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ABSTRACT

Leaf area index (LAI) and the fraction of absorltbtosynthetically active radiation
(fAPAR) are both important vegetation structurati@ale for the quantitative analysis of
biophysical processes in the terrestrial ecosyshkerte context of resource management
goals, earth observation (EO) of these variablésdasmost effective means of collecting
data on a regular basis. Estimates of LAl and fAPAR required for modelling
vegetation productivity, studies of land surfacenatology, and agricultural resource
management .Relationships between LAI, fAPAR angetation indices (VI) derived
from the different processing data levels (L1b 429 of MERIS were studied for the
Netherlands. The study area consisted of five leoder classes in the Netherlands:
deciduous forest, coniferous forest, grasslandjrabvegetation and arable land. Several
variants of each VI were derived from the MERIS gmalata (L1b and L2). For each
biome, the VIs were derived from radiance fAdl), top of aerosol reflectance (\ar),
and top of canopy reflectance (dt). To test the effects of spectral data procesaind)
validate the MERIS biophysical products for the meggetation land cover classes that
occur in the Netherlands, ancillary data from thavidp sensor and the Dutch land use
database (LGN5) were used. The strength of théiaekhips between WikEris-VIHymap,
VIMERIS-LAI veris and Viveris-fAPARMERISWasS examined. Observations in the present
study suggest the importance of converting to tbpamopy reflectances whenever Vis
are estimated for different vegetation land coygres. Image processing reduces the
noise in the relationship of VI with biophysicalrigbles and the Vymap. The top of the
canopy reflectance was found to produce strongeFYA VI-fAPAR and VImeris-
ViInymap relationships for both grass-dominated and arddohel-dominated vegetation
types of the Millingerwaard test site than the Wésed on top of atmosphere radiance, or
top of aerosol reflectance. Thus, atmospheric ctae is desirable in the formulation of
LAI-VI and fAPAR-VI algorithms based on data dedvefom MERIS from the site of
Millingerwaard. Further studies should include \Brided from digital numbers and
TOA reflectance. In addition, a future study coplerform a comparison at the multi-

pixel (patch) scale, where the derived productshiriig statistically more stable.
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1. INTRODUCTION

1.1. BACKGROUND

Vegetation and land cover play a key role in teri@sbiogeochemical processes, and
changes in land cover induced by human activityehaofound implications for climate,
the functioning of ecosystems, and biogeochemicakf at regional and global scales
(Dickinson and Henderson-Sellers 1988, Lean andltMarl989). As a consequence, a
wide range of problems require reliable and aceunafiormation on global land cover,
and in particular, the distribution and properti#svegetation. Estimates of vegetation
fractional cover, leaf area index (LAIl), and absatlvadiation are required for modelling
vegetation productivity (Gower et al. 1999), stgdief land surface climatology
(Behrenfeld and Sellers 2001), and agriculturabuese management (e.g., McVicar and
Jupp 1998, Prince 1991a).

Leaf area index (LAIl), defined as the projected @a per unit of ground area (Ross
1981), is a key biophysical variable influencinghdasurface processes such as
photosynthesis, transpiration, and energy balaBomgn 1993). It is a dimensionless
index used to quantify the single-sided vegetaliaf area per unit of ground area. LAI
and the fraction of absorbed, photosyntheticallyvacradiation (fAPAR) (0.4-0.7um)
strongly control water, carbon and energy exchangesveen vegetation and the
atmosphere (Agnihothri 1996). On a global scab#h b Al and fAPAR are key variables
in many climatic models (Sellers et al. 1996, 3sllet al. 1997) and models of net
primary production (NPP) (Running et al. 1999)tHe context of resource management
goals, earth observation (EO) of these variablésdasmost effective means of collecting
data on a regular basis. On a regional scale, E®ass of LAl can provide valuable
information for hydrological modelling (Andersen &t 2002, Kite & Pietrorino 1996)
and fAPAR is a key variable in the assessment gétagion productivity (Prince 1991a



and Prince 1991b). Fractional vegetation covefijrasintroduced by Deardorff (1978),

is an important element for climate modeling.

Remotely sensed data recorded in narrow visible/iné@red wavebands can be used to
estimate foliar biochemical content at local toioegl scales (Curran 1989, Curran et al.
1997). This information can, in turn, be used taamjify, understand and manage
vegetated environments (Johnson 1999, Curran 20&hp et al. 2002). One of the
problems addressed in recent years is to relateradisons acquired from space to
biophysical surface parameters, such as the lesf smdex (LAI) and the fraction of
absorbed photosynthetically active radiation (fABARsner 1998, Hall et al. 1995). The
first global maps of LAI and fAPAR were produceadrfitr AVHRR data (Sellers et al.
1996, Myneni et al. 1997). Medium spatial resolutsatellite sensors operating in the
solar domain (400-2500 nm) offer a unique way tonitow terrestrial surfaces over
regional to global scales. Several applications aready using these data on an

operational basis with a more improved spatiadltgen (Baret et al. 2005).

Although remotely sensed data are becoming morgahle operational algorithms or
procedures to convert radiometric measurementshiajohysical variables, such as LAl
and fAPAR, are still under deveopment. There a@dammon approaches to estimating
biophysical parameters using remote sensing imadéry use of empirical relationships
between reflectance observed by sensors operatitigei spectral, directional, temporal
and spatial domain and biophysical properties efigetation is illustrated by VI (Baret
et al. 1995, Best and Harlan 1985, Curran 1983arAetral. 1985a,b, Peterson et al. 1987,
Price and Bausch 1995). Most vegetation indices)(\dre qualitatively related to the
vegetation amount (LAI, % cover,) and have beerduse an indicator of vegetation
growth (Tucker 1979, Clevers 1989 and Baret and oBuW991). Nowadays, these
techniques are increasingly being replaced by tiadidgransfer based models (Sellers et
al. 1995, Myneni et al. 1997, Shabanov et al. 2008rhoef and Bach 2003), and

progressively complemented by sophisticated metHausvn as inverse techniques



(Privette et al. 1996, Zarco-Tejada et al. 2003%t&-Etchegorry et al. 2004) and data
assimilation (Weiss et al. 2001, Olioso et al. 2002

There are two major limitations in operational o$@ modeling approach. The first one
is related to the inversion process of the modeim& models may have multiple
solutions, given a set of remote sensing measuresmamd the inversion may not always
converge (Jacquemoud 1993). This would resultnireliable estimates of biophysical
variables. The second limitation is the computatiome involved in a large number of

inversion processes, which is a major barrier wii@ng large satellite images.

A major limitation of the VI approach is the divitysof proposed equations. These
equations vary not only in mathematical form (lingaower, exponential, etc.), but also
in their empirical coefficients, depending primgrdn vegetation type. Because there is
no universal LAI-VI equation applicable to diverssgetation types, it is difficult to use
this approach with large-scale remote sensing isiaiyeother limitation of this approach
is the sensitivity of VIs to nonvegetation relatéattors such as soil background
properties (e.g., Huete 1989, Qi et al. 1993), apheric conditions (e.g., Kaufman 1989,
Vermote et al. 1990), topography (Holben and Jasti®80; Justice et al., 1981; Pinter et
al., 1987), and bidirectional nature of surfacesn&s et al. 1985, Deering 1989, Jackson
et al. 1990 Roujean et al. 1992, Burgess and Pairt887). Of these categories the VI
approach, introducing empirical relationships betground-based biophysical values
and various forms of multispectral and hyperspéateda, is the most successful and
widely used ( Pu et al 2003).

1.2. PROBLEM DESCRIPTION

The Medium Resolution Imaging Spectrometer (MERIS)e of the payloads on the
European Space Agency’'s Envisat, is radiometricaly very accurate imaging

spectrometer in space (Curran and Steele 2004adt15 programmable (2.5-20 nm



wide) wavebands in the 390-1040 nm region and taspasolution of 300 m. Because
of its fine spectral and moderate spatial resotuéind three-day repeat cycle, MERIS is a
valuable sensor for the measurement and monitooinderrestrial environments at
regional to global scales (Verstraete et al. 1989jhe standard band setting, it has five
discontinuous wavebands in red and near-infrard®)Mavelengths with band centres
at 665 nm, 681.25 nm, 708.75 nm, 753.75 nm, 760rG85 778, 865 and 885 nm.
Derived products that have been developed (Vetstraeal. 1999) include the MERIS
Global Vegetation Index (Gobron et al. 1999) an®MBRIS Normalized Difference
Vegetation Index. In addition, ESA is also consiugrthe Fraction of Absorbed
Photosynthetically Active Radiation (FAPAR) in véated areas as described by
Govaerts et al. (1999) and a red-edge index asmpied by Curran et al. (1995).

Various authors investigated NDVI from remote segsimagery with the purpose of
assessing biophysical plant canopy properties \(Peit al. 1993), establishing its
relationship to Leaf Area Index (Clevers 1988).haligh commonly used, several
drawbacks of the NDVI were found. The perpendiculegetation index (PVI;
Richardson and Wiegand 1977) was introduced to emisgde to background effects. The
index assumes that the perpendicular distance batwixels from the soil line (in the
red—near-infrared space) is linearly related tovbgetation cover. For a given soil, the
red (red) and near-infrared (NIR) reflectancesratated by the equation of the soil line
as NIR=axred+b where a is the slope and b isfilsetof the soil line. An index related
to the PVI is the Weighted Difference Vegetatiomldr (WDVI) of Clevers (1988).
Alternative indices have thus been developed useay-infrared and red bands. Pinty
and Verstraete (1991) developed the Global Enviemtal Monitoring Index (GEMI) to
compensate for atmospheric and illumination coodgi Huete (1988) introduced the
Soil Adjusted Vegetation Index (SAVI) to take irdocount the reflectance contributions
from background substrates. An alternative vegstatidex is developed by Baret et al.
(1989) and Baret and Guyot (1991): the TransforiSed Adjusted Vegetation Index
(TSAVI). This index minimizes the soil backgrounifieet (Baret et al. 1989). Finally Qi
et al. (1994) introduced the Modified Soil Adjustédgetation Index (MSAVI) and the
second Modified Soil Adjusted Vegetation Index (MA2). For MERIS, a standard
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product based on the Global Vegetation Index (MG¥Jeveloped following a physical
and mathematical model description using three MEIBANnds (Gobron et al. 1999).

For space observations in the solar spectrum,résepce of the atmosphere substantially
modifies the intrinsic contribution of the surfaimethe signal. Both gaseous absorption
and molecular or aerosol scattering reduce thdablaidownward irradiance at ground
level, as well as the reflected radiance in the ampwpath to the sensorhe ncreasing
interest in the extraction of physical parametessifremote sensing data, for comparison
of results from different sensors, obtained ovéfetknt locations or at different times of

the year require the need reliable and accurateveeg of surface reflectance.

Most atmospheric correction schemes are basedwpiified formulations of the signal

in order to ease inversion of Top of Atmosphere AJ@adiances. Generally, gaseous
absorption is separated from the rest. This caoeatequires integrated values of gas
contents in the atmospheric column (mainly wategpoust and ozone). The Rayleigh
correction requires knowledge of barometric presstihe correction for aerosols is more
problematic, first because of their variable natamd abundance, and second because of
their weak contribution to TOA radiances. Of coures contribution is emphasized
over dark surfaces, and the use of so-called DanksP Vegetation (DDV) is generally
proposed (see, for the AVHRR, Holben et al. (1992))

Generally, in this study, near-infrared and red doafi were used to investigate the
effects of the radiometric processing applied ® MERIS image data on the VIs. The
properties of VI depending on whether VI is definaderms of top of the atmosphere
radiances (MERIS Level 1b product), top of the aelaeflectances, or top of canopy
reflectances(MERIS Level 2 product) was examindaeif performance at the spatial
scale of observation of MERIS, was investigatedeimns of their comparisons with VI

derived from the HyMap sensor. Furthermore, thee¥dtionships with LAl and fAPAR



derived from MERIS and the analysis of the theitualrelations for the vegetation land

cover types that occur in the Netherlands wasalsmope of our research.

1.3. RESEARCH OBJECTIVES

General objective
» Analysis of the effects of radiometric and spatiahracteristics of MERIS on
vegetation indices and on the estimation(and ttedation with the LAI and
fAPAR for the Netherlands) of LAl and fAPAR for tiNetherlands

Specific objective

» A comparison of the different vegetation indices\d from the different
radiometric MERIS data types (Top of AtmosphereiRacks, Top of
Atmosphere Rectified Reflectances and Top of Carigllectances) for the
vegetation land cover types of the Netherlands

» Accuracy assessment of the biophysical paramdiéis FAPAR) derived
from MERIS for the site of Millingerwaard,

» Specify the effects of the different radiometric RIS data types and of the
different vegetation indices to their relationshijh the biophysical products
(LAI, fAPAR) obtained for the different land covelasses.

Research questions
» What are the effects of atmospheric correctiot&derivation of the

vegetation indices for the different land covessks in the Netherlands?

» What is the accuracy of LAI, fAPAR derived from MERwhen we validate
these products using the HyMap derived LAl and f&Pgroducts for the site

of Millingerwaad?



» Do the VI values observed at different stages @genprocessing suggest
differential sensitivity to surface biophysical pesties (LAI, fAPAR) across

different vegetation land cover types?

1.4. STRUCTURE OF THE REPORT

Chapter one of this report comprises an introdacebout the general background,
overview of the context, definition of the topicdathe importance of leaf area index and
fAPAR as a key biophysical parameter. Descriptiad definition of the problem is also
main part of this chapter. The objectives of thiglg and research questions are covered
in this chapter, as well. Chapter two deals witredew of the relevant literature and
discusses similar studies conducted in the fieldhaf study area. The third chapter
describes the materials that were used and theodetthat were followed in order to
achieve the research objectives. The results sfstiidy are presented in chapter four and
discussed in chapter five. Conclusion and recommusms are given in the sixth

chapter



2.LITERATURE REVIEW

2.1. Leaf Area Index: Definition and Common Method of Determination

The Leaf Area Index (LAI) may be described most@inas:

LAl = s/G

where s is the functional (green) leaf area of ¢haopy standing on ground area G
(terminology after Beadle 1993). Because both s@rate normally measured as areas

(m?), LAl is dimensionless, although it is sometimessented in units of fim?.

Care should be taken when making comparisons batwAé determinations that may
not necessarily use the same methodology or eweraime definition of LAl (Chen and
Black 1992, Beadle 1993).

LAl is the major factor determining the amount ight intercepted by the plant canopy,
but it varies greatly with species and canopy s$tmec Under optimum conditions for
growth, its value for a closed canopy is relatedh ability of the lower leaves in the
canopy to intercept sufficient light to maintairpasitive carbon balance (regardless of
whether they are of the same stem, the same speciesmpeting/coexisting species.
Table 1 presents some LAI maxima that have beearebd from earlier studies. Many
types of vegetation react to stress in the enviemtnby producing canopies with lower
LAl Thus the LAI of a particular plot compared twittypical values for such a
biome/land cover type may provide an indicator toésses, such as drought, flooding,

nutrient deficiency, excessive heat or cold, ad agelisease, phenology, etc.



Table 1. LAl maxima observed from earlier studies

Vegetation type LAl maxima

Coniferous caopies| >15

Deciduous forests | 6-8

Annual crops 6-7

It is important to note that LAl measured for laggemple plots or satellite image pixels,
comprises the average of a range of point valuéf\bfoften including different species

and canopy types, as well as bare ground. In genkesefore, such area-weighted LAI
values may be expected to display lower maximurmesbknd lower variance than point

measurements.

According to Barclay (1998), there are at lease faommon measures of LAI, which
partly reflect the different purposes for which LAd determined (determination of
vegetation growth, estimation of potential physgibal activity, study of light

attenuation under plant canopies, etc.). The foastroommon of these are defined.

Definition (1): Total LAI is based on the total sigte area of the leaves, taking leaf shape

into account, per unit area of horizontal land etbe canopy.

Definition (2): One-sided LAI is usually defined aalf the total LAI, even if the two

sides of the leaves are not symmetrical.



Definition (3): Horizontally projected LAl is ther@a of “shadow” that would be cast by
each leaf in the canopy with a light source atnitdi distance and perpendicular to it,

summed up for all leaves in the canopy.

Definition (4): Inclined projected LAI, or “silhouie” LAI, represents the projected area
of leaves taking into account individual leaf imations. An additional fifth definition,
according to Barclay (1998), is a variation on tapproach, counting overlapping leaf

areas only once.

Most published values of LAI appear to use defimti(2) or definition (3), with an
increasing number of definition (4) in the litensu(Barclay 1998). Definition (1) is
rarely used (see discussion following descriptidnneethodologies). Definition (2)
suffers from the problem that the meaning of “omed” is unclear for coniferous
needles, highly clumped foliage, or rolled leavekdn and Black 1992). Chen and Black
(1992) suggest that the LAl of non-flat leaves dtiobe defined as half the total
intercepting area per unit ground area, and théitien (3) should be abandoned. LAI
according to definition (2) may exceed LAl accoglito definition (3) by a factor
ranging from 1.28 (hemi-circular cylinders represen conifer needles), through 1.57
(representing cylindrical green branches) to 2héses or square bars representing
highly clumped shoots and some spruce needles)n(@héd Cihlar 1996). Regrettably,
many individual reports of LAl in the literatureilfao provide any details of the LAl

definition assumed, and a significant fraction db even describe the methodology used.

In this study, LAl is defined as one half the tof area per ground surface area as
being used for flat leaves in current studies (Cweth Black 1992, Chen 1996, Létial
1997, Brownet al. 2000, Leblanc et a2002).
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2.2.  FAPAR Definition

FAPAR is inferred from the energy conservation law, angpprtional to the difference

between the downward solar energy at the top ofcm®py plus the energy scattered
upward from the soil to the canopy (at the bottomtlee canopy) and the energy
transmitted through the canopy to the soil plusupeard energy which is scattered by

the canopy at its top:

.,f.;\J"AR=APAH;'€Qm=(Qiu ‘ Qh Qt Q['.J,"EQ'[[L- (1)

Where Qin is the incident PAR flux, Qb is the PA#llected into the canopy from the
soil background, Qt is the PAR transmitted throdiga canopy, and Qr is the above
canopy reflected PAR (Hipps et al. 1983, Goward Hogmmrich 1992). PAR fluxes

may be measured as energy fluxes (9¥or as counts of photons with units afr{olm®

s?).

Productivity of a vegetated surface is closelyteglaamong other factors, to the fraction
of incident photosynthetically active radiation 4@.7 um) absorbed by the
photosynthesizing tissue in a canopy (FAPAR). Gdboover and leaf area are perhaps
the two most significant variables determining @n®AR absorption. FAPAR (or its
surrogate) can be determined from remote obsenstb surface spectral reflectance on
the premise that surface structural and opticapgnies govern both these processes
(Tucker, 1979).

Earlier studies have provides empirical evidencg #APAR is related to top of the
canopy spectral vegetation indices (Daughtry et1883; Asrar et al., 1984; Hatfield et
al., 1984; Gallo et al., 1985; Wiegand et al., 199992, among others).
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2.3. Biophysical Variables Estimation Methods

Satellite remote sensing provides a unique waybtaio LAl over large areas . Current
methods for estimating LAI from optical remotelynsed data are classified into several

categories :

1) Using the empirical relationship of LAl and véateon indices (VI);
2) Through the inversion of a radiative transfef YRodel;

3) Lookup table (LUT) method and Neural network (N\gorithms.

The two main methods to estimate biophysical végmlrom RS data are exposed in this
section. The first method in becoming operative thasuse of “Vegetation Indices”, but
since it has many drawbacks a second one is beiragluced with success in operational

RS applications. This method is known as physidadlged model inversion.

2.3.1 Vegetation Indices for LAI-fAPAR Estimation

The theoretical basis for ‘empirical-based’ vegetat indices is derived from
examination of typical spectral reflectance sigredwof leaves (Figure 1). The reflected
energy in the visible is very low as a result ofrhiabsorption by photosynthetically
active pigments with maximum sensitivity in the élg470 nm) and red (670 nm)
wavelengths. Nearly all of the near-infrared radmatis scattered (reflected and
transmitted) with very little absorption, in a manndependent upon the structural
properties of a canopy (LAI, leaf angle distribatideaf morphology). As a result, the
contrastbetween red and near-infrared responses is a isensieasure of vegetation
amount, with maximum red - NIR differences occugrover a full canopy and minimal
contrast over targets with little or no vegetatiigure 1). For low and medium amounts
of vegetation, the contrast is a result of both aadl NIR changes, while at higher
amounts of vegetation, only the NIR contributesnitreasing contrasts as the red band

becomes saturated due to chlorophyll absorption.
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FIGURE 1. SPECTRAL REFLECTANCE SIGNATURE OF A PHOTOSYNTHETICALLY ACTIVE LEAF WITH A SOIL
SIGNATURE TO SHOW CONTRAST (TUCKER AND SELLER 1986).

The red-NIR contrast can be quantified throughubke of ratios (NIR/red), differences
(NIR-red), weighted differences (NIR-k*red), lineaand combinations (x1red + x2*
NIR), or hybrid approaches of the above. Vegetatiotlexes are measures of this
contrast and thus are integrative functions of pgrsiructural (%cover, LAI, LAD) and

physiological (pigments, photosynthesis) parameters

Vegetation indices (VIs) are dimensionless, radimimemeasures (radiances values,
reflectance values and satellite DN) of vegetatexploiting the unique spectral
signatures and behaviour of canopy elements, péatlg in the red and NIR portions of
the spectrum. Data from different wavebands (oftésible and near-infrared
wavelengths) have been combined to produce spadsalvhich are sensitive measures
of both spatial and temporal variations in vegetaphotosynthetic activity and canopy
structural variations. Each of the radiometric noe@sients results into a different, but
correct, vegetation index value for the same sertanditions (Jackson and Huete 1991).

So in the case of NDVI,qNIR-gred)/(gNIR+qgred), q is reflectance), the values will
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differ as a function of the radiometric processeggplied to the image data as it is

presented in figure 2 (Teillet et al 1997

At-Sensor-Reflectance
NDVI(p")

DCipr} ———ip NDVI(DC(p*)}

Al-Sensor-Radlance

NDVI{DSL) NDVI(L")

Digltal
Signal
Level

DC(L*) ——= NDVI{DC(LY})

Surface-Reflectance
e NDVI(p)

DClp) ——= NDVI{DC{p))

FIGURE 2. DIFFERENT RADIOMETRIC REPRESENTATIONS OF NDVI ILLUSTRATED IN THE CONTEXT OF
POSSIBLE DATA PROCESSING FLOWS. (TEILLET ET AL, 1997)

Vls are, therefore, used to assess temporal aniglspariation of biophysical data , such
as LAl (Best and Harlan 1985, Friedl et al. 1994rr@n and Williamson 1985) and the
fraction of the photosynthetically active radiatiaosorbed by the plant canopy (Asrar et
al. 1984, Epiphanio and Huete 1995).

Myneni et al. (1995) reported that there are mbamt12 vegetation indices in the optical
region and that they have been correlated with te¢giga amountfAPAR, unstressed
vegetation conductance, and photosynthetic capadiky choice and suitability of a VI is
generally determined by its sensitivity to the ecluéeristics of interest, and/or its
sensitivity to disturbing factors (atmosphere, sbéckground, canopy architecture,
topography). According to the effects that theyaske to address a general classification
is:

» Intristic indices based on the ratios of 2 or mbends. They are difficult to
interpret for low LAl values (Rondeaux et al. 19@6)d they are very sensitive to
soil background

» Soil-line vegetation indices: improving the regsisato soil effects

» Atmospherical resistant indices, by adding to thedek atmospheric

characteristics for minimizing these effects.
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Generally, vegetation indices approach a saturdgeel asymptotically for a certain
range of LAI (Sellers 1985) and respond linearlyfA®AR. However, a biophysical
explanation of the relationship between these @&wli@and observable vegetation
phenomena is still subject to much discussion. Mstgies have concluded that VI to
LAI/fAPAR relationships are canopy structure and lancecaependent, varying with
changes in leaf angle distribution, vegetation @ing, row orientation, spacing, and
optical properties of canopy components (leaf, steit) (Asrar et al. 1992, Baret and
Guyot 1991, Choudhury 1987, Goward and Huemmrid21®oujean and Breon 1995).
Different canopy types exhibit drastic variatioms danopy structures and reflectance
properties, which can produce different VI valudsle/having identical LAI or fAPAR
values. If satellite data are to be used as a measiool to determine LAI/fAPAR over
large areas where there are differences in canagsacteristics, then an understanding of

these relationships specific to a given type obpggrmmust be developed.

In addition, solar zenith angle, sensor view angimospheric conditions, and
background influences from soil and litter altemogely sensed spectral signatures and
the derived vegetation indices significantly (Bagetl. 1991, Huete 1987, Deering et al.
1992, Deering et al. 1994). As noted in numeroudiss, darker soil substrates result in
much higher vegetation index values for a given @ammf vegetation when the ratio
vegetation indexgNIR/gred, g is reflectance) or the normalized difference vatieh
index were used as vegetation measures, whilesitppsoil brightness influences occur
with the perpendicular vegetation index (PVI) (Huet al. 1985, Elvidge et al. 1985).
Atmospheric turbidity generally inhibits reliableeasures of vegetation and sometimes
renders atmosphere-induced variations on canopytrepdéo exceed those due to
vegetation development. These effects make theratecand quantitative translation of

VIs more difficult and complicated.

Finally, VIs can estimate only one parameter ainzet because it was specifically
developed for each case and parameter. The fitpoation varies not only in

mathematical way but also in its empirical coeéfits, depending on the studied
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parameter and the sensor characteristics (geombagds, bandwidth, etc). This
disadvantage implies that there is not a univesgalation, making it difficult to apply

this methodology at large scales (Qi et al. 2000).

2.3.2 Radiative Transfer Models

An alternative to empirical relationships is a mibdg approach based on a set of
radiative transfer equations or models. In thisrapph the inversion of a vegetation
reflectance model may be used to estimate the pspdl characteristics of the canopy,
provided sufficient information can be obtainednfréhe combined remote sensing and
ancillary data. Inversion involves adjusting mogatameters until the model reflectance
best matches the measured reflectance (Goel 18881t et al1994).

Inversion of a canopy radiative transfer model sially achieved numerically by
minimizing the difference between measured can@bgatance samples and modelled
values using an optimization routine (Goel 1988ydte et §1994). Canopy radiative
transfer model inversions are a robust approadrcéess canopy structural information
using remotely sensed data, yet they are limitedthay potential lack of reflectance
information needed to successfully execute the miodersion (Asner et al. 1998c,d).
However, hyperspectral data has been shown to geowsufficient reflectance

information from which canopy attributes can beneated via inverse modelling.

2.4. Validation of MERIS Moderate Resolution Produts

Researchers have long been concerned with thetoepantify the accuracy of remotely
sensed land cover classifications at the locakseat with the increase in data sets from
coarse resolution sensing systems, attention lmasduo the challenge of global product

‘validation’ (Justice and Townshend 1994, Justical €1998). ‘Validation’ is the process
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of assessing by independent means the accuradyeadta products derived from the
system outputs. ‘Validation’ is distinguished frazalibration which is the process of
guantitatively defining the system response to kmawentrolled signal inputs (WWW 1).

In general, ‘validation’ refers to assessing theautainty of higher level, satellite sensor
derived products (e.g. Vs, fAPAR, LAI) by analylccomparison to reference data,
which is presumed to represent the target valuerdamparison of data products or
model outputs provides an initial indication of ggalifferences and possibly insights into
the reasons for the differences. However indepeantiatidation’ data are needed to

determine product accuracy. Whereas there are tmctegtandards for instrument

calibration, standards for ‘validation’ of higherder products have yet to be developed.

Currently, the space agencies have several modandteoarse spatial resolution (250m—
4 km) sensing systems in orbit, providing simlimd products, e.g. vegetation indices,
albedo, leaf area index (LAIl), fAPAR e.g. from MERI MODIS, AATSR,

VEGETATION. Establishing standard methods and mol® for ‘validation’ of these

products will enable a broader participation inligation’ campaigns and programs, the
sharing and multiple-use of ‘validation’ data, acoimparisons and inter-use between
products. Common field sites and standard methodsldta collection and presenting
product accuracy can be expected to foster prostactdardization and synergy from

these various sensors.

Initiated in 1984, the Committee Earth Observingteites’ Working Group on
Calibration and Validation (CEOS WGCYV) pursues\atiis to coordinate, standardize
and advance calibration and validation of civilisatellites and their data (Baret et al.
2005, Morisette et al. 2005). One subgroup of CBRSCV, Land Product Validation
(LPV), was established in 2000 to define standatalation guidelines and protocols and

to foster data and information exchange relevatite¢ovalidation of land products.
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Having multiple global LAI products and validatiaetivities related to these products it
suggests that a direct comparison between grourasumements and corresponding
global or large regional satellite products (VIS|LPAPAR) is not recommended because
of scale-mismatch, geolocation errors and vegetdtieterogeneity at the resolution of
the large swath satellite data. Thus, an internteditep that involves a fine resolution
map of the variable of interest is introduced. Timap is generated with field data and
high resolution satellite data (ETM+, SPOT, ASTER¢.) When aggregated to the
moderate resolution, this map serves as the groutid{Tan et al. 2005, Wang et al.
2004). Therefore, the validation of moderate resmiuVIs, LAI, fAPAR products
includes these steps (Figure 3) - ground samplingegetation variables during field
campaigns, generation of a fine resolution maphefwariables and comparison of the
aggregated fine resolution map with moderate prsduithe achievement of this global

validation activity is known as a bottom-up apptog€igure 3).

50-100 | Global validation

Medium resolution
products to be validated

20-100 :
ESUs/site [ Value(s) at the site level ‘
High spatial resolution
image (SPOT/ETM/ASTER ...)
[lhs ] 10-100
‘Y o7 measurements/ESU I Value at t ESU level ‘

I Individual measurements |

FIGURE 3. THE GENERAL VALIDATION PROCEDURE APPLIED TO LAl ACCORDING TO CEOS LAl
INTERCOMPARISON OVERVIEW CAN BE DESCRIBED SCHEMATICALLY (BARET ET AL., 2005;
MORISETTE ET AL., 2005)
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3. MATERIALS AND METHODS

3.1. Study Area and Methodology

Relationships between LAI, fAPAR and vegetationided derived from the different
processing data levels of MERIS were studied far Metherlands. The study area
consisted of five vegetation classes in the Netineld: deciduous forest, coniferous
forest, grassland, natural vegetation and arabl (Rigure 5). The decision to work with
these classes was based on the availability oh#oessary input data: land cover data

and remote sensing data.

The general methodology was divided in three phapesparation, processing and
analysis. In the preparation phase we defined aegaped all necessary input data
(remote sensing and land cover data). The proggsgiase involved the processing of
the remote sensing data (MERIS L1b, L2 and HyM&wur main processing blocks
were necessary for our research objectives : Imason of VI from the available L1b
and L2 MERIS data, 2) estimation of LAl and fAPARM MERIS 3) estimation of VI
from the HyMap data and finally assessment of thé and fAPAR from the HyMap

sensor. An overview of the general methodologyssteghown in the Figure 4:
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Figure 4. Flowchart of the Methodology

3.2. LGN-5

3.2.1. Description of the Dataset

For the analysis of the relations between the \A$HAPAR for specific land use types
in the Netherlands, a training dataset, the Du&id luse database (LGN), was used.
LGNS5 is a geographical database that describetatiteuse in The Netherlands for the
period 2003-2004. It has a grid structure of 25argetell size, with an application scale
of 1:50.000. The nomenclature of the LGN5 datalamesists of 39 classes covering
urban areas, water, forest, various agricultural aatural land cover types. LGN is
produced from multi-temporal classification of dliee imagery with ancillary data.
Currently, the version 5 is based on satellite détae year 2003 for the provinces of the
east of the Netherlands and satellite data of 200the provinces of the western part of
the country. The overall classification accuracy &l provinces is 78% with values
ranging from 46% till 93% (Hazeu 2005). The 39 s&ssof the LGNS were recoded into
nine classes (grassland, deciduous forest, conderforest, arable land, natural

vegetation, water, built-up areas, greenhouses; i) as it is shown in Figure 5.

21



Nadata
W Gragaland
Arableland f
Greenhousges '
Deciduousforest
Onlerousiores
ater
Built—y
Baresol X
B Naturalvegetation f/

FIGURE 5. THE DUTCH LAND USE DATABASE AGGREGATED TO 9 CLASSES AND 300 M PIXEL SIZE AND
FINALLY MASKED FOR THE STUDY AREA.

3.2.2. Preprocessing

The LGN-5 dataset were georeferenced to the mgpgtian UTM (Zone 31 N, geodetic
datum WGS84). Subsequently, the LGN5 was aggredated 25 meters to 300 meters
cell size displaying the largest cover type fraciper pixel. The resampling was done by
majority fraction with the erdas imagine software.

3.3. MERIS

3.3.1. Description of the Dataset

MERIS is a medium-spectral resolution, imaging $meceter operating in the solar
reflective spectral range. Fifteen spectral bandsrautinely acquired in the 390 nm to
1040 nm spectral range (Table 2). MERIS allows @bagll coverage of the Earth in 3
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days. As compared to other medium resolutimiruments, the spectral sampling is very

unique and the algorithms developed take full athge of this design.

Table 2 . MERIS spectral characteristics: band ceme and width

U

ce

n

# | Centre (nm) | Width (nm) | Potential Applications

1 4125 10 Yellow substance and detrital pigments
2 442.5 10 Chlorophyll absorption maximum

3 490 10 Chlorophyll and other pigments

4 510 10 Suspended sediment, red tides

5 560 10 Chlorophyll absorption minimum

6 620 10 Suspended sediment

7 665 10 Chlorophyll absorption and fluo. refere
8 681.25 7.5 Chlorophyll fluorescence peak

9 708.75 10 Fluo. Reference, atmospheric correstiq
10 753.75 7.5 Vegetation, cloud

11| 760.625 3.75 Oxygen absorption R-branch

12 778.75 15 Atmosphere corrections

13 865 20 Vegetation, water vapour reference

14 885 10 Atmosphere corrections

15 900 10 Water vapour, land

The MERIS instrument is one of the payload comptmesf the European Space

Agency’s (ESA) environmental research satellite iEzay launched in March 2002. It is

onboard the ENVISAT platform. It's helio-synchromear polar orbit definition and

some additional instrument characteristics arenédfin Table 3 .
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Table 3. Characteristics of the ENVISAT instrumentand orbit definition

Orbit altitude (km) 799.8
Repeat cycle (days) 35
Period (min) 100.59
Inclination (°) 98.55

Equatorial descending node crossing time (htp:00

Band-to-band registration <0.1 pixel

Band-centre knowledge accuracy | <1 nm

Polarisation sensitivity <0.3%
Radiometric accuracy <2%
Band-to-band accuracy <0.1%

Dynamic range Up to albedo 1.(

MERIS scans the Earth's surface by the “push broomthod. CCD arrays provide
spatial sampling in the across track direction, lavlthe satellite's motion provides
scanning in the along-track direction. The Eartimaged with a spatial resolution of 300
m (at nadir) that provides the full resolution dé&). This resolution is reduced to 1200

m (reduced resolution: RR) by the on board commnatf four adjacent samples across

track over four successive lines. The instrumeﬁ*&'.§0 field of view around nadir covers
a swath width of 1150 km.

MERIS data is provided at three levels of procagdievel O, level 1 and level 2. Level 0
consists of the core information recorded in packst the instrument. This information
is not generally available to users and it sensedasis for level 1. Level 1 comprises
geo-coded top of atmosphere (TOA) data radiances Jiv’um] and it is the base for

level 2. Level 2 provides reflectance values far different kinds of data products. Level
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2 reflectances are different in nature dependinghersurface (WWW 2 MERIS-Envisat
2005):

» over clouds, they are TOA reflectances,

e over land, they are Top Of Aerosol (TOAr) refleatas corrected only for
Rayleigh diffusion but not corrected for the diffus by aerosols. The correction
for aerosol partially has been addressed by usahges in the blue region namely
band 2 (442 nm) and one band in the red and né&ared, namely band 8 (681
nm) and band 13 (865 nm).

» over water, they are surface reflectances.

For our study we used the full resolution data pitducts and the products over land of
MERIS level 2.

3.3.2. Level 1b

The MERIS Level 1b data products consist of catdmdop of the atmosphere radiances,
geolocated and resampled on a regular grid.fliheesolution geolocated and calibrated
TOA Radiance high-level structure of the produchswn in Appendix 1.

A variety of images from the year 2004 was avaddbk our study. A cloud free image
from August & 2004 was finally selected as an input for thisdgt{Figure 6). More

details concerning this dataset can be observagpendix 2.
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FIGURE 6.MERIS L1B FULL RESOLUTION IMAGES OF AUGUST 8™ 2004. BANDS 14, 8 AND 3 ARE
DEPICTED IN RGB.

3.3.3. Level 2

MERIS level 2 land surface products provide TOAleetance in 13 bands. Bands 11

and 15 were excluded from the official L2 produatthe following reasons:

» Band 11 This very narrow band is just located in the atygbsorption band at
the end of chlorophyll absorption. It would bringilyp marginal additional
information on leaf and background optical progertivhile conveying errors due

to uncertainties in oxygen pressure values.

*Band 15 This water absorption band will not bring vergrsficant information
on canopy characteristics as compared to bands 12, twhile also conveying errors due

to uncertainties in water vapour values.
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The Rayleigh correction is organised in severapst knowing the surface pressure
above a pixel, the Rayleigh optical thickness impoted. With the knowledge of this
optical thickness and the geometry of the pixed, Rayleigh reflectance is then derived
from a lookup table (WWW 3). MERIS level 2 has ply addressed the correction for
aerosols by using values in the blue region, narahd 2 (442 nm) and one band in the
red and near infrared, namely band 8 (681 nm) amdl 13 (865 nm). This combination
has generated rectified bands that would have bessured in the red and near infrared
at the top of canopy (TOC) (Gobron et al. 2004)ildéRtance data per pixel is expressed
as [%*100].

In addition, MERIS level 2 land surface productslules the MERIS Global Vegetation
Index (MGVI) (Gobron et al. 2004), the MERIS Tetred Chlorophyll Index (MTCI)
(Dash and Curran 2004). The MGVI algorithm is ckdted as:

2 2
lO,lBl + Io,sz +|o,33182 +|0,431 + Io,sBz + Io,e

MGVI = 2 K
I0,7Bl + IO,BBZ + IO,QBIBZ +IO,lOBl +IO,12I.BZ +IO,12

(2)

where B,and B,are the rectified spectral bands for the red andr nafrared,
respectively, and, are the coefficients for the polynomial providedGobronet al.

(2004). The design of MGVI is based on a two stepcedure where the spectral
radiances measured in the red and near-infraredsbare first, rectified in order to
ensure their decontamination from atmospheric amgular effects. Second, they are
combined together in a mathematical formula thategates fAPAR values (Gobron
2003). The overall scientific objective of the MGMIto exploit the spectral reflectance
measurements acquired by the instrument to prowsdes with reliable qualitative and

qualitative information on the state of the plaower over terrestrial areas.

In addition the MTCI is defined as:
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MTCI = Phand1o ~ Poands (3)

Prands ~ Poands

where p are reflectance values for different bands.

For this study the full resolution MERIS level Zleetance values, MGVI and MTCI for
the Netherlands, from 2004 was used. Specificatmnthe spectral bands of MERIS

Level 2 are given in Table 4.

Table 4. The bands of the MERIS level 2.

Band nr. Band centre [nm] Bandwidth [nm]

1 412.5 9.9
2 442.4 10.0
3 489.7 10.0
4 509.7 10.0
5 559.6 10.0
6 619.6 10.0
7 664.6 10.0
8 680.9 7.5
9 708.4 10.0
10 753.5 7.5
12 778.5 15.0
13 864.8 20.0
14 884.8 10

Rectified red 681 7.5

Rectified near infrared 865 20.0
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A cloud free image from August82004 was delivered as an input for this study.
Reflectance data per pixel is expressed as [%*100)re details concerning this dataset

can be observed in Appendix Bhe image is shown in Figure 7.

FIGURE 7. MERIS L2 FULL RESOLUTION IMAGES OF AUGUST 8™ 2004. BANDS 14, 8 AND 3 ARE
DEPICTED IN RGB.

3.3.4. Preprocessing of the L1b and L2 MERIS Datate

Effective analysis and treatment of the images iredquseveral preprocessing steps.
These steps were carried out to assure that theumeaents from each sensor (MERIS
and HyMap) were as closely comparable as posdi#éore any analysis, the satellite
images need some correction procedures due tcetiraegric and radiometric distortions

during the acquisition process. These correctioms lbe divided in two categories:

geometric and radiometric corrections. The sameguhore was applied for both L1b and
L2 MERIS datasets.
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Selection of MERIS datasets

Our goal was to acquire image pairs of MERIS aniBly as nearly time coincident as
possible with the July 2B(acquisition date of HyMap dataset), constrained thoy
requirement that each image needed to be "esdgmiialid-free” for the comparison. For
the year 2004 a large number of MERIS images weadladble. The most appropriate
MERIS image was the one of Auguét 8

Geometric corrections

Geometric corrections are necessary to reduceffiaet ef geometric distortions and they
enable us to match the datasets with the resaniyiidb database. For both MERIS
datasets we assign the map projection UTM (ZoneN3Igeodetic datum WGS84)
through the use of the BEAM software. However, epbable differences existed
between the resampled LGN5 and satellite imagesteftre we performed an image to
image co-registration between each MERIS datasettlae resampled LGN5. For each
image to image co-registration 27 ground controhisowere recorded between the two
images. At last, a nearest neighbour resamplingtiimm was used because it preserves

the information of the image pixels most closely.

Radiometric corrections

As we are using radiance and reflectance valuas fte MERIS level 1b and level 2

products, radiometric corrections are already peréal (WWW 3):

Level 1b radiometric processing: the valid MERISnp&es are digital counts resulting
from the acquisition by MERIS of passive opticaésfpal radiance remote sensing. The
objective of the radiometric processing is to eatan by an inverse model, the spectral
radiance which caused these counts. The radiamseddy MERIS is, for a given set of
target physical parameters and illumination andeolsion angles, proportional to the

extraterrestrial sun spectral fluxx, (WWW 4).
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Level 2 corrections: The atmospheric correctidmesae is a simple but robust modelling
of the signal which yields simple conversions of Ar€diance into surface reflectance.
The signal decomposition involves three stepshinfirst stage, gaseous absorption is

removed from the signal (oxygen, ozone and watpows.

The second step address corrections related watliRtyleigh scatteringihe objectives

of the Rayleigh corrections is twofold: first il@ks to estimate the Rayleigh reflectance
that will eventually be retrieved from the total pf®f Atmosphere signal to have an
estimate of the Top Of Aerosol reflectance from ahhivegetation indices are later
retrieved, secondly it allows to estimate all th@yRigh transmittance factors that are

used to bring down the Top Of Atmosphere signalmtmthe surface.

The correction for aerosols is more problematice da their variable nature and
abundance, and their weak contribution to TOA nacks. Because their contribution is
emphasized over dark surfaces, the use of so-cBiégll Dense Vegetation (DDV) is
generally proposed (see, for the AVHRR, Holleeal. (1992)).

3.4. HyMap Sensor

3.4.1. HyMap sensor characteristics

The HyMap sensor is an airborne imaging systemishased for earth resources remote
sensing. It records a digital image of the earthislit surface underneath the aircraft .
Unlike standard aerial cameras, the HyMap recordages in a large number of

wavelengths. In essence, the HyMap sensor is barag spectrometer.

The HyMap records an image of the earth’s surfgceding a rotating scan mirror which

allows the image to build line by line as the aftflies forward. The reflected sunlight
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collected by the scan mirror is then dispersed idifberent wavelengths by four

spectrometers in the system.

For the present study, a single HyMap image is .uskd flight was carried out on July
28" 2004, over the Milingerwaard floodplain along thieer Waal near the city of

Nijmegen.

The input image for this study was delivered geecoith the map projection UTM (Zone
31 N, geodetic datum WGS84), band simulated (to MEBands), radiometrically and

atmospherically corrected. Reflectance data pesl jgxexpressed as [%*100].

For further processing of the airborne data, dataide the study area was masked out, in

order to save memory space and computational time.

3.4.2. Preprocessing

Before any analysis, the satellite image needs sooneection procedures due to the
geometric and radiometric distortions during theguasition process. Because the input
image for this study was already geocoded in the prajection UTM (Zone 31 N,

geodetic datum WGS84), radiometrically and atmospaky corrected and simulated to

MERIS bands the preprocessing stage involves biel\o-registration.

Aggregation

Comparison of the MERIS and HyMap derived Vis, LMAPAR products, required
aggregation of the HyMap measurements to a spasalution equivalent to the MERIS
measurements. Numerous aggregation methods have ussxl in remote sensing,
including averaging all values, sampling evetiz pixel and choosing the "dominant”

value (Bian 1997). In this case, since we are gitErg to approximate the integrated
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Vis, LAI, fAPAR that the MERIS instrument measurese employ the averaging
approach

Geometric corrections

Examining the relative performance of HyMap and ME&Requires, as much as possible,
that individual compared pixels are from the saowation on the Earth's surface. One of
the largest potential sources of error is reliedpticement caused by the two sensors
viewing the same variable elevation terrain frono tdifferent look angles [Bernstein,
1983 and Slama, 1980].

A comparison between the HyMap image resampledO@m3pixel size and LGN-5
image, revealed observable differences. One shoatd that the resampling of the
original HyMap image to the aggregated 300 m psxed also contribute to the geometric
inaccuracy. Therefore, geographic reference poidee extracted by locating clearly
observed points in the HyMap image and the MERI&gen Nearest neighbour re-
sampling was employed in the co-registration pret¢egpreserve as much as possible the
radiometry of the imagery. Some residual misalignnietween HyMap and MERIS is
still evident in the resultant products, probalblg tesult of the differing spatial resolution

of the HyMap sensor and MERIS instrument.

3.5. Vegetation Indices

The MERIS (L1b, L2) and HyMap reflectance derivel$ Was examined in this study.
These results can provide a check on the use ofIBERBrived VIs and their correlation
to the LAI, fAPAR variables for the Netherlands. tAe same time a comparison with VI
derived from the HyMap sensor is important becatselates to the spatial correlation
between the two sensors and can stand as an evalodthe performance of the TOA

Radiances, TOAr Reflectances and TOC reflectaneswveatl vegetation indices The
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MERIS derived VIs have a spatial resolution of 300rhe inputs are red and near-
infrared, top of atmosphere (TOA) data radiancgs,af aerosol (TOAr) reflectances and
top of canopy (TOC) data reflectances that cormedpoto the bands 8 and 13,
respectively. The HyMap derived VI have a spatedotution of 5m. The 5m Vis are
aggregated to 300m by employing the averaging ampro

Among the many different VIs found in the litenstpusome of the classical ones, soil
adjusted and atmospherically resistant ones, waleeted. In addition some other Vis

specific for being applied to the MERIS bands wads® studied.

The vegetation index values were calculated for MEeRIS and HyMap scenes for
selected vegetation targets: grassland, arable ecduous forest, coniferous forest,

natural vegetation.

* The Normalized Difference Vegetation Index (NDMi)as calculated by Tucker
(1979) as:

(NIR-RED)/(NIR+RED) 4

* The Weighted Difference Vegetation Index (WDVI),srn@alculated by Clevers
(1988) as:

NIR-g*Red (5)
Where, g=slope of soil line

The parameter g was calculated and correspond$otattie radiances and 1.2 for the
reflectances of L1 and L2 MERIS images, respelstivEor the HyMap images the
same parameter corresponds to 1.

* The Modified Soil Adjusted Vegetation Index (MSAMi)as calculated by Qi et
al.(1994) as:
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(2NIR+1-[(2NIR+1) 2 -8(NIR-RED)] 0.5 )/2 (6)

» The Perpendicular Vegetation Index (PVI) was caltad by Richardson and
Wiegand (1977) as:

[NIR-a (RED)-b)/ [1+ (-a) 2] 0.5 (7)
Where a=slope of soil line and b is the soil lineercept

» The Global Environmental Monitoring Index (GEMI) svaalculated by (Pinty
and Verstraete (1991) as:

[eta(1- 0.25xeta)]- [(red- 0.125)/ (1- red)] (8)

Where eta is defined as: [2[ (NIR)2 —(RED)2 ] +5(NIR) + (0.5 RED)] /
(NIR+RED+0.5)

3.5. Soil Line Concept

The soil line is a linear relationship between tR and Rreflectance of bare soll

originally discovered by Richardson and Wiegand 709

NIR = R*R + 9

where 3is the soil line slope and s the intercept. The sdihe for a particular soil type
"...results from the combinedariations of its surface status characterized tsy i
roughnes&nd moisture” (Baret et al., 1993). Jasinski andlésmn (1989)lemonstrate
that three unique soil lines result by varying $gile, moisture content, and roughness.
Solil line slope and intercept are subsequently usdétle VI equation to minimize soll
background effects. A global soil line representiigsoil types is not possible because

such a line will onlybe linear in portions of the entire range due toafi@mnscaused by
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different soil conditions (soil type, moisture cent, organic matter content, soil
roughness, etc.)

In this study MERIS images (L1b, L2) and the HyMajage were used to determine the

soil line for each case of derived vegetation iadic

3.7. MERIS Measurements of Leaf Area Index and fARR

The calculation of the LAI for the study area wagplemented by the use of the BEAM
software. This MERIS-specific software makes useinguits the top of atmosphere
radiance values as derived from MERIS L1b imagé® dlgorithm that is used for the
derivation of LAl is the TOA_VEG algorithm (Bard®avageau et al., 2006).

The algorithm is based on the training of neurdivoeks over a data base simulated
using radiative transfer models. The SAIL, PROSPE@Qd@ SMAC models are coupled
and used to simulate the reflectance in the 13 MB#RInds considered (412 nm, 442 nm,
490 nm, 510 nm, 560 nm, 620 nm, 665 nm, 681.25#38,75 nm, 753.75 nm, 778.75
nm, 865 nm, 885 nm). The oxygen and water absorpgt@ands have not been used
because they would convey significant uncertainéissociated while providing only
marginal information on the surface. The LAI protuetrieved from the algorithm
represent values for green leaves under direct 8lhimination, with LAI being half the

total leaf surface area per unit ground area.

The LAI product is sensitive to the green leavethimm canopy. Green leaves have large
differences in radiation absorption between theardi near-infrared bands, while in dead
leaves and soil, that difference is decreased. dlgerithm uses this difference to
determine LAI. The simulation in the 13 MERIS baméguires 15 input variables. They

were drawn randomly according to an experimentah @iming at getting a more evenly
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populated space of canopy realization. To provideenrobust performances of the
network, the distributions of each input variablaswelose to the actual distributions and,
when possible realistic co-distributions were alssed. Back-propagation neural
networks were trained for each variable considefé use of the MGVI, described at
the MERIS L2 product, was the approach for theresion of fAPAR.

3.8. HyMap Measurements of Leaf Area Index and fARR

The LAl map was generated with field data and megolution satellite data of HyMap
based on a model (between that RSR and LAI (Lie&5P:

LAI= - 3.86 In[1-(RSR/9.5)] (10)

When aggregated to the 300m resolution, this reages as the ground-truth (Tan et al.
2005, Wang et al. 2004).

The fAPAR map was derived based on the MGVI alparitIn particular, this MERIS
algorithm was used, but previously a resamplinghef HyMap bands into the MERIS

bands took place.

3.9 Validation of Aggregated Fine-Resolution Map ad MERIS Product

To investigate the accuracy of individual pixel LARPAR values, a comparison was
made between LAI, fAPAR values in MERIS and thase¢hie matching HyMap image.
The LAl values in MERIS images were calculated &0-&1 resolution from the
TOA_VEG algorithm. The LAI and fAPAR values in thiyMap image were calculated
at 5-m resolution and aggregated to 300-m resalutging image-resampling techniques.

The main purposes of the validation were to asessccuracy of the pixel-level LAI,
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fAPAR values in terms of the RMSR divided by theewmage LAI, fAPAR value,
respectively.

3.10. Analysis of the LAI, fAPAR, VIHymap—VImeris Relationships

Several variants of each VI were derived from thade data (Table 2). For each biome,
the VI was derived from radiance @4b), top of aerosol reflectance (ar), and top of
canopy reflectance (Vbc). This was done to test the effects of spectrtd gaocessing
level on the strength of the relationships betwdRneris-VIHymap ,VI-LAI and VI-
fAPAR. Least squares regression analysis (SAStitstiinc. 1990) with LAl as the
independent variable was used to evaluate theiaethtips between Wimap, LAI,
fAPAR and each of the WEris. The models investigated were linear and poteriliaé¢
results are reported in terms of the R2. To evaltla relative influence of red and near-
infrared reflectance of MERIS (bands 8 and 13) le ltAI-SVI, fAPAR relationships,
plots of LAl and fAPAR against Redc (Band 8 of MERIS) and Nic (Band 13 of
MERIS) were also inspected.
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4. RESULTS

4.1. Image Characteristics

The two MERIS datasets (Level 1b and Level 2) amal tesampled and aggregated
LGN-5 dataset (300m) were georeferenced to UTM €8t North, geodetic datum
WGS 84). However a comparison of the images othhee datasets exposed observable
differences. For this reason, we performed an intagenage co-registration using 20
ground control points (Figure 8) recorded betwdenltGN-5 (base image) and each of
the MERIS images (warp image3his permitted direct overlay of land cover and LAl
data products from MODIS and HyMap. The georedistnashowed that both MERIS
images have a shift of less a pixel (Table 5).

FIGURE 8. THE GROUND CONTROL POINTS OF THE LGN IMAGE THAT WERE SELECTED AS A REFERENCE
FOR THE CO-REGISTRATION OF THE MERIS DATASETS.
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Table 5. Root mean square errors RMS (in fractadraspixel) of the georeferencing to the UTM 31 tior
WGS-84 coordinate system using the information7ir@age tie points between MERIS images and the
aggregated LGN-5.

Images RMS error (total)
MERIS L1b (08-08-2004 0.571
MERIS L2 (08-08-2004 0.480

The calculated to 5m and aggregated to 300m pixel\#ls of the HyMap images were
also georeferenced to the UTM (Zone 31 North, geodatum WGS 84). A comparison
of them with the LGN-5 exposed also some clear @gkrvable differences (Figure 9).
In order to achieve a better overlay with the Vishe MERIS images, we performed an
image to image co-registration using 16 ground robioints recorded between the Vis
of HyMap (aggregated to 300m) and the MERIS imagétough we should do the co-
registration of the VIs of HyMap with the LGN-5 elmeed for direct spatial comparisons
between MERIS and HyMap has guide us to make thegistration of Vikymap with the
MERIS imageas a reference.

VI derived from the geocorrected MERIS images eegb also some clear and
observable differences. Therefore we performedrayge to image co-registration using
16 ground control points recorded between the YidyMap (aggregated to 300m) and
the VIs of the MERIS images. Although we can expaotlest errors of coregistration,
overlay in this way provided confidence in makirigedt spatial comparisons at the site
level of Millingerwaard.
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FIGURE 9.COMPARISON OF THE GEOMETRY OF THE HYMAP (5 M PIXEL SIZE) IMAGE AUGUST 28™, TO
THE LEFT AND THE LGN-5 DATABASE (25 M PIXEL SIZE) TO THE RIGHT

Table 5. Root mean square errors RMS [in fractafres pixel] of the georeferencing to the UTM 31 Mipr
WGS-84 coordinate system using the informationtimage tie points between the Vis of HyMap

(aggregated to 300m) and the VIs of the MERIS irsage

Images

RMS error (tota

VIs of HyMap (27-07-2004

0.699

N—r

The georegistration showed that the HyMap imageahakift of less then a pixel (Table

5).

4.2. Effects of the Atmosheric Correction in the Sgctral Profiles and Derivation of

VI for the Different Vegetation Biomes in the Nethéands

4.2.1 Spectral Profiles

Although all vegetation types have relatively sanispectral properties (large absorption

in the red and large reflectance in NIR), differ&mmes have special characteristics

depending on the canopy architecture. These cleistats can be distinguished by
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comparing the spectral signatures. Figure 10, pteshe mean spectral signatures of the
TOAr reflectances in the spectrum of the bands &R\V6 as a function of biome type
derived MERIS data (TOA radiances and TOC reflezarare shown in Appendix 4 and
5, respectively).
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FIGURE 10. SPECTRAL SIGNATURES FOR THE MAIN LGN LAND COVER TYPES DERIVED FROM MERIS
LEVEL 2 TOAR REFLECTANCES FOR AUGUST 8™ 2004

After plotting the spectral signatures for the eliéint vegetation land cover types the
general pattern of TOA radiance, TOAr reflectancel aTOC reflectance was as
expected. All vegetation classes showed a stegpe shetween red and NIR TOA
radiances at 762 nm and a steep increase at theni3dr the TOAr reflectances (Figure

8 and Appendix 1, respectively).

The spectral profiles have also shown the highekegf correlation for the visible (400 —
700 nm) and NIR (750 — 900 nm) wavelength of MERISb-L2) spectrum. In order to
describe these relations, a correlation matrix tfee spectral bands of MERIS was
calculated and the results are presented in thie Bahnd Appendix 6. For MERIS TOA
radiances bands 11, 15 were not used because min7@2nd 11) absorption occurs by
oxygen of the atmosphere resulting in a dip. Bahdat 900 nm, is related to the water

vapour determination.
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Table 5. Correlation matrix for the L1b MERIS imagfeAugust §', 2004.

Band 1 2 3 4 5 6 7 8 9 10 12 13 14

[nm] 413 443 490 510 560 620 665 681 708 753 778 5 86885

1 1

2 1 1

3 0.97 0.98 1

4 0.96 0.98 1 1

5 092 094 095 097 1

6 093 09 097 098 0.97 1

7 092 094 097 097 094 1 1

8 092 094 097 097 094 0.98 1 1

9 070 072 075 078 088 082 0.78 0.78 1

10 -0.30 -0.30 -0.31 -0.28 -0.10 -0.27 -0.34 -0.390.21 1

12 -032 -032 -032 -030 -0.13 -0.31 -0.36 -0.3D.18 1 1
13 -0.36 -036 -0.36 -032 -0.14 -032 -0.39 -0.39.18 0.99 1 1
14 -0.36 -0.36 -0.36 -0.33 -0.14 -032 -0.39 -0.39.18 0.99 0.99 1 1

4.2.2. Vegetation Indices Derivation

VI images were determined for the main vegetatiomies of the Netherlands are NDVI,
WDVI, PVI, MSAVI and GEMI. Several variants (Tab& of each SVI were derived
from the image data. For each vegetation biome, e were derived from TOA

radiances (Mloarap), TOAr reflectance (Mloarrer), and TOC reflectance (Wbcrer).
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Table 6 Summary of ViIs images prepared by stage of imagegssing for the vegetation biomes (Grass,
Arable land, Deciduous forest, Coniferous forestiuxal vegetation) of the Netherlands.

Stage of image processing

TOA radiances TOAr reflectances TOC reflecéemn

NDVI NDVI NDVI
WDVI WDVI W&
MSAVI MSAVI MSAVI
PVI PVI PVI
GEMI GEMI 07:3

In order to facilitate the visualization of the Bgetation land cover types and compare

the effects of the different radiometric MERIS data the distribution of an index, we
choose the WDVI (Figure 11).
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FIGURE 11. HISTOGRAM OF THE WDVI DERIVED FROM THE DIFFERENT RADIOMETRICAL DATA OF MERIS
FOR THE BANDS 8 AND 13. a)WDVI from TOA Radiances, b)TOAr Reflectance}T@C
Reflectances

Table 7 shows a comparison of the mean and start¥anidtion values of the VIs per

biome.

Table 7. Mean values and standard deviation foMhestimated for the vevegetation biomes of the

Netherlands.
Vegetation Indices

Biome Mean/ Stdev WDVI Mean/ Stdev MSAVI Mean / Stdev NDV
type

TOA TOAr TOC Refl | TOA TOAr TOC TOA TOAr TOC

Rad. Refl. Rad. Refl. Refl. Rad. Refl.s Refl.
Grass 52.15/18 0.26/0.07| 0.29/0.07| 0.64/0.25 0.@74 | 0.50/0.11 | 0.37/0.1% 0.60/0.13 0.75/0.)09
Arable 47.49/18| 0.25/0.07 0.27/0.06 0.60/0{23 @®@A424/| 0.45/0.11| 0.38/0.1p 0.57/0.18 0.69/0/12
Deciduous| 44.82/17 | 0.23/0.07 0.25/0.07 0.63/0.20 0.41/0.1144¢0.10| 0.48/0.22 0.69/0.10 0.83/0.10
for
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Coniferous| 40.20/13 | 0.21/0.05| 0..21/0.03 0.65/0.11 0.37/0/,08 0.38/0)09.50/0.20| 0.71/0.07
for.

0.84/0.0

Natural 34.66/19 | 0.20/0.07| 0.21/0.07) 0.52/0.20 0.34/0,11 0.37/0/10.40/0.19| 0.61/0.11
veg

0.78/0.1

Vegetatioalices
Biome type Mean/ Stdev GEMI Mean/ Stdev PVI
TOA Rad| TOAr TOC TOA TOAr TOC
Refl. Refl. Rad. Refl. Refl.
Grass 0.45/0.35 0.72/0.11 0.72/0.11 36.15/18 0.27/00.33/0.07
Arable 0.46/0.31| 0.70/0.11 0.69/0.11 31.48/18 @25/| 0.31/0.06

Deciduous for. 0.58/0.26 0.68/0.10 0.66/0.12 2880y 0.24/0.07| 0.29/0.07

Coniferous for. | 0..50/0.28 0.64/0/08 0.61/0.09 @43 | 0.22/0.09 0.25/0.05

Natural veg. 0.43/0.25 0.61/0.13 0.58/0.14 76.52/1®20/0.07| 0.25/0.07

Relationships between the indices

As it is mentioned in the literature review VIs daa clustered into categories according

to the effects that they are able to address:

» Intristic indices based on the ratios of 2 or muaiads: NDVI, MSAVI
» Soil-line vegetation indices: improving the registto soil effects: WDVI, PVI
» Atmospherically resistant indices, by adding to tlhedex atmospheric

characteristics for minimizing these effects: GEMI
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To test the mutual relationship between these ¥Yil& they were calculated from the
same data set. To minimize the effects of sensmmggy to the derivation of VI, we use
a subset of the image in the eastern part. All iptespairs of VIs (ten combinations)
were plotted (Figure 12). The Figures show that WDRVI, MSAVI, and GEMI
individually differ in concept and contain diffetenformation than NDVI, while WDVI
and PVI are closely correlated. The comparison 8MWvand PVI with MSAVI, showed

a similarity to the information content.
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FIGURE 12. GRAPHICAL DETERMINATION OF THE MUTUAL DEPENDENCY OF NDVI, PVI, SAVI, WDVI AND
GEMI. EACH DATA POINT CORRESPONDS TO A VI VALUE CALCULATED FOR THE PIXELS OF THE
TOAR REFLECTANCE IMAGE.

Beside the investigation of the mutual dependeridh@VIs, it is of interest to compare
Vis for the TOA radiance, TOAr reflectance and T@lectance spectral vegetation
indices and investigate how their mutual relatiopsh influenced due to the atmospheric

correction.

We found it appropriate, having in mind the simtles that were revealed in the
previous VI comparison, to use for this step threpresentative VI (NDVI, WDVI,

GEMI) that are not functionally equivalent. All isle pairs of Vis (three combinations)
were plotted and correlation matrices (Figure 18bl& 8, Appendix 7 and 8) were

created for each VI.
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Table 8. Correlation matrix for the WDVI

Correlation WDVI TOA Rad. WDVI TOAr Refl. WDVI TOC Refl.
wbVI TOA Rad. 1

wbDVI TOAr Refl. 0.96 1

WDVI TOC Refl. 0.95 0.99 1

In general a high correlation (0.99, Table 18ween WDVtoc and WDViroar can be
observed. In contrast the correlation of Wbdd and WDVhoa seems to be lower (0.95,
Table 13).

4.3. Comparison of the VIs Derived from MERIS withthe ones of HyMap

Subsequently, the vegetation indices derived frolBR\V& were related to the ones
derived from HyMap for the main vegetation typesalde land and the grass) of the
Millingerwaard area. VI derivation affected theuksnd strength of the MEris-VIHymap

relationships (Table 9, 10, Figure 14, 15 and Apiper®, 10). This comparison is
important because it is used as an evaluation efpérformance (r2) of the TOA
Radiances, TOAr Reflectances and TOC reflectarroes MERIS, although it relates to

the spatial correlation between the two sensordaltiee different scale that they operate.

The Vis were derived from TOA radiance, TOAr refeecce, and TOC reflectance
MERIS data for the arable land dominated and gdassinated pixels of Millingerwaard.
The VI values in MERIS images were calculated &-80resolution. The VI values for

the HyMap image were calculated at 5-m resolutiwh @ygregated to 300-m resolution.
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Two regression analysis results are displayed &ohevegetation cover type. One is an
“unforced” regression, which tends to create atp@sintercept on the vertical axis when
data scatter is considerable, and the other israétl” regression with the intercept fixed
at the origin of the coordinates. Only thé Ralues of the unforced regression are
reported to avoid confusion. The best correlatofound for the MSAVI derived from
TOC (R2=0.56) for the arable land-dominated bioResults for MSAVI are presented
as a case study in Table 14, 15 and in Figure3.2, 1

Table 9. The Linear model and the R2 for them#Ris-VIHymap Relationship using three Derivations of
VIMERIS TOA radiances (TOA rad.), TOAr reflectances (TO&fl.) and TOC reflectances (TOC refl.) for
the arable land-dominated pixels of Millingerwaard.

\i TOArad. TOAr refl. TOC ref
MSAVI 0.07 0.54 0.56
WDVI 0.18 46. 0.51
PVI 0.18 46 0.51
NDVI 0.08 48 0.55
GEMI 0.21 0.44 0.46
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FIGURE 14. SCATTERPLOTS OF THE MSAVI DERIVED FROM MERIS AND HYMAP. RELATIONSHIP USING
THREE DERIVATIONS OF MSAVIMERIS: TOA RADIANCES (TOA RAD.), TOAR REFLECTANCES (TOAR

REFL.) AND TOC REFLECTANCES (TOC REFL.) FOR THE ARABLE LAND-DOMINATED PIXELS OF

MILLINGERWAARD.

Table 10 The Linear model and®Ror the VIMERIS-VIHyMap Relationship using three Derivations of
VIMERIS TOA radiances(TOA rad.), TOAr reflectances (TO#i.) and TOC reflectances(TOC refl.) for
the grass land-dominated pixels of Millingerwaard.

Vi TOAd. TOAr refl. TOC refl.
MSAVI 0.18 39. 0.44
WDVI 0.21 0.31 0.33

PVI 0.21 0.32 0.34
NDVI 0.12 .20 0.27
GEMI 0.23 0.33 0.35
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FIGURE 15. SCATTERPLOTS OF THE MSAVI DERIVED FROM MERIS AND HYMAP. RELATIONSHIP USING
THREE DERIVATIONS OF MSAVIMERIS: TOA RADIANCES (TOA RAD.), TOAR REFLECTANCES (TOAR
REFL.) AND TOC REFLECTANCES (TOC REFL.) FOR THE GRASS-DOMINATED PIXELS OF
MILLINGERWAARD.

4.4. LAl Derived from MERIS

After the derivation of LAl (Figure 16) using théupg-in of the BEAM software (Baret
2006), the purpose of validation to assess theracguof the pixel-level LAl was

implemented.
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4.4.1. LAl Map Production

The LAl values across all the vegetation biometha Netherlands ranged from 0 to 4
(Table 11). Among the forested areas, the decidimest had the highest LAls. At the
same level were the LAI values of grass and arkdnld. The coniferous forest and the
natural vegetation had lower LAISs.

Table 11. Summary of LAl information, derived fraravel 1b image (8 August 2004) using BEAM
plug-in (Baret 2006), for the Netherlands.

Vegetation Types| LAl rangeStd.Dev.| Mean| Median

Netherlands Grass 0.01-4.080.67 260 | 2.76

Coniferous forest| 0.09-3.8 0.45 2.1 2.16

Deciduous forest| 0.07-4.04 0.60 245 2.53

Arable land 0-4.05 0.66 239 2.48

Natural vegetation 0-3.66 0.66 1.90| 1.92
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FIGURE16. LAl MAPS DERIVED FROM MERIS IMAGE USING BEAM PLUG-IN (BARET, 2006) FOrR &) LAI
of grass, b)LAI of Arable land) LAI of Coniferousrest, d) LAl of Deciduous forest, e)

LAI of Natural vegetation

4.4.2 Validation of MERIS LAI Using LAI Estimated from HyMap

To investigate the accuracy of individual pixel LABlues derived from MERIS, a

comparison was made between LAI values in MERISgesaand those in the matching
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HyMap image for the Mllingerwaard area. The LAl we$ in MERIS images were
calculated at 300-m resolution. The LAI valuesha HyMap image were calculated at 5-m

resolution using a function:
LAI= -3.86 In[1-(RSR/9.5)] (11)

between RSR and LAl (Mengesha 2005) and aggredataetly to 300-m resolution.
Figure 17, Figure 18 and Table 12 shows this commparbetween MERIS and HyMap
LAl images with matching dates (August 82004 for MERIS and July 382004 for
HyMap composite).

The range of LAIs across Millingerwaard was froh@to 3.19 (Table 12) Among the
two main vegetation lands cover types grass hadhigeest mean LAI (2.13) with a
standard deviation of 0.78. The arable land-doresh&ype had a lower mean value (2.01)

but with a bigger standard deviation (0.89).

The error of individual pixel LAl values in the MERimage is in the range of 35-39%,
taken as the ratio of the RMSE to the average LfAthe scene (see Table 13 for the
values of RMSE).

Table 12. Summary of LAl statistics of the MERISIaitlyMap over the scene of Millingerwaard

Araliéand Grass
MERIS Mean 2.01 2.13
Std. Dev. 0.89 0.78
LAl range 0.20-3.19 0.16- 3.13
HyMap Mean 1.60 1.56
Std. Dev. 0.81 0.83
LAl range 0.76-3.40 0.04- 3.43
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Tablel13.Correlation of LAI of MERIS with LAI of HyMdp in terms of coefficient of determination (R2)
and root mean square error (RMSE).

MERIS R RMSE
Arable land 0.29 0.78
Grass 0.10 0.75

All LAl images are resampled to 300-m resolutiofobe any statistical analysis

FIGUREL7. LAl MAPS FOR THE AREA OF MILLINGERWAARD AS DERIVED FROM A) MERIS 300-M PIXEL
SIZE AND B) HYMAP AGGREGATED TO 300-M PIXEL SIZE
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FIGURE 18. COMPARISON OF LAl DERIVED FROM MERIS wITH HYMAP DERIVED LAI FOR THE SCENE OF

MILLINGERWAARD RESAMPLED TO THE RESOLUTION OF 300M. a)grass, b)arable land

4.5. FAPAR Derived from MERIS

One of the official vegetation products of the LERIS dataset is the MGVIThe
performance of the MGVI is associated to fAPAR eslfGobron 1999). The estimation
of MGVI was the basis for the derivation of the ¥R map for the vegetation types of
the Netherlands.

4.5.1. FAPAR Map for Different Biomes

The range of fAPAR across all the vegetation biomdbhe Netherlands sites was from 0
to 0.73 (Table 14).
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Table 14.Summary of fAPAR information for the Nethads

Vegetation Types| fAPAR rangeStd. dev. Mean| Median

Netherlands Grass 0-0.73 0.16 0.60 0.63

Coniferous forest| 0.02-0.70 0.13 0.46 0.42

Deciduous forest| 0-0.72 0.16 0.54 0.53
Arable land 0-0.73 0.17 0.54 0.55
Natural vegetation 0-0.70 0.15 0.43| 0.40

The resulting maps for the calculation of fAPAR fiwe different vegetation biomes

types are given in Figure 19.

a) b) c)

FIGURE19. FAPAR MAPS DERIVED FROM MERIS IMAGE FOR &) grass, b)Arable land, c)

Coniferous forest, d)Deciduous forest, e) Natuegjetation
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4.5.2. Validation of MERIS FAPAR Using FAPAR Estimded from HyMap

Similarly to LAI, a comparison was made between M®values in the MERIS images
and those in the matching HyMap image. The fAPARi@sin the MERIS images were
calculated at 300-m resolution. The fAPAR valueshia HyMap image were calculated
at 5-m resolution using the same formula as MG\ aggregated to 300-m resolution.
Figure 20 and 21 shows this comparison between BERId HyMap fAPAR images

with matching dates (August 8 for MERIS and Julyf@8HyMap composite).

The range of fAPAR, derived from MERIS, across Miderwaard is from 0.14 to 0.78
(Table 15). The fAPAR range in the case of the HyMap sens0r(2-1.19. The observed
up to 1 value isn’t consistent with the nature APAR since its measures in the range 0-1.
The cause of this error might occur due to the iegpsystematic calculation of MGVI
(formula, coefficient, etc). This error will inflmee the validation approach and the results

should take this under account.

Among the two main vegetation lands cover typesgtsad the highest mean fAPAR
(0.50) with a standard deviation of 0.17. The axdbhd-dominated type had a lower mean
value (0.43) but with a bigger standard deviatibrl%). The error of individual pixel

fAPAR values in the MERIS image is in the range28f28% (see Table 16 for RMSE

values).
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Table 15.Summary of fAPAR statistics from MERIS aygMap over the scene of Millingerwaard

Araliéand Grass
MERIS Mean 0.43 0.50
Std. Dev. 0.15 0.17
fAPAR range 0.14-0.68 0.15-0.78
HyMap Mean 0.77 0.76
Std. Dev. 0.28 0.33
fAPAR range 0.38-1.18 0.02-1.19

Table 16. FAPAR correlation of MERIS with HyMapterms coefficient of determination (R2) and root
mean square error (RMSE)

MERIS R RMSE
Arable land 0.50 0.10
Grass 0.29 0.14

All fAPAR images are resampled to 300-m resolubeffore any statistical analysis.
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b)

FIGURE20. FAPAR MAPS FOR THE AREA OF MILLINGERWAARD As DERIVED from a) MERIS 300-m

pixel size and b) HyMap aggregated to 300-m pixad s
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FIGURE 21. COMPARISON OF FAPAR DERIVED FROM MERIS wiTH HYMAP DERIVED FAPAR FOR THE

SCENE OF MILLINGERWAARD RESAMPLED TO THE RESOLUTION OF 300M. &) grass, b)arable land
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4.6. Relationships Between VIS and Biophysical Pratts

4.6.1. LAl -VI Relationships for the MERIS Image

After correlating the values of the vegetation aadi, derived from TOA radiances, TOAr
and TOC reflectances, of the pixels with the LAlues for the Millingerwaard site, VI-
LAI relationships were builtvl derivation affected the shapes and strengtthefLtAl—
VI relationships. Trends were similar across the.\Results that gave the best fifR
with NDVI as a case study are presented in Table Figures 22 and 23. For all
derivations, a linear model gave a better fif)(Rr the LAI-VI relationship than did the
potential. In addition TOC gave stronger VI-LAl abnships. The Rfor NDVI WITH
TOC reflectance was higher than those of the atkavations.

Table 17. The Linear modelR2 for the VIMERIS-VIHyMap Relationship using Three Derivations of
VIMERIS TOA radiances (TOA rad.), TOAr reflectasod OAr refl.) and TOC reflectances(TOC refl.).
a) Arable land, b) Grass

a)

Vi TOAda. TOAr refl. TOC refl.
NDVI 0.05 0.4 0.42
MSAVI 0.04 0.33 0.36
WDVI 0.09 0.26 0.34
PVI 0.09 0.25 0.33
GEMI 0.13 0.28 0.23
MTCI - - 0.15
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b)

Vi TOAd. TOAr refl. TOC refl.
NDVI 0.01 0.28 0.29
MSAVI 0.01 0.22 0.23
WDVI 0.02 0.12 0.22
PVI 0.02 0.11 0.21
GEMI 0.03 0.25 0.21
MTCI - - 0.28

Where y is the SVI and x is the LAI. The parametdrshe equations a and b corresponds
to:

Linear: y=ax+b

b
Potential: y= a x

These models were used in several studies (Holbah 980, Chen and Cihlar 1996,
Fassnacht et al. 1997). The potential model wad dge to the asymptotic nature that the
LAI-VIs may present (Spanner et al.1990, Nemaiai.€1993, Turner et al. 1999).

A similar general pattern in the relationship of ILi#® the TOC derived SVI can be
observed for all the VIs and for both arable lamdl grass pixels of Millingerwaard
(Figures 22 and 23 and Appendix 11 and 12). Foh laséble land and grass the VI
initially increased at low LAls, continued to inese at intermediate values, and peaked
at the highest LAls.
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FIGURE 22. EFFECTS OF DIFFERENT STAGES OF MERIS PROCESSING ON THE LAI-NDVI RELATIONSHIP

FOR THE ARABLE LAND: @) TOA radiance, b) TOAr reflectance, ¢) TOC eetance. See
Table 17 for the modé¥ .

65



FIGURE 23. EFFECTS OF DIFFERENT STAGES OF MERIS PROCESSING ON THE LAI-NDVI RELATIONSHIP
FOR THE GRASS LAND: @) TOA radiance, b) TOAr reflectance, c) TOCeethnce. See Table

17 for the modeR’? in each case.

Figures 24 (a, b) shows the relationship betweer bAd surface reflectance for

individual bands [RED (Band 8) and NIR (Band 13)].
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FIGURE 24. RELATIONSHIP ACROSS ALL POINTS FOR LAl AND TOC ReEFLECTANCE: &) red (MERIS-8),

b) near-infrared (MERIS-13).

R2 values at the Table 18 do not reveal strongioelships between NIR-LAI or RED-
LAI, although red influence is stronger comparabléhe NIR.

Table 18.The Linear model anB2 for the REMERIS-LAI MERISand NIRVERIS-LAI MERIS relationship for
arable land and grass. RED and NIR correspond®etMERIS bands 8 and 13, respectively

Y Model R’
RED (arable) -0.01.67 0.27
RED (grass) -0.008x05 0.11
NIR (arable) 0.03x2D 0.16
NIR (grass) 0.02x22 0.06

4.6.2. VI-FAPAR Relationships for the MERIS Image

After correlating the values of the vegetation asdi, derived from TOA radiances, TOAr
and TOC reflectances, of the pixels with the fAP®&ues for the Millingerwaard site,
VI-fAPAR relationships were also builResults that gave the best fit)jRwith MSAVI

as a case study are presented in Table 19 and dippehand 14. For the most of the
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derivations, the potential model gave a bettefRf) for the fAPAR-VI relationship than

did the linear. In additon TOC gave stronger VIAR relationships. The Rfor

MSAVI derived from TOC reflectance was higher tlhose of the other derivations.

Table 19. The best model fit, in terms &2 for the VMERIS-MGVI Relationship using Three Derivations
of VIMERIS TOA radiances (TOA rad.), TOAr reflectzes (TOAr refl.) and TOC reflectances (TOC
refl.). a)Arable land b)Grass

a) arable

Vi TOAd. TOAr refl. TOC refl.
MSAVI 0.172 0.96 8%
GEMI 0.382 0.885 0.939
WDVI 0.367 0.897 0.937
NDVI 0.170 0.776 0.906
PVI 0.358 97 0.941
MTCI 0.816

b) grass

VI TOAd. TOAr refl. TOC refl.
MSAVI 0.223 0.956 0.989
GEMI 0.41 0.935 0.984
WDVI 0.352 0.945 0.985
NDVI 0.219 .78 0.906
PVI 0.362 0.943 0.985
MTCI 0.64
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Where y is the SVI and x is the fAPAR. The paramsetef the equations a and b
corresponds to:

Linear: y=ax+b

b
Potential: y= a x

The near linear relationship between VIs and fAPWd® been introduced by a lot of
researches (Choudhury 1987, Sellers 1987). Fieldsarements showed both linear
(Wiegand et al., 1991; Daughtry et al., 1992) and hnear relationships (Wiegand et
al.1991, 1992, Ridao et al. 1998).

A similar general pattern in the relationship ofAR to the TOC derived VI can be
observed for all the VIs and for both arable lamdl grass pixels of Millingerwaard
(Appendix 13, 14). For both arable land and grhssul initially increased at low LAIs,

continued to increase at intermediate values, aa#texl at the highest fAPARS

The dynamic range for NIR across all plots (Fig2ir¢ had generally increasinglues as

fAPAR increased. The variation in NIR was the daaminfactor contributing to the
changes in fAPARSs, for both the vegetation typegr ¢the whole range of fAPARs. The
dynamic range for NIR across the grass and ardblks was from 14% to 41% with

generally increasing values as LAl increased. Bmge for RED was from 5% to 12%.
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FIGURE 27. RELATIONSHIP ACROSS ALL POINTS FOR MGVI AND TOC REFLECTANCE: A) RED, B) NEAR-
INFRARED.

R? values given in the Table 20, shows a strongicelship between NIR-fAPAR and a
weak for RED-fAPAR.

Table 20.The Linear modelR? for the REDMERIS-MGVI and NIRVERIS-MGVI relationship for arable
land and grass. RED and NIR corresponds to the I8ERhds 8 and 13, respectively

Y Model R?
RED (arable) - 0.05x ¥@ 0.16
RED (grass) -0.02x08 0.09
NIR (arable) 0.48 X 0.78
NIR (grass) 0.46 X3 0.93
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5. DISCUSSION

5.1. Image Corrections

The geometric registration that was applied for gsmmetric correction of the two
MERIS images showed that have a shift of less tngnxel compared to the LGN-5
(Table 8). All in all this error appeared to betsysatic for both MERIS images. This
shift error could be explained by the geolocatioaccuracy during the tie point location
in MERIS Level 1 as quoted by the Product Contratiity of ESRIN (Goryl and
Saunier 2004). Another element that has to be takeraccount is that the resampling of
the original LGN-5 dataset with 30m pixel size he taggregated one with a 300m pixel
size also had a geometric inaccuracy of less thareh

In the case of the aggregated 300m VI images dérfvtem HyMap image of the
Millingerwaard area, there was also a shift of l#smn a pixel (Table 9). A possible
explanation is the resampling of the original HyMajth 5-m pixel size to the
aggregated 300m.

5.2 Effects of the Atmospheric Correction in the Sgctral Profiles and Derivation of
VI for the Different Vegetation Biomes in the Nethéands

5.2.1. Spectral Profiles

The spectral signatures for the MERIS TOA radiandé3Ar reflectances and TOC
reflectances show clear overlap between the landraypes. Grassland and arable land
showed a clear vegetation spectrum with high re&dleme in the near infrared (NIR).

Coniferous forest and natural vegetation had a lainmspectrum over the MERIS
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wavelengths but their reflectance in the NIR wasimlower than the grass and arable
land ones. An intermediate spectral behaviour wasved by the spectra of deciduous
forest. Both in red and more evidently in NIR pafrthe spectrum, deciduous forest had a
clearly distinguished profile compared to the ookgrass, arable land, coniferous forest

and natural vegetation.

Comparing the results from the spectral profiles T®Ar reflectances and TOC
reflectances, we conclude that the atmospheriecton at the top of canopy level cause
a decrease of reflectance in the red bands andcagaise in the NIR bands. This effect

occurs for all the vegetation land cover types.

The spectral profiles also showed the high degfeemelation for the visible (400 — 700
nm) and NIR (750 — 900 nm) wavelength bands of MERI1b-L2) spectrum. The only
exception was band 9 (708nm and 705nm for L1b dghdekpectively), designed for the
red-edge region, witch illustrates a moderate ¢atioe with visible and NIR bands.
Clevers et al. (2004) calculated principal comparemelysis for a MERIS image and
showed that most of the information (99.71%) wastwaed by the first two components
meaning the red and NIR. The third component ekdubthe contrast between band 9
and other bands, however it contains only 0.16%hefvariance of the dataset. Hence,
most of the information from a MERIS image coulddmmprised in two bands: one in
the red (TOA radiance or TOAr reflectance or TO@®erance) and one in the NIR
(TOA radiance or TOAr reflectance or TOC reflectanc

5.2.2. Vegetation Indices Derivation

Vegetation indices typically capture the absorptmontrast across the 650-850 nm
wavelength intervals through combinations of REDJ aviR reflectance. They are
measures of chlorophyll abundance and energy ai@oriMyneni et al. 1995). Figure 9
demonstrates the distribution of WDVI, values dedvfrom MERIS TOA radiance
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TOAr reflectances and TOC reflectances data. Ireggngrass have the highest mean
WDVI values, around 52.15, 0.26 and 0.29 for TO&dRnces, TOAr Reflectances and
TOC reflectances respectively, followed by arabled, around 47.49, 0.25, 0.278 (Table
12). Natural vegetation and coniferous forest hsiwglar WDVI distributions and their
mean and Standard deviation of WDVI values are lamilt would be difficult to

distinguish natural vegetation from coniferous ngsing only WDVI.

The vegetation indices have been sorted into thag=gories according to the effects that
they are able to address: intrincic vegetationdesli(NDVI, MSAVI), soil-line -related
vegetation indices (WDVI, PVI) and atmosphericatigistant indices (GEMI). Analysis
of their differences in concept and contain infatiora revealed a close correlation for
WDVI and PVI and MSAVI (Figure 10). All the scatptots of NDVI showed that all the
VI had differences individually in concept and antdifferent information with NDVI.

A conclusion extracted from these comparisons & WWDVI and PVI have a high
mutual correlation. Hence, they will not differ sifically in their relationships with
biophysical products (LAI, fAPAR) or the WDVI and/Pderived from HyMap.

In addition investigation of the TOA radiance, TO#&flectance and TOC reflectance
spectral vegetation indices mutual relationshipead®d the influence of the atmospheric
correction (Figure 11, Appendices 4, 5, 6 and 73¥irAilar general pattern, a high mutual
dependency, in the scatterplot of TOAr Reflectarames TOC Reflectances was observed
for all the VlIs. Contrary to this, a low dependerappeared, in the scatterplot of TOA
radiance with TOAr Reflectances and TOC Reflectarfoe all the Vls. Earlier studies
(Myneni and Asrart 1994), that useégetation/atmosphere radiative transfer method
have found that relationship between TOA VI and T®LCis influenced by the soil
reflectance, solar zenith angle, and aerosol dpdiepth. Both WDVI and MSAVI are
subject to atmospheric effects. GEMI can compenfatatmospheric and illumination
conditions (Pinty and Verstraete 1991). Other fs;tsuch as leaf orientation, leaf optical
properties at visible wavelengths, might also idtroed variability into the \Mfba —

VlToc relationships, but these influences could notdselved in this study.
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5.3. Comparison of the Vegetation Indices deriveddm MERIS with the ones of

HyMap

The improvement iR2 for the VMeris—VInymap relationship across the vegetation land
cover types when using TOC reflectance compardda radiance or TOAr reflectance
indicates that the image processing tends to redoise in the relationship (Table 14 and
15, Figure 12 and 13). The amount of data scatténea plots varies among the different
VI and the different vegetation biomes (arable lamad grass) that occur in the
Millingerwaard scene. TheZRalues fall in the range from 0.07 to 0.56. Thedarpixel
size in MERIS imagery and possible atmospheriaigrices not completely removed by
the image processing may constrain the strong VEkeérielation. In theory one expects
to fit a 1:1 linear relationship through the ddtaywever the best fit is obtained adding an
offset of 0.15. The offset is thought to be thautesf a) errors in georegistration of these
two images, b) averaging effect imposed by theiapaggregation of Hymap and the
simulated MERIS data from airborne HyMap data,he) ¢ffect of surface heterogeneity
and mixed pixels, d) the difference in atmospheanections for the two sensors and e)
the difference in image acquisition dates. The lbestelation is found for the MSAVI
derived from TOC (R2=0.56) for the arable land-daaéd biome.

5.4. Derivation of MERIS LAI and Validation Using L Al Estimated from HyMap

The range of LAls across Millingerwaard vegetatigpes was from 0.16 to 3.19 and 0.04-
3.43 for MERIS and HyMap respectively. In both méps water bodies, urban areas, and
generally the non vegetation land cover patterne l@en removed (masked out). Despite
this masking, the two vegetation types that doreitaé site area still include (aggregation
had occurred by the use of majority fraction) fimas of non vegetation patterns that
corresponds to small LAl values. Among the two madgetation land cover types grass
had the highest LAI values.
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The scatter observed in Figure 16, arises fromraéwources, including: a) errors in
georegistration of these two images, b) averagiffgce imposed by the spatial
aggregation of Hymap and the simulated MERIS dettan fairborne HyMap data. c) the
effect of surface heterogeneity and mixed pixelglierent image acquisition dates and
d) the difference in method of LAI retrieval forethwo images. In particular the LAl
algorithm for MERIS (TOA__ VEG) is not designed &trieve a deterministic LAI site-
specific value, but instead generates a mean LAlevaithin a specified level of input
satellite data and model uncertainties. In additibe algorithm isn’t biome specific

(Baret 2006). LAI from the HyMap was derived fr@nsite-specific model.

A good agreement between HyMap and MERIS is obdeimethe leaf area index. The
error of individual pixel LAl values in the MERISnage is in the range of 35-39%,
taken as the ratio of the RMSE to the average L{Athe scene. In a previous study
Gobron (2006) has found a good agreement betweeMERIS LAI product and the one
of MODIS (RMSE = 0.74).

5.5. Derivation of MERIS FAPAR and Validation UsingfAPAR Estimated from
HyMap

The range of fAPAR across Millingerwaard vegetatigpes was from 0.14 to 0.78 and
0.02-1.19 for MERIS and HyMap respectively. Similato the LAl maps, the non
vegetation land cover patterns have been removédhieutwo vegetation types that
dominate the site still include fractions of nonggtation patterns that correspond to
small fAPAR values.

The scatter observed arises from: (1) errors irreggstration of these two images, (2)
averaging effect imposed by the spatial aggregatfddymap and the simulated MERIS
data from airborne HyMap data and (3) the effecswfface heterogeneity and mixed

pixels.

75



The best correlatioR2=0.50) is found for arable land. The error ofividual pixel
fAPAR values in the MERIS image is in the rang@8+28%.

5.6. Relationships between VIs and biophysical pragtts

5.6.1. VIs and LAI Relationships

The significant changes in the VI values obsenteatiféerent stages of image processing
suggest the importance of converting to top of pgnceflectances whenever VI are
compared across different biomes. Goward et aRX)18uggest that whenever Vls are
compared across sites ground reflectance shouldskd. In deriving VIs from TOC
reflectances, an increase has been applied to NiRaply to correct for water vapour
absorption (see WWW 6 ESA-ENVISAT), but a decrehas been applied to red to
remove the effect of scattering by the atmosphEnes, significant differences between
VI-TOA radiances and VI-TOC reflectances could bepezted depending on

atmospheric humidity and haziness.

The improvement in Rfor the LAI-VI relationship across the vegetatitamd cover
types when using TOC reflectance compared to TOdiaree or TOAr reflectance
indicates that the image processing tends to redoise in the relationship. Other studies
of LAl and remotely sensed VIs have likewise fountbetter fit in LAI-VI relationships
after atmospheric correction of TOA data (Petesstoal. 1987, Spanner et al. 1990).

The LAI-RED relationship was not found to be straagrelated in any case. The TOC
reflectance for the vegetation types where LAl meaments were taken ranged from
0.02(TOC refl.), (LAI=2.2, grass) to 0.09(TOC refllAl=1.2, arable land). The relation

was inverse linear with a low?RFigure 22), due to the absorption of red refleceaby
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pigments. The red spectral response of grass teruslower than that for arable land. It
is known that canopy structure (LAI, plant heigleaf size, and angle, etc.) affects the
target spectral response (Asrar et al. 1985, BoutBaa, Myneni et al. 1995, 1997). The
relation LAI-RED varies among the authors. Petersoal. (1987) found high correlation
(r2~0.89, potential model) in coniferous forest;lbém et al. (1980) found?R-0.57 for
soybean (linear model); and Epiphanio et al. (198und R ~0.29 for wheat (linear

model). A saturation of RED in relation to LAl wast observed in this study.

The LAI-NIR TOC reflectance values ranged from10.{LAI=2.1, grass) to 0.39,
(LAI=3, arable land). A high correlation for the IANIR relationship was not observed
(Figure 22). Correlations appeared more weak coeaptar the ones of LAl-red. The NIR
spectral response for both vegetation types temtie similar in range. The observed low
correlation for the LAI-NIR relationship was alsbserved in other studies, i.e. Peterson
et al. (1987) with r2~0.04 in coniferous forestdademani et al. (1993) with r2~0.40

also in forest, both using radiance data.

The observed increase in each VI with increasing &Aow to high LAls (around 3) is
consistent with earlier observations from a varietyecosystems and predictions from
canopy reflectance models (Huemmrich and Goward 1&®bron et al. 1997, Myneni
et al. 1997). In addition earlier studies have alsserved and described the phenomenon
of indices saturation when they approach high \&lokeLAl. In particular. Chen and
Cihlar (1996) suggested that saturation in VIs éwops and forests would occur
approximately for LAI values of 2.5 and 5.0, redpesdy. Turner et al. (1999) reported
that saturation occurred for LAl values between @nd 6.0, for temperate vegetation.
The highest LAI value estimated in this study wemuad 3 and saturation in the LAI-VI

relationships was not observed.

The sensitivity of vegetation indices to canopyrgety (leaf angle distribution function,
row orientation, and spacing) has been shown by A&asl. (1984) and Jackson (1986)
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among others. In addition, vegetation indices #&e aensitive to soil optical properties
as shown by Huete and Jackson (1987). They areafflscted by the sun position (Asrar
et al. 1985b, Huete, 1987b) and the cloudinessbgiolet al., 1986). These results
suggest caution in the established relations betwegetation indices and LAl if the

effects of these different factors are not known.

Assuming that the image pre-processing has mieichéeffects of differing Sun—surface—
sensor geometry and that LAl estimates are accuitaeobserved variation around the
best fit LAI- VI relationships over this LAI rangare most likely associated with real
differences —largely independent of LAl—among thegetation types in the optical

properties of the foliage, canopy, and backgro@lidvers and Verhoef (1993) used the
SAIL canopy and PROSPECT leaf models to show h@anthin variable that influences

vegetation indices is the leaf inclination anglstiilbution. The more planophile a canopy
the greater the vegetation index value for a giv&h The absence of vegetation free
pixels in our study area didn’'t give us informatifor describing the influence of

background reflectance. Other factors, such a®réifices in chlorophyll concentration
per unit leaf area, differences in leaf clumpingg @he relative contribution of branches
to canopy reflectance, undoubtedly also introdugedability into the LAI-Vioc

relationships, but these influences could not Belued in this study.

It can be observed that NDVI values increase fdeteower LAI values (Figures 20 and
21), tending towards stabilization for higher valu8uch behaviour was also observed in
other studies (Holben et al. 1980 and Turner 08B). In this study, the variance was

explained better with a linear model for the re@aships LAI-Viroc.

At the grassland site, there was little relatiopsdfi LAl to the VI in this study. From the
indices that were involved in our study NDVI gathe better fit (R =0.29). Strong linear

relationships of LAI-VI in grasslands have been orggd under well-controlled
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conditions with hand-held or boom mounted sens@sar et al., 1984; Middleton,
1991).

Generally, at the arable land of Millingerwaardesibetter relations of LAI-VI were
derived. NDVI from TOC reflectance was best reldtet Al resulting in a R2=0.42.

5.6.2. Vs and fAPAR Relationships

The changes in the VI values observed at diffestages of image processing suggest, as
in the case of LAI, the importance of convertingdp of canopy reflectances whenever
VI derived from MERIS are compared with fAPAR agalfferent biomes.

In addition, the improvement iR2 for the fAPAR-VI relationship across the vegetati
land cover types when using TOC reflectance contpame TOA radiance or TOAr

reflectance indicates that the image processingdstémreduce noise in the relationship.

The fAPAR-RED relationship was not found to be iflg correlated in any case
(Figure 25). The TOC reflectance for the vegetatigmes where fAPAR estimations
were taken ranged from 0.05 (fAPAR=0.58, grassp.t®? (fAPAR=0.3, arable land).
The relation was inverse linear with a lo, Bue to the absorption of red reflectance by
pigments. The red spectral response of grass terfs lower than those for arable land.
It is known that canopy structure (LAI, plant heigleaf size, and angle, etc.) affects the
target spectral response (Asrar et al. 1985, Boub®®2, Myneni et al. 1995, 1997). A
saturation of RED in relation to LAl was not obsgghin this study.

Figure 25 shows the LAI-NIR. The TOC reflectanceluga ranged from 0.14,
(fAPAR=0.15, grass) to 0.41, (LAI=3, grass). A higbrrelation to for the fAPAR-NIR

relationship was observed (R2=0, 78 and 0, 93rfabla land and grass respectively).
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Previous studies have documented differential 8eitgi to surface biophysical
properties among the VIs (Epiphanio and Huete, 1€3n and Cihlar, 1996, White et
al., 1997). For the observations in this studyreases in NIR reflectance with increasing
fAPAR were more significant than were decrease®threflectance. Thus the MSAVI,
WDVI, PVI (with NIR band in the numerator) were more sensitive than NB\W
GEMI (with NIR band in the denominator) to increasifAPAR. A fAPAR increase
from 0.14 to 0.8 resulted in an increase of the MEANDVI, and PVI around 80%
compared to a 50% increase in the NDVI and a 52%ease for GEMI.

At the grassland site, there was a weak relatipnshifAPAR with the Vioc in this
study. From the indices that were involved in dudg MGVI gave the better fit. Arable
land of the Millingerwaard site had also strongatieihs of fAPAR-VI. MSAVI from
TOC reflectance was best related to fAPAR resuliing R =0.99 (Table 24).
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6. CONCLUSIONS AND RECOMMENDATIONS

6.1. Conclusions

The present study shows that the radiometric peicgsapplied to the image data of
MERIS has influence to the derivation of VI for tliegetation land cover types of the
Netherlands. In particular the investigation of @A radiance, TOAr reflectance and
TOC reflectance spectral vegetation indices mutelakionship revealed the influence of
the atmospheric correction. A high mutual correlatifor the TOAr Reflectances and
TOC Reflectances was observed for all the Vis. @owntto this high correlation, a lower
correlation appeared, in the scatterplot of TOAiaade with TOAr Reflectances and
TOC Reflectances for all the VIs and for all thegetation biomes. In addition the
improvement inR? for the Viveris—VInymap relationship across the vegetation land cover
types when using TOC reflectance compared to TOdaree or TOAr reflectance
indicates the significancy of the image processingreducing the noise in the
relationship. The best correlation is found fa MSAVI derived from TOC (R=0.56)

for the arable land-dominated biome.

The TOA_VEG algorithm(Baret et al. 2006) designed for MERIS and the MGVI as a
MERIS L2 product offer an opportunity for producingAl and fAPAR surfaces.
Comparisons of LAI and fAPAR values from these seatesolution images with those
aggregated from HyMap 5-m pixels suggest that fe@sible to derive LAI and fAPAR
using coarse-resolution measurements, but errggdalgensor characteristics and image
processing were still considerable. The error inl lbAd fAPAR in individual MERIS
pixels is found to be about 35% to 39% and 23%-2&%pectively.

Since the level of image processing significantliecs VIs, care must be taken to
account for this factor in comparing LAI-VI-fAPARuglies across vegetation biomes.

Observations in the present study suggest the teapog of converting to top of canopy

81



reflectances whenever VIs are estimating for d#ffiervegetation land cover types.
Image processing seems to reduce noise in theioredatp of VI with biophysical

variables such as LAI, fAPAR. The top of the canapiffectance was found produces
stronger LAI-VI, VI-fAPAR relationships for both gss-dominated and arable land-
dominated vegetation types of Millingerwaard thha VIs based on top of atmosphere
radiance, or top of aerosol reflectance. Thus, gfiheric correction is desirable in the
formulation of LAI-VI and fAPAR-VI algorithms baseon data derived from MERIS

from the site of Millingerwaard.. Across the maimrgetation types that occur in

Millingerwaard, the VIs increase with increasinglLsd fAPAR at low to high values.

The impact of the NIR and red spectral band onréiations of VIs with biophysical
products has been examined. NIR showed a signifiedationship (R ~0.93, 0.78 for
grass and arable land, respectively) with fAPARdntrast to the red (R-0.16, 0.09 for
grass and arable land, respectively). Thus, NIRnha® influence on VIs to explain the
fAPAR. MSAVI, WDVI, PVI showed a better fit, sinadtiey are more sensitive to the
NIR. NIR and red did not present a significant relatiopsvith LAl data.

6.2 Recommendations

Based on the present study, the following points rmentioned to be considered for

future studies.

Estimation of VIs from the different processing dé&s/ of the MERIS data should be
further explored by including the VIs derived frahgital numbers and TOA reflectance.
These results would provide an additional leveta@iparison between the VIs and the

biophysical products.

The current analysis characterizes the trends leetvilee MERIS products (VI, LA,
fAPAR) and explores the relationships with HyMapided products in terms of what we
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understand to be happening at the pixel level. ddmaparison between these two fields
provides an analysis of the MERIS VI, LAI, fAPARqaucts. However, this pixel by
pixel comparison has some disadvantages. First,attiteal spatial location of the
corresponding pixels in the two sensor maps maymaith well because of geolocation
uncertainties and pixel-shift errors due to poiptesad function. Second, the LAl
algorithm is not designed to retrieve a determinik Al value, but instead generates a
mean LAl value from all possible solutions withirsgecified level of input satellite data
and model uncertainties. Therefore, a future stoolyld perform a comparison at the

multi-pixel (patch) scale, where the derived prdadunight be statistically more stable.
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APPENDIX

Appendix 1. Full resolution product structure

MPH

Level 1b - SPH (includes DSDs)

Level 1b Summary Quality ADS (SQ ADS)
Level 1b GADS Scaling Factors and General Info
Level 1b ADS Tie Points Location & Aux. Data
Level 1b MDS (1) TOA Radiance

Level 1b MDS (2) TOA Radiance

Level 1b MDS (3) TOA Radiance

Level 1b MDS (4) TOA Radiance

Level 1b MDS (5) TOA Radiance

Level 1b MDS (6) TOA Radiance

Level 1b MDS (7) TOA Radiance

Level 1b MDS (8) TOA Radiance

Level 1b MDS (9) TOA Radiance

Level 1b MDS (10) TOA Radiance

Level 1b MDS (11) TOA Radiance

Level 1b MDS (12) TOA Radiance

Level 1b MDS (13) TOA Radiance

Level 1b MDS (14) TOA Radiance

Level 1b MDS (15) TOA Radiance
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MPH

Level 1b MDS (16) Flags & Spectral Shift Index

Specific Product Header (SPH)The SPH is in ASCII format and contains information
which describes the specific product as a wholee BiPH also contains Data Set
Descriptors (DSDs).

Data Set Descriptor (DSD)Data Set Descriptors are used to describe an atlabhta
Set or to provide reference to external files ratévo the current product (e.g. auxiliary
data used in processing but not included with tloelgct). There must be one DSD per

Data Set or per reference to an external file.

ADS: Annotation Data Set

SQADS Summary Quality Annotation Data Set

GADS: Global Annotation DataSet

Measurement Data Set (MDS)a defined data entity within a product.

Main Product Header (MPH): the main description record at the start of ey@oduct,
it follows a generic format.
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Appendix 2. Main characteristics of the MERIS L1b dataset thas$ used in this study

Product name _FR__1PNEPA20040808_104153_0000009820280_12759_0162.N1

Product type MER_FR__1P

Product description| MERIS Full Resolution Geolodaaed Calibrated TOA Radiance

Product format ENVISAT

Product scene width 2241 pixels

Product scene height 2241 pixels

File size ~158 MB
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Appendix 3. Main characteristics of the MERIS L2 dataset thas used in this study.

Product name MER_FR__2PNUPA20040808_ 104153 000038 00180_12759_0147.N

Product type MER_FR__ 2P

Product description| MERIS Full Resolution GeophgbkRroduct

Product format ENVISAT

Product scene width 2241 pixels

Product scene height 2241 pixels

File size ~177 MB
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Appendix 4. Spectral signatures for land cover types derfveth MERIS level 1b TOA
Radiances
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Appendix 5. Spectral signatures for land cover types derfuath MERIS level 2 TOC

reflectances
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Appendix 6. Correlation matrix for the L2 MERIS image of Aug8", 2004

Band 1 2 3 4 5 6 7 8 9 10 12 13 14 RecRec.
Red NIR

[nm] 412 442 490 510 560 620 665 681 705 754 775 5 86890

1 1

2 1 1

3 0.97 0.98 1

4 096 0.98 1 1

5 092 094 095 0.97 1

6 093 0.95 097 098 0.97 1

7 0.92 0.94 0.97 0.97 0.94 1 1

8 092 094 097 097 094 0.98 1 1

9 0.70 0.72 075 078 088 082 078 0.78 1

10 -0.30 -0.30 -0.31 -0.28 -0.10 -0.27 -0.34 -0.39.21 1

12 -0.32 -032 -032 -030 -0.13 -0.31 -0.36 -0.3D.18 1 1

13 -0.36 -036 -0.36 -032 -0.14 -0.32 -0.39 -0.39.18 0.99 1 1

14 -0.36 -036 -036 -033 -0.14 -032 -039 -0.39.18 099 0.99 1 1

Rect. 0.83 0.87 090 091 089 094 09 095 078 -0.2931 -032 -0.32 1

Red

Rect. -0.27 -0.28 -0.27 -0.24 -0.07 -0.25 -0.31 -0.31 30.2097 097 098 098 -0.23 1

NIR
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Appendix 7. Presents the scatterplots and the correlationboaitthe comparison of a)
NDVI (TOArReflectances) - NDVI (TOC Reflectance)) BNDVI (TOA Radiances) -

NDVI (TOC Reflectances), ¢) NDVI (TOA RadiancesNBVI (TOAr Reflectances).
Correlation matrix for the NDVI.

0.54

.18 .36
TOA rodiance: MOV

0.54

h18 0.36
TOA radianes:NOYI

Correlation matrix for the NDVI

Correlation NDVI TOA Rad. NDvVI TOAr Refl. NDvI TOC Refl.
NDVI TOA Rad. 1

NDVI  TOAr Refl. 0.84 1

NDVI TOC Refl. 0.80 0.98 1
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Appendix 8. Presents the scatterplots and the correlationboaitthe comparison of a)
GEMI (TOArReflectances) - GEMI (TOC Reflectance), BEMI (TOA Radiances) -
GEMI (TOC Reflectances), c) GEMI (TOA Radiance§EMI (TOAr Reflectances).

2
=
@
=i

TO

0.2 .22 7

022 _ 0,44 0,87
T(4 radignce:GEMI

Correlation matrix for the GEMI

Correlation GEMI TOA Rad. GEMI TOAr Refl. GEMI I TOC Refl.
GEMI TOA Rad. 1

GEMI TOAr Refi. 0.90 1

GEMI TOC Refl. 0.89 0.99 1
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Appendix 9. Scatterplots of the Vikris-VIHymap relationship using the derivations of
Vimveris from TOC reflectances (TOC refl.) for the arabénd-dominated pixels of

Millingerwaard. Lines are least squares fit toreér model.
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Appendix 10. Scatterplots of the Wieris-VIHymap relationship using the derivations of
Vimveris from TOC reflectances (TOC refl.) for the arabéand-dominated pixels of
Millingerwaard..
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Appendix 11. Effects of different stages of image processinghenLAI-VI relationship
across all sites: TOC reflectance of arable. Sé#eT23. for the model anB2 in each
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Appendix 12 Effects of different stages of image processinghenLAI-VI relationship
across all sites: TOC reflectance of grass. Se&eZabfor the model and’®n each case
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Appendix 13. Effects of different stages of image processing tha MGVI-VI
relationship across all sites: TOC reflectancerabke land. See Table 25 for the model

and R in each case.
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Appendix 14. Effects of different stages of image processing tha MGVI-VI
relationship across all sites: TOC reflectancerafg. See Table 25 for the model &id

in each case
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