and  0.29 for TOA Radiances, TOAr Reflectances and 

TOC reflectances respectively, followed by arable land, around 47.49, 0.25, 0.278 (Table 

12). Natural vegetation and coniferous forest have similar WDVI distributions and their 

mean and Standard deviation of WDVI values are similar. It would be difficult to 

distinguish natural vegetation from coniferous forest using only WDVI. 

 

The vegetation indices have been sorted into three categories according to the effects that 

they are able to address: intrincic vegetation indices (NDVI, MSAVI), soil–line -related 

vegetation indices (WDVI, PVI) and atmospherically resistant indices (GEMI). Analysis 

of their differences in concept and contain information revealed a close correlation for 

WDVI and PVI and MSAVI (Figure 10). All the scatterplots of NDVI showed that all the 

VI had differences individually in concept and contain different information with NDVI. 

A conclusion extracted from these comparisons is that WDVI and PVI have a high 

mutual correlation. Hence, they will not differ significally in their relationships with 

biophysical products (LAI, fAPAR) or the WDVI and PVI derived from HyMap.  

 

In addition investigation of the TOA radiance, TOAr reflectance and TOC reflectance 

spectral vegetation indices mutual relationship revealed the influence of the atmospheric 

correction (Figure 11, Appendices 4, 5, 6 and 7). A similar general pattern, a high mutual 

dependency, in the scatterplot of TOAr Reflectances and TOC Reflectances was observed 

for all the VIs. Contrary to this, a low dependency appeared, in the scatterplot of TOA 

radiance with TOAr Reflectances and TOC Reflectances for all the VIs. Earlier studies 

(Myneni and Asrart 1994), that used vegetation/atmosphere radiative transfer method 

have found that relationship between TOA VI and TOC VI  is influenced by the soil 

reflectance, solar zenith angle, and aerosol optical depth. Both WDVI and MSAVI are 

subject to atmospheric effects. GEMI can compensate for atmospheric and illumination 

conditions (Pinty and Verstraete 1991). Other factors, such as leaf orientation, leaf optical 

properties at visible wavelengths, might also introduced variability into the VITOA – 

VITOC relationships, but these influences could not be resolved in this study.  
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5.3. Comparison of the Vegetation Indices derived from MERIS with the ones of 

HyMap   

 

The improvement in R2 for the VIMERIS–VIHyMap relationship across the vegetation land 

cover types when using TOC reflectance compared to TOA radiance or TOAr reflectance 

indicates that the image processing tends to reduce noise in the relationship (Table 14 and 

15, Figure 12 and 13). The amount of data scatter in the plots varies among the different 

VI and the different vegetation biomes (arable land and grass) that occur in the 

Millingerwaard scene. The R2 values fall in the range from 0.07 to 0.56. The larger pixel 

size in MERIS imagery and possible atmospheric influences not completely removed by 

the image processing may constrain the strong VI–VI correlation. In theory one expects 

to fit a 1:1 linear relationship through the data, however the best fit is obtained adding an 

offset of 0.15. The offset is thought to be the result of a) errors in georegistration of these 

two images, b) averaging effect imposed by the spatial aggregation of Hymap and the 

simulated MERIS data from airborne HyMap data, c) the effect of surface heterogeneity 

and mixed pixels, d) the difference in atmospheric corrections for the two sensors and e) 

the difference in image acquisition dates. The best correlation is found for the MSAVI 

derived from TOC (R2=0.56) for the arable land-dominated biome.  

 

5.4. Derivation of MERIS LAI and Validation Using LAI Estimated from HyMap 

 

The range of LAIs across Millingerwaard vegetation types was from 0.16 to 3.19 and 0.04-

3.43 for MERIS and HyMap respectively. In both maps the water bodies, urban areas, and 

generally the non vegetation land cover patterns have been removed (masked out).  Despite 

this masking, the two vegetation types that dominate the site area still include (aggregation 

had occurred by the use of majority fraction) fractions of non vegetation patterns that 

corresponds to small LAI values. Among the two main vegetation land cover types grass 

had the highest LAI values.  
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The scatter observed in Figure 16, arises from several sources, including: a) errors in 

georegistration of these two images, b) averaging effect imposed by the spatial 

aggregation of Hymap and the simulated MERIS data from airborne HyMap data. c) the 

effect of surface heterogeneity and mixed pixels, e) different image acquisition dates and 

d) the difference in method of LAI retrieval for the two images. In particular the LAI 

algorithm for MERIS (TOA__VEG) is not designed to retrieve a deterministic LAI site-

specific value, but instead generates a mean LAI value within a specified level of input 

satellite data and model uncertainties. In addition the algorithm isn’t biome specific 

(Baret 2006).   LAI from the HyMap was derived from a site-specific model. 

 

A good agreement between HyMap and MERIS is observed for the leaf area index. The  

error of individual pixel LAI values in the MERIS image is in the range of 35–39%, 

taken as the ratio of the RMSE to the average LAI of the scene. In a previous study 

Gobron (2006) has found a good agreement between the MERIS LAI product and the one 

of MODIS (RMSE = 0.74).  

 

5.5. Derivation of MERIS FAPAR and Validation Using fAPAR Estimated from 

HyMap 

 

The range of fAPAR across Millingerwaard vegetation types was from 0.14 to 0.78 and 

0.02-1.19 for MERIS and HyMap respectively. Similarly to the LAI maps, the non 

vegetation land cover patterns have been removed but the two vegetation types that 

dominate the site still include fractions of non vegetation patterns that correspond to 

small fAPAR values. 

 

The scatter observed arises from: (1) errors in georegistration of these two images, (2) 

averaging effect imposed by the spatial aggregation of Hymap and the simulated MERIS 

data from airborne HyMap data and (3) the effect of surface heterogeneity and mixed 

pixels.  
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The best correlation (R2=0.50) is found for arable land. The error of individual pixel 

fAPAR values in the MERIS image is in the range of 23–28%. 

 

5.6. Relationships between VIs and biophysical products 

 

5.6.1. VIs and LAI Relationships 

 

The significant changes in the VI values observed at different stages of image processing 

suggest the importance of converting to top of canopy reflectances whenever VI are 

compared across different biomes. Goward et al. (1991) suggest that whenever VIs are 

compared across sites ground reflectance should be used. In deriving VIs from TOC 

reflectances, an increase has been applied to NIR primarily to correct for water vapour 

absorption (see WWW 6 ESA-ENVISAT), but a decrease has been applied to red to 

remove the effect of scattering by the atmosphere. Thus, significant differences between 

VI-TOA radiances and VI-TOC reflectances could be expected depending on 

atmospheric humidity and haziness. 

 

The improvement in R2 for the LAI–VI relationship across the vegetation land cover 

types when using TOC reflectance compared to TOA radiance or TOAr reflectance 

indicates that the image processing tends to reduce noise in the relationship. Other studies 

of LAI and remotely sensed VIs have likewise found a better fit in LAI–VI relationships 

after atmospheric correction of TOA data (Peterson et al. 1987, Spanner et al. 1990). 

 

The LAI–RED relationship was not found to be strong correlated in any case. The TOC 

reflectance for the vegetation types where LAI measurements were taken ranged from 

0.02(TOC refl.), (LAI=2.2, grass) to 0.09(TOC refl), (LAI=1.2, arable land). The relation 

was inverse linear with a low R2 (Figure 22), due to the absorption of red reflectance by 
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pigments. The red spectral response of grass tends to be lower than that for arable land. It 

is known that canopy structure (LAI, plant height, leaf size, and angle, etc.) affects the 

target spectral response (Asrar et al. 1985, Bouman 1992, Myneni et al. 1995, 1997).  The 

relation LAI-RED varies among the authors. Peterson et al. (1987) found high correlation 

(r2~0.89, potential model) in coniferous forest; Holben et al. (1980) found R2 ~0.57 for 

soybean (linear model); and Epiphanio et al. (1997) found R2 ~0.29 for wheat (linear 

model). A saturation of RED in relation to LAI was not observed in this study. 

 

 The LAI–NIR TOC reflectance values ranged from 0.11, (LAI=2.1, grass) to 0.39, 

(LAI=3, arable land). A high correlation for the LAI–NIR relationship was not observed 

(Figure 22). Correlations appeared more weak compared to the ones of LAI-red. The NIR 

spectral response for both vegetation types tends to be similar in range. The observed low 

correlation for the LAI–NIR relationship was also observed in other studies, i.e. Peterson 

et al. (1987) with r2~0.04 in coniferous forest, and Nemani et al. (1993) with r2~0.40 

also in forest, both using radiance data. 

 

The observed increase in each VI with increasing LAI at low to high LAIs (around 3) is 

consistent with earlier observations from a variety of ecosystems and predictions from 

canopy reflectance models (Huemmrich and Goward 1997, Gobron et al. 1997, Myneni 

et al. 1997). In addition earlier studies have also observed and described the phenomenon 

of indices saturation when they approach high values of LAI. In particular. Chen and 

Cihlar (1996) suggested that saturation in VIs for crops and forests would occur 

approximately for LAI values of 2.5 and 5.0, respectively. Turner et al. (1999) reported 

that saturation occurred for LAI values between 4.0 and 6.0, for temperate vegetation. 

The highest LAI value estimated in this study was around 3 and saturation in the LAI–VI 

relationships was not observed.   

 

The sensitivity of vegetation indices to canopy geometry (leaf angle distribution function, 

row orientation, and spacing) has been shown by Aase et al. (1984) and Jackson (1986) 
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among others. In addition, vegetation indices are also sensitive to soil optical properties 

as shown by Huete and Jackson (1987). They are also affected by the sun position (Asrar 

et al. 1985b, Huete, 1987b) and the cloudiness (Holben et al., 1986). These results 

suggest caution in the established relations between vegetation indices and LAI if the 

effects of these different factors are not known. 

 

 Assuming that the image pre-processing has minimized effects of differing Sun–surface–

sensor geometry and that LAI estimates are accurate, the observed variation around the 

best fit LAI– VI relationships over this LAI range are most likely associated with real 

differences —largely independent of LAI—among the vegetation types in the optical 

properties of the foliage, canopy, and background. Clevers and Verhoef (1993) used the 

SAIL canopy and PROSPECT leaf models to show how the main variable that influences 

vegetation indices is the leaf inclination angle distribution. The more planophile a canopy 

the greater the vegetation index value for a given LAI. The absence of vegetation free 

pixels in our study area didn’t give us information for describing the influence of 

background reflectance. Other factors, such as differences in chlorophyll concentration 

per unit leaf area, differences in leaf clumping, and the relative contribution of branches 

to canopy reflectance, undoubtedly also introduced variability into the LAI–VITOC 

relationships, but these influences could not be resolved in this study.  

 

It can be observed that NDVI values increase faster for lower LAI values (Figures 20 and 

21), tending towards stabilization for higher values. Such behaviour was also observed in 

other studies (Holben et al. 1980 and Turner et al.1999). In this study, the variance was 

explained better with a linear model for the relationships LAI–VITOC. 

 

At the grassland site, there was little relationship of LAI to the VI in this study. From the 

indices that were involved in our study NDVI gave the better fit (R2 =0.29). Strong linear 

relationships of LAI–VI in grasslands have been reported under well-controlled 
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conditions with hand-held or boom mounted sensors (Asrar et al., 1984; Middleton, 

1991). 

 

Generally, at the arable land of Millingerwaard site, better relations of LAI-VI were 

derived. NDVI from TOC reflectance was best related to LAI resulting in a R2=0.42.  

 

5.6.2. VIs and fAPAR Relationships 

 

The changes in the VI values observed at different stages of image processing suggest, as 

in the case of LAI, the importance of converting to top of canopy reflectances whenever 

VI derived from MERIS are compared with fAPAR across different biomes.  

 

In addition, the improvement in R2 for the fAPAR–VI relationship across the vegetation 

land cover types when using TOC reflectance compared to TOA radiance or TOAr 

reflectance indicates that the image processing tends to reduce noise in the relationship. 

  

The fAPAR–RED relationship was not found to be strongly correlated in any case 

(Figure 25). The TOC reflectance for the vegetation types where fAPAR estimations 

were taken ranged from 0.05 (fAPAR=0.58, grass) to 0.12 (fAPAR=0.3, arable land). 

The relation was inverse linear with a low R2, due to the absorption of red reflectance by 

pigments. The red spectral response of grass tends to be lower than those for arable land. 

It is known that canopy structure (LAI, plant height, leaf size, and angle, etc.) affects the 

target spectral response (Asrar et al. 1985, Bouman 1992, Myneni et al. 1995, 1997). A 

saturation of RED in relation to LAI was not observed in this study. 

 

Figure 25 shows the LAI–NIR. The TOC reflectance values ranged from 0.14, 

(fAPAR=0.15, grass) to 0.41, (LAI=3, grass). A high correlation to for the fAPAR–NIR 

relationship was observed (R2=0, 78 and 0, 93 for arable land and grass respectively).  
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Previous studies have documented differential sensitivity to surface biophysical 

properties among the VIs (Epiphanio and Huete, 1995; Chen and Cihlar, 1996, White et 

al., 1997). For the observations in this study, increases in NIR reflectance with increasing 

fAPAR were more significant than were decreases in red reflectance. Thus the MSAVI, 

WDVI, PVI (with NIR band in the numerator) were more sensitive than NDVI and 

GEMI (with NIR band in the denominator) to increasing fAPAR. A fAPAR increase 

from 0.14 to 0.8 resulted in an increase of the MSAVI, WDVI, and PVI around 80% 

compared to a 50% increase in the NDVI and a 52% increase for GEMI.  

 

At the grassland site, there was a weak relationship of fAPAR with the VITOC in this 

study. From the indices that were involved in our study MGVI gave the better fit.  Arable 

land of the Millingerwaard site had also strong relations of fAPAR-VI. MSAVI from 

TOC reflectance was best related to fAPAR resulting in a R2 =0.99 (Table 24).  
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6. CONCLUSIONS AND RECOMMENDATIONS  

 

6.1. Conclusions 

 

The present study shows that the radiometric processing applied to the image data of 

MERIS has influence to the derivation of VI for the vegetation land cover types of the 

Netherlands. In particular the investigation of the TOA radiance, TOAr reflectance and 

TOC reflectance spectral vegetation indices mutual relationship revealed the influence of 

the atmospheric correction. A high mutual correlation, for the TOAr Reflectances and 

TOC Reflectances was observed for all the VIs. Contrary to this high correlation, a lower 

correlation appeared, in the scatterplot of TOA radiance with TOAr Reflectances and 

TOC Reflectances for all the VIs and for all the vegetation biomes. In addition the 

improvement in R2 for the VIMERIS–VIHyMap relationship across the vegetation land cover 

types when using TOC reflectance compared to TOA radiance or TOAr reflectance 

indicates the significancy of the image processing in reducing the noise in the 

relationship.  The best correlation is found for the MSAVI derived from TOC (R2 =0.56) 

for the arable land-dominated biome. 

 

The TOA_VEG algorithm (Baret et al. 2006) designed for MERIS and the MGVI as a 

MERIS L2 product offer an opportunity for producing LAI and fAPAR surfaces. 

Comparisons of LAI and fAPAR values from these coarse-resolution images with those 

aggregated from HyMap 5-m pixels suggest that it is feasible to derive LAI and fAPAR 

using coarse-resolution measurements, but errors due to sensor characteristics and image 

processing were still considerable. The error in LAI and fAPAR in individual MERIS 

pixels is found to be about 35% to 39% and 23%-28%, respectively.  

 

Since the level of image processing significantly affects VIs, care must be taken to 

account for this factor in comparing LAI–VI-fAPAR studies across vegetation biomes. 

Observations in the present study suggest the importance of converting to top of canopy 
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reflectances whenever VIs are estimating for different vegetation land cover types.  

Image processing seems to reduce noise in the relationship of VI with biophysical 

variables such as LAI, fAPAR. The top of the canopy reflectance was found produces 

stronger LAI–VI, VI-fAPAR relationships for both grass-dominated and arable land-

dominated vegetation types of Millingerwaard than the VIs based on top of atmosphere 

radiance, or top of aerosol reflectance. Thus, atmospheric correction is desirable in the 

formulation of LAI–VI and fAPAR-VI algorithms based on data derived from MERIS 

from the site of Millingerwaard.. Across the main vegetation types that occur in 

Millingerwaard, the VIs increase with increasing LAI and fAPAR at low to high values.  

 

The impact of the NIR and red spectral band on the relations of VIs with biophysical 

products has been examined. NIR showed a significant relationship (R2 ~0.93, 0.78 for 

grass and arable land, respectively) with fAPAR in contrast to the red (R2 ~0.16, 0.09 for 

grass and arable land, respectively). Thus, NIR has more influence on VIs to explain the 

fAPAR.  MSAVI, WDVI, PVI showed a better fit, since they are more sensitive to the 

NIR. NIR and red did not present a significant relationship with LAI data. 

 

6.2 Recommendations 

 

Based on the present study, the following points are mentioned to be considered for 

future studies. 

 

Estimation of VIs from the different processing levels of the MERIS data should be 

further explored by including the VIs derived from digital numbers and TOA reflectance. 

These results would provide an additional level of comparison between the VIs and the 

biophysical products.  

 

The current analysis characterizes the trends between the MERIS products (VI, LAI, 

fAPAR) and explores the relationships with HyMap derived products in terms of what we 
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understand to be happening at the pixel level. The comparison between these two fields 

provides an analysis of the MERIS VI, LAI, fAPAR products. However, this pixel by 

pixel comparison has some disadvantages. First, the actual spatial location of the 

corresponding pixels in the two sensor maps may not match well because of geolocation 

uncertainties and pixel-shift errors due to point spread function. Second, the LAI 

algorithm is not designed to retrieve a deterministic LAI value, but instead generates a 

mean LAI value from all possible solutions within a specified level of input satellite data 

and model uncertainties. Therefore, a future study could perform a comparison at the 

multi-pixel (patch) scale, where the derived products might be statistically more stable.  
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APPENDIX 

Appendix 1. Full resolution product structure 

MPH 

Level 1b - SPH (includes DSDs) 

Level 1b Summary Quality ADS (SQ ADS) 

Level 1b GADS Scaling Factors and General Info 

Level 1b ADS Tie Points Location & Aux. Data 

Level 1b MDS (1) TOA Radiance 

Level 1b MDS (2) TOA Radiance 

Level 1b MDS (3) TOA Radiance 

Level 1b MDS (4) TOA Radiance 

Level 1b MDS (5) TOA Radiance 

Level 1b MDS (6) TOA Radiance 

Level 1b MDS (7) TOA Radiance 

Level 1b MDS (8) TOA Radiance 

Level 1b MDS (9) TOA Radiance 

Level 1b MDS (10) TOA Radiance 

Level 1b MDS (11) TOA Radiance 

Level 1b MDS (12) TOA Radiance 

Level 1b MDS (13) TOA Radiance 

Level 1b MDS (14) TOA Radiance 

Level 1b MDS (15) TOA Radiance 
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MPH 

Level 1b MDS (16) Flags & Spectral Shift Index 

 

 

Specific Product Header (SPH): The SPH is in ASCII format and contains information 

which describes the specific product as a whole. The SPH also contains Data Set 

Descriptors (DSDs).  

Data Set Descriptor (DSD): Data Set Descriptors are used to describe an attached Data 

Set or to provide reference to external files relevant to the current product (e.g. auxiliary 

data used in processing but not included with the product). There must be one DSD per 

Data Set or per reference to an external file. 

ADS: Annotation Data Set  

SQADS: Summary Quality Annotation Data Set 

GADS: Global Annotation DataSet 

Measurement Data Set (MDS): a defined data entity within a product. 

Main Product Header (MPH): the main description record at the start of every product, 

it follows a generic format.  
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Appendix 2. Main characteristics of the MERIS L1b dataset that was used in this study 

 

Product name _FR__1PNEPA20040808_104153_000000982029_00180_12759_0162.N1 

Product type MER_FR__1P 

 

Product description MERIS Full Resolution Geolocated and Calibrated TOA Radiance 

Product format ENVISAT 

 

Product scene width 2241 pixels 

 

Product scene height 2241 pixels 

 

File size           ~158 MB 
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Appendix 3. Main characteristics of the MERIS L2 dataset that was used in this study. 

 

Product name MER_FR__2PNUPA20040808_104153_000000982029_00180_12759_0147.N1 

Product type MER_FR__2P 

 

Product description MERIS Full Resolution Geophysical Product 

Product format ENVISAT 

 

Product scene width 2241 pixels 

 

Product scene height 2241 pixels 

 

File size ~177 MB 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                               

 105

Appendix 4. Spectral signatures for land cover types derived from MERIS level 1b TOA 

Radiances 
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Appendix 5. Spectral signatures for land cover types derived from MERIS level 2 TOC 

reflectances 
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Appendix 6. Correlation matrix for the L2 MERIS image of August 8th, 2004 

 

Band 1 2 3 4 5 6 7 8 9 10 12 13 14 Rec. 

Red 

Rec. 

NIR 

[nm] 412 442 490 510 560 620 665 681 705 754 775 865 890   

1 1               

2 1 1              

3 0.97 0.98 1             

4 0.96 0.98 1 1            

5 0.92 0.94 0.95 0.97 1           

6 0.93 0.95 0.97 0.98 0.97 1          

7 0.92 0.94 0.97 0.97 0.94 1 1         

8 0.92 0.94 0.97 0.97 0.94 0.98 1 1        

9 0.70 0.72 0.75 0.78 0.88 0.82 0.78 0.78 1       

10 -0.30 -0.30 -0.31 -0.28 -0.10 -0.27 -0.34 -0.34 0.21 1      

12 -0.32 -0.32 -0.32 -0.30 -0.13 -0.31 -0.36 -0.37 0.18 1 1     

13 -0.36 -0.36 -0.36 -0.32 -0.14 -0.32 -0.39 -0.39 0.18 0.99 1 1    

14 -0.36 -0.36 -0.36 -0.33 -0.14 -0.32 -0.39 -0.39 0.18 0.99 0.99 1 1   

Rect. 

Red 

0.83 0.87 0.90 0.91 0.89 0.94 0.95 0.95 0.78 -0.29 -0.31 -0.32 -0.32 1  

Rect. 

NIR 

-0.27 -0.28 -0.27 -0.24 -0.07 -0.25 -0.31 -0.31 0.23 0.97 0.97 0.98 0.98 -0.23 1 
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Appendix 7. Presents the scatterplots and the correlation matrix of the comparison of a) 

NDVI (TOArReflectances) - NDVI (TOC Reflectance), b) NDVI (TOA Radiances) - 

NDVI (TOC Reflectances), c) NDVI (TOA Radiances) - NDVI (TOAr Reflectances). 

Correlation matrix for the NDVI. 

a)                                                                            b) 

                   

c) 

 

 

 Correlation matrix for the NDVI 

Correlation NDVI  TOA Rad. NDVI TOAr Refl. NDVI TOC Refl. 

NDVI  TOA Rad. 1   

NDVI     TOAr Refl. 0.84 1  

NDVI   TOC Refl. 0.80 0.98 1 
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Appendix 8. Presents the scatterplots and the correlation matrix of the comparison of a) 

GEMI (TOArReflectances) - GEMI (TOC Reflectance), b) GEMI (TOA Radiances) - 

GEMI (TOC Reflectances), c) GEMI (TOA Radiances) - GEMI (TOAr Reflectances). 

a)                                                              b)   

 

c) 

 

Correlation matrix for the GEMI 

Correlation GEMI TOA Rad. GEMI TOAr Refl. GEMI I TOC Refl. 

GEMI TOA Rad. 1   

GEMI    TOAr Refl. 0.90 1  

GEMI  TOC Refl. 0.89 0.99 1 
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Appendix 9. Scatterplots of the VIMERIS-VIHyMap relationship using the derivations of 

VIMERIS from TOC reflectances (TOC refl.) for the arable land-dominated pixels of 

Millingerwaard. Lines are least squares fit to a linear model.  
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Appendix 10. Scatterplots of the VIMERIS-VIHyMap relationship using the derivations of 

VIMERIS from TOC reflectances (TOC refl.) for the arable land-dominated pixels of 

Millingerwaard..  
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Appendix 11. Effects of different stages of image processing on the LAI–VI relationship 

across all sites: TOC reflectance of arable. See Table 23. for the model and R2 in each 

case.  
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Appendix 12. Effects of different stages of image processing on the LAI–VI relationship 

across all sites: TOC reflectance of grass. See Table23. for the model and R2 in each case.  
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Appendix 13. Effects of different stages of image processing on the MGVI–VI 

relationship across all sites: TOC reflectance of arable land. See Table 25 for the model 

and R2 in each case. 
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Appendix 14. Effects of different stages of image processing on the MGVI–VI 

relationship across all sites: TOC reflectance of grass. See Table 25 for the model and R2 

in each case 
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