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1. Biobased economy 

1.1. Definition 

The European Commission defines a biobased economy as an economy that integrates 

the full range of natural and renewable biological resources – land and sea resources, 

biodiversity and biological materials (plant, animal and microbial) – and the 

processing and consumption of these bio-resources. A biobased economy therefore 

uses biological materials as the building blocks for industrial processes instead of 

fossil fuels. The traditional ‘fossil-based’ economy is to a great extent powered by non-

renewable resources that are being depleted. The technologies developed and 

implemented in the biobased economy use renewable bioresources, biological tools, 

eco-efficient processes that enable green-house gas (GHG) emission reduction to 

produce sustainable bioproducts for pharmaceuticals, chemicals, materials, 

transportation fuels, electricity and heat (Langeveld and Sanders, 2010; Mosier et al., 

2005; OECD, 2001). The technologies involved might differ in character, but they 

facilitate a significant substitution of fossil energy carriers by biomass.  

1.2. Approaches in sustainable use of biomass 

The drivers in a biobased economy include the wish to limit dependency on fossil fuels 

and oil-exporting countries, the need to facilitate a diversification of energy sources, 

the wish to provide options for regional and rural development in both developed and 

developing countries, and the need to reduce greenhouse gas (GHG) emissions 

(Langeveld and Sanders, 2010). These will strongly increase demand for biomass 

resources. Biomass production on land occasionally faces a variety of potential 

conflicts, such as the competition with food and feed production and the associated 

land-use changes. To satisfy both human basic needs (for food and feed) and the 

expanded demand of biomass in the production of biobased materials, energy, and 

fuels, a more efficient and sustainable use of biomass is essential. Sustainable use of 

biomass can be performed through biorefinery. Biorefinery is defined as the 

sustainable processing of biomass into a spectrum of marketable products (chemicals, 

materials, feed and food) and energy (biofuels, heat and power) (van Ree and 

Annevelink, 2007). 
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1.3. Plant as the main source of biomass 

Biomass has been chosen as the main source in developing energy, materials and 

chemicals because it can be sustainably produced. Biomass is unique, because it is the 

only natural resource that can satisfy both the need for the production of biofuel and 

for the manufacture of chemicals and materials. Biomass materials are derived mainly 

from a range of plants and may include cellulose, lignin, starch, sugar, vegetable oil, 

proteins, amino acids, etc. In order to realize a sustainable production of biomass, 

production systems must ensure conservation, regeneration, recycling, and 

substitution of the resources: fossil energy, nutrients, water, soil organic matter 

(SOM), and biodiversity (Ostergard et al., 2010).  

The amount of biomass can be expressed as energy content (in exajoules (EJ); 1018 

Joules), whether the biomass is used as bio-energy or as biofeedstock. This allows the 

substitution of fossil fuels with biomass across the various sectors of the economy to 

be quantified in a comparable manner. 

1.4. Global trends in biobased economy 

Our present economy, which is strongly dependent on fossil oil, is gradually changing 

into an economy based mainly on renewable resources. This process is a transition, 

literally defined as the process of changing from one state or condition to another. In 

biobased economy, however, the term is used in a more specific scope, referring to a 

process of broad societal change, leading to an entirely new way of fulfilling societal 

needs, such as the need for food, housing, transport and energy (Langeveld and 

Sanders, 2010). Definitely, governments should promote research and innovation to 

facilitate a structural transition from a fossil-based to a bio-based industry, which will 

also offer great opportunities for economic growth and employment. The global 

biobased economy must ensure the following priorities in research and innovations: 

global food security; sustainable agricultural production; healthy and safe food; 

industrial use of renewable resources; and biomass-based energy sources. Conflicts 

may arise owing to the different objectives of these priorities, therefore we need 

holistic approaches that take into account the ecological, economic and social 

concerns in equal measure and integrate them in sustainable solutions. 
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According to a comprehensive study by OECD, Biotechnology will play a significant 

role in economic activities worldwide (OECD, 2001). Biotechnology is defined as “the 

application of science and technology to living organisms, as well as parts, products 

and models thereof, to alter living or non-living materials for the production of 

knowledge, goods and services”(OECD, 2014 ).  

1.5. Future challenges 

Challenges for sustainable development in a biobased economy have been described 

in detail (Ostergard et al., 2010). With respect to biomass availability, we have to 

overcome challenges for agriculture and challenges for the biorefinery sector. In the 

agricultural sector the challenge is how to develop sustainable biomass production. To 

achieve this, we need production systems that apply a greater proportion of recycling, 

higher efficiency in the exploitation of limited natural resources, and increased use of 

renewable resources. In the biorefinery sector the challenges are logistical, including 

how to efficiently collect and concentrate the biomass, which is scattered in a wide 

plantation area or located far away from the biorefinery processing site, and also how 

to recycle the nutrient to maintain the land fertility.   

2. Biorefinery 

2.1. Definition  

There are several definitions of biorefinery, depending on the type of activity and the 

stakeholders involved. The definitions within the framework of IEA Bioenergy Task 42 

on Biorefineries: Biorefinery is the sustainable processing of biomass into a spectrum 

of marketable products (chemicals, materials, feed and food) and energy (biofuels, 

heat and power) (van Ree and Annevelink, 2007). Figure 1 shows the principle of the 

biorefinery.  

This definition includes the keywords (van Ree and Annevelink, 2007): 

• Biorefinery: concepts, facilities, processes, cluster of industries  

• Sustainable: maximizing economics, minimizing environmental aspects, fossil 

fuel replacement, socio-economic aspects taken into account  
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Figure 1. The principle of the biorefinery - 
IEA Bioenergy TASK 42 (Star-COLIBRI, 2011) 

• Processing: upstream processing, transformation, fractionation, thermo-

chemical and/or biochemical conversion, extraction, separation, downstream 

processing  

• Biomass: crops, organic residues, agroresidues, forest residues, wood, aquatic 

biomass  

• Spectrum: more than one  

• Marketable: a market (acceptable volumes & prices) already exists or is 

expected to become available in the near future  

• Products: both intermediates and final products, i.e. food, feed, chemicals, and 

materials  

• Energy: fuels, power, heat 

 

 

 

 

 

 

 

 

2.2. Biorefinery concept  

The biorefinery concept was initiated by the idea to either further develop the existing 

food-based biorefineries such as sugar, starch, vegetable oil, and grain processing 

facilities, or to install completely new facilities, which could fractionate the whole 

biomass into its appropriate primary feedstock state, also known as precursors, and 

further refine it into sustainable bioproducts, such as chemicals, fuels, and heat and 

electricity (van Ree and Annevelink, 2007).   

A schematic flow-chart of possible products made from biomass is shown in Figure 2 

(van Ree and Annevelink, 2007). The main precursors given are carbohydrates, starch, 

hemicellulose, cellulose, lignin, lipids/oil, and protein. These precursors are converted 

to products called platforms, which are then transformed into so-called building 
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blocks, which can further be used to make secondary chemicals, intermediates and 

final products. These final products fullfil almost all our needs: industrial, 

transportation, textiles, safe food, environment, communication, housing, recreation 

and health. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. Jatropha curcas, L 

During the past ten years Jatropha curcas, L (simply called “jatropha”) has received a 

lot of attention because it has seeds with high oil content suitable for power 

generation or for the production of biodiesel. Jatropha has been introduced as one of 

the best candidates for future biodiesel production (Chen et al., 2008). Arguments for 

it are a high seed oil content (Misra and Murthy, 2011; Singh et al., 2008), the potential 

for high oil production levels per unit area in sub-humid tropical and subtropical 

climates, its drought-resistance and ability to grow well in marginal soils (Openshaw, 

2000), though evidently this will reduce the oil productivity . 

Figure 2. Possible products made from biomass (van Ree and Annevelink, 2007) 
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Figure 3. An overview of possible applications of jatropha (Gubitz et al., 1999) 

3.1. History of jatropha application  

Historical records reveal that jatropha was used by Native American tribes in Central 

America and perhaps in North America as a traditional medicine (FACT-Foundation, 

2010).  Jatropha seeds were commercially traded in the Cape Verde Islands in 1836, 

and seeds were exported to Portugal and France and the oil used for street lights and 

soap production. Jatropha has been used for various other purposes as well. Figure 3 

shows an overview of the several applications of jatropha and its products (Gubitz et 

al., 1999). 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. Taxa and agronomy in brief 

Jatropha curcas, L (purge nut, physic nut) is often simply called “jatropha” although 

there are approximately 170 species of jatropha. Taxonomically, jatropha belongs to 

the family of Euphorbiaceae. Being an attractive source of biodiesel in the research 

field, jatropha has so far not been commercially cultivated for industrial purposes due 
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to low seed productivity produced by the plant compared to other oilseeds plant. 

Therefore, improving the plant oil productivity is recently being the major research 

topic on agronomy aspects of this tree (Yue et al., 2013). 

Jatropha is a perennial bush or small tree that can grow up to 6 m height; it can live 

more than 50 years (Achten et al., 2008). Numerous investigators have reported the 

ability of jatropha to grow in the soils with low nutrient content; however, our 

experiences reveal that intensive fertilization and sufficient watering are required to 

obtain high fruit production of jatropha growing in marginal soils. The fruits have an 

oval shape, of 35-45 mm length and each contains 3 black seeds (on average), with 

dimensions of 19-21 mm long and 8-13 mm wide (Figure 4). The branches contain a 

latex, which causes brown stains that are difficult to remove (Heller, 1996). 

3.3. Plant parts and dry matter distribution 

The dry matter distribution of jatropha is 25% in stem, 25% in leaf and 50% in fruit; 

the 50% DM fruit consists of 15% fuit hull and 35% seed; and the 35% DM seed 

consists of 23% kernel and 12% seed shell (Jongschaap et al., 2007b) (Figure 4). 

 

 

 
 
 
 
 
 
 
 
 

3.4. Fruit composition 

On fruit weight basis, the fruit contains 23.5% oil, 13.0% protein and 30.0% 

carbohydrate, 12.6% lignin and 20.9% others (which may contain pectin, wax, tannin, 

ash, etc.). The carbohydrate fraction of the seed comprises mainly glucose, fructose, 

Figure 4. Dry matter distribution of jatropha 

Leaf 25% DM 

Wood 25% DM 

Fruit 50% DM 

Seed 35% DM Hull 15% DM 
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saccharose, raffinose, stachyose, and galactose. The major fatty acids of Jatropha oil 

are oleic, linoleic, palmitic,  and stearic acids (Martínez-Herrera et al., 2006). Arachidic 

and myristic acids are also reported. Phorbolesters are present in high concentrations 

in the kernels of toxic provenance. The protein contains essential amino acids and 

non-essential amino acids. Jatropha seed contains a heat stable 2S albumin (12 kDa) 

that has allergenic properties (Maciel et al., 2009). The glutelins, globulins, and 

albumins are the major of the total recovered protein found in jatropha kernel meals 

for both non-toxic genotypes from Mexico and a toxic genotype from Cape Verde, 

contributing 56.9, 27.4 and 10.8%, respectively, whereas prolamins and non-extracted 

residues were present in minor quantities (0.6 and 4.3%, respectively)  

3.5. Toxicity of jatropha  

Investigations have shown that the seed cake contains toxins and cannot be used as 

animal feed without further processing. Seeds contain the dangerous toxalbumin 

curcin, rendering them potentially fatally toxic (Devappa et al., 2010). Without being 

detoxified in a proper method, jatropha cake can not be used as food or feed owing to 

the presence of high levels of toxic and antinutritional factors such as trypsin 

inhibitor, phytic acid, saponins and glucosinolates (Devappa and Swamylingappa, 

2008). Saponins were also present at a level of 2.6 - 3.4% (as diosgenin equivalent). 

Phorbolesters were present in kernels of the toxic variety (2.2 - 2.7 mg/g). Trypsin 

inhibitors and lectins are heat labile and can therefore be destroyed by heat 

treatment. Heat treatment for the Mexican variety and a combination of heat and 

chemical (NaOH and NaOCl) treatments or extraction with 80-90 % aqueous ethanol 

or methanol for toxic varieties hold promise for detoxification of jatropha meals 

(Makkar and Becker, 1997). 

3.6. Current situation of jatropha in the world 

By 2008, the global plantation of jatropha was estimated to be 900,000 ha, mostly 

concentrated in Asia (85%) and the rest in Africa (13%) and Latin America (2%); and 

in 2008 the plantation was projected to reach 12,800.000 ha worlwide by 2015 (GEXI, 

2008). The current situation and trend reveal that this projection seems too 

optimistic. 
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In 2011, commercial airliners like Air Japan, Continental Airlines and Air New Zealand 

have done test flights of their planes using jatropha-based biofuel (Honeywell, 2011). 

Despite the advanced tests in use of jatropha-based biofuel, too many issues remain 

unanswered towards the commercial prospects of the jatropha-derived biofuel. Even 

though the spectacular seed yield of jatropha tree has been shown on many ocassions 

and in scientific fora, the factual yield is far behind expectations. Yields were 

inconsistent, and many farmers lacked of the basic agricultural practices to operate 

commercial-scale crops. Most of the jatropha plantations then shut down. Beside the 

knowledge gaps in the basic agricultural practices, the main drawbacks to mention are 

the long process of clone selection, breeding, and domestication of the most 

productive varieties of jatropha (Contran, 2013).  

The previous arguments that jatropha could thrive and be productive, even with 

limited water availability and low fertility, has led to the failure of many projects 

implemented in arid areas. Some large scale jatropha plantations focusing on biodiesel 

production have provided intensive irrigation to obtain high yields, driving down the 

potential sustainable advantages of this tree (Contran, 2013). The regular post 

planting agronomic management seems to be well practiced at least in countries such 

as India and China (Gour, 2006 ). Unfortunately, it is still unclear if these agronomic 

practices can be successfully applied in other locations, such as arid and semi-arid 

areas of Africa. Furthermore, industrial processing of jatropha biomass is still in its 

infancy and a commodity market for jatropha oil and by-products does not exist yet. In 

contrast, the process technologies for jatropha oil, especially that linked to the 

biodiesel production at large scale, are improving rapidly (Achten et al., 2008; 

Contran, 2013; Islam et al., 2011; Tang et al., 2007).      

3.7. Current situation of jatropha in Indonesia 

In 2006, due to an energy crisis, Indonesia launched a new renewable energy 

program, which aimed to source 17 percent of its energy needs from renewable 

resources by 2025. The nation has been pushing the use of biofuels made from various 

biomass sources such as palm oil, sugar cane, cassava, and jatropha. Since then, the 

Indonesian national policy began introducing jatropha as the favored biofuel source. 

The ultimate goals were to improve economy, to expand job opportunities, to 

minimise poverty, and to reduce dependence on imported fossil fuels. Many 
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proponents believed that jatropha would be the best choice of future energy crop. 

However,  no one would have been able to predict that the growth estimatation of the 

jatropha market in Indonesia would deminished so suddenly after only a few years. 

The predominant obstacle standing in the way of jatropha industry development is 

the low oil yield: farmers do not get sufficient income from jatropha cultivation. 

Moreover, up to now the government of Indonesia has been reluctant to fully support 

the biofuel industry. The reasons for this remain unclear.  

The amount jatropha cultivation area in Indonesia shows a slightly increasing trend. 

As high as 68.200 hectare land (produced 7600 tonnes seeds) cultivated in 2007, 

increased to  69.200 hectare (7900 tonnes seeds) in 2008, and rose slightly to 69.300 

hectare (8000 tonnes seeds) in 2009 (Syakir, 2010). Clearly, the seed production 

expresses low seed yields that lie between 111 to 116 kg seed per hectare per year, 

which is even much lower than the reported yields between 400 to 12,000 kg per 

hectare per year (Contran, 2013). 

3.8. Application of jatropha 

Whole plant use 

Jatropha cultivation has a positive effect on the environment, such as improving soil 

condition,  reducing soil erosion, and supporting marginal land reclamation and soil 

remediation (Openshaw, 2000). Traditionally, jatropha is used as a living fence to 

protect homestead, gardens and crop fields from livestock, to create fire barriers, and 

to prevent wind erosion. 

Utilization of plant parts 

Almost all parts of the plant (leaves, bark, roots, seeds, and latex), fresh or as a 

decoction, have pharmacological effects in human medication. The pharmacological 

effects include: purgative and laxative; anticancer, antimalaria, rheumatic and 

muscular pain (Thomas et al., 2008); antibacterial against Staphylococcus aureus and  

Escherichia coli (Ye et al., 2009); anticoagulant (Islam et al., 2011); mouth 

desinfectant, against skin diseases (Kumar and Sharma, 2008); eczema and rheumatic 

pains (Heller, 1996); and as contraceptive (Gubitz et al., 1999). 
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Jatropha oil  

Jatropha oil is extracted from the seeds of J. curcas, L. Several techniques have been 

applied to extract oil from the jatropha seeds. The use of hexane recovers up to 98% oil 

from seeds (Singh et al., 2008; Winkler et al., 1997b); however strict regulations of hexane 

use due to its hazardous properties have driven research to discover safer and more 

economical extraction process alternatives. The other ways of oil extraction are hydraulic 

pressing and screw pressing (expeller) of dried seed, resulting in maximum 85% w/w oil 

recovered (Singh et al., 2008).   

A continuous pressing has been widely applied in jatropha oil extraction. In some 

cylinder models, the nozzles are equipped with heaters. Care has to be taken since 

overheating can reduce the oil quality. A temperature of 60 °C has been regarded as a 

safe maximum. Above this temperature, excessive phosphorus may be released into 

the oil, leading to offspec oil, and in extreme cases the oil may be damaged (cracked) 

by very high temperatures (above 150 °C).  After pressing, the oil contains 1-13% 

solids that can be separated from the oil by sedimentation, filtration or centrifugation, 

or a combination of these processes. The size of solid paticles must not exceed 5 μm. 

The cleaning process should follow shortly after the pressing process to avoid 

filtration problems when the oil is stored under unfavorable storage conditions. Some 

disadvantages of continuos expellers are:   

- Oil from an expeller contains more impurities than oil from a batch press and 

must be filtered to obtain clean oil 

- Maintenance costs are high and it requires skilled mechanics. 

Another method of jatropha oil extraction is aqueous extraction process (AEP) that 

uses water as media to facilitate oil liberation from oilseeds. AEP offers many 

advantages compared to conventional extraction. For instance, it eliminates solvent 

consumption which may also reduce investment costs and energy requirement 

(Barrios et al., 1990a; Barrios et al., 1990b; Rosenthal et al., 1996). AEP also enables 

simultaneous separation of oil, protein and other interesting constituents from 

oilseeds. The oil obtained is also free of gums, thus eliminating de-gumming steps 

(Caragay, 1983). Water extraction only (AEP without enzymes) yielded 38 % of the 

total oil content of the seeds. AEP usually employs enzymes to disrupt oil barriers 

therefore increases overall oil yield. The use of enzymes mainly proteases in AEP of 

jatropha oil extraction had been reported with oil yield up to 86% w/w (Shah et al., 
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2004; Shah et al., 2005). The cost of enzymes together with drying energy cost in the 

aqueous oil extraction process are the most decisive economic factors (Dominguez et 

al., 1994).  

The use of whole-cell biocatalyst in place of purified enzyme in oil aqueous oil 

extraction is attractive in terms of process simplicity, which in turn may reduce 

production cost.  Several investigations have reported the use of microbial cells such as 

bacteria, yeast and fungi as whole-cell biocatalysts in separation and bioconversion 

processes (Ban et al., 2001; Fujita et al., 2002; Konishi et al., 2005; Man et al., 1997; Narita 

et al., 2006). The use of whole cells has been reported to extract coconut oil with high yield 

(Man et al., 1997; Puertollano et al., 1970). 

In all processes, about 50 % of the weight of the seeds remains as a press cake 

containing mainly protein and carbohydrates. Like any other vegetable oil with a 

comparable fatty acid composition, jatropha oil is liquid at room temperature. The oil 

has been used for many purposes, such as for making soap, and most importantly as 

biodiesel (Kumar and Sharma, 2008). Jatropha oil contains both saturated and 

unsaturated fatty acids. Jatropha oil is 80 percent unsaturated, with oleic and linoleic 

as the major fatty acids. The saturated fatty acids consist of 14-15% palmitic (16:0), 4-

10% stearic (18:0), 0.3% arachidic (20:0), 0.2% behenic (22:0), and 0.1% myristic 

(14:0). The unsaturated fatty acids consist of 34-46% oleic (18:1) and 29-44% linoleic 

(18:2), and 0-0.3%  linoleic (18:3) (Kpoviessi et al., 2004; Kumar and Sharma, 2005).  

Oil conversion by trans-esterification has made jatropha oil an environmentally safe, 

cost-effective renewable source of biofuel and a promising substitute for diesel, 

kerosene and other fuels (FACT-Foundation, 2006). The trans-esterification process 

requires the addition of methanol or ethanol and caustic soda, adding additional cost 

to the final product. The resulting biodiesel can be used directly in any diesel engine 

without adaptations (except for pure rubber hoses which deteriorate after longer 

contact with pure biodiesel).  

Jatropha protein  

Extraction of jatropha protein from jatropha kernel and seed press cake with high 

protein recovery has been reported (Lestari et al., 2010). The solvent used was 

0.055M NaOH. By using one-stage extraction, the protein yield from kernel (35.8% 
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protein content) and seed press cake (53.3% protein content) was 69.6 and 64.9%, 

respectively.  The protein yield from seed press cake could be further increased to 

71% by applying four stages of counter current extraction at solvent to solid ratio of 4 

g/g. The best pH for protein precipitation found was between 4 to 5.5.   

In relation to functional properties, jatropha seed protein has been reported to have 

best performance in alkaline region (pH higher than 9.0) due to its high solubility, 

high emulsifying, and high foaming properties (Lestari, 2012).  

Jatropha seed protein has almost all essential amino acids in a higher content than 

those of the FAO reference protein (Makkar et al., 1997). The amino acid composition 

and the percentage of essential amino acids are comparable to those of other seeds 

and press cakes used as fodder.  

Jatropha carbohydrates 

The jatropha fractions with high carbohydrate content like stem (wood), dried fruit 

hulls, and seed shells can be burnt as fuel; however, jatropha wood is not popular as 

fuelwood because it is a light wood that burns too fast (Islam et al., 2011; Singh et al., 

2008). Jatropha fruit hull has 33.8% cellulose, 9.7% hemicelluose, 11.9% lignin, 0.8% 

Na, 4.9% K, 0.7% K, 0.8% P is a good feedstock for biological conversion 

(fermentation) and for briquetting to be used as fuel for household and industries 

(Singh et al., 2008). Analysis shows that jatropha seed shells containing 4.0% ash, 

71.0% volatile matter, and 25% fixed carbon with calorific value of 4044 kcal/kg is a 

suitable feedstock for laboratory model open core down draft gasifier in the 

production of  CO, H2, and CH4 (Singh et al., 2008). 

Other uses  

The 37% tannin found in the jatropha bark give a dark blue dye; the latex of leaves 

also contains 10% tannin and can be used as marker; the oil can be used to make hard 

homemade soap (FACT-Foundation, 2006).   

4. Lignocellulose conversion 

Conversion of lignocellulosics to bioproducts such as ethanol or other fermentative 

products involves four major unit operations: pretreatment, hydrolysis, fermentation, 

and product separation/purification. Pretreatment is required to break macroscopic 
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structure of lignocellulose so that hydrolysis of the carbohydrate fraction to 

monomeric sugars occurs more rapidly and with greater yields. Hydrolysis aims at 

converting the smaller carbohydrate polymers into monomeric sugars. Enzymatic 

hydrolysis of cellulose provides opportunities to develop the technology with lower 

costs so that the ethanol produced is competitive when compared to other liquid fuels 

on a large scale (Wyman, 1999).  

4.1. Pretreatment 

Lignocellulosic biomass is a complex material made up of three major organic 

fractions: cellulose, hemicellulose, and lignin. It also contains ash and various 

extractives. Cellulose is a long polymer chain of glucose units that can be 

deploymerized by enzymes such as cellulase or by acids. However, hydrogen bonds 

that hold the long cellulose chains tightly together in a crystalline structure hampers 

its depolymerization into glucose. 

Hemicellulose is an amorphous 

polymer of mixed sugars, usually 

xylose, arabinose, galactose, 

mannose, and glucose, and smaller 

amounts of a few other compounds, 

such as acetic acid. Hemicellulose is 

more prone to enzyme attack to form 

their component sugars than 

cellulose. Lignin is a complex non 

sugar-based polymer with a phenol-

propene backbone. 

Pretreatment is required to enhance the enzymatic digestibility of the lignocellulosic 

biomass in the conversion of carbohydrate into more simple sugars as represented in 

the schematic diagram of Figure 5. During pretreatment the lignin seal is broken and  

the crystalline structure of cellulose is dusrupted, making it more prone to enzymes 

(cellulases) attacks (Hendriks and Zeeman, 2009). 

Biomass pretreatment can be classified in four groups: physical, physico-chemical, 

chemical, biological, and combination of these treatments (Hendriks and Zeeman, 

Figure 5. Schematic of goals of pretreatment on 

lignocellulosic material (Mosier et al., 2005) 
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2009; Sun and Cheng, 2002). Physical pretreatments include mechanical size 

reduction (chopping, pulverizing, and milling to reduce the cellulose crystallinity) and 

pyrolysis at temperatures greater than 300 °C. Physico-chemical pretreatments 

include steam explosion (autohydrolysis) and ammonia fiber explosion (AFEX). 

Chemical pretreatment includes ozonolysis, acid pretreatment, alkaline pretreatment, 

oxidative delignification, and organosolv pretreatment. Biological pretreatment 

employs microorganisms such as fungi to degrade lignin and hemicellulose in waste 

materials. The advantages of biological pretreatment are low energy requirement and 

mild environmental conditions. The low rate of hydrolysis is the main disadvantage of 

most biological pretreatments (Hendriks and Zeeman, 2009). 

4.2. Biomass hydrolysis and ethanol process  

Cellulose can be enzymatically or chemically hydrolyzed into glucose. Enzymatic 

hydrolysis uses cellulases whilst chemical hydrolysis usually employs sulfuric acid or 

other acids. Hemicellulases or acids hydrolyze the hemicellulose polymer to release 

sugars such as xylose. The six carbon sugars or hexoses (glucose, galactose, and 

mannose) are readily fermented to ethanol by many naturally occurring organisms 

such as Saccharomyces cerevisiae, but the pentoses xylose and arabinose (containing 

only five carbon atoms) are fermented to ethanol by only a few wild type strains, and 

usually at relatively low yields. Xylose and arabinose generally comprise a significant 

fraction of hardwoods, agricultural residues, and grasses and must be utilized to make 

the economics of biomass processing feasible (Lynd et al., 1999). Genetic modification 

of bacteria (Ingram et al., 1998) and yeast (Kuyper et al., 2005a; Kuyper et al., 2005b; 

van Maris et al., 2006) has produced strains capable of co-fermenting both pentoses 

and hexoses to ethanol and other value-added products at high yields.  

In the ethanol process, the carbohydrate hydrolysis conducted separately from the 

fermentation step is known as separate hydrolysis and fermentation (SHF), while the 

hydrolysis carried out in the presence of the fermentative microorganism is known as 

simultaneous saccharification and fermentation (SSF). SSF is favorable because of 

lower process costs (Wright et al., 1988). 
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5. Research objectives 

To develop sustainable technologies of jatropha oil extraction and jatropha biomass 

fractionations within a framework of bioconversions (enzymatic and microbial 

processings) that could suit the requirement for in situ (local) application, in this case 

Indonesia. 

6. Research questions 

The research questions are: 

a) Which part of jatropha lignocellulosic biomass can be depolymerized to 

sugars and then valorized to chemicals/fuels, in particular to bioethanol? 

b) Can a microbial method of jatropha oil extraction improve the oil yield in 

comparison to other known processes? 

c) Can a microbial method of oil extraction preserve the original structure of 

jatropha protein? 

d) Can Jatropha fruit by-products after valorization give better added-value 

products than just the seeds?   

7. Outline of this thesis 

After a general introduction in Chapter 1, Chapter 2 presents the investigation on the 

effect of  dilute sulfuric acid pretreatment on enzymatic digestibility of jatropha seed 

shells, fruit hulls, and seed-cake. The goal is to estimate the feasibility of releasing 

monomeric sugars from several jatropha fractions.   

Chapter 3 discusses the investigatation on the oil extraction from jatropha kernel 

assisted by a thermophilic bacterial strain namely Bacillus licheniformis strain BK23 

isolated from paddy crab.  

Chapter 4 discusses the investigation on the oil extraction from jatropha kernel 

assisted by a mesophilic bacterial strain namely Bacillus pumilus isolated from paddy 

crab.  
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Chapter 5 discusses optimization of the experimental variables (sulfuric acid 

concentration, time, and temperature) for jatropha fruit hull pretreatment and its 

hydrolysis into sugars. Simultaneous saccharification and fermentation (SSF) of 

jatropha fruit hull hydrolyzates by Saccharomyces cerevisiae for ethanol production is 

also discussed. 

Chapter 6 provides general discussion and conclusion, focusing on the retrospectives 

of our research findings and the perspectives of the future utilization of jatropha, 

specifically in Indonesia. 
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Abstract 

Jatropha fruits consist of (in % w/w dry fruits) 50% seed kernels, 20% husks (seed 

shells) and 30% hulls (fruit exocarp). The fruit contains 23.5% (w/w) of vegetable oil. 

Fractionation of the fruit byproducts, mainly protein and carbohydrate, will increase 

the economy of jatropha processing factory. In this study, we investigated the effect of 

pretreatment using dilute sulfuric acid (0-500 mM) at 120 oC for 30 minutes on 

enzymatic digestibility of milled jatropha biomass: seed shell, seed-cake and fruit hull 

at 10% (w/w) solids loading by determining glucose and xylose release. The 

lignocellulose fractions of the jatropha seed shell and the jatropha seed cake were 

relatively recalcitrant to dilute sulfuric acid pretreatments suggesting that more 

intense pretreatment is necessary to disrupt lignin barriers sufficiently to improve 

enzymatic digestibility. However, dilute sulfuric acid pretreatment solubilized 65% of 

the available protein in the jatropha seed cake. The acidic jatropha seed cake 

hydrolyzate that is rich in amino acids may be further fractionated into single amino 

acids for the production of N-chemicals. After dilute acid pretreatment, the 

lignocellulose fraction of the jatropha fruit hull proved relatively more susceptible to 

hydrolysis by cellulases (GC220). As much as 70% glucose and 100% xylose was 

obtained from the jatropha fruit hull after a pretreatment with 500 mM sulfuric acid. A 

pretreatment at higher temperature may resolve the need of more diluted acid 

concentration and a shorter time to achieve comparable or higher sugar yields.  

 

Keywords:   

Sulfuric acid, Pretreatment, Lignocellulose, Hemicellulose, Jatropha curcas, L, Biomass, 

Glucose, Xylose 
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1. Introduction 

Jatropha curcas, L is a crop of which the fruits are used for oil production. The oil can 

be converted into biodiesel. The fruits consists (in w/w) of 50% seed kernel, 20% 

husk (seed shell) and 30% hull (fruit exocarp) (Jongschaap et al., 2007a). The overall 

composition of the total fruit is (on weight basis): 23.5% oil, 13.0% protein, 30.0% 

carbohydrate, 12.6% lignin and 20.9% other compounds.  

To improve the economic value of the jatropha plant it is important not only to 

harvest the oil, but also to utilize the other fruit fractions. The side-stream from 

jatropha processing plant such as fruit hulls, seed shells, and the remaining de-oiled 

seed cake after pressing can be used for organic fertilization or can be directly burnt 

for more energy production (Jongschaap et al., 2007a). Alternatively, the seed cake 

and the fruit hulls can be anaerobically digested for biogas production. Direct burning 

causes the loss of most nutrients, e.g. the oxidation of organic nitrogen to NOx, while 

digestion will secure application of most nutrients in the effluent as fertilizer.  

Jatropha seed kernel contains approximately 25-30% protein (Gubitz et al., 1999; 

Openshaw, 2000). It however cannot be used directly as food or feed because it 

contains toxic or anti-nutritional components such as phorbol esters, trypsin inhibitor, 

lectin, and phytate (Devappa et al., 2010; Makkar et al., 2008; Rakshit et al., 2008). In 

view of its favorable amino acid composition for food and feed application, research 

focuses on the detoxification of jatropha protein concentrates (Devappa and 

Swamylingappa, 2008; King et al., 2009; Lestari et al., 2013; Makkar et al., 2008; 

Makkar and Becker, 2009). Non-food applications of the protein from the jatropha 

seed cake to be applied as binders/glues, emulsifiers, protein films and plastics have 

been extensively studied (Lestari et al., 2010; Moure et al., 2006; Scott et al., 2007).  

Since jatropha lignocellulosic biomass is a source of hexose (C6) and pentose (C5) 

sugars, de-polymerized fruit carbohydrate can also serve as a source for the 

production of biofuels, chemicals and other economically valuable by-products 

(Gonzalez-Garcia et al., 2010; Wyman, 1994; Yang and Wyman, 2008). Unlike starch 

carbohydrates which are easier to be hydrolyzed into fermentable sugars, 

carbohydrate fractions in lignocelluloses are not readily attacked by enzymes and 
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therefore a pretreatment stage is necessary (Chang et al., 1997; Cheng et al., 2010; 

Kaar and Holtzapple, 2000; Kong et al., 1992).  

Pretreatment is a costly processing step in the conversion of cellulosic biomass to 

fermentable sugars with costs as high as 0.08 USD/liter ethanol produced (Mosier et 

al., 2005). Highly efficient conversion of cellulosic biomass to fermentable sugars is 

therefore essential for making fermentative products commercially competitive in 

biotechnological processes (Sun and Cheng, 2002). Various methods of biomass 

pretreatment are available, including physical and chemical pretreatments or a 

combination of both followed by enzymatic hydrolysis. 

Acid pretreatment has advantages compared to other methods, i.e. the solubilization 

of hemicellulose, and therefore setting the cellulases free from steric hindrance during 

cellulose hydrolyzation (Mosier et al., 2005). However, a risk of inhibitor formation 

during strong acid pretreatment is one of the disadvantages (Lawford and Rousseau, 

2003; Mosier et al., 2002). Dilute acid pretreatment can overcome excessive inhibitor 

formation because secondary reactions to furfural and HMF can be reduced under 

optimal pretreatment conditions. Dilute acid pretreatment commonly uses sulfuric 

acid in the concentration of 50-300 mM at 100-200 oC to disrupt the lignin-

carbohydrate matrix, and to facilitate enzymatic cellulose hydrolysis (Lawford and 

Rousseau, 2003; Lloyd and Wyman, 2005; Mosier et al., 2005; Zhu et al., 2009).  

The thermo-chemical treatment of almost any protein-rich biomass with alkali or acid 

– at an appropriate temperature, biomass concentration, and time – cleaves peptides 

bonds to release soluble amino acids and small peptides/proteins (Coward-Kelly et al., 

2006a; Coward-Kelly et al., 2006b; Kootstra et al., 2011). Moreover, the acid 

pretreatment of proteins promotes the destruction of some essential amino acids, 

such as tryptophan (Westall and Hesser, 1974). 

Pretreatment and enzymatic conversion of crop residues (e.g. wheat straw, barley 

straw, corn cob, corn stover, bagasse, etc.) are widely studied. However, very limited 

studies have been conducted yet on jatropha biomass hydrolysis. The subject of this 

study is to investigate the effect of dilute sulfuric acid pretreatment on the enzymatic 

digestibility of polysaccharides and hydrolysis of protein of jatropha fruit hulls, seed 
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shells and seed cake. We study the influence of dilute sulfuric acid (0 to 500 mM) at 

120 oC for 30 minutes on the following two factors: 

1. Xylose and glucose released from the milled jatropha biomass (seed shells, seed 

cake and fruit hulls) just after pretreatment and after enzymatic hydrolysis by 

cellulases (GC220, Genencor) for 24 h and 72 h.  

2. Soluble proteins / amino acids released from the milled jatropha seed cake due 

to dilute acid pretreatment. 

2. Materials and Methods 

2.1. Materials 

Jatropha curcas, L fruits, ripened to a yellowish state, were harvested on November 

2009 from a small jatropha plantation located in Serpong, Indonesia. The hulls of the 

fruits were removed, collected and dried at 60 oC for 48 h. The dried hulls were milled 

in a home blender (Philips HR 2071) and sieved through a strainer with 0.8 mm hole 

diameter. The dry matter of milled jatropha fruit hull was 95.3% (w/w).  

Jatropha seed shells were obtained by removing the kernels from the seeds. The shells 

were milled in a Retsch mill (1 mm sieve). The dry matter of milled jatropha seed shell 

was 90.6% (w/w). The kernels obtained were milled in a home blender (Philips HR 

2071) and sieved through a strainer with 0.8 mm hole diameter. The oil in milled 

kernel was extracted in a Soxhlet apparatus using n-hexane at 80 oC for 6 hours to 

obtain oil-free kernel. 

Jatropha seed cake was the byproduct in the production of oil from jatropha seeds by 

screw-pressing. The Jatropha seed cake (provided on September 2008 by The Energy 

Center BPPT, Serpong, Indonesia) was extracted with hexane in a continuous 

extractor to remove the remaining oil (performed at Pilot Pflanzenöltechnologie 

Magdeburg e.V., Magdeburg, Germany). The de-oiled seed cake was milled in a Retsch 

mill (1 mm sieve). The dry matter of milled de-oiled jatropha seed cake was 92.2% 

(w/w).  

The milled jatropha seed shell, oil-free kernel, jatropha seed cake, and jatropha fruit 

hull were kept in sealed plastic containers at 4 oC until used. All chemicals were of 
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analytical grade and used as received. GC220 is a cellulase enzyme mixture (batch 

4900759148, 7608 IU/mL cellulase activity). 

2.2. Sulfuric acid pretreatments   

Five grams of the milled jatropha seed shell, jatropha seed cake, or jatropha fruit hull 

was mixed with 45.0 mL of sulfuric acid solution (50, 100, 150, 200, 300 or 500 mM) 

in a 250-mL Erlenmeyer flask. Demineralized water was used as a control. Every 

experiment was performed in duplicate. The mixtures were soaked for 20-24 hours at 

room temperature. After measuring the pH after soaking, the mixtures were 

autoclaved at 120 °C for 30 minutes using TOMY Autoclave SS-325. The time required 

to reach 120 oC was 12 minutes. After the holding time of 30 minutes, the mixtures in 

the autoclave chamber were let to cool down to 98 °C; the time required to reach this 

temperature was 10 minutes. The mixtures were quickly removed from the autoclave 

and quenched in ice water to cool to 25°C in less than 10 min. After the pretreatment, 

the pH was adjusted to 5.0 with 10 M NaOH, and a sodium azide solution (0.025% 

(w/w) final concentration; Merck KGaA, Darmstadt, Germany) was added. A 1-mL 

sample was taken for analysis.  

2.3. Enzymatic hydrolysis 

To start enzymatic hydrolysis, GC220 (0.4 g (w/w) dry matter hull) was added to a 

250-mL flask containing the pH-adjusted (pH 5.0) pretreated biomass. The amount of 

GC220 used corresponded to 46 FPU/g original dry matter hull. The weight of the 

material plus the flask was determined, after which the flasks were closed with 

airtight plugs and placed in a water-bath incubator shaker (50 °C, 120 rpm, 3 cm 

reciprocal stroke). Samples of 1.0 mL were taken at t = 0, 24, and 72 h. After enzyme 

inactivation by heating at 90 °C for 10 min, samples were stored at -20 °C until 

analysis.  

2.4. Protein extractions  

Protein extraction was carried out by extracting 1 g of sample with 30 ml NaOH 0.055 

M for 30 min in 50 ml capped centrifuge tubes (Lestari et al., 2010). The mixing was 
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conducted at room temperature by using a rotary mixer.  Solid–liquid separation was 

conducted at 5000 x gravity for 15 min using a KUBOTA centrifuge.  

2.5. SDS-PAGE analysis 

After hot acid pretreatments of the jatropha seed cake, jatropha protein from both the 

aqueous phase and solid phase (pH of 5.0) was subjected to SDS-PAGE (Biorad 

Electrophoresis System). The protein in aqueous phase was directly subjected to SDS-

PAGE analysis, while protein in the solid phase was first extracted with NaOH 0.055 M.  

2.6. Analyses 

The chemical composition of the jatropha biomass was analyzed in triplicate 

according to TAPPI methods (TAPPI, 2004a; TAPPI, 2004b; TAPPI, 2004c; TAPPI, 

2004d; TAPPI, 2004e; TAPPI, 2004f), with minor modifications as described 

previously (Kootstra et al., 2009b). Glucose and xylose were measured using enzyme 

kit D-Glucose (K-GLUC 07/2008) and D-Xylose (K-XYLOSE 03/07), respectively, both 

from Megazyme (Ireland). Other hexose sugars (mannose, rhamnose and galactose) 

and pentose sugar (arabinose) were measured by High Performance Anion Exchange 

Chromatography with Pulsed Amperometric Detection (HPAEC-PAD) as described 

earlier (Kootstra et al., 2009b). The monomeric sugar yield was calculated as follows:  

 

          

where SL is the amount of sugar (g) in the aqueous phase and SS is the amount of sugar 

present in the sample of dry biomass (g monomeric sugar equivalents in polymeric 

sugar).  

The solubilized protein after sulfuric acid pretreatment was calculated as follows:  
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where NL is the amount of protein (g) measured in the aqueous phase and NS is the 

amount of total nitrogen present in the sample of dry biomass. 

3. Results and Discussion 

3.1. Raw material compositions 

Table 1 shows the composition of jatropha seed shell, jatropha seed-cake, and 

jatropha fruit hull.  

Table 1. Composition (% w/w of dry matter) of jatropha fruit fractions. 

   Seed shell Seed cake Fruit hull 

Extractives in Ethanol/ toluene 2.7 4.3 4.1 

Ethanol 0.5 1.4 2.0 

Water 5.3 9.2 36.2 

Subtotal 8.5 14.9 43.3 

Polysaccharides Arabinose 0.7 1.3 0.8 

Xylose
a
 12.1 7.3 5.7 

Mannose 1.3 1.0 1.1 

Galactose 1.0 1.0 2.0 

Glucose
b
 28.9 22.6 20.4 

Rhamnose 0.3 0.2 0.8 

Subtotal 44.3 33.4 30.8 

Uronic Acids 0.8 0.7 3.2 

Lignin AIL 43.7 28.3 11.7 

ASL 0.3 0.6 0.8 

Subtotal 44.0 28.9 12.5 

Protein nd
c 

21.5 5.0 

Total 97.6 98.7 94.8 
a
 The total xylose used calculate the xylose yield 

b 
The total glucose used to calculate the glucose yield 

c
 Not detected 

The jatropha seed cake consists of the remaining material of the nut after pressing, so 

the seed shell (48% w/w) and remains of the kernel (52% w/w). The jatropha fruit 

hull contains the highest amount of extractives (43.3%) of which 36.2% are soluble in 

water. The extractives of the jatropha fruit hull are 3 and 5 times higher than those of 

the jatropha seed cake and the jatropha seed shell, respectively. The jatropha seed 

shell contains the highest percentage of polysaccharides (44.3%) followed by the 

jatropha seed cake (33.4%) and the jatropha fruit hull (30.8%). These polysaccharide 
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contents are lower than those reported for other lignocellulosic materials such as 

wheat straw (59%) and cardoon biomass (52%) (Ballesteros et al., 2008; Kootstra et 

al., 2009a).  The total lignin value is the highest in the jatropha seed shell (44.0%), 

followed by the jatropha seed cake (28.9%) and the jatropha fruit hull (12.5%). The 

acid-soluble lignin (ASL) will solubilize during acid pretreatment, while the acid-

insoluble lignin (AIL) remains in solid form. The ASL values of these jatropha 

byproducts account for less than 1.0%, implying that the majority of lignin from 

jatropha fruits is resistant to acid treatment. The jatropha seed cake has a 

considerable protein content (21.5%), all derived from the seed kernels. This protein 

content is more than four times higher than that of the jatropha fruit hull. No protein 

has been detected in the jatropha seed shell.    

3.2. Pretreatment and enzymatic hydrolysis of jatropha seed shell  

Determination of optimum pretreatment conditions for the industrial process should 

take into account the feasibility of the process, including equipment and process costs 

under local conditions. Pretreatment at high temperatures would require expensive 

pressurized equipment (Kaar and Holtzapple, 2000). For this reason, we identified 

120 oC as a suitable temperature to be applied in Jatropha biomass pretreatment 

because the generated steam pressure, 1 atmosphere, can be easily maintained under 

local conditions. We tested pretreatment of the jatropha seed shell with sulfuric acid 

concentrations between 0 and 500 mM with a short incubation time of  30 min.  

The curves of xylose and glucose yields as percentages of the total amount of 

respectively xylan and glucan present versus sulfuric acid concentration during 

pretreatment at different hydrolysis times are shown in Figure 1. The values of xylose 

and glucose yields at time zero (0h) depict the xylose and glucose liberation just after 

pretreatment of the Jatropha seed shell. 

Samples that were pretreated in absence of sulfuric acid did not contain free xylose or 

glucose, indicating all sugars of the jatropha seed shell were polymeric. The addition 

of enzymes to the jatropha seed shell pretreated in absence of sulfuric acid resulted in 

the release of 10% of the available xylose and glucose. All hydrolyzable sugar was 

released after  24 hours of hydrolysis; a prolonged incubation of 72 hours did not 

result in further sugar release.  
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Dilute sulfuric acid pretreatment resulted in a maximum release of 75% and 20%  of 

xylose and glucose respectively. Sulfuric acid concentrations higher than 150 mM had 

a strong hydrolytic effect on hemicellulose, also without addition of saccharolytic 

enzymes. This implies that at sulfuric acid concentrations higher than 150 mM, xylan 

solubilisation into soluble oligomers occured simultaneously with their complete 

depolymerization into monomer (xylose).  

 

Dilute sulfuric acid pretreatment had a slight positive effect on glucose release, but 

only 20% of total glucose could be released. It seems that the cellulose polymer of the 

jatropha seed shell was hardly cleaved by the hydrolytic enzymes. This is likely caused 

by steric hindrance of the cellulases by the lignin that was not affected by the 

pretreatment. Lignin acts as a physical barrier between cellulolytic enzymes and 

cellulose. Maximum conversion of cellulose into monomeric sugars occurs only if 50% 

or more lignin has been removed (Gould, 1984). Therefore, delignification of the 

jatropha seed shell with a proper method seems essential in achieving better 

conversion yield of glucose.  
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Figure 1. The trends of xylose yield (A) and glucose yield (B) of the sulfuric acid-pretreated 
jatropha seed shell during GC220 hydrolysis after 0, 24 and 72 h. Pretreatment conditions: 5.0 g 
milled jatropha seed shell, 45.0 mL sulfuric acid solution, 120 

o
C, 30 min. The milled jatropha 

seed shell (5.0 g; 4.53 g DM) contains = 1.31 g glucose and 0.55 g xylose. 
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3.3. Pretreatment and enzymatic hydrolysis of jatropha seed cake 

The jatropha seed cake was treated using the same conditions for pretreatment and 

hydrolysis as used for the jatropha seed shell. The curves of xylose and glucose yields 

versus sulfuric acid concentration at different hydrolysis times are shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 The values of xylose and glucose yields at time zero (0h) depict the amount of glucose 

and xylose liberated just after pretreatment of  the jatropha seed cake.  

The release of xylose and glucose from pretreated the jatropha seed cake strongly 

resembles that of pretreated the jatropha seed shell, with slightly higher sugar 

release: 90% for xylose and 35% for glucose. The jatropha seed cake contains 48% 

seed shell and 52% seed kernel. Based on Table 1 it can be calculated that the kernel 

contributes 38% and the seed shells 62% of the total glucan present in the jatropha 

seed cake. If we assume that the release of glucose from the seed shell fraction in the 

jatropha seed cake is the same as for the jatropha seed shell (20%, see figure 1), this 

would mean that 60% of the glucan in the kernel fraction of the jatropha seed cake 

was hydrolyzed to glucose. 

To summarize our findings with respect to the jatropha seed shell and the jatropha 

seed cake hydrolysis, we conclude that hemicellulose depolymerization of the 
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Figure 2. The trends of xylose yield (A) and glucose yield (B) of the sulfuric acid-pretreated jatropha 
seed cake during GC220 hydrolysis after 0, 24 and 72 h. Pretreatment conditions: 5.0 g milled 
jatropha seed cake, 45.0 mL sulfuric acid solution, 120 

o
C, 30 min. The milled jatropha seed cake 

(5.0 g; 4.61 g DM) contains = 1.04 g glucose and 0.34 g xylose. 
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Figure 3.  Protein of the jatropha seed cake 
solubilized after dilute acid pretreatment 
compared to water pretreatment at 120 

o
C 

for 30 min. Pretreatment conditions: 5.0 g 
jatropha seed cake, 45.0 mL sulfuric acid 
solution, 120 

o
C, 30 min. The milled 

jatropha seed cake (5.0 g; 4.61 g DM) 
contains 0.99 g protein. 

jatropha seed shell is not the only factor in opening the barriers for cellulose 

hydrolysis. The lignin in seed shell which mostly remains intact following dilute 

sulfuric acid pretreatment has become a major barrier which in turn limits the 

accessibility of the enzymes to hydrolyze the cellulose. 

The jatropha seed cake contains approximately 20% of protein. The utilization of this 

protein in technical applications to maximize the economic benefit requires that the 

protein remains largely intact. The protein solubilized from the jatropha seed cake 

just after pretreatment (120 oC, 30 minutes) given by different sulfuric acid 

concentration is shown in Figure 3. 

 

 

 

 

 

 

 

In general, the amount of soluble protein increased significantly from the jatropha 

seed cake pretreated with sulfuric acid. Upon pretreatment with 500 mM sulfuric acid 

at 120 oC for 30 minutes, 65% soluble protein / peptides / amino acids (equivalent to 

140 mg protein/g dry the jatropha seed cake ) was released from the the jatropha 

seed cake sample, whereas only 7% soluble protein / amino acids (equivalent to 15 

mg protein/g dry the jatropha seed cake ) was released from the control sample 

(pretreated in absence of sulfuric acid). 

SDS-PAGE analyses of the liquid phase and solid phase  are shown in Figure 4 and 5. In 

general, the SDS-PAGE patterns of proteins in the jatropha seed cake (JSC) and the 

jatropha seed kernels (JSK) look almost the same, except that the proteins of 15 kDa 

from JSC are more visible than those from JSK, indicating difference sources of 
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jatropha seeds (used in this study) resulted in different concentration of the protein 

subunits.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

The protein bands of more than 200 kDa (located at the top of the gel) that were 

visible in the aqueous phase (Figure 4) were found totally invisible in the solid phase 

(Figure 5), indicating that these large proteins (higher than 200 kDa) were completely 

solubilized. These proteins seemed to be highly stable against the pretreatment 

conditions tested. In contrast to these large proteins, the smaller proteins (less than 

200 kDa) were highly prone to degradation upon pretreatment, leading to their 

complete solubilisation. 

Figure 4.  SDS-PAGE analysis of the protein in 
aqueous phase of the acid-pretreated 
jatropha seed cake. Bands of proteins from 
duplicate samples after pretratment with 0 
mM (1a and 1b), 150 mM (2a and 2b), 300 
mM (3a and 3b), and 500 mM (4a and 4b) of 
sulfuric acid solutions in comparison to NaOH-
extracted jatropha protein from Jatropha seed 
cake (JSC) and from the oil-free jatropha seed 
kernels (JSK). S stands for protein molecular 
weight marker. 
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Figure 5.  SDS-PAGE analysis of the NaOH-
extracted protein from solid phase of acid-
pretreated the jatropha seed cake. Bands of 
proteins from duplicated samples after 
prtreatment with 0 mM (1a and 1b), 150 mM 
(2a and 2b), 300 mM (3a and 3b), and 500 
mM (4a and 4b) sulfuric acid solutions in 
comparison to NaOH-extracted jatropha 
protein from the jatropha seed cake (JSC) and 
from the oil-free jatropha kernels (JSK). S 
stands for protein molecular weight marker. 
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As summary to SDS-PAGE analyses, pretreatments either with water only or with 

dilute sulfuric acid at 120 oC for 30 minutes resulted in a severe reduction of 

molecular weight of the less than 200 kDa proteins available in the the jatropha seed 

cake to below 10 kDa. Acid-hydrothermal treatment is known to cleave peptide bonds 

of protein into smaller, more soluble peptides and amino acids (AOAC, 1982). 

3.4. Pretreatment and enzymatic hydrolysis of jatropha fruit hull 

The jatropha fruit hull was pretreated in the same way as the jatropha seed shell and 

the jatropha seed cake.  

Without enzymatic hydrolysis, the xylose yield which was initially low (approx 5%) 

but increased rapidly at sulfuric acid concentrations above 150 mM to achieve approx 

80% at 500 mM sulfuric acid, indicating that susceptibility of the hemicellulose 

polymer against acid attack at 120 oC was more pronounced at sulfuric acid 

concentrations higher than 150 mM (Figure 6). For tougher biomass like corn stover, 

higher acid concentrations up to 1400 mM at higher pretreatment temperature (165-

195 oC) with residence time of 3-12 minutes were needed to obtain more than 70% 

hemicellulose solubilization (Schell et al., 2003; Um et al., 2003). Hemicellulose 

solubilization of 96% from soybean hulls was achieved when the biomass was 

pretreated using 200 mM sulfuric acid at 140 oC for 30 minutes in combination with 

steam explosion (Corredor et al., 2008). 

Without enzymatic hydrolysis the release of glucose from pretreated the jatropha fruit 

hull was low,- up to  5% glucose was released at 500 mM sulfuric acid - indicating that 

dilute sulfuric acid pretreatment conserved most of the cellulose in the solid form, an 

advantagous trait if the cellulose has to be separated from the hemicellulose for 

further hydrolysis.  

After 24 h of enzymatic digestion of the jatropha fruit hull, pretreated in absence of 

sulfuric acid, the xylose yield and the glucose yield were increased by 15% and 40%, 

respectively, implying that heating contributed to the cleavage of long-chain 

carbohydrate polymers into smaller chains which facilitated further hydrolysis. It 

therefore can be concluded that hydrothermal treatment at 120 oC improved to some 

extent the enzymatic digestibility of the jatropha fruit hull carbohydrates. It was 

reported that heating lignocellulosic biomass in aqueous media at 150°C to 180°C is 
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required to solubilize parts of the biomass, mainly the hemicellulose and the lignin 

(Hendriks and Zeeman, 2009) 

The addition of enzymes improved the xylose yield along the sulfuric acid range used 

for pretreatment with approximately 15% (Figure 6). Since the increase of the xylose 

yield is always the same, we may assume that the cellulases (GC220) liberate xylose 

from a different origin within hemicellulose structure of the jatropha fruit hull than 

the acid does. A complete hemicellulose solubilization (100%) was achieved at 500 

mM sulfuric acid after 24 hours of enzymatic hydrolysis. Upon enzymatic hydrolysis 

for 24h, the glucose yield increased to 70% at 500 mM sulfuric acid. However, as much 

as 30% of the cellulose left as indigestible  matter which requires a more severe 

petreatment condition to increase its enzymatic digestibility (Kabel et al., 2007). 

 

 

 

 

 

 

 

 

 

To summarize our findings with respect to the jatropha fruit hull hydrolysis,  

pretreatment converted 100% xylan and 70% glucan available in the jatropha fruit 

hull into their monomeric sugars. The use of high sulfuric acid for industrial process 

would lead to large amounts of gypsum produced with respect to the use of as 

cheapest neutralizing agent, which can negatively affect the downstream process, and 

also results in a low-value-by-product stream (Kootstra et al., 2009a; Yang and 

Wyman, 2008). To reduce sulfuric acid concentration and time of pretreatment in the 

Figure 6. The trends of xylose yield (A) and glucose yield (B) of the sulfuric acid pretreated jatropha 
fruit hull during GC220 hydrolysis after 0, 24 and 72 h. Pretreatment conditions: 5.0 g milled 
jatropha fruit hull, 45.0 mL sulfuric acid solution, 120 

o
C, 30 min. The milled jatropha fruit hull (5.0 

g: 4.77 g DM) contains = 1.13 g glucose and 0.48 g xylose. 
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jatropha fruit hull pretreatment, conducting pretreatment at a temperature higher 

than 120 oC is necessary, although robust design of equipments in industrial process, 

as a consequence,  will be required to resist high pressures and corrosive chemicals 

(Yang and Wyman, 2008).   

4. Conclusions 

The lignocellulose fractions of the jatropha seed shell or the jatropha seed cake are 

relatively recalcitrant to dilute acid pretreatments. Delignification with a suitable 

method to disrupt lignin barriers seems essential to improve enzymatic digestibility of 

the jatropha seed shell or the jatropha seed cake for the release of more sugars. The 

lignocellulose fraction of the jatropha fruit hull proves relatively more susceptible to 

hydrolysis by cellulase following pretreatment with sulfuric acid than that of the 

jatropha seed shell or the jatropha seed cake. Therefore, the susceptibility of jatropha 

biomass studied against acid pretreatment and enzyme hydrolysis has a direct 

correlation with the total lignin content, in which more sugars are released at lower 

lignin content. The total lignin value is the highest in the jatropha seed shell (44.0%), 

followed by the jatropha seed cake (28.9%) and the jatropha fruit hull (12.5%).   

As much as 70% glucan and 100% xylan conversions were obtained from the jatropha 

fruit hull after a pretreatment with 500 mM sulfuric acid at 120 oC for 30 minutes. 

Pretreatments at higher temperatures (more than 120 oC) may reduce sulfuric acid 

concentration and time of pretreatment to obtain a comparable or higher sugar yields 

from the the jatropha fruit hull. Therefore, optimisation of pretreatment parameters 

such as time and temperature of pretreatments as well as dilute sulfuric acid 

concentration is a challenge for the upcoming investigation with the aim to improve 

process economy and to limit the use sulfuric acid. 

Dilute acid pretreatment solubilized more than 65% the available protein in the 

jatropha seed cake. The acidic the jatropha seed cake hydrolyzate rich in amino acids 

may be further fractionated into single amino acids for the production of N-chemicals. 

Because the jatropha seed cake contains antinutritional factors that are highly toxic to 

animal, the toxicity and the nutrition level of the resulting acidic the jatropha seed 

cake hydrolyzate needs to be thoroughly studied before application as animal feed is 

feasible. 
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Abstract 

A traditional Java method of coconut oil extraction assisted by paddy crabs was 

investigated to find out if crabs or crab-derived components can be used to extract oil 

from Jatropha curcas, L seed kernels.  Using the traditional Java method the addition of 

crab paste liberated 54% w/w oil from grated coconut meat. Oil extraction using crab 

paste carried out under controlled temperatures and in the presence of antibiotics 

showed that enzymes from crab played a dominant role in liberating oil from grated 

coconut meat and aqueous jatropha kernel slurries when incubated at 30oC or 37oC. 

However, at higher temperature (50oC), thermophilic bacterial strains present inside 

crabs played a significant role in the extraction of oil from both oilseeds tested. A 

thermophilic bacterial strain isolated from crab paste and identified based on 16s 

rRNA sequence as Bacillus licheniformis strain BK23, when added as starter culture, 

was able to liberate 60% w/w oil from aqueous jatropha kernel slurry after 24h at 

50oC. Further studies of BK23 and extraction process optimization are the challenges 

to improve jatropha oil extraction yield and process economy. 

 

Keywords:  

Java method,  Coconut oil, Cocos nucifera, Jatropha oil, Paddy crabs, Thermophilic 

bacteria, Jatropha curcas, L, PCR, 16s rRNA, Bacillus licheniformis, Extraction 

economics 
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1. Introduction 

Coconut is an established oil source for food and chemical applications due to its 

abundant availability in most tropical regions like Indonesia. Coconut is a traditional 

source of lauric oil used in a number of industrial products with well- developed 

processing technologies on large scale (TanoDebrah and Ohta, 1997). Jatropha curcas, 

L seeds are known as a potential oil source, which is, however, unsuitable for use in 

food due to anti-nutritional factors (Gubitz et al., 1999; Makkar et al., 1997). The use 

of jatropha oil as biodiesel has been described (Foidl et al., 1996; Makkar et al., 1997). 

The sustainable industrial production of biofuels from jatropha requires the 

development of efficient production and conversion processes, e.g. for the release of 

oil from the seeds. 

Processes for removing oil from oilseeds can be categorized into solvent extraction, 

wet, and dry processing methods. Even though solvent extraction with hexane is the 

most efficient process, environmental and safety issues have been the major drawback 

of prolonged hexane use for vegetable oil extraction due to its toxic properties (Man et 

al., 1997; Rosenthal et al., 1996). In many developing countries where coconut is 

easily grown and chiefly produced, traditional wet methods of oil extraction are still 

practiced despite the availability of more efficient and modern processes (Man et al., 

1996). One of the traditional wet methods practiced over the years in Java involves 

heating coconut milk to the boiling point in order to vaporize the water phase, leaving 

the oil above the residue to be collected. Generally, the traditional wet method results 

in low oil recovery (only 30-40% w/w) with inferior quality due to high moisture 

content and short shelf life (Hagenmai.R et al., 1973; Man et al., 1996). In some rural 

areas of eastern Java in Indonesia, indigenous people have practiced traditional 

coconut oil extraction for a long time using mashed wild paddy crabs collected from 

bunds. In the extraction process, crushed crab is added to grated coconut meat, 

wrapped tightly with a banana leaf or a plastic bag, and incubated overnight after 

which the oil is squeezed out. The process is a cold process (no fire wood required) 

and only mild heating under sunlight is applied to reduce the water content before 

squeezing. The oil yield of this process is 50-65% w/w, about 1.7 times more efficient 

than the traditional wet method (Haryoto, 1983). 
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The mechanism of oil liberation from grated coconut meat by crab paste is not well 

understood. Protocols have been described for coconut oil extraction on 100 kg scale 

of coconut meat, including a method for the propagation of microbial starter cultures 

from the mashed crab and grated coconut mixture in order to overcome the limited 

availability of crab (Haryoto, 1983). This indicates that oil release is a microbial 

process, but no scientific investigations have studied the microbial strains involved. 

Up to now this method has only been applied for the release of oil from coconut, its 

applicability for the recovery of oil from biofuel crops has not been assessed so far. 

In the present report, coconut oil separation assisted by homogenized paddy crab was 

investigated and compared with literature values for conventional processes. The 

same method was applied to jatropha kernel slurries in order to assess its potential to 

liberate oil from this biofuel crop. Antibiotics were used in some treatments to 

distinguish between ongoing microbial degradation versus enzymatic effects. 

Bacterial strains able to release oil from both oil crops were isolated from the paddy 

crab. The best strain was identified on basis of its 16s rRNA sequence. The cost 

production of jatropha oil extraction employing isolated bacterial strain is also 

assessed and compared to that of mechanical oil extraction process (motor press). 

2. Materials and Methods 

2.1. Materials 

Mature coconuts (from Cocos nucifera, L) were bought from a traditional market. 

Paddy crabs were collected on January 5th 2008 from bunds of a paddy field located 

in Pamulang, Indonesia (geocoordinates 6o20’52”S, 106o42’20”E). Jatropha curcas, L 

seeds were harvested on July 28th 2007 from jatropha plants more than 16 months 

old, grown in Serpong, Indonesia (geocoordinates 6o21’31”S, 106o40’33”E), kept dried 

at 4 oC until used. All chemical reagents, unless otherwise specified, were of analytical 

grade.  

2.2. Traditional Java method of coconut oil extraction  

Two crabs, equivalent to about 15 g, were cleaned in tap water and crushed with 30 

ml demineralized water in a home blender and mixed with 150 g grated coconut meat. 
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Chloramphenicol and tetracycline each were added in a concentration of 1 g/kg 

coconut meat for antibiotics-treated samples. The mixture was tightly wrapped in a 

banana leaf and left stationary overnight (20-24h) at room temperature (28-32oC). 

The samples were tested in duplicate for these combinations: (1) coconut only as 

control; (2) coconut and crab; (3) coconut, crab, chloramphenicol, and tetracycline. 

After incubation, the mixture was dried under sunlight for one day. The mixture was 

then squeezed using a dry screen cloth to remove the oil. The amount of oil obtained 

was directly weighed. 

2.3. Crab paste preparation 

Crabs of medium-to-big size (250 g in total) were cleaned with running tap water for 

10 min after which they were soaked twice, first with diluted commercial NaClO 

solution at a concentration of 0.86mM (the CAS number 7681-52-9), followed by 

second soaking in 70% ethanol, for 5 min each. Crabs were rinsed and cleaned in 

sterile water several times, then homogenized aseptically for 5 min using a home 

blender (Philips) with 250 g sterile water. Total crab paste weight obtained was 500 g. 

Final crab concentration in the paste was 50% w/w. 

2.4. Jatropha seed kernels slurry preparation 

Jatropha seeds were cracked using a press beam and the husks (outer layer) were 

carefully removed. The kernels were pulverized and sieved through a strainer with 0.8 

mm hole diameter to obtain a powder of homogenous particle size. To prepare the 

oilseed slurry, 150 g kernel powder was blended with 750 g demineralized water for 5 

min using a home blender. Weight ratio of solid material to water in the slurry was 

1:5. Under constant stirring to keep the slurry homogenous, 30 g of kernel slurry 

(equivalent to 5 g kernel) was weighed out and used for the oil extraction. 

2.5. Coconut oil extraction assisted by crab in controlled conditions 

To extract coconut oil, 20 g wet grated coconut meat was mixed with 8 g of crab paste. 

Chloramphenicol and tetracycline were added in concentrations of 1 g/kg coconut for 

antibiotic-treated samples. The mixture was incubated for 48 h at various 

temperatures (30, 37, or 50oC) without stirring or shaking. The samples were 
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incubated in duplicate for the combinations:  (1) coconut only as control; (2) coconut 

and crab; (3) coconut, crab, chloramphenicol, and tetracycline. After incubation, the 

content was transferred into 50 ml Falcon centrifuge tubes and 20 ml of water added. 

The tubes were reciprocally shaken at high speed (4 Hz) for 30 min to detach free oil 

from solid into liquid phase and then centrifuged at 500× gravity for 15 min. The 

amount of oil obtained was determined gravimetrically. 

2.6. Jatropha oil extraction assisted by crabs  

To extract jatropha oil, 2.0 g of crab paste was mixed with 30.0 g kernel slurry, shaken 

at 120 rpm for 24h at 37 or 50 oC. The samples were incubated in duplicate for the 

combinations: (1) kernel only as control; (2) kernel and crab; (3) kernel, crab, 

chloramphenicol, and tetracycline. After incubation, the mixture was centrifuged at 

7400× gravity for 15 min. The extracted oil was assayed gravimetrically.   

2.7. Crab bacteria isolation and selection 

Grated coconut meat (5.0 g wet weight) was autoclaved at 121oC for 15 min. After 

cooling to room temperature, 2 g crab paste was mixed with the autoclaved coconut 

and incubated at 50 oC for 48h. After incubation, one loop of the coconut-crab mixture 

was streaked out aseptically on nutrient agar (NA) media plates (Oxoid) and 

incubated at 50 oC for 24 h. Well separated colonies were picked out and sub-cultured 

on an NA medium slant in a tube of 15 cm length and 1.5 cm diameter, incubated at 50 

oC for 24 h. The strains isolated were maintained on NA medium slants. 

The isolated bacterium strains were selected for the best strain to extract oil from 

jatropha kernels with the following procedure: cells from a 24-h old slant culture were 

suspended in 2 ml sterile water and used to inoculate 30.0 g jatropha kernel slurry in 

a 100 ml shake flask, then incubated at 50 oC for 24 h. After incubation, the mixture 

was centrifuged at 7400× gravity for 15 min. The extracted oil was assayed 

gravimetrically.   

2.8. Jatropha oil extraction assisted by starter culture of isolated bacterium 

To prepare a bacterial starter culture, 50 ml germination medium (nutrient broth 

(NB), Oxoid) in a 250 Erlenmeyer flask was autoclaved at 121oC for 15 min. Bacterial 
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cells from the slant were suspended in 2 ml sterile water, transferred into 50 ml NB 

medium and shaken at 120 rpm and 50 oC for 24 h. To extract the oil, 30.0 g jatropha 

kernel slurry was inoculated with 2.5 ml of the bacterial culture.  The mixture was 

shaken at 120 rpm for 24 h (50 oC).  After incubation, the slurry was centrifuged at 

7400× gravity for 15 min. The extracted oil was assayed gravimetrically.   

2.9. Gravimetric analysis of extracted oils 

Petroleum ether (PE 40  60 oC) was used to dilute the free oil after microbial 

extraction to prevent oil loss due to small sample used (Lamsal and Johnson, 2007; 

Winkler et al., 1997a). The free oil on the surface of the liquid in the centrifuge tube 

was diluted with 3 ml petroleum ether without shaking (to prevent oil extraction from 

emulsion) over a minimum of 6 h. The top organic phase was carefully removed, and 

another 2 ml PE was used to rinse the top layer. The organic phases were collected in 

a pre-weighed dish and dried at 105 oC for 1.5-3 h until constant weight was reached.  

2.10. Assay of total oil content, oil yield, and oil quality 

Total oil in oilseeds was determined by Soxhlet method (AOAC, 1984). The total oil 

content was 0.35 kg/kg coconut meat and 0.47 kg/kg jatropha seed kernels. The total 

oil content was taken as 100% recovery of oil while calculating the oil yield. The free 

fatty acid (FFA) and moisture content was assayed by titration method and Karl 

Fischer method, respectively (AOAC, 2002b). Oxidative stability was assayed using 

873-Biodiesel-Rancimat apparatus from Metrohm. 

2.11. Identification of isolated bacterium 

Genomic DNA was isolated by treating the bacterial cells using a FastPrep@DNA kit 

(MP Biomedicals, USA). The 16s rRNA sequence (ca. 1.1-kbp fragment) was amplified 

by PCR with the primers 27F: 5’-AGAGTTTGATCCTGGCTCAG-3’ and 1492R: 5’-

GGATACCTTGTTACGA CTT-3’. The amplification was done by Thermalcycler Dice 

(Takara, Kyoto, Japan) with the following cycling parameters: 94 oC for 3 min, 

followed by 30 cycles of 1 min at 94 oC, 1 min at 55 oC, and 2 min at 72 oC with final 

extension for 10 min. The PCR fragment was extracted, purified, and sequenced.  

Sequencing was performed with AB 3130xL Sequencer (Applied Biosystem) using ABI 
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BigDye v3.1 cycle sequencing kit with LA Taq (Takara) and appropriate primers. The 

rRNA sequence was blasted to NCBI database (http://www.ncbi.nlm.nih.gov/). The 

homology relationship was analyzed with ClustalX to create a dendrogram using the 

online analysis service available at http://www.ebi.ac.uk/Tools/clustalw2/ 

index.html. 

2.12. Calculation of production cost  

2.12.1. Aim of cost analysis 

Cost analysis aims at comparing jatropha oil production cost between microbial 

process and other processes that have been commercially practiced (expeller 

extraction). To simplify cost analysis, the calculation is done on daily basis and 

focused on energy consumption, raw material cost, labor cost, and depreciation cost of 

general equipment involved in the process. Moreover, cost of energy, raw material, 

and labor are based on Indonesian price standards. Unit operations of  a microbial 

assisted jatropha oil extraction factory with a capacity of 1000 kg/d of seeds is shown 

in Figure 1. 

Figure 1. Unit operations of microbial assisted 
jatropha oil extraction factory with a capacity of 
1000 kg/d of seeds. A yield of 60% w/w is the 
maximum oil extraction yield. 2400 kg of water 
(80%) is recycled and 10 kg cake re-enter the 
extraction reactor as inoculums.  
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2.12.2. Capital cost 

Capital investment for a small jatropha oil factory (740 kg/d of seeds) using motor 

press, equipped with scales and utensils have been reported to be 5410 USD, linearly 

depreciated for 7 years (Openshaw, 2000). In a microbial extraction factory, the total 

price of main equipment is estimated to be 20400 USD (Appendix A1). The cost of 

installed equipment is estimated double of the total equipment price because 

additional budget is required for piping, control system, and installation, accounted 

for 40800 USD in total. Assuming that all equipment has the same lifetime of 7 years 

operation (250 d/yr or 1750 day in 7 years), the depreciation cost would be 23.3 

USD/d. Taking into account maintenance cost (10% of capital investment per year 

equals to 16.3 USD/d) the capital cost becomes 39.6 USD/d without interest costs. 

2.12.3. Energy cost 

Electricity is the major energy source, except that required for water heater. The 

water heater providing 50 kg/h of 90 oC water is fueled by 400 kg/d of seed shells 

(LHV 17 MJ/kg) which are available as a byproduct on site. The industrial rate for 

electricity is 60 USD/MWh (Openshaw, 2000).   

The energy components are calculated on the basis of 1000 kg of sun-dried jatropha 

seeds (1012% moisture) that enters the process. Energy component from electric 

power is estimated based on equation of electric power consumption described 

earlier (Jekayinfa and Bamgboye, 2006): 

Electrical energy consumed, Ep is expressed as:  

 
         
   

where P, rated power of motor, kW; t, hours of operation, h; , power factor (assumed 

to be 0.8). 

Main equipment, energy sources, and estimation of energy cost in a microbial jatropha 

oil processing plant are summarized in Appendix A2.    

(1)(kWh)ηPtpE 
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2.12.4. Raw materials and labor cost 

Chemicals and water cost is estimated to be 5 USD/tonne of seeds, lower than their 

real cost for one-cycle process (about 20 USD/tonne of seeds), because 80% of water 

is recycled and 3% of protein cake re-enter the process as inoculums. Price of jatropha 

seed on factory site is 0.103 USD/kg (Openshaw, 2000). Oil container cost also 

included in the calculation. The labor cost is priced at 0.4 USD/person/h. The number 

of man-hour is shown Appendix A3.   

3. Results and Discussion 

3.1. Traditional Java method of coconut oil extraction  

From Figure 2, without addition of crab paste (control) no free oil was obtained. 

Addition of crab paste alone liberated 54% coconut oil, agreeing well with that 

previously reported by Haryoto (Haryoto, 

1983). Addition of crab paste in 

combination with antibiotics resulted in a 

small increase of the oil yield to 60%. In 

the antibiotic-treated samples, in fact, we 

could not discriminate crab enzymes from 

microbial enzymes that played the 

dominant role in oil liberation, because 

enzymes may come either from the crab 

muscle or from microorganisms living in 

crab’s gastrointestinal tract before 

incubation.  

3.2. Coconut oil extraction assisted by crab in controlled conditions 

In this experiment, we studied the effect of incubation temperature on coconut oil 

yield. In Figure 3, the free oil in control samples decreased as temperature increased, 

ranging from 10% to 22%. Addition of crab paste doubled the oil yield from 22% to 

42% at 30 oC and the yield remained relatively constant (45%) at 37 oC. The oil yield 

was significantly improved to 62% when the mixture was incubated at 50 oC. A 

different pattern of oil yield was observed if antibiotics were added, in which the 
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Figure 2. Coconut extraction yield assisted 
by crab paste according to traditional Java 
method. 
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Figure 3. Coconut oil extraction yield assisted by 
crab paste at 30, 37 and 50 

o
C.   
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amount of oil extracted initially increased from 44% at 30oC to 53% at 37 oC, but then 

decreased to 34% at 50 oC. 

 

 

 

 

 

 

 

 

From these results we conclude that two mechanisms are involved in oil release by 

crab paste: an antibiotic insensitive mechanism – most likely enzymatic – dominating 

at lower temperatures and an antibiotic sensitive mechanism – likely thermophilic 

bacteria – active at higher temperatures. In the traditional Java method the role of 

bacterial activity in oil release could not be discriminated from the role of crab 

enzymes due to the lower incubation temperatures. 

3.3. Application of crab paste to release oil from jatropha kernels 

In Figure 4,  the oil extracted in control samples was almost zero at 37 oC and only 9% 

at 50 oC. These results show that without crab paste addition, no or little oil liberated 

from the kernel slurry, even at higher temperatures (50 oC). The oil yields from this 

experiment were lower than those of aqueous jatropha oil extraction incubated 

overnight at 37, 40 and 50 oC, which was reported in the range of 17-21% (Shah et al., 

2005).  

Figure 4 also shows that addition of crab paste resulted in the release of 

approximately 30% jatropha oil at both temperatures tested.  Inhibition of bacteria by 

antibiotics at 37 oC in kernel-crab mixture showed no effect on oil liberation; however, 
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by increasing the temperature to 

50 oC, the oil yield dropped to 

14%. Furthermore, inhibition of 

bacteria that are resistant to high 

temperatures (50 oC) by addition 

of antibiotics caused a sharp fall 

of oil yield. These results 

strengthen our assumption that 

both crab enzymes and bacteria 

present in crab paste are involved 

in the liberation of oil from these 

oil seeds. 

3.4. Isolation and selection of crab bacteria  

We isolated 4 different rod-like thermophilic bacteria from crab at 50 oC: BK21, BK22, 

BK23, and BK24 (Note: BK stands for Bakteri Kepiting=crab bacteria). These strains 

were able to grow at room temperature (data not shown); indicating that the strains 

are facultative thermophiles. 

Selection result of bacterial strains on jatropha kernel slurry is shown Figure 5. BK23 

gave the best oil yield of 51%, 1.7 times higher than that obtained from incubation 

with crab paste at the same temperature (Figure 4). Selection results revealed that 

pure cells of the isolated strains generally gave higher jatropha oil yields compared to 

previous results of oil extraction using crab paste.  

The presence of bacterial culture in oil separation would be a disadvantageous trait 

for the industrial application if the bacterium itself consumes the oil. We, therefore, 

examined if BK23 consumed coconut oil when incubated for 48 h at 50oC (Figure 6). 

The maximum coconut oil extracted by BK23 was found to be 59%, agreeing well with 

a similar treatment using crab paste. The total oil recovery  oil extracted plus oil left 

behind in the coconut material  was 100% indicating that BK23 does not degrade oil 

for its metabolic activities.  
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3.5. Microbial assisted jatropha oil extraction and the quality of oil 

Jatropha oil liberation from kernel slurry by starter culture of BK23 at 37 oC and 50 oC 

is shown in Table 1. The oil yields correspond well with those obtained with crab 

paste: BK23 liberated more oil at 50 oC (60%) than at 37 oC (47%).  

Oil quality analysis data (Table 2) show that, in general, microbial assisted oil 

extraction gave better oil quality compared to screw-press, disregarding seed sources. 

However, the free fatty acid (FFA) value of oil from microbial process is about 4 times 

higher than that of German fuel standard DIN V 51605 for pure plant oil (rapeseed 

oil). 

Table 1. Jatropha oil extraction yield assisted by BK23 starter culture.   

Temperature 

Oil extracted 

g % 
Yield         

(% w/w) 
Mean yield 

 (% w/w) 

37 
o
C 1.106 22.1 47.1 47 

  1.133 22.7 48.2   

50 
o
C 1.417 28.3 60.3 60 

  1.416 28.3 60.3   
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Figure 5. Jatropha oil extraction yield assisted 
by selected bacterial strains on jatropha kernel 
slurry to select best strain in oil liberation. 
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Table 2. The quality of oil from microbial process compared to that of screw-pressed. IP (induction 
period) is the time at which the oil starts to be oxidized at 110 

o
C by O2 from purified air.  

 IP (h) Water (ppm) FFA (%) Remarks 

Sample Std
a
 Sample Std

a
 Sample Std

a
 

Microbial extracted 
oil 

5.6 5.0 718 750 4.4 1 Indonesian 
seeds (6 
months) 

Screw-pressed oil 15.7 5.0 1550 750 13.3 1 Indian seeds (6 
months) 

a 
German fuel standard DIN V 51605 for pure plant oil (rapeseed oil). Std = standard value. 

3.6. Identification of strain BK23 

The similarity rank analysis based on the 16s rRNA sequence showed that the strain 

BK23 is closely related to members of the genus Bacillus (Figure 7). Based on these 

data, we propose the assignment of this isolate as Bacillus licheniformis strain 

BK23. The nucleotide sequence of 16S rRNA from Bacillus licheniformis BK23 isolated 

from paddy crab is available in the GenBank nucleotide sequence database under 

accession number FJ775733.  

It is well known that microorganisms from the genus Bacillus in general and B. 

licheniformis specifically are used for the industrial production of alkaline and heat 

stable proteases (Hubner et al., 1993; Lee and Chang, 1990; Mabrouk et al., 1999; 

Potumarthi et al., 2007; Potumarthi et al., 2008). It is, therefore, likely that the 

observed oil liberation is caused by excreted proteases. The oil yield at 50 oC obtained 

by the action of BK23 is in close agreement with the 64% yield obtained by using the 

alkaline component of Protizyme, a commercial protease preparation (Shah et al., 

2005; Winkler et al., 1997b).  

3.7. Production cost and industrial applicability 

It is evident that the traditional Java method in applying crab paste for the liberation 

of oil from oil crops cannot be applied on a large industrial scale due to the limited 

availability of paddy crabs. This study clearly shows, however, that oil release can be 

catalyzed by bacterial strains isolated from crab paste. The most efficient strain, BK23, 
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was identified as Bacillus licheniformis. Incubation with strain BK23 liberated oil from 

grated coconut and jatropha kernels without degrading it.   

A summary of the jatropha oil production cost estimation is presented in Table 3. It is 

clearly shown that production cost of oil from microbial process (0.83 USD/kg of oil) 

is about 40% higher than the cost of oil from motor screw-pressed (0.60 USD/kg of oil, 

re-calculated based on published data and jatropha oil density of 933 kg/m3) 

(Openshaw, 2000; Pramanik, 2003). Unlike motor-press that uses whole seeds as 

processing material in a simpler process and less capital investment, microbial 

process utilizes seed kernels, and the involvement of more unit operations makes 

capital and energy costs much higher, thereby increasing oil production cost. 

However, in a microbial process, subsequent separation step such as protein 

purification will be much simpler and this will improve the profitability of the process. 

Furthermore, operation at somewhat larger scale will further reduce cost price as 

well.

BK23 

Figure 7. A phylogenetic dendrogram of the 16s rRNA sequences of BK23 and bacteria most closely 
related to it. 
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Table 3. Production cost of Jatropha oil by microbial assisted extraction process 
compared to motor press cost data (Openshaw, 2000) 

 Cost components This paper Openshaw, 2000 

Energy:   
1 Total energy consumed (kWh/d) 179.2  
2 Energy price (USD/kWh) 0.06  
3 Total energy cost (USD/d) 10.8 13.8 

Labor:   
4 Total man-hour required 24  
5 Price (USD/man-hour) 0.6  
6 Total man-hour cost (USD/d) 14.4 3.0 

Raw Materials:   
7 Jatropha seed (kg/d) 1000 737 
8 Price of seeds (USD/kg) 0.103 0.103 
9 Seed cost (USD/d) 103.0 75.9 

10 Oil container (USD/d) 2,3 1.8 
11 Chemicals and H2O (USD/d) 5 0 
12 Total raw materials cost (USD/d) 110.3 77.7 

Capital Cost:   
13 Capital cost (USD/day) 39.6 8 

Production cost of oil:   
14 Total cost (USD/d) (3+6+12+13) 175.0 102.7 
15 Total oil produced (kg/d) 210 172 
16 Production cost of oil (USD/kg) 0.83 0.60 

 

The process as used in this study is not optimized yet and can be further improved. 

Options for further improvement to obtain higher oil yield, and thus lowering oil 

production cost concurrently, are the isolation of more efficient strain and improving 

the extraction parameters (kernel particle size reduction, pre-heating treatment, pH 

optimization, etc). Also the effect of the process on toxicity of oil and side streams 

should be assessed. 

B. licheniformis is a species well-known for the industrial production of proteases. It is 

also likely that in this application, enzymes like proteases produced by the bacteria 

are responsible for oil release. The question arises whether bacterial starter cultures 

with in situ produced enzymes can compete with the application of off-site produced 

enzyme cocktails.  
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4. Conclusions 

Two mechanisms play a role in the release of oil from grated coconut by crab paste 

during the traditional Java method: an activity dominating at lower temperatures 

which is most likely caused by enzymes and a bacterial associated activity more active 

at higher temperatures. The Java method could also be applied for the release of oil 

from the seed of the oil crop jatropha. A facultative thermophilic bacterium strain was 

isolated from paddy crab, identified as Bacillus licheniformis strain BK23. It is able to 

liberate 60% oil from aqueous jatropha seed kernel slurry. Further studies of BK23 as 

well as extraction process optimization are the challenges to improve aqueous 

Jatropha oil extraction yield and process economy. 
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Appendix A1. The price of main equipment of microbial assisted jatropha oil extraction factory 
(1000 kg/d of seeds). SS=stainless-steel. 

 

 

Appendix A2. Estimation of energy consumption of the equipment calculated according Eq. (1). 
Thermal energy for water heater is derived from seed-shells burning and thus is excluded in the 
calculation. 

Equipment Qty Power 
(kW) 

 
Operation 
period (h) 

 
Energy consumed 
(kWh) 

Decorticator 1 3 2 4.8 
Desintegrator 1 5  2 8 
High shear water & powder mixer 1 20  2 32 
Centrifugal transfer pump 2 2  2 6.4 
Reactor unit (SS) 1 5   20 80 
Air blower 1 2  20 32 
Centrifugal separator 1 10  2 16 
     
   Total 179.2 

 

No Unit Operation and Equipment Function 

 
Capacity 

 
Power 
(kW) 

 
Price 
(USD) 

1 DESHELLING AND GRINDING     
Decorticator Removing shells 1000 kg/h 3 1500 
Desintegrator Pulverizing 1000 kg/h 5     700 

2 HOMOGENIZING     
High shear water & powder 

mixer 
Particle reduction 2000 kg/h of 

slurry 
20  4000 

Centrifugal transfer pump Material transfer 2000 kg/h of 
slurry 

2     700 

3 MICROBIAL EXTRACTION     
Reactor unit (SS) Microbial oil 

extraction 
5 m

3
 5.5   7500 

Wood-fired water heater Heating the reactor 50 kg/h hot 
water 

- 1000 

Air blower Reactor aeration 60 m
3
 /h 2     300 

Centrifugal transfer pump Material transfer 2000 kg/h of 
slurry 

2     700 

4 CENTRIFUGATION     
Centrifugal separator Oil separation 4000 kg/h of 

slurry 
10  4000 

      
    Total 20400 
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Appendix A3. Man-hour involved in oil extraction factory of 1000 kg/d of seeds 

No Unit Operation Equipment 
Number of 
person 
involved 

Time required 
to accomplish 
(h) 

Man-
hour 

1 Deshelling & Grinding Decorticator 1 2 2 
Desintegrator 1 2 2 

2 Homogenizing High shear mixer 1 2 2 
Transfer pump 1 2 2 

3 Microbial extraction Reactor 1 6 6 
Water heater 1 4 4 
Transfer pump 1 2 2 

4 Centrifugation Centrifugal separator 1 4 4 
      
    Total 24 
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Abstract 

We investigated the use of bacterial cells isolated from paddy crab for the extraction 

of oil from jatropha seed kernels in aqueous media while simultaneously preserving 

the protein structures of this protein-rich endosperm. A bacterial strain  which was 

marked as MB4 and identified by means of 16S rDNA sequencing and physiological 

characterization as either Bacillus pumilus or Bacillus altitudinis  enhanced the 

extraction yield of jatropha oil. The incubation of an MB4 starter culture with 

preheated kernel slurry in aqueous media with the initial pH of 5.5 at 37 oC for 6 h 

liberated 73% w/w of the jatropha oil. Since MB4 produces xylanases, it is suggested 

that strain MB4 facilitates oil liberation via degradation of hemicelluloses which form 

the oil-containing cell wall structure of the kernel. After MB4 assisted oil extraction, 

SDS-PAGE analysis showed that the majority of jatropha proteins were preserved in 

the solid phase of the extraction residues. The advantages offered by this process are: 

protein in the residue can be further processed for other applications, no purified 

enzyme preparation is needed and the resulting oil can be used for biodiesel 

production. 

 

Keywords:  

Jatropha curcas, L, Aqueous oil extraction, Bacillus pumilus, Bacillus altitudinis, 

Protease, Xylanase 
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1. Introduction 

Jatropha curcas, L is a well-known plant for the high fat and protein content of its seed 

ranging between 45 to 55% w/w and 20 to 30% w/w of the kernels, respectively 

(Gubitz et al., 1999; Lestari et al., 2010). This oil is economically attractive due to its 

potential application in biodiesel (Lin et al., 2003; Martinez-Herrera et al., 2006). In 

addition, the kernel contains 28% protein, which has been extensively studied for 

food and non-food application (Gubitz et al., 1999; Lestari et al., 2010; Lin et al., 2003; 

Martinez-Herrera et al., 2006). Lestari extracted more than 80% of the protein from 

the kernels and addressed some potential applications of the isolated protein in 

various fields such as adhesives, coatings, and chemicals (Lestari et al., 2010). 

Therefore, with respect to the overall economy of jatropha cultivation, it is interesting 

to find a commercial use for both oil and protein. Protein recovery from the kernel 

requires aqueous extraction; hence, it is interesting to see if aqueous extraction can 

also be used for the release of oil.  

The common method of oil production from oilseeds as feedstock for biodiesel 

involves pressing of seeds and oil purification (degumming, deacidification, dewaxing, 

dephosphorization, dehydration, etc.). These processes, together with 

esterification/transesterification, contribute to over 70% of the total biodiesel 

production costs (Shuit et al., 2010; Zeng et al., 2009). 

Aqueous oil extraction (AOE) uses water as medium to facilitate oil liberation from 

oilseeds. AOE eliminates organic solvent consumption and so improves process 

economy (Barrios et al., 1990a; Rosenthal et al., 1996). AOE also enables several 

purification steps such as degumming, deacidification, dewaxing, and 

dephosphorization to be carried out simultaneously within the extraction step 

(Caragay, 1983), resulting in a more efficient process. 

We demonstrated earlier that thermophilic strains isolated from the gut of paddy 

crabs, one of which was identified as Bacillus licheniformis, enhanced oil liberation up 

to 60% from aqueous jatropha kernel, most likely via protein degradation 

(Marasabessy et al., 2010), which would be disadvantageous for protein recovery.  In 

the present report, we confirmed that these thermophilic bacteria degraded extracted 

jatropha protein. We also examined if preheating the kernels degraded the proteins in 
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comparison to non-heated kernels by using SDS-PAGE analysis. Next, isolation and 

selection of mesophilic bacteria from the gut of paddy crabs were performed based on 

their ability to liberate oil from jatropha preheated kernel slurry. The aim was to 

obtain other microorganisms able to liberate oil without affecting the protein 

structures. The best strain was used for aqueous oil extraction from jatropha kernel. 

The molecular weight distribution of protein in the residue (water phase and solid 

phase) after microbial treatment was also investigated to examine protein integrity. 

The quality of recovered oil was analyzed and compared with those of standard values 

of feedstock for biodiesel.     

2. Materials and Methods 

2.1. Materials 

Jatropha curcas, L seeds were harvested from the jatropha planted in Serpong, 

Indonesia (geocoordinates 6o21’31”S, 106o40’33”E). Kernels were obtained after 

removal of the shells. The sun-dried kernels were stored at 4 oC until used. Paddy 

crabs were collected from bunds of a paddy field located in Pamulang, Indonesia 

(geocoordinates 6o20’52”S, 106o42’20”E). All chemical reagents, unless otherwise 

specified, were of analytical grade. 

2.2. Jatropha kernels slurry preparation 

The kernels (500 g) were autoclaved at 121 oC for 15 min and then dried at 60 oC 

overnight. The kernels were milled and sieved through a strainer with 1.0 mm pore 

diameter. To prepare the preheated kernel slurry, 25 g milled kernel was 

homogenized with 125 g purified water (milli-Q) for 5 min using a Waring Blender. 

The weight ratio of solid material to water in the slurry was 1:5. Under constant 

stirring  to keep the slurry homogenous  12 g of kernel slurry (equivalent to 2 g 

kernel) was used for the extraction of oil. 

2.3. Protein extractions from kernels 

Protein extraction was carried out by extracting 1 g of sample with 30 ml solvent for 

30 min in 50 ml capped centrifuge tubes. The mixing was conducted at room 
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temperature by using a rotary mixer. The extracting solvents were water, NaCl 1.0 M, 

and NaOH 0.055 M as described previously (Lestari et al., 2010). Solid–liquid 

separation was conducted at 4,000×g for 15 min by using a SORVALL6+ centrifuge.  

2.4. Evaluation of protein degradation by paddy crab bacteria 

A mixture of 15 g/L Agaragar (Merck) and 10 g/L of  jatropha seed protein having a 

purity of ca. 83% w/w or 10.0 g/L of casein (Merck) in water was boiled to dissolve 

agar. After autoclaving (121 oC, 15 min), 15 ml proteinagar solution was aseptically 

poured in a sterile petri dish and brought to solidify overnight. The wells in 

proteinagar media were made by using a sterile rubber cork having a diameter of 9 

mm. Two milliliters of a 24-h old bacterial starter culture was centrifuged at 20,000 

rpm for 5 min. The supernatant was filtered through a 0.22-µm bacterial filter 

(Millipore), after which 50 l of the filtrate (bacterial crude extract) was pipetted into 

the well. The plates were placed at 4 oC overnight to let the extract absorb into the 

proteinagar media, followed by incubation at 37 oC for 6 h and at 45 oC for 6 h. Clear 

zones surrounding the well indicating protein solubilization (degradation) by 

bacterial proteases were observed. A thermostable bacterial neutral protease from 

Bacillus thermoproteolyticus (Protex 14L, Genencor) at 200× dilution was used as the 

positive control, while the preheated bacterial crude extracts and preheated Protex 

14L (100oC, 10 min), respectively, were used as negative controls.  

2.5. Jatropha oil extraction by paddy crab paste 

The crab paste was prepared as described previously (Marasabessy et al., 2010). To 

extract oil, 2.0 g of crab paste was mixed with 30.0 g kernel slurry and incubated in a 

orbital shaker at 37 oC, 150 rpm for 24 h. Antibiotics were applied in some samples as 

described previously and the extracted oil was assayed gravimetrically (Marasabessy 

et al., 2010).  

2.6. Isolation of mesophilic bacteria from paddy crabs  

For the isolation of bacteria, one loop of crab paste was streaked out aseptically on a 

nutrient agar (NA) medium plate (Merck) and incubated at 37 oC for 24 h. Well 
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separated colonies were picked up, subcultured, and maintained on NA slants (37 oC 

for 24 h).  

2.7. Selection of mesophilic bacteria for jatropha oil extraction 

Under constant stirring, 12 g of preheated kernel slurry (equivalent to 2 g kernel) was 

weighed out in a 100-ml flask. This was inoculated with 2 ml bacterial suspension, 

prepared by suspending cells of a bacterial culture grown on an NA agar slant (in a 

tube having 1.5 cm diameter and 12 cm length) with 2 ml sterile water. The mixture 

was incubated at 37 oC and 150 rpm for 24 h using an Innova 44 Incubator Shaker 

(New Brunswick), after which it was centrifuged at 7,400 ×g for 15 min. The extracted 

oil was assayed gravimetrically (Marasabessy et al., 2010). Control experiments were 

performed using exactly the same treatment, however without bacterial inoculation. A 

bacterial strain showing the best performance was identified by partial sequence of 

16S rDNA as well as physiological tests conducted by DSMZ (Germany).  

2.8. Microbial  jatropha oil extraction  

Bacterial starter culture was prepared as described previously (Marasabessy et al., 

2010), except that the nutrient broth medium (NB, Merck) was initially supplemented 

with 1.0% w/v milled jatropha kernel before autoclaving. To extract the oil, 12.0 g of 

jatropha kernel slurry was inoculated with 1.0 ml of the bacterial starter culture.  

Antibiotics were applied in some samples as described previously (Marasabessy et al., 

2010). The mixture was shaken at 150 rpm and 37 oC. After incubation, the slurry was 

centrifuged at 7,400 ×g for 15 min. The free oil on the surface of the liquid in the 

centrifuge tube was assayed gravimetrically as reported previously (Marasabessy et 

al., 2010). 

2.9. Detection  of xylanase and glucanase activity in bacterial crude extracts 

For xylanase detection, 15 µl bacterial crude extract was pipetted into a well (5 mm 

diameter) in an agar plate containing 0.2% Remazol Brilliant Blue Xylan (RBB-Xylan, 

Sigma) (Strauss et al., 2001). For cellulose detection, 50 µl bacterial crude extract was 

pipetted into a well (9 mm diameter) in an agar plate containing 0.4% carboxymethyl 

cellulose (CMC). The plates were placed at 4 oC overnight to let the extract absorb into 
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the agar media, followed by incubation at 37 oC for 6 h (RBB-Xylan agar) and 48 h 

(CMC agar).  The CMC agar plate was stained with 0.03% Congo Red, followed by 

destaining with 1 M HCl (Teather and Wood, 1982). The clear zones surrounding the 

well indicate the hydrolysis of xylan and cellulose. 

2.10. SDS-PAGE analysis 

Molecular weight distribution of proteins was analyzed by using SDS-PAGE (NuPage 

Electrophoresis System with NuPage Novex Bis-Tris Gels 10% from Invitrogen).  

2.11. Assay of total oil content, oil yield, and oil quality 

The total oil content of the oilseeds was determined by Soxhlet method (AOAC, 1984). 

The total oil content was 0.47 kg/kg jatropha kernels. This amount was taken as 100% 

recovery of oil in the calculations of jatropha oil yield in the extraction experiments. 

The free fatty acid and moisture content of the extracted oil was assayed by the 

titration method and the Karl Fischer method, respectively (AOAC, 2002a). The 

oxidative stability index (OSI) was assayed using 873 Biodiesel Rancimat apparatus 

from Metrohm.  

3. Results  

3.1. The effect of thermophilic crab bacteria on jatropha protein integrity 

In our previous publication, some thermophilic bacteria (namely BK21, BK22, and 

Bacillus licheniformis strain BK23 isolated from paddy crabs) extracted up to 60% of 

the jatropha oil from non-heated kernels after 24 h incubation at 50 oC under non-

optimized conditions (Marasabessy et al., 2010). From the proteinagar plate 

experiment (Figure 1), we found that those strains hydrolyzed both jatropha kernel 

protein and casein upon incubation at 50 oC. BK21 showed the highest protease 

activity and Bacillus licheniformis BK23 the lowest, as indicated by the size of the 

clearing zone diameter, for both types of protein. The bright clear zones proved that 

proteins available in the kernel were completely solubilized.  
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Figure 1. Protein degradation ability of thermophilic bacterial crude extract of BK21, BK22, and 
Bacillus licheniformis strain BK23 on (a) jatropha protein agar medium and (b) casein agar medium. 
These strains were isolated from paddy crabs (Marasabessy et al., 2010). A 200x dilution of Protex 
14L from Genencor (P) was the positive control. The preheated samples (100 

o
C, 10 min) were the 

negative controls (showing no clear zone).  

3.2. The effect of heat pretreatment on jatropha protein integrity 

Because we wanted to study the effect of crab’s gut bacteria working at lower 

temperature on the extraction yield of oil from jatropha kernels, internal factors 

within the kernels influencing oil liberation had to be minimized. Since the kernels 

contain microorganisms as well as seed enzymes which might interfere with the crab 

bacteria involved in oil liberation, we applied two different heat pretreatments on 

kernels, at 105 oC or 121 oC for 30 min, to deactivate enzymes and to kill 

microorganisms before being used for oil extraction. The proteins were extracted 

from the kernels and the extracts were subjected to SDS-PAGE analysis (Figure 2). The 
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solubility of proteins in water depends on various factors such as ionic strength and 

pH; therefore 1M NaCl and 0.055 M NaOH were also used as extractants besides water 

(Lestari et al., 2010). The protein pattern of the heat-treated kernels extracted with 

NaCl and NaOH was identical with that of the untreated kernels, showing that heat 

treatment at both 105 and 121 oC for 30 min did not affect the protein composition. 

Compared to the other samples, the untreated sample extracted with water is missing 

three small bands at molecular weights of approximately 20, 23, and 25 kDa, 

indicating that heat treatment increased the water solubility of the proteins. 

 

Concluding, heat pretreatment did not have an effect on position and relative intensity 

of the different protein bands on the SDS-PAGE, indicating that no significant 

alteration of the chemical structures of the proteins occurred. We decided therefore to 

employ preheated kernels (by autoclaving at 121oC for 15 min) for oil extraction in 

the subsequent experiments. 

Figure 2. SDS-PAGE analysis of 
jatropha kernel proteins. Bands of 
proteins from jatropha kernel 
showing molecular weight 
distribution after protein extraction 
from jatropha kernel using (1) 
water, (2) 1.0 M NaCl, and (3) 
0.055M NaOH with different 
pretreatment: (a) non-heated, (b) 
preheated at 105

o
C for 30 min, and 

(c) 121
o
C for 30 min.  
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3.3. Effect of paddy crab paste on oil extraction 

The presence of mesophilic bacteria in paddy crabs having a positive effect on 

jatropha oil liberation was determined by incubating 2 g paddy crab paste with 30 g 

preheated kernel slurry (containing 5 g kernel) at 37 oC and 150 rpm for 24 h with 

and without addition of antibiotics (Figure 3). Oil extraction in control experiments to 

which no crab paste was added resulted in 7% oil after 24 h. Addition of antibiotics to 

control samples also gave a low oil yield (4%). Incubation of preheated kernel slurry 

with crab paste and antibiotics significantly improved the oil yield to 62%. It is 

evident that paddy crab paste exhibits a strong effect towards oil liberation from 

jatropha kernel. Furthermore, it was shown that excluding antibiotics from the 

crabkernel sample resulted in even higher oil liberation (70%). The significant yield 

improvement from 62% to 70% indicates that mesophilic bacteria derived from 

paddy crabs take part in the entire mechanism of jatropha oil liberation from 

preheated kernel. Based on these results, we decided to isolate mesophilic bacteria 

living in the gut of paddy crabs as our experimental strains for microbial jatropha oil 

extraction. 

 

Figure 3. Jatropha oil extraction 
yield from preheated-kernel slurry 
incubated with paddy crab paste at 
37 

o
C, 150 rpm for 24 h in 

comparison to control samples. 
Ctrl=control samples; Ab=antibiotics 
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3.4. Protease, xylanase, and glucanase activity of bacterial crude extract  

We isolated 20 colonies of mesophilic crab bacteria, but we selected only 7 colonies 

for further testing, namely strains MB4, MB5, MB7, MB11, MB12, MB13, and MB20 

based on differences in colony form and microscopic observation. The detection of 

protease activity in crude extract revealed that MB4 is the only strain exhibiting 

protease, with different strengths of activity against the two types of protein tested: 

casein and jatropha protein (Figure 4a, b). The MB4 protease showed strong activity 

against casein as shown by a bright clear zone in the casein layer due to casein 

degradation by hydrolysis (Figure 4a). However, the MB4 protease did not function 

with jatropha protein under the conditions tested, as shown by the absence of a clear 

zone formed in the jatropha protein layer (Figure 4b). Xylanase activity was found 

only in MB4 crude extract as shown by formation of a clear zone in RBB-xylan agar 

medium (Figure 4c). Congo Red staining in CMC agar medium showed a negative 

result for glucanase activity in the crude extract of all strains tested (Figure 4d). 

Figure 4d depicts that the enzyme GC220 (Genencor Inc, USA) lacked glucanase 

activity as no clear zone formed in CMC agar medium.  

 

Figure 4. Protease, xylanase, and 
glucanase activity of crude extracts 
of isolated bacterial strains on (a) 
casein agar plate, (b) jatropha 
protein agar plate, (c) RBB-xylan 
agar plate, and (d) CMC agar plate. 
A 200x dilution of a protease: 
Protex 14L (P) or a cellulase: GC-220 
(G) from Genencor was the positive 
control. Numbers on the plates 
denote the strain: 4, 5, 7, 11, 12, 13, 
and 20 for MB4, MB5, MB7, MB11, 
MB12, MB13, and MB20, 
respectively.  
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3.5. Selection of paddy crab bacterial strain for jatropha oil extraction 

Figure 5 shows the amount of oil extracted from 12 g preheated jatropha kernel slurry 

(containing 2 g kernel), inoculated with the isolated bacterial strains directly prepared 

by suspending the NA culture slant with 2 ml water. We found that MB4 gave the 

highest jatropha oil yield (63%), a 15-fold increase compared to a control experiment 

containing antibiotics. MB4 was selected for further tests at different conditions of 

incubations.   

 

 

 

 

3.6. Identification of strain MB4 

The phenotypical characterization conducted by DSMZ (Germany) indicates that MB4 

is a Bacillus pumilus strain (Table 1). The partial sequencing of 16S rDNA (data not 

shown) conducted also by DSMZ shows a similarity of 100% to Bacillus altitudinis and 

99% to the type strain of Bacillus pumilus. The partial sequence has been submitted to 

the GenBank (accession number HQ860795). Considering the result of the partial 

sequencing, a clear identification to species level is not possible. Further examinations 

will be required to find out the novelty of the strain MB4. The strain MB4 has been 

deposited in the DSMZ collection as DSM 24473 Bacillus sp. BioMcc B-0081. 

Figure 5. Jatropha oil extraction 
yield from preheated kernel slurry 
after inoculation with different 
mesophilic bacterial strains from 
paddy crabs (MB4, MB5, MB7, 
MB11, MB12, MB13 and MB20) and 
incubated at 37

o
C, 150 rpm for 24h. 
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3.7. Microbial jatropha oil 

extraction: optimization 

The optimization of microbially 

assisted oil extraction was conducted 

in three steps. In first instance, we 

incubated preheated jatropha kernel 

slurry with the starter culture of 

strain MB4 at 37 oC over 24 h in order 

to find the optimum incubation time 

(Figure 6a). Second, we studied the 

effect of initial pH (4.5, 5.5, 6.5, 7.5, 

and 8.5) of the kernel slurry on oil 

liberation by strain MB4; kernel 

slurry pH was adjusted to the desired 

value by using 4M sodium hydroxide 

or 4M sulfuric acid solutions before 

inoculation of bacteria starter 

cultures (Figure 6b). Third, we 

optimized incubation temperature 

(37, 45, 50, and 55 oC) for jatropha oil 

extraction (Figure 6c).   

Figure 6a shows that the oil yield in 

the control samples (containing 

antibiotics) remained below 10% 

throughout incubation for 24 h. The 

addition of MB4 starter culture to 

preheated kernel slurry resulted in a 

sharply increased oil yield to about 

60% (tenfold increase compared to 

the control experiment) only within 68 h, after which it remained constant until 24h.  

Based on these results, we decided to shorten the incubation time to 6 h in the 

subsequent experiments of microbialassisted oil extraction. 

Table 1. Phenotypical characteristics of strain MB4. 

Observed Item Result 

Shape of cells  Rods 

Width (m) 0.6-0.7 

Length (m) 2.0-3.0 

Aminopeptidase Test - 
KOH Test - 
Catalase + 
Spores Oval+ 
Sporangium swollen - 
Anaerobic growth + 
VP reaction + 
pH in VP 4.9 
Growth temperature positive up to  50 

o
C 

Growth in   
Medium pH 5.7 + 
NaCl 2% + 
NaCl 7% + 
NaCl 10% + 
Lysozym 0.001% + 

Acid from:  
D-Glucose + 
D-Fructose + 
D-Xylose + 
D-Mannitol + 
L-Arabinose  + 

Gas from D-Glucose - 
Hydrolysis of   

Starch - 
Gelatin + 
Casein + 
Tween 80 + 
Esculine + 

Lechitinase + 
Tyrosin degradation - 
Indol reaction - 
Use of   

Citrate + 
Propionate - 

Phenylalanine deaminase - 
Nitrate reduction - 
Arginine dihydrolase - 
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The oil yield of kernel slurry incubated 

with MB4 for 6 h at different pH values 

(4.5, 5.5, 6.5, 7.5, and 8.5) is shown in 

Figure 6b. The oil yield of MB4-treated 

sample increased from 65% at pH 4.5, to 

peak at 73% at pH 5.5, and then 

decreased to 50% at pH 8.5. Contrary to 

the curve trends obtained with MB4, the 

oil yield of control sample (containing 

antibiotics) decreased rapidly from 40% 

at pH 4.5 to 10% at pH 5.5, and then 

increased to 20% at pH 8.5. As 

conclusion, strain MB4 has an optimum 

initial pH of 5.5 at 37 oC. Based on these 

results, we therefore studied the effect of 

incubation temperature on oil liberation 

by MB4 at pH 5.5 for 6 h.  

The oil yield from kernel slurry incubated 

with strain MB4 for 6 h at pH 5.5 and 

different temperatures is shown in Figure 

6c. It is evident that the highest extraction 

yield of 73% was obtained at an 

incubation temperature of 37 oC. The oil 

yield of MB4-treated sample decreased 

from 73% to 60% as the temperature 

increased from 37 oC to 45 oC. The oil 

yield of MB4-treated sample slightly 

increased to 64% when the temperature 

increased from 45 oC to 55 oC. The oil 

yield of the control sample showed a slow 

increasing trend from 10% (37 oC), 

reaching a maximum oil yield of 30% only 

Figure 6. Incubation of preheated jatropha 
kernel slurry with MB4 (○) and without MB4 
(□): (a) oil extrac�on yield a�er incuba�on (37 
o
C for 24h), the initial pH was not adjusted; (b) 

oil extraction yield after incubation at different 
initial pH (37 

o
C for 6h); and (c) oil extraction 

yield after incubation at pH 5.5 at different 
temperatures (37, 45, 50, and 55 

o
C for 6 h). 
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at 55 oC. This slow increase can at least partially explain the increasing trend of oil 

liberation in the MB4-treated sample at temperature in the 45-55 oC range.  

3.8. Evaluation of protein integrity after microbial oil extraction 

We investigated the molecular weight distribution of protein in liquid phase 

(supernatant) and solid phase (cake) after MB4 oil extraction, in comparison to those 

extracted with 0.055M NaOH, by using SDS-PAGE analysis as shown in Figure 7. We 

did not recover protein in the interfacial phase for SDS-PAGE analysis because we 

observed a very low amount of solid in the interfacial phase (between oilwater) after 

centrifugation, indicating a lower amount of oilwater emulsion after MB4 treatment.   

Figure 7 shows that almost all proteins 

in the range of 1.0 to 88.5 kDa available 

in 0.055M NaOH-extracted sample were 

also available in the solid phase, with 

the exception of one protein (88.5 kDa) 

that was missing in the solid phase. 

Three additonal proteins of 14.7, 27.4, 

and 44.9 kDa that were not available in 

NaOH-extracted sample were found in 

the solid phase as well as in the liquid 

phase. Six proteins of 1.7, 8.5, 9.4, 10.6, 

11.3, and 32.1 kDa that were available 

in NaOH-extracted sample were not 

detected in the liquid phase. 

Furthermore, 13 additional proteins of 

2.8, 11.9, 13.5, 14.7, 20.1, 25.1, 27.4, 

29.2, 41.3, 44.9, 59.3, 100.1, and 130.4 

that were not available in NaOH-

extracted sample were found in the 

liquid phase. 

Figure 7. SDS-PAGE analysis of MB4 treated 
jatropha kernel proteins. Bands of proteins 
from duplicated samples of water phase (1 
and 2), solid phase /cake (3 and 4) in 
comparison to jatropha protein (5 and 6). S 
stands for standard of protein marker. 
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3.9. The quality of oil after aqueous oil extraction  

Oil quality data in Table 2 show that the oil obtained by MB4 extraction, in general, 

meet the German fuel standard DIN V 51605 for pure plant oil (rapeseed oil), except 

for the acid value (AV) which was found 8.6, or more than eight times higher than the 

standard value.  

Table 2. The quality of oil extracted from Jatropha kernel using MB4 bacterial strain (AOE-MB4) 
compared to that extracted by expeller and the standard values.  

Parameters 
 

Methods and oil quality 

Standard value
a
 AOE-MB4 Expeller 

Seeds source J. curcas, L J. curcas, L - 

Feed type Preheated kernels Whole seeds - 

Expeller type - De-Smet UK - 

Conditions 6h, 150 rpm, 37
o
C 25 rpm, 80-85 

o
C - 

OSI (h) 7,8 ± 0.06 10.7 Min 6      

AV (mg KOH/g oil) 8.6 ± 0.20 10.3 Max 2      

Water  (ppm) 719 ± 32 1147  Max 750 

OSI, Oxidative Stability Index; AV, Acid Value.  
a
 German Fuel Standard DIN V 51605 

 

4. Discussion 

Jatropha seed kernels have a high fat and protein content ranging between 4555% 

w/w and 2030% w/w, respectively (Gubitz et al., 1999; Lestari et al., 2010). The oil is 

investigated for its suitability as a biofuel, whereas the protein has been extensively 

studied for food and non-food application (Gubitz et al., 1999; Lestari et al., 2010; Lin 

et al., 2003; Martinez-Herrera et al., 2006). Therefore, with respect to the overall 

economy of jatropha cultivation, it is important to find commercial outlets for both oil 

and protein.  

In studying the effect of heat pretreatment on protein integrity, we found proteins 

resolution on electrophoresis gel gave identical band positions among non-heated, 

preheated at 105 oC for 30 min, and preheated at 121 oC for 30 min (Figure 2). This 

means that the structure of jatropha protein exhibits high thermal stability against 

thermal processing upon heating up to 121 oC for 30 min. Thermal properties of 
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proteins are important to study the changes during heat processing which, in turn, are 

useful in the processing designs for protein-based products (Horax et al., 2011).  

Aqueous extraction is necessary for the recovery of the protein from the kernel, and in 

order to decrease process costs it is therefore interesting to liberate the oil from the 

seed in the same step. In protease-assisted aqueous oil extraction from oilseeds, oil-

bound proteins are hydrolyzed into smaller fractions, thereby altering their structure 

and functionality (Moure et al., 2006).  Similar studies in jatropha oil extraction 

reported previously did not highlight the importance of preserving protein structure 

during oil extraction process. If the protein structures are to be conserved to a large 

extent in the recovery of oil from oilseeds, the use of bacterial strains or enzymes 

liberating oil by other means than protein solubilisation is a reasonable choice.   

Apart from proteases, a number of microbial enzymes have been studied to enhance 

oil extraction yields from oilseeds: amylase, glucanase, pectinase, cellulolytic, and 

hemicellulolytic enzymes (Dominguez et al., 1994). We were therefore interested to 

isolate and select other microbial strains from the crab’s gut capable of assisting oil 

liberation without degrading protein.  

The paste of paddy fields crabs are traditionally used for coconut oil extraction in Java. 

In a previous article, we have also applied paste crab to release oil from jatropha 

kernels (Marasabessy et al., 2010). Whereas we now were able to release 70% of the 

oil, we previously only liberated 30% of the oil. Even though the experimental 

conditions in using paddy crab paste as the research material between the present 

study and the previous study (Marasabessy et al., 2010) look similar, they are not 

entirely the same for two reasons. First, in our present study, preheated kernels were 

used as substrate instead of non-heated kernel used in the previous study. Preheating 

the kernels might have enhanced the dissolution of cell components which were 

previously bound the original structures of cells (Williams, 2005), allowing crab’s 

enzymes or microbial enzymes to have access in breaking oil barriers, resulting in the 

release of more oil as compared to control experiments (Figure 3). Second, the 

different batch of crab paste used in the present study might have resulted in 

differences in oil liberation.  
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We found that MB4 starter culture was able to extract 73% oil from jatropha kernel 

slurry when incubated for 6 h at 37 oC and pH 5.5. This is in good agreement with the 

jatropha oil yield of 85.6% and 74% extracted by using protease of Alcalase (Novo 

Nordisk, Denmark) and Protizyme (Jaysons Agritech, India), respectively (Shah et al., 

2005; Winkler et al., 1997b). The use of Viscozyme (Novo Nordisk, Denmark) as a 

hemicellulase/cellulase formula gave a comparable oil yield of 70% (Winkler et al., 

1997b).  

We have shown that protease from strain MB4 bears no activity against jatropha 

protein. Hence, by considering the optimal pH and temperature of MB4 (pH 5.5 and 37 

oC, respectively) and also the presence of xylanase in the crude extract of MB4, it is 

most likely that the strain MB4 facilitates oil liberation at 37 oC via the degradation of 

hemicellulose that forms the oil-containing cell wall structure of the kernel (Rosenthal 

et al., 1996).  

Bacterial identification results suggested the strain MB4 as B. pumilus or the closely 

related B. altitudinis. In case of B. pumilus, previous investigations have reported the 

potential application of B. pumilus as xylanase producer (Ahlawat et al., 2007; Battan 

et al., 2007; Kapoor and Kuhad, 2007; Kapoor et al., 2008; Nagar et al., 2010; Wang et 

al., 2010; Yasinok et al., 2010). In contrast, we found that only a few publications are 

available on the potential application of B. altitudinis. 

After MB4-assisted oil extraction, the extracted oil has an AV below 14% (Table 2), 

which seems applicable for biodiesel production since a chemical pretreatment to 

reduce the acid value from 14% to 1% before transesterification of jatropha oil into 

biodiesel has been established recently, which results 99% yield of biodiesel (Tiwari 

et al., 2007).    

Concluding, strain MB4 identified as B. pumilus or B. altitudinis isolated from paddy 

crab liberated 73% w/w of jatropha oil from preheated kernel in aqueous system after 

6 h incubation at 37 oC. It is suggested that the strain MB4 facilitates oil liberation via 

degradation of hemicellulose. Incubation of jatropha kernel with strain MB4 preserves 

the jatropha protein structure to a large extent. MB4-assisted oil extraction has 

several advantages: (a) no purified cocktail enzyme preparation is required, (b) 
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protein integrity is mostly preserved, and (c) this method results in jatropha oil with a 

quality which is suitable for biodiesel production. 
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CHAPTER 5 
 

Dilute H2SO4-catalyzed hydrothermal 
pretreatment to enhance enzymatic 
digestibility of Jatropha curcas fruit hull for 
ethanol fermentation  
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Abstract 

Dilute sulfuric acid pre-treatment of jatropha fruit hull at high temperatures (140 

to180 oC) performed in a 110-mL stainless steel reactor was investigated to enhance 

the enzymatic digestibility of its lignocellulosic components. Carbohydrates accounted 

for 43% of the dry matter of jatropha fruit hull biomass. The goal of the study was to 

optimize the pretreatment conditions (acid concentration, time, and temperature) in 

order to obtain the highest sugar yield after subsequent enzymatic hydrolysis. A Box-

Behnken Design was applied to the experimental set up in order to reduce the number 

of experiments. The optimal pretreatment conditions are 30-min incubations at a 

temperature of 178 oC with a sulfuric acid concentration of 0.9% (w/v). Using these 

pretreatment conditions for a fruit solid loading of 9.52% followed by a 24-h 

enzymatic hydrolysis resulted in a liberation of 100% of all pentoses present (71% 

yield and 29% degradation to furfural) and 83% of the hexoses (78% yield and 5% 

degradation to 5-hydroxymethylfurfural). The simultaneous saccharification and 

fermentation experiment showed that acid-pretreated fruit hull can be used as a 

substrate for Saccharomyces cerevisiae to produce ethanol.   

 

Keywords:  

Box-Behnken, Jatropha curcas, L, Fruit hull, Hemicellulose, Cellulose, Pentose, Hexose, 

Ethanol 
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1. Background 

Jatropha curcas, L has become widely known as a biofuel crop due to the high oil 

content of the oilseeds harvested from this plant (Gubitz et al., 1999). The biodiesel 

produced from jatropha oil via transesterification compares well to petrochemical 

diesel and meets the latest biodiesel standards (Tiwari et al., 2007). However, 

whereas palm oil is widely used as feedstock for biodiesel production in Indonesia, 

jatropha oil has not been traded at price levels that satisfactorily reward 

growers/farmers. Low oil productivity and high labor cost for fruit harvesting are the 

most important reasons. Many potential Indonesian farmers in the subsistence sector 

are now reluctant to invest time and money in planting jatropha since the profit from 

jatropha products is much less compared to other agricultural commodities. Hence, 

one of the strategies to improve the economics of this potentially profitable plant is to 

increase the value of the side streams of oil production (trimmed stems/branches, 

seed or kernel cake, seed shells, and fruit hulls). 

Jatropha curcas, L bears fruit from the second year after crop establishment, but seed 

production becomes economically feasible from the fifth year onward (Foidl and Eder, 

1997; Nallathambi Gunaseelan, 2009). In Indonesia, jatropha is planted at a 2×2-m 

distance, yielding 2,500 plants/ha. A productivity of 2 kg seeds/plant/year on a 

jatropha plantation in Indonesia has been reported (Purwaamijaya et al., 2007). One 

hectare of jatropha plant therefore would yield 5 tons of seed annually (containing 

25% to 33% oil), with 1 ton per year of fruit hull biomass (dry weight) as side stream. 

Fruit hull is composed of lignocellulose (39.3% cellulose and 14.2% lignin) with 5.3 % 

protein (Nallathambi Gunaseelan, 2009), making this biomass a potential raw material 

for the production of bioethanol, enzymes, organic acids, and other fermentative 

products, or as animal feed (Gonzalez-Garcia et al., 2010; Wyman, 1994). The use of 

fruit hulls so far focuses on applications such as fertilizer and substrate for co-firing 

installations or for biogas production (Foidl and Eder, 1997; Gubitz et al., 1999; 

Nallathambi Gunaseelan, 2009; Openshaw, 2000). Another way to valorize the fruit 

hull side stream is to convert it to fermentation products such as ethanol and lactic 

acid. In that case, pretreatment is required to enhance the enzymatic digestibility of 

the lignocellulosic biomass. Pretreatment aims at a partial dislocation of the inter- and 

intra-fibrillic structure of lignocellulose with a reasonable energy input (Abatzoglou et 
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al., 1986). From an economic point of view, pretreatment must improve fermentable 

sugar yield, maintain carbohydrate content, minimize formation of degradation 

products that are inhibitory to subsequent fermentation processes, and be cost 

effective (Sun and Cheng, 2002). Various methods, from physical to chemical 

pretreatments or combinations, have been widely studied; one of which is hot dilute 

sulfuric acid pretreatment. Dilute acid pretreatment of lignocellulosic biomass 

conducted at high temperature (more than 160 oC) results in high xylan conversion 

yields and low levels of sugar degradation, thus resulting in an improved overall 

cellulose hydrolysis (Sun and Cheng, 2002). There are no reports on pretreatment of 

the fruit hull of jatropha yet. 

The subject of this study is the pretreatment of the jatropha fruit hull by sulfuric acid 

at an elevated temperature, in order to improve the enzymatic digestibility of this 

lignocellulosic byproduct. We study the influence of varying sulfuric acid 

concentration, pretreatment time, and temperature on the following three factors:  

1. Pentose and hexose degradations after fruit hull pretreatment, calculated 

from furfural and 5-HMF formed, respectively 

2. Pentose and hexose yields after subsequent enzymatic hydrolysis of the 

pretreated fruit hull 

3. Total sugar yield after subsequent enzymatic hydrolysis of the pretrerated 

fruit hull. 

A Box-Behnken Design was applied to the experimental set up in order to reduce the 

number of experiments. The main objective is to obtain an optimum sulfuric acid 

concentration, time, and temperature of pretreatment that give a low level of sugar 

degradation and a high level of sugar yield in the subsequent enzymatic hydrolysis. 

Simultaneous saccharification and fermentation (SSF) of jatropha fruit hull 

hydrolysates by Saccharomyces cerevisiae for ethanol production is also studied. 

2. Methods 

2.1. Experimental design and setup 

Design-Expert 8.0.3 software (Stat-Ease, Inc., MN, USA) was used for the experimental 

design, model fitting, and statistical data analysis. In order to reduce the number of 

experiments, a Box-Behnken Design (BBD) (Box and Behnken, 1960) was applied. 
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Experimental data of each response factor (Y) were expressed in a second order 

mathematical model:  

)(12   
n

j

jiij

n

i

n

i

iii

n

i

iio XXXXY   

where i = 1 to 3, j = 2 to 3, and X = input variables. The number of runs (N) required to 

measure the responses in BBD is defined as N= 2k(k - 1) + Co, where k is the number of 

input variables and Co is the number of central points. Since there were three input 

variables tested (sulfuric acid concentration, time of pretreatment, and temperature) 

and four replicates in the central point of the design to calculate the experimental 

error, a total of 16 experimental runs were carried out. The response factors are 

pentose degradation, hexose degradation, pentose yield, hexose yield, sugar 

degradation, and sugar yield. The significant effects and two variable interactions 

were estimated by ANOVA. The relationship between the response factor and input 

variables was further elucidated using response surface plots.  

2.2. Materials 

All chemicals were of analytical grade and used as received. Termamyl and 

amyloglucosidase were purchased from Novo Nordisk, Bagsvaerd, Denmark. Cellulase 

of GC220 was purchased from Genencor, Rochester, NY, USA. S. cerevisiae CBS 8066, 

maintained on YPD agar medium, was used for ethanol fermentation. 

2.3. Preparation and analysis fruit hull 

Ripened jatropha fruits (with yellow color only, harvested in November 2009, 

Serpong, Indonesia) were peeled. The hulls were collected and dried at 60 oC for 48 h. 

The dried hulls were milled in a home blender (Philips HR 2071, Royal Philips 

Electronics, Amsterdam, The Netherlands) and sieved through a strainer with a 0.8-

mm hole diameter. The dry matter of milled hull was 95.32% (w/w) (24 h, 105 °C). 

The milled hull material was kept in a sealed plastic container at 4 oC until used.  
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The chemical composition of the hull (Table 1) was analyzed in triplicate according to 

the following methods. The organic solvent extractives, the total water extractives, 

and the non-extractives (except protein) were measured by TAPPI methods (TAPPI, 

2004a; TAPPI, 2004b; TAPPI, 2004c; TAPPI, 2004d; TAPPI, 2004e; TAPPI, 2004f), with 

minor modifications as described previously (Kootstra et al., 2009b). The protein 

content of fruit hull was determined 

using the Kjeldahl method, which 

consists of a destruction unit (Gerhardt 

Kjeldahlterm) and distillation unit 

(Gerhardt Vapodest). The amounts of 

amino acids in the water extractives 

were determined using a Dionex Ultra-

HPLC instrument (Dionex Corporation, 

Sunnyvale, CA, USA) as described 

previously (Teng et al., 2011). For 

measuring monomeric sugars and 

water-soluble oligosaccharides in fruit 

hull, the samples were prepared as 

shown in Figure 1. Monomeric sugars 

were measured by high-performance 

anion-exchange chromatography with 

pulsed amperometric detection 

(HPAEC-PAD) as described earlier 

(Kootstra et al., 2009b). 

 Table 1. Jatropha fruit hull composition (% (w/w) 
dry matter). 

Constituents  
Content (% (w/w) 

dry matter) 

Organic solvent extractives   

- Ethanol-toluene extractives  4.1 ± 0.02 

- Ethanol extractives  2.0 ± 0.02 

Water extractives  

- Glucose   4.0 ± 0.01 
- Galactose, mannose, 

rhamnose, and arabinose 0.3 ± 0.00 

- Glucan 7.2 ± 0.26 
- Other oligosaccharide 

(galactan and mannan) 0.6 ± 0.00 

- Amino acids 0.1 ± 0.00 

- Others 24.0  

Non-extractives  

- Glucan 20.4 ± 0.01 

- Xylan 5.7 ± 0.01 

- Galactan 2.0 ± 0.01 

- Mannan 1.1 ± 0.01 

- Rhamnan 0.8 ± 0.00 

- Arabinan 0.8 ± 0.01 

- Protein 4.9 ± 0.35 

- Uronic acid 3.2 ± 0.16 

- Acid soluble lignin (ASL) 0.8 ± 0.00 

- Acid insoluble lignin (AIL) 11.7 ± 0.00 

- Others 6.3  

Total 100.0 

Total pentose sugarsa 6.5 

Total hexose sugarsb 35.6 

a For response surface analysis, the data of pentose 

sugars (xylose and arabinose) were grouped to 
calculate pentose yield. bSimilarly, the data of hexose 
sugars (glucose, galactose, mannose, rhamnose) were 
grouped to calculate hexose yield. 
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2.4. Fruit hull pretreatment  

Milled fruit hull (5.00 g; 4.76 g dry matter) was mixed with 45.0 mL of sulfuric acid 

solution (0.1%, 0.5%, or 0.9% (w/v)), resulting in 9.52% (w/w) dry hull solid loading. 

The hull/acid mixture was soaked for 20 to 24 h at room temperature and then 

transferred to a 316-SS (stainless steel) reactor (inner height × diameter, 90.0 × 40.0 

mm; 5.0 mm-wall), fitted with thermocouples. Four reactors were heated at a time in 

an oil bath (Haake B bath filled with silicon oil of DC 200 fluid, 100 cSt, Dow Corning, 

Midland, MI, USA), equipped with a Haake N3 temperature controller (Thermo Fisher 

Scientific, Waltham, MA, USA). Sample core temperature was digitally recorded using 

a Picotech data collector and software (Picotech, Neots, Cambridgeshire, UK). 

Pretreatments were conducted at 140 °C, 160 °C, and 180 °C. Holding time was 30, 45, 

or 60 min, starting from when the desired core temperature was reached. The heating 

bath oil was preheated to between 1°C and 5°C above the desired sample core 

temperature; by this way the time until the desired core temperature was reached 

ranged between 16 and 20 min. During the holding time, the reaction temperature in 

the reactors oscillated at a maximum of 1°C from the desired temperature. The 

Figure 1. A scheme for determi-
nation water soluble sugars in 
fruit hull. A Hermle Z33M2 
(HERMLE Labortechnik GmbH, 
Wehingen, Germany) was used 
in centrifugation. The amount of 
soluble oligoschharides in fruit 
hull was calculated by 
subtracting initial monosaccha-
ride present in fruit hull from the 
total soluble sugar measured 
after enzymatic digestion.  
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reactors were cooled after the incubation to 25 oC in less than 10 min by quenching in 

ice water. After the pretreatment, the resulting material was transferred to pre-

weighed 250-mL baffled shake flasks. The pH was adjusted to 5.0 with 10 M NaOH, 

and sodium azide solution (0.025% (w/w) final concentration; Merck KGaA, 

Darmstadt, Germany) was added. A 1-mL  sample was taken for analysis. Monomeric 

sugars were measured by HPAEC-PAD method (Kootstra et al., 2009b). Furfural, 5-

hydroxymethylfurfural (5-HMF), and acetic acid were measured by high performance 

liquid chromatography (HPLC) (Kootstra et al., 2009b). The monomeric sugar yield 

was calculated as follows:  

 

 

where SL is the amount of sugar (g) in the aqueous phase, and SS is the amount of 

monomeric sugar present in the sample of dry hull (g sugar equivalents in polymeric 

sugar). The sugar degradation was calculated in a similar way in which SL is accounted 

as the amount of sugar equivalents (g) to the amount of furfural or 5-HMF present in 

the aqueous phase, calculated in mole basis. 

2.5. Enzymatic hydrolysis of pretreated fruit hull 

To start enzymatic hydrolysis, GC220 (0.4 g (w/w) dry matter hull) were added into 

the baffled shake flask containing the pH-adjusted (pH 5.0) pretreated fruit hull.  

GC220 is a cellulase enzyme mixture (batch 4900759148, 7608 IU/mL cellulase 

activity). The amount of GC220 used corresponded to 46 FPU/g original dry matter 

hull. We used GC220 in excess (in the plateau region of the dose-effect curve of the 

enzyme mixture) to ensure that the effect of pretreatment on the sugar yield was 

measured, not the effect of the enzyme concentration. The weight of the material plus 

the flask was determined; after which, the flasks were closed with airtight plugs and 

placed in an Innova 44 incubator shaker (50 °C, 150 rpm, 2-in stroke; NBSC, NJ, USA). 

Samples of 1.5 mL were taken at t = 0, 24, and 72 h. GC220 was inactivated by 

incubation at 90 °C for 10 min. Samples were stored at 20 °C until analysis. 

Monomeric sugars were measured by HPAEC-PAD method (Kootstra et al., 2009b). 

)((%)(%) 2100
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2.6. SSF of acid-pretreated hull hydrolysate into ethanol 

Ten grams of milled fruit hull pretreated with 90 mL of sulfuric acid solution at the 

optimum conditions was used for ethanol fermentation tests with the yeast S. 

cerevisiae CBS 8066.  

To prepare inoculums, yeast cells were grown in a 100-mL liquid medium of YPD 

(Merck) at pH 5.0 in a 250-mL Erlenmeyer flask. The culture was incubated for 24 h in 

an Innova 44 incubator shaker (37 °C, 150 rpm, 2-in. stroke; NBSC, NJ, USA). The yeast 

cake was prepared by centrifugation at 17,000g for 15 min using the SORVALL RC6+ 

centrifuge (Thermo Fisher Scientific, Waltham, MA, USA).  

Prior to fermentation, the pH of the acid-pretreated hull was adjusted to 5.0 using 10 

M NaOH. Pre-hydrolysis was conducted to reduce the viscosity of the pretreated hull 

suspension and was performed by the addition of 0.95 g GC220 (equivalent to 0.1 g/g 

dry matter hull) followed by incubation for 6 h in an Innova 44 incubator shaker (37 

°C, 150 rpm, 2-in. stroke; NBSC, NJ, USA). After pre-hydrolysis, the pre-hydrolysed 

substrate was enriched with the following (per liter): 4.2 g (NH4)2SO4, 2.5 g KH2PO4, 

0.42 g MgSO4.7H2O, trace elements (consisting of 15.0 mg Na2EDTA, 4.5 mg 

ZnSO4.2H2O, 0.84 mg MnCl2.2H2O, 0.3 mg CoCl2.6H2O, 0.3 mg CuSO4.5H2O, 0.4 mg 

Na2MoO4.2H2O, 4.5 mg CaCl2.2H2O, 3 mg FeSO4.7H2O, 1 mg H3BO3, 1 mg KI,  vitamins 

(consisting of 0.05 mg biotin, 1.0 mg calcium panthotenate, 1.0 mg nicotinic acid, 25 

mg inositol, 1.0 mg thiamine, 1.0 mg pyridoxine HCl, 0.2 mg para-aminobenzoic acid), 

and fatty acids (10.0 mg ergosterol and 420 mg Tween 80 dissolved in 1.25 mL 

ethanol). Trace elements solution, vitamins solution, and fatty acid solution were 

prepared separately in stocks of 1000, 1000 and 800, respectively, as described 

previously (Verduyn et al., 1992). A 2.86-g enzyme mixture (GC220), equivalent to 0.3 

g/g dry matter hull, was added to the substrate. The total volume of substrate just 

before fermentation was circa 100 mL. An initial yeast cake concentration between 

0.50 and 0.55 g/100-mL substrate was applied in the SSF experiments (Cuevas et al., 

2010). Fermentation was conducted at 37 oC and 70 rpm for 72 h. All SSF experiments 

were done in duplicate, and homogenous samples of 1.5 mL were withdrawn at 0 (just 

after yeast addition), 6, 11, 24, 35, 48, and 72 h of incubation for the analysis of 

monosaccharides, organic acids, and ethanol. For the analysis of ethanol and organic 

acids in SSF samples, the supernatant of centrifuged samples (5 min at 17,400 g) was 
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diluted 1:1 with 6 mM sulfuric acid and filtered in order to remove solids and 

precipitated proteins. Samples were analyzed using a HPLC system (Waters Corp., 

Milford, MA, USA) using the organic acid column IOA-1000 (Alltech, Deerfield, IL, USA) 

with 3.0 mM sulfuric acid as the mobile phase at 90 oC and a flow rate of 0.4 mL/min. 

Peaks were detected by using a RI detector (Waters 2414, Waters Corporation, 

Milford, MA, USA). SSF results of sugars, organic acids, and ethanol were reported in 

grams of product formed per liter fermentation medium. The theoretical ethanol yield 

was calculated from the total glucose consumed by the yeast, taking into account a 

fermentation yield of 0.51 (Ballesteros et al., 2008; Cuevas et al., 2010). 

3. Results and Discussion 

3.1. Raw material composition 

Table 1 shows the composition of jatropha fruit hull. Carbohydrates account for 42.9% 

of the dry weight. This value is lower than those reported for other lignocellulosic 

materials such as wheat straw (59%), and cardoon biomass (52%) (Ballesteros et al., 

2008; Kootstra et al., 2009a). A glucan (as glucose) content of 31.6% is comparable to 

those reported for agricultural residues such as cardoon, sunflower, or Brassica 

(Ballesteros et al., 2008; Ballesteros et al., 2002; Ruiz et al., 2006) but slightly lower 

than those for wheat straw and rice straw (36%) (Bak et al., 2009; Kootstra et al., 

2009b). Unlike wood and straw, the hull contains about 12% water-soluble sugars. 

The total lignin value is 12.5% of which acid-soluble lignin (ASL) accounts for 0.8% 

only. The lignin value of the hull is less than 50 % of that of wood (Cara et al., 2006; 

Yang et al., 2002). ASL will solubilize during acid pretreatment, while acid-insoluble 

lignin (AIL) remains in solid form. Hemicellulosic sugars (xylose, galactose, mannose, 

rhamnose, and arabinose) account for 10.4% of the hull with xylose (5.7%) as the 

main hemicellulosic carbohydrate. No xylose was found after incubation of the water-

extractable fraction with enzyme mixture GC220 (data not shown), indicating that the 

material does not contain soluble xylan. Together, the organic solvent extractables 

and water extractables account for 30% of the total dry matter, which may include 

non-structural components of fruit hulls such as waxes, fats, tannins, some resins, and 

soluble pectins (Cara et al., 2006; Winkler et al., 1997b). In comparison, the values for 

glucan and lignin content obtained are lower than those of the jatropha fruit hull 
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(39.3% and 14.2%, respectively) previously reported (Nallathambi Gunaseelan, 

2009), which could be due to differences in cultivar, cultivation conditions, or ripeness 

of the fruit.  

3.2. Pretreatment and enzymatic hydrolysis of fruit hull 

The experimental conditions for the 16 runs according to the BBD can be seen in Table 

2. Table 2 also summarizes the overall experimental results of sugar liberation from 

milled jatropha fruit hull after pretreatment and subsequent enzymatic hydrolysis for 

24 h. 

Both the highest pentose yield (34.4%) and pentose degradation (42.4%) after 

pretreatment were achieved at 0.9% sulfuric acid, 45 min, and 180°C, in which 57.4% 

pentose and 80.6% hexose were recovered after subsequent enzymatic hydrolysis 

(Table 2). After the subsequent 24-h enzymatic hydrolysis, the highest pentose yield 

(84.7%) was obtained from the biomass pretreated at less severe conditions (0.9% 

sulfuric acid, 30 min, and 160°C) in comparison to the highest hexose yield (80.6%) 

which was obtained at more severe conditions (0.9% sulfuric acid, 45 min, and 

180°C). 

In terms of total sugar liberation (Table 2), both the highest sugar yield (21.0%) and 

sugar degradation (24.4%) after pretreatment were achieved at 0.9% sulfuric acid, 

after 45 min, and at 180°C. After the subsequent 24-h enzymatic hydrolysis, the 

highest sugar yield of 77.0% was reached at this pretreatment condition. 
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3.3. Statistical analysis of sugar degradation and sugar yield 

In the experimental Box-Behnken design, the influence of the three input variables 

(sulfuric acid concentration, time, and temperature of pretreatment) on pentose 

degradation, hexose degradation, pentose yield, and hexose yield were determined. 

The Box-Behnken model used to describe the experimental results is based on the 

effect of the three input variables studied, extended with parameters for interactions 

and squared factors. A square root transformation of the response factors was applied 

for improved model fit. To describe the interactive effects of the input variables on 

responses in the statistical analysis, one variable is set constant while the other two 

variables are varying in the design space. The input variables of X1, X2, and X3 are the 

coded factors of sulfuric acid concentration, time, and temperature of pretreatment, 

respectively. The coded variables are defined as follows: X1 = (SA−SA,C)/SA,S, 

X2 = (t−tC)/tS, and X3 = (T−TC)/TS, in which SA = concentration of sulfuric acid (%), 

t = pretreatment time (min), and T = pretreatment temperature (°C); subscript 

C = center value and subscript S = step value; SA,C = 0.5%, SA,S = 0.4%, tC = 45 min, and 

tS = 15 min, TC = 160°C and TS = 20°C. 

3.4. Pentose and hexose degradation after pretreatment 

The starting point was a quadratic model which was found significant for the 

degradation of pentose into furfural and the degradation of hexose into 5-HMF during 

the pretreatment (both with P < 0.0001). The quadratic model was then adjusted by 

backward elimination: taking out terms that had no significant contribution (P > 0.05) 

one by one and then recalculating the model with the remaining terms. The adjusted 

regression models fit the data with the R2
adjusted of 0.99 for pentose degradation 

(Equation 3) and 0.97 for hexose degradation (Equation 4) as follows: 

 

 

in which YPD,Pr (% w/w) is the pentose degradation, and YHD,Pr (% w/w) is the hexose 

degradation after pretreatment, respectively. 
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Figure 2 shows the response curves of pentose and hexose degradation as three-

dimensional surfaces. As can be seen in Figure 2a and Equation 3, minimizing the 

degradation of pentose into furfural 

depends, for a large part, on sulfuric 

acid concentration and temperature. 

Degradation of pentose increases 

rapidly at higher sulfuric acid 

concentration and temperature. 

Because the degradation of pentose is, 

for a small part, influenced also by 

time, conducting the pretreatment step 

in a shorter time (30 min) is preferable 

than a longer pretreatment time if high 

pentose recovery is the target. A 

pentose degradation of 34% is 

obtained at 30 min, 0.9% sulfuric acid, 

and 180°C (Figure 2a) in which 33% of 

the pentose is simultaneously 

recovered (data not shown), resulting 

in a total pentose liberation from the 

biomass of 67%. A corresponding 

result has been reported in the 

pretreatment of corn stover at 20% 

(w/w) solid loading by using sulfuric 

acid (0.5% to 1.4% (w/w)) at 165°C to 

195°C for 3 to 12 min, in which pentose 

degradation ranged between 5% and 

31% (Schell et al., 2003).  

In case of hexose degradation, from the three input variables studied, the 

pretreatment time has no significant contribution on the degradation of hexose 

(Equation 4). The influence of the sulfuric acid concentration and temperature causes 

less than 6% hexose degradation in the design space as shown in Figure 2b. The low 

hexose degradation at pretreatment demonstrates that only a small fraction of the six-

Figure 2. Three-dimensional response surfaces 
for (a) pentose degradation and (b) hexose 
degradation of jatropha fruit hull. The response 
surfaces were graphed after dilute sulfuric acid 
pretreatment. Pretreatment time is 30 min.  
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carbon polysaccharides (mostly cellulose) of the biomass was completely 

depolymerized and degraded during the pretreatment, a positive property of a 

pretreatment, assuming the treatment's ability to facilitate the subsequent enzymatic 

hydrolysis. 

3.5. Pentose and hexose yields after enzymatic hydrolysis 

The starting point was a quadratic model which was found significant for the pentose 

yield and the hexose yield after the subsequent 24-h enzymatic hydrolysis of 

pretreated fruit hulls (both with P < 0.0001). The quadratic model was then adjusted 

by backward elimination: taking out terms that had no significant contribution 

(P > 0.05) one by one and then recalculating the model with the remaining terms. The 

adjusted regression models fit the data with the R2
adjusted of 0.91 for pentose yield 

(Equation 5) and 0.99 for hexose yield (Equation 6) as follows: 

 

 

 

 

in which YPY,24h (% w/w) is the pentose yield, and YHY,24h (% w/w) is the hexose yield 

after the 24-h enzymatic hydrolysis, respectively. Figure 3 shows the response 

analysis of pentose and hexose yields as three-dimensional surfaces. 

As can be seen in Figure 3a and Equation 5, maximizing the pentose yield is, for a large 

part, dependent on sulfuric acid concentration and temperature. The time of 

pretreatment on its own has no direct significant contribution on the pentose yield, 

but its interaction with the temperature has. In comparison to our results, it was 

reported that the yield of xylose (a major component of pentose) after a dilute sulfuric 

acid (0.5% to 2%) pretreatment of rapeseed straw at high temperature (180°C) is 

dependent on acid concentration and time of pretreatment (Lu et al., 2009).  

Figure 3 shows that pretreatment of the fruit hull at the conditions studied results in a 

significant increase of the pentose yield and the hexose yield in the hydrolysis step. 
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Approximately 84% pentose yield after enzymatic hydrolysis can be achieved at 0.9% 

sulfuric acid (30-min pretreatment at 160°C) in which approximately 10% pentose is 

degraded (Figure 2a). Increasing the temperature above 160°C or the time of 

pretreatment for more than 30 min (data not shown) does not improve the pentose 

yield due to the degradation of pentose into furfural. The 30-min pretreatment results 

in a higher pentose yield than the longer pretreatment periods. 

We found that without enzymatic 

hydrolysis, pretreatment alone of the 

fruit hull with 0.1% sulfuric acid at a 

temperature between 140°C and 

180°C resulted in pentose yields of 

less than 4% (data not shown). 

However, high overall pentose yields 

obtained after enzymatic hydrolysis of 

the fruit hull pretreated with 0.1% 

sulfuric acid at 140°C to 180 °C 

(Figure 3a) demonstrate that the 

hydrothermal treatment itself 

contributes to hemicellulose 

digestibility, thereby enhancing the 

enzymatic hydrolysis. It has been 

reported that heating lignocellulosic 

biomass in aqueous media at a 

temperature above 150°C to 180°C 

will solubilize parts of the biomass, 

firstly the hemicellulose and shortly 

after the lignin (Hendriks and Zeeman, 

2009).  

From Figure 3b and Equation 6, the 

hexose yield ranged from 

approximately 52% at the least severe 

Figure 3. Three-dimensional response surfaces for 
(a) pentose yield and (b) hexose yield. The 
response surfaces were graphed after 24-h 
enzymatic hydrolysis, respectively, of the 
pretreated jatropha fruit hull. Pretreatment time 
is 30 min.  
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pretreatment (0.1% sulfuric acid, 30 min, 140°C) to approximately 78% at the more 

severe conditions (0.9% sulfuric acid, 30 min, 180°C)  

3.6. Total sugar yield after enzymatic hydrolysis  

For the total sugar degradations (pentose plus hexose degradation) after 

pretreatment and the total sugar yield (pentose plus hexose yield) after the 

subsequent 24-h enzymatic hydrolysis of the pretreated fruit hull, the starting point of 

a quadratic model was found significant (P < 0.0001). The quadratic model was then 

adjusted by backward elimination: taking out terms that had no significant 

contribution (P > 0.05) one by one and then recalculating the model with the 

remaining terms. The adjusted regression models fit the data with the R2
adjusted of 0.98 

for the total sugar degradation (Equation 7) and 0.96 for the total sugar yield 

(Equation 8) as follows: 

 

 

 

in which YSD,Pr (% w/w) is the total sugar degradation after pretreatment, and YSY,24h 

(% w/w) is the total sugar yield after the subsequent 24-h enzymatic hydrolysis. 

Figure 4 shows the response curve of the total sugar yield and the total sugar 

degradation as three-dimensional surfaces. Statistical analysis of combined sugars 

(pentose plus hexose) showed that the time of pretreatment has no influence on the 

total sugar yield (Equation 8). Sulfuric acid concentration and temperature as well as 

their interaction have positive influences on the total sugar yield, contributing to the 

increase of overall sugar yield as sulfuric acid concentration and temperature 

increase. Because of the negative squared term of the temperature (Equation 8), an 

optimum point somewhere in the experimental space might be expected; however, 

the temperature coefficient seems too small to level off the curve. A yield of 78% was 

the maximum achieved value at the temperature of 180°C using 0.9% sulfuric acid, in 

which 21% sugar is degraded into furfural and 5-HMF (Figure 3). 
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3.7. Optimization and 

confirmation test 

It has been shown that the maximum 

sugar yield as well as the hexose yield, 

respectively, after enzymatic 

hydrolysis can be achieved only if 

pretreatment of the fruit hull (9.52% 

solid loading) was performed using 

0.9% sulfuric acid at a temperature 

around 180°C. Using the Design-

Expert 8.0.3 software, optimization 

was conducted to obtain the highest 

hexose/sugar yields with minimum 

sugar degradations. The optimal 

conditions were as follows: sulfuric 

acid equals 0.9%, time equals 30 min, 

and temperature equals 178°C. Under 

these conditions, the model predicts the responses as follows: pentose degradation of 

31%, hexose degradation of 6%, a pentose yield (after 24-h enzymatic hydrolysis) of 

72%, and a hexose yield (after 24-h enzymatic hydrolysis) of 77%. 

A confirmation test was performed under the pretreatment conditions described 

above, in duplicate. The experimental results with the deviations from the average 

were as follows: pentose degradation of 29.4 ± 1.27% (equivalent to 1.5 ± 0.05 g/L 

furfural), hexose degradation of 5.2 ± 0.14% (equivalent to 1.2 ± 0.03 g/L 5-HMF), a 

pentose yield of 70.8 ± 1.20% (equivalent to 4.4 ± 0.08 g/L pentose), and a hexose 

yield (24 h) of 78.3 ± 0.70% (equivalent to 26.5 ± 0.25 g/L hexose). These 

experimental sugar values agree well to those predicted by the model with deviations 

less than 1%. In addition, we found that acetic acid liberation was 1.5 ± 0.02 g/L. 

3.8. SSF of hydrolysed fruit hull into ethanol 

Fruit hull of 9.52% solid loading pretreated at optimum conditions (0.9% sulfuric acid, 

178°C, 30 min) was applied in a SSF process using S. cerevisiae at 37°C. In a SSF 

Figure 4. Three-dimensional response surfaces for 
total sugar degradation (dark) and total sugar 
yield (light). The response surface for total sugar 
degradation was graphed after pretreatment, and 
that for total sugar yield was graphed after 24 h 
enzymatic hydrolysis of pretreated jatropha fruit 
hull. Pretreatment time is 30 min.  
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process, the glucose liberated by enzymatic hydrolysis is simultaneously converted 

into ethanol, thus reducing product inhibition of the enzyme by glucose. Figure 5 

shows the course of ethanol formation for the 72-h fermentation in the standard 

medium containing 30 g/L glucose (Figure 5a) in comparison to the medium 

containing the pretreated fruit hull (Figure 5b). 

In the standard medium, glucose is 

depleted within 12 h. In that period, 

ethanol was rapidly produced and 

peaked at about 10.7 g/L. This ethanol 

concentration corresponds to 74% of 

the maximum theoretical yield. 

In the pretreated fruit hull medium 

(Figure 5b), a 6-h pre-hydrolysis to 

reduce the viscosity of the hydrolysate 

suspension resulted in 18 g/L glucose 

initially available in the medium 

before the fermentation started. As 

can be seen in Figure 5b, glucose 

depletion in the fruit hull medium was 

slower than in the standard medium, 

reaching 2 g/L after 36 h and 

remaining constant from that point; 

the maximum ethanol concentration 

was 8.4 g/L at 24 h (corresponding to 

71% of the maximum theoretical 

yield). This trend of ethanol formation, 

peaking at 24 h, corresponds well to 

the results previously reported 

(Cuevas et al., 2010). It is clearly seen 

that ethanol formation was slightly 

inhibited in the pretreated fruit hull biomass, leading to a lower ethanol yield (71% 

compared to 74%) and longer fermentation time (24 h compared to 12 h) at peak 

Figure 5. Course of ethanol formation. Formation 
of ethanol, liberation of acetic acid, and the 
consumption trends of glucose and xylose during 
fermentation by S. cerevisiae CBS 8066 of (a) 
standard medium containing glucose as a sole 
carbon source in comparison to (b) SSF of 
pretreated jatropha fruit hull.  
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points. In biomass hydrolysis, limiting concentrations of byproducts are important 

when the hydrolysate is to be used as a fermentation medium. For ethanol 

fermentation, it was reported that the presence of acetic acid (5 g/L), furfural (1.2 

g/L), and 5-HMF (1.3 g/L) slightly decreased the ethanol yield in the fermentation 

process; however, a low acetic acid concentration (about 1 g/L) was found to have a 

positive effect on the ethanol production yield (Erdei et al., 2010). Due to 

pretreatment of the fruit hull at optimum conditions, 1.5 g/L furfural, 1.2 g/L 5-HMF, 

and 1.5 g/L acetic acid were also formed in the fermentation substrate. Therefore, 

inhibition of ethanol formation in the fruit hull substrate was probably caused by the 

presence of these compounds. 

4. Conclusions 

It is demonstrated that the model equations developed using the Box-Behnken design 

with the three input variables studied (sulfuric acid, time, and temperature) can be 

used to predict liberation and degradation of sugars from the jatropha fruit hull after 

dilute sulfuric acid-catalyzed hydrothermal pretreatment and subsequent enzymatic 

hydrolysis. A pretreatment at optimum conditions (0.9% sulfuric acid, 30 min, 178°C) 

followed by a 24-h enzymatic hydrolysis liberates nearly all of the sugars present, 

consisting of 71% pentose, 78% hexose, 29% pentose degradation into furfural, and 

5% hexose degradation into 5-HMF. Therefore, higher sugar yields cannot be expected 

within the space studied. The SSF experiment of ethanol production showed that the 

sulfuric acid-pretreated fruit hull can be used to produce ethanol by S. cerevisiae in the 

simultaneous saccharification and fermentation process. 
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1. Retrospection 

The research questions for our research project stated in the Introduction were: 

a) Which part of jatropha lignocellulosic biomass can be depolymerized to 

sugars and then valorized to chemicals /fuels, in particular to bioethanol? 

b) Can a microbial method of jatropha oil extraction improve the oil yield in 

comparison to other known processes? 

c) Can a microbial method of oil extraction preserve the original structure of 

jatropha protein? 

d) Can jatropha fruit by-products after valorization give better added value 

products than only the seeds?   

This thesis discusses related experimental results to answer these research questions, 

designs possible biorefinery routes based on our research findings combined with the 

other published methods of valorization, and calculates the revenue from products 

possibly valorized from the jatropha biomass.   

1.1. The recalcitrance of jatropha fruit byproducts in pretreatment  

Cellulosic biomass is generally an inexpensive resource that may be converted 

sustainably into large volumes of transportation fuels and chemicals.  In many cases, 

pretreatment of highly recalcitrant cellulosic biomass to increase its enzymatic 

digestibility is essential to achieve high yields from biotechnological processes. In 

bioethanol production, as an example, pretreatment of cellulosic biomass is the most 

expensive processing step, representing approximately 20% of the total cost (Yang 

and Wyman, 2008). To achieve a low cost pretreatment technology, one must take 

into account technical aspects like sugar-release patterns, solid loading, the 

compatibility of pretreatment with the overall process, the availability of feedstock 

and enzymes, and the suitability of organisms to be used (Yang and Wyman, 2008)  

In a jatropha oil production line abundant side-streams mainly derived from fruit are 

generated consisting of seed cake rich in valuable proteins, seed shell composed of 

mainly lignin, as well as polysaccharides and fruit hull with low lignin content but 

with high polysaccharides and water-soluble components. Owing to their differences 

in chemical and physical characteristics proper methods of hydrolyzing lignocellulose 



  
 

General discussion

 

 

117 

 

from these by-products into sugars need to be thoroughly investigated. Some authors 

have highlighted factors that affect the ability of cellulose from plant biomass to be 

hydrolyzed, including porosity of the materials, the cellulose fiber crystallinity, and 

lignin and hemicellulose content (Hendriks and Zeeman, 2009). The presence of high 

lignin and hemicellulose in crop residues has been considered as the main barrier for 

cellulase enzymes to reach the reaction site within the cellulose chains, thus reducing 

the efficiency of hydrolysis (Sun and Cheng, 2002).  

In our efforts to hydrolyze jatropha fruit polysaccharides by cellulases, we found that 

low concentrations of glucose were attained from sulfuric acid pretreated press cake 

and seed shell, although the sulfuric acid concentration has been increased up to 500 

mM (equivalent to 4.9%) (Chapter 2). Even though the hemicellulose were 

successfully removed from both materials in the pretreatment, the cellulose of these 

materials was still hardly accessed by the enzyme molecules. From the fact that 

glucose release has a direct correlation with lignin content, in which lower glucose 

yields were obtained at higher lignin content, we concluded that the pretreatment 

parameters applied had a small effect on lignin degradation. Lignin in jatropha press 

cake and seed shell is highly resistant against the sulfuric acid concentrations and the 

operational temperatures applied (Chapter 2). The results suggest that lignin acts as 

the physical barrier in the cellulose conversion from jatropha press cake and seed 

shell.   

We have demonstrated that the enzymatic digestibility of sulfuric acid pretreated fruit 

hull was improved significantly compared to sulfuric acid pretreated seed cake and 

seed shell (Chapter 2). For carbohydrate conversion, jatropha fruit hull therefore 

stands as one of the potential materials for bioconversion into sugar-based chemicals 

and fuels. We have shown that a pretreatment using 500 mM (or 4.9% w/v) sulfuric 

acid at a moderate operational temperature (120 oC) for 30 min released 100% xylan 

and 80% glucan. These yields look applicable as substrate for biological applications, 

but the use of high sulfuric acid concentratration (4.9% w/v) leads to increased acid 

neutralization cost thereby increasing the overall pretreatment costs. The question 

arises whether the use of more dilute sulfuric acid could result in comparable sugar 

yields. This question has brought us to optimize the pretreatment parameters 
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(temperature, dilute sulfuric acid, and time) of jatropha fruit hull (Chapter 5), which 

will be discussed later in this chapter.  

1.2. The role of traditional coconut oil extraction (Java method) in jatropha oil 

extraction 

In the traditional Java method of coconut oil extraction which uses a microbial 

process, mashed paddy-field crab is mixed with shredded coconut. After overnight 

incubation, the mixture is dried in the sunlight, then squeezed to collect the oil. In 

principle, the traditional Java method avoids the use of heat to preserve the coconut 

taste (Haryoto, 1983). This way is simple and very practical, in addition it requires 

less energy than the common ways of coconut oil extraction with heating. Inspired 

from this traditional practice we therefore investigated the possible application of the 

traditional Java method for the recovery of oil from jatropha seeds (Chapter 3). 

For application on an industrial scale, the production of jatropha oil by way of 

mimicking the Java method is not practical nor economically feasible due to the 

limited number of crabs in nature. Therefore, the production of jatropha oil by 

utilizing the component originated from crabs that can be isolated and propagated in 

vitro with the appropriate method was our goal. For that reason, we investigated the 

possible use of bacteria isolated from crab, which are easily maintained and 

propagated in the laboratory, for the liberation of oil from jatropha kernels. 

In terms of microbial oil extraction, we have elaborated the role of a bacterial strain, 

namely Bacillus licheniformis strain BK23, for the liberation of oil from shredded 

coconut or homogenized jatropha kernel (Chapter 3). Later we found that this strain 

hydrolyzed all protein present in jatropha kernel into soluble, smaller molecular 

weight fractions, an unfavorable trait if the protein is to be conserved and recovered 

for technical applications (Moure et al., 2006).  With the objective of conserving the 

integrity of protein structure, we isolated new strains from the crabs, identified as 

either Bacillus pumilus or B. altitudinis, capable of releasing the jatropha oil largely by 

the destruction of hemicellulose in jatropha kernel (Chapter 4).  
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1.3. The fate of jatropha protein functionality during microbial oil extraction 

processes 

Physico-chemical process and heating are generally involved in the separation and 

purification of vegetable proteins, which may affect the nutritional value of the final 

product, as well as the functional properties of protein when protein products will be 

used for food and non-food purposes (Moure et al., 2006). Processes in water media, 

either assisted or not by enzymes degrading polysaccharides of the cell wall structure 

to strengthen the oil extraction, can also improve nutritional value and functional 

properties of the proteins (Dominguez et al., 1994; Moure et al., 2006; Rosenthal et al., 

1996). Several treatments done to remove the antinutritive compounds such as 

hydrothermal pretreatment, fermentation, soaking, and germination can  improve the 

nutritional quality and the functional traits of the protein (Moure et al., 2006). These 

statements indicated that the hydrolysis of cell wall carbohydrate or the partial 

hydrolysis of high molecular weight protein molecules into smaller ones could 

improve the nutritional value, reduce or eliminate the antinutritive factors of the 

proteins of origin, or create new smaller proteins having totally new functional 

properties.  

When the culture of Bacillus pumilus was directly applied to the jatropha kernel slurry 

for oil extraction (Chapter 4), the SDS-PAGE analysis in the residue after oil separation 

revealed the existence of three additional protein bands in the solid phase of the 

microbial-treated jatropha kernel slurry,  bands which were not found in the NaOH 

extractable jatropha protein. There are two possible explanations: (1) microbial 

process gave higher number of jatropha protein subunits recovered than that of NaOH 

extraction, or (2) at least one jatropha protein subunit (88.5 kDa) that was missing in 

the solid phase might have been hydrolyzed by Bacillus pumilus proteases into smaller 

molecular weight of insoluble protein fractions. This partial hydrolysis were not 

detected by the agar plate method due to formation of insoluble fractions. The agar 

plate method, in fact, detected only a complete solubilization of whole available 

jatropha protein subunits. Further studies seem important to investigate the 

functional properties of the additional protein fractions which were extracted or 

formed by the action Bacillus pumilus. 
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1.4. Jatropha fruit byproduct conversion: ethanol case   

In addition to oil as the main product, the biomass from jatropha plantation 

comprising wood, leaves, and fruit side stream  may be transformed into chemicals 

and energy.  The cellulosic biomass should be easily hydrolyzed into simple sugar-rich 

substrate suitable for fermentation, and sugar concentration must be high enough so 

that the conversion yield could generate sufficient economic value. We have not 

studied the conversion of jatropha wood. However, from the fruit parts our research 

showed that seed-cake and seed shell gave low sugar yield and therefore are not 

suitable for ethanol fermentation. Fruit hull, on the other hand, hydrolyzed more 

easily so it is very suitable as a substrate for bioethanol fermentation.   

The fermentation of ethanol usually takes place at a temperature of 25-36 °C and lasts 

6-72 hours depending on composition of hydrolyzate, type of the strain, the quantity 

of inoculum added and yeast activities; and in theory, 1 tonne of glucose will produce 

511 kg of ethanol (Gnansounou and Dauriat, 2005). However, in practice the 

fermentation efficiency lies between 80-92% (Gnansounou and Dauriat, 2005; 

Mielenz et al., 2009). These high yields occur when the medium is unbalanced and 

something becomes limiting. In our experiments, we found lower fermentation 

efficiency (71-74%) for both the jatropha hull hydrolyzate and the standard media 

with glucose (Chapter 5). In our case the medium was complete resulting in significant 

amounts of biomass and glycerol and therefore a lower ethanol yield.  

2. Perspectives 

Industrial products from biomass can only compete with petroleum based products if 

the biomass is converted optimally through an efficient biorefinery system, where 

high value chains are developed and put into action (van Ree and Annevelink, 2007). 

For the perspectives, we propose a general biorefinery route in such a way that all by-

products are utilized and minimum or no further waste will be generated, referred to 

as a zero waste approach. Secondly, we propose to integrate our research findings in 

combination with the alternative methods of valorization into a whole crop 

biorefinery route. The alternative methods can be sourced from the research findings 

of our colleagues within the same jatropha project funded by KNAW-The Netherlands 

(KNAW, 2012) or from published articles. We will also elaborate the future prospect 
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of jatropha biomass biorefinery based on a simple economy analysis of chemical and 

fuel products derived from jatropha biomass. 

2.1. Zero-waste approach in the refinery of jatropha biomass 

We propose a comprehensive zero-waste approach of biorefinery for jatropha 

biomass as seen in Figure 1. In a jatropha plantation, the jatropha plants require 

sunlight, carbon dioxide, nutrients, and water for growth. As a result of cultivation, 

harvesting, and pruning, biomass in the form of fruit, wood and leaves will be 

produced. In the first stage of the refinery (primary refinery), fruit, wood and leaves 

can undergo the process of separation, extraction, pretreatment, and hydrolysis to 

generate primary products namely oil, proteins, carbohydrates, lignin, and bioactive 

compounds (Devappa and Swamylingappa, 2008; Dhyani et al., 2011; King et al., 2009; 

Lestari et al., 2010; Makkar et al., 2008; Openshaw, 2000; Singh et al., 2008). Several 

additional fractions like the highly acidic/alkaline resistant seed shells and liquid 

waste are also generated from those processes.  

 

 

 

 

 

 

 

 

  

 

 
Figure 1. A flow diagram of zero-waste approach in jatropha biorefinery 
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In a secondary refinery, biogas can be produced by anaerobic digestion of the liquid 

waste (Gunaseelan, 2009; Staubmann et al., 1997). Energy sources for the refinery 

processes can be sourced from the biogas or from pyrolysis and gasification fuels 

made from the hard fraction like seed shells (Goyal et al., 2008; Vyas and Singh, 2007). 

Fermentation of carbohydrate fractions will produce ethanol, which can also be used 

as an additional source of energy or as the reagent for transesterification of oil into 

biodiesel (FACT-Foundation, 2010). Proteins isolated from the seeds can be separated, 

purified, and or modified into animal feed and platform chemicals (Hamarneh et al., 

2010; King et al., 2009; Kootstra et al., 2011; Lestari et al., 2010; Makkar and Becker, 

2009; Moure et al., 2006). Bioactive compounds from the leaves can be purified or 

modified to produce pharmaceutical compounds (Devappa et al., 2010). Finally, 

primary and secondary refineries will produce minerals and organic fertilizer that can 

be recycled back to the plantation as nutrients for the Jatropha plant (FACT-

Foundation, 2010). 

2.2. Process design in biorefinery of jatropha fruit 

Our research was focused on the utilization of jatropha fruit. Fruits are dehulled to 

produce the fruit hull and seeds. In Indonesia jatropha plantations commonly have a 

population of 2500 plants/ha. A productivity of 2 kg seed/plant/yr has been reported 

(Purwaamijaya et al., 2007). One hectare of jatropha plant therefore would yield 5000 

kg seed annually (containing 25% to 33% oil).  

For designing the process, calculating the quantity of products valorized, and 

estimating the economic value of each product, we take one hectare jatropha with the 

seed yield of 5000 kg/ha/yr as the basis in process design. This yield has been 

reported as the minimum plant productivity to be economically feasible (Syakir, 

2010). In a traditional practice of jatropha cultivation, we calculate that production of 

5000 kg/ha dry seed will dump as much as 9300 kg/ha fresh fruit hull into the land. 

This fruit hull contains 2140 kg/ha dry matter. The total energy content (GJ/ha/yr) of 

jatropha plantation can be seen in Table 1. 
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Table  1.   Energy content of jatropha byproducts, assuming seed productivity of 5000 kg/ha/yr 

Components Total 
protein 
(% DM) 

Total 
carbohydrate (% 

DM)  

Lipid 
(% DM) 

Energy content 
(MJ/kg) 

Total energy 

content 
(GJ/ha/yr) 

Fruit hull 5.0 42.9 nd 13.0b 27.8 
De-oiled seed cake 21.5 37.4 0 12.9b 44.2 
De-oiled kernels 40.2a 28.0a 0 11.4c 20.2 
Seed shells nd 46.3 nd 17.2d 28.4 

Nd = not detected 
a Calculated from chemical compositions data of de-oiled seed cake and seed shell 
b Cited from published article (Gunaseelan, 2009) 
c Calculation based on 16.7 MJ/kg for carbohydrate and protein (Gunaseelan, 2009) 
d Cited from published article (Openshaw, 2000) 

 

2.2.1. Valorization of jatropha seeds 

Valorization of the 5000-kg seeds is shown in Figure 2. We include mass balance in 

valorization so that the quantity and the economic value of the intermediates or final 

products can be calculated. The 5000-kg seed is fractionated into 3350 kg kernel 

(67%) and 1650 kg shell (33%). The kernel contains 47% oil (Chapter 3). By microbial 

extraction of the whole kernel followed by hexane extraction of the residual kernel 

cake, 100% oil (1575 kg) is extracted from the kernel. The advantages of a microbial 

process are: some kernel cell components are solubilized (good to increase 

extractability/yield of the protein in NaOH extraction); the residual oil can be 

extracted with  much less volume of organic solvent (hexane); and the process in 

protein isolate production, via NaOH extraction for example, will give higher protein 

purity than that without microbial treatment. The SDS-PAGE presented in Chapter 4 

proves good separation of proteins in the solid phase of the microbial protein 

extraction.  

We need the hexane extraction step to remove the residual oil from kernel cake to 

improve the protein isolate quality in the next steps. After residual oil extraction with 

hexane, protein is isolated with 0.055M NaOH (Lestari et al., 2010). The protein isolate 

is collected by precipitation at pH 5,  centrifuged and then dried. From this operation, 

607 kg protein isolate (85% overall protein yield) is obtained. The aqueous and solid 

residues are sent to anaerobic digester. This residues contain carbohydrate, 

protein/amino acids, lignin, and other kernel components, accounted for 1168 kg DM, 

which altogether has 96% VS (volatile solid) suitable for biogas production 
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(Gunaseelan, 2009). The quantity biogas produced from this residue (deoiled kernel) 

is calculated as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Total solid = 1168 kg 
Energy content of de-oiled kernel (Table 1) = 11.4 MJ/kg 
Total energy  = 1168 kg × 11.4 MJ/kg = 13.32 GJ 
CH4 yield from kernel = 53%* 
1 m3 CH4 has 33.81 MJ* 
CH4 produced  = 0.53 × 13.32 GJ = 7.1 GJ 
  = 7100 / 33.81 m3    
  = 210 m3 
*(Gunaseelan, 2009) 

 

Figure 2. A flow diagram of jatropha seed valorization per hectare plantation (kg DM) 
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The sludge from anaerobic digester can be aerobically fermented as fertilizer. The 

fertilizer has a higher nutrient content than the cattle manure, and in addition, it is 

free from pathogens, which have been killed during fermentation and therefore 

becomes a very healthy natural fertilizer (FACT-Foundation, 2010).  Based on process 

scheme of biogas digester proposed by FACT-Foundation (2010), we estimate that 

60% of the sludge from the digester can be fermented to fertilizer. Apparently, about 

700 kg fertilizer can be produced from the digester sludge. This fertilizer is estimated 

to contain 2.4% N, 9.2% P, and 6.7% K. 

In seed shell valorization, although the shell contains high polysaccharide (44.3%), 

our experiments proves too difficult to split the shell polysaccharide via biochemical 

approach into monomeric sugars and chemicals/fuels, most likely because of the high 

levels of lignin acting as physical barrier. Therefore, a thermochemical approach for 

valorization of seed shell is a rational choice. From a 1650-kg seed shell separated 

from 5000 kg dry seeds,  we propose to convert 30% shell (equals to 500 kg; 8.6 GJ)  

to briquette as solid fuel, which can be used as energy source for the process or as 

cooking fuel in the rural area. Fractionation of the other portion of the shell (equals to 

1150 kg, 19.8GJ) through a thermochemical approach namely fast pyrolysis, which is 

beyond our research scope, can be conducted as  better conversion yields in the 

production of liquid fuel (bio-oil), pyrolysis gas, activated charcoal (as adsorbent), and 

ash rich in minerals have been established recently (Hidayat, 2014).  

The conversion yields the quantity and energy value of the products obtained from 

fast pyrolysis of 1150 kg seed shell that can be seen in Table 2. The bio-oil can be used 

for transportation fuels. The gas phase contains 36.5% CO (72 kg), 51.9% CO2 (102 

kg), 8.9% CH4 (17 kg), and 2.7% C2+ (C2H4, C2H6)(5 kg) (Hidayat, 2014) may be used 

for energy generation or for synthesis of bulk-chemicals, such as methanol and FT-

diesel (Bridgwater et al., 1999). The char has excellent properties as adsorbent for 

separation processes (Vyas and Singh, 2007; Wever et al., 2012). The minerals found 

in the ash include Al (9100 ppm), Fe (4420 ppm), Na (5400 ppm), Ca (45000 ppm), 

Mg (12200 ppm), P (11000 ppm) (Hidayat, 2014). The ash rich in important plant 

nutrients (P, N, Ca, Mg) has potential application as a fertilizer.  
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Table  2.  The quantity and energy value of products from fast pyrolysis of 1150 kg seed shell 

 
Products 

Yield
a
 

(% w/w ) 
Quantity  

(kg) 
Energy

 
value  

(GJ) 

Bio-oil 50 575 10.1
b
 

Gas 17 196 1.82
c
 

Char 23
 

264 - 
Ash 3 35 - 
Others 7 80 - 
a
 Hidayat (2014) 

b
 Calculated from higher heating value (HHV) of pyrolysis oil 17.5 MJ/kg (Hidayat, 2014) 

c 
Calculated from the lower heating value (LHV) of CO (10.1 MJ/kg), CH4 (50.0 MJ/kg), C2H4 & C2H6 

(average 47.5  MJ/kg) (from http://en.wikipedia.org/wiki/Heat_of_combustion, accessed on 16-03-
2014) 

2.2.2. Valorisation of jatropha fruit hull 

Valorization of the hull is shown in Figure 3. Production of a 5000-kg dry seed will 

concurrently generate 9300 kg fresh fruit hull (2140 kg DM) as a waste. With respect 

to the high humidity content in jatropha fruit hull (77% wet weight), in preparing the 

materials for industrial biorefinery process, we recommend to firstly expell the water 

content from the fresh hull using expeller machine to remove humidity and water 

soluble fractions. Water expelling will reduce the feedstock volume and energy 

required for feedstock drying. This operation will also prevent excessive formation of 

fermentation inhibitors like 5-HMF and furfural (due to pretreatment) from the free 

sugars initially available in the hull (Chapter 5). After expelling, the dewatered hull 

biomass (1370 kg DM) is collected and ready for acid pretreatment. The soluble 

fraction (7800 kg) which contains polysaccharides, small amount of amino acids, and 

presumably pectin and tannin can be pumped to anaerobic digester for biogas 

production.  

After dilute acid pretreatment of the hull biomass (using 30% solid loading) followed 

by filtration, the acidic filtrate (3600 kg) containing xylose, amino acids, acid soluble 

lignin, minerals, and other soluble components may be neutralized, enriched, and then 

fermented to lactic acid by Rhizopus oryzae (Maas et al., 2006; Maas et al., 2008).  

However, we do not propose this route in fruit hull valorization because fermentation 

with fungus will require costly and sophisticated equipment like a fermenter and 

recovery unit. Additionally, with 30% solid loading in pretreatment, a maximum of 

only 3% of C-5 sugars can be produced in the pretreated liquor, which is too low to 
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produce lactic acid that is economically feasible. Instead, we propose to use the 

neutralized filtrate for biogas production. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After filtering, the resulting acid pretreated solid (1100 kg, 970 kg DM, 45% glucan) 

undergoes enzymatic hydrolysis where 80% glucan will hydrolyze to 384 kg glucose, 

leaving the acid insoluble lignin (250 kg) in solid form that can be separated by 

filtration. By this method, we calculate that 137 g/L glucose is obtained in the 

hydrolyzed liqour, which is suitable as fermentation substrate for bioethanol 

Figure 3. A flow diagram of jatropha fruit hull valorization per hectare 
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production. Assuming the ethanol yield from hull biomass is 71% of theoretical yield 

(Chapter 5), as much as 139 kg bioethanol in the fermentation broth is achieved. 

Additionally, the yeast cake from the fermentation process is a good source of protein 

as feed supplement. 

After enzymatic hydrolysis, the lignin can be purified by alkaline solubilization, 

precipitation in neutral condition, and drying. Assuming 80% yield, as much as 200 kg 

lignin can be recovered. The purified lignin can be directly used as a biomaterial, such 

as adhesive. 

The liquid from expelling operation (7800 kg, 770 kg DM) and the neutralized liquid 

from pretreatment (3600 kg, 400 kg DM) are combined as the aqueous hull residue 

(11400 kg, 1170 DM) for biogas production. The quantity biogas produced from this 

hull residue is calculated as follows: 

 

 

 

 

 

The sludge from anaerobic digestion of the hull residue can be used to produce 

organic fertilizer. About 700 kg fertilizer can be produced from the digester sludge. 

2.3. A view of future prospect in the jatropha biorefinery   

2.3.1 The economy benefit of jatropha seeds  

The current total area of jatropha plantation in Indonesia is difficult to obtain because 

the plantations are small in size and scattered  throughout the country. The market 

value of jatropha seed could range from IDR 1000 to 3000 per kg seeds depending on 

seed availability. However, for calculation of the revenues compared to other food 

crops, we may assume the jatropha seed price of IDR 1500/kg with minimum seed 

yield of 5000 kg/ha, which is required to be economically feasible (Syakir, 2010). 

Total solid = 1170 kg 
Energy content of the hull (Table 1) = 13.0 MJ/kg 
Total energy  = 1170 kg × 13.0 MJ/kg = 15.2 GJ 
CH4 yield from hulll = 71%* 
1 m3 CH4 has 33.81 MJ 
CH4 produced  = 0.71 × 15.2 GJ = 10.8 GJ 
  = 10800 / 33.81 m3 
  = 319 m3 
*(Gunaseelan, 2009) 
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Table 3 shows total revenue of jatropha seeds compared to other food crop in 

Indonesia. The low revenue from jatropha seeds is probably the main cause of the 

jatropha farmers turned their agricultural business to other food crops, which in turn 

contributed to the fast declining amount of jatropha plantations in Indonesia. Hence, 

valorization of jatropha side-stream into valuable products is the answer to improve 

the economic profit and benefit of this biofuel crop. 

Table  3.   Yield and price of jatropha seeds compared  to other food crops in Indonesia 

 Yield
1) 

(kg/ha/yr) 

Market Value Total revenue 

(EUR/ha/yr) Feedstock (IDR/kg)
2) 

EUR/kg
3) 

Jatropha seeds 5000 1500 0.10 500 
Rice 5146 8600 0.57 2933 
Corn 4799 6000 0.40 1920 
Cassava 22418 2000 0.13 2914 
Soybeans 1457 10500 0.70 1020 
Peanuts 1743 19000 1.27 1742 

Note: data was accessed on March 2014 from: 
1)
 http://www.bps.go.id/tnmn_pgn.php; the market value is the national price on Dec 2013  

2)
 http://pusdatin.setjen.pertanian.go.id/publikasi-361-analisis-perkembangan-harga-

komoditas-pertanian-januari-2014.html  
3)
 1 EUR = IDR 15000 (on 11 March 2014) 

 

2.3.2 The economic benefit of jatropha seeds with valorization 

To generate the maximum value per hectare jatropha plant, the potential total 

revenue from a 5000-kg oilseed only with only pressing and with valorization as 

previously proposed are compared (Table 4). 

Table 4 shows the estimation of the economic potential in the valorization of jatropha 

biomass. Using plant productivity of 5000 kg seed/ha/yr, a total potential revenue can 

reach around 2808 EUR/ha/yr. This value is 4-fold the total revenue obtained by only 

pressing the seed (699 EUR/ha/yr). From our estimate, it is clearly seen that a total 

valorization through biorefinery processing of jatropha biomass could significantly 

improve the economic value of this biofuel crop. 

Although the total potential revenue of jatropha after valorisation is comparable to 

some important food products such as rice and cassava, without valorization (Table 3) 
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current intensive studies and research on improving jatropha plant productivity 

would bear a tremendous achievement in increasing plant productivity from 1575 kg 

oil/ha/yr to at least 2000 kg oil/ha/yr. Productivity increase will open opportunity to 

gain more profit and benefit to the farmers as well as to the biorefinery factory site. 

 

Table  4.   The comparison of the potential market value and gross profit margin of the products 
from the only jatropha seed pressing and valorization 

Products 
Productivity 

(kg product/ha/yr)   
Potential applications 

Market value 

(EUR/kg) a) 

Revenue 

(EUR/ha/yr) e) 

Seeds as feedstock 5000   0.10 500 

Current situation: only pressing oil for biodiesel productions 

Oil 1575 Biodiesel  0.40 630 
Press cake 3425 Biogas/fertilizer  0.02 69 

Total potential revenue    699 
Potential gross profit    199 

Future prospect: valorisation of jatropha biomass into more value added products 

Oil 1575 Biodiesel  0.55 866 
Protein isolate 607 Adhesives/emulsifier  1.80 1092 
Bioethanol 139 Transportation fuel  0.80 111 
Lignin 200 Adhesives  0.40 80 
Biogas (m3/ha/yr) b) 534 Cooking  0.15 80 
Bio-oil 575 Transportation fuel  0.27 d) 155 
Char 265 Adsorbent  1.00 265 
Ash 35 Fertilizer  0.15 5 
Brewing yeast c) 140 Feed supplement  0.40 56 
Organic fertilizer 1400 Fertilizer  0.07 98 

Total potential revenue    2808 
Potential gross profit f)    2308 
Estimated production cost g)    808 
Estimated net profit h)    1500 

a) All market value are Indonesian prices except for Jatropha protein isolate  soy protein isolate (>90% protein) 
of 1.3 – 1.9 EUR / kg  

b) Productivity in m3/ha/yr; market value in EUR/m3 
c) The market value is taken from http://www.alibaba.com/showroom/dry-yeast-for-animal-feed.html; accesed 

on 16-03-2014 
d) Bio-oil market value is calculated from the energy content ratio of bio-oil (19 MJ/kg) and crude fossil oil (42 

MJ/kg) then multiply by the price of crude fossil oil (EUR 0.75/kg, on 14 March 2014) and by 0.8 (correction 
factor) 

e) Revenue = Productivity × Market value 
f) Potential gross profit = Total potential revenue – Seed cost 
g) Assume the production cost comprise 35% of potential gross profit 
h) Estimated net profit = Potential gross profit - Estimated production cost 

 



  
 

General discussion

 

 

131 

 

3. General conclusion 

Our research aims were to develop sustainable technologies of jatropha oil extraction 

and biomass fractionations within a framework of bioconversions (enzymatic and 

microbial processings) that could suit the requirement for in situ (local) application, 

in this case Indonesia. Our findings show that microbial extraction of oil is a simple 

process and can be applied to extract oil from seeds on the jatropha plantation site. 

Microbial process yields 70% oil, and this is comparable to the known processes such 

as by using expeller or by enzymatic extraction. Microbial processes use whole kernels 

whereby better protein quantity and quality can be obtained. Microbial process can 

alter the protein structures, but this might be an advantagoues trait since the 

alteration could provide protein fractions with totally new functional properties. In 

valorization of fruit biomass into variuos products (oil, protein isolate, lignin, biogas, 

bio-oil, etc.) most known techniques (pretreatment, hydrolysis, fermentation, 

extraction, separation, anaerobic digestion, pyrolysis) are applicable for local 

conditions. From our economic analysis it is clearly seen that a total valorization 

through biorefinery processing of jatropha biomass could significantly improve the 

economic value of this biofuel crop. For future research, our specific 

recommendations are: (1) to investigate functionalities of the additional protein 

fractions formed by the action Bacillus pumilus. (2) to isolate enzymes from Bacillus 

pumilus, in this case xylanase, and to study its properties in the extraction of jatropha 

oil and in conserving the original structure of jatropha protein. 
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Summary 

Jatropha curcas, L has been introduced as one of the most promising candidates for 

future bioenergy production because it has seeds with a high oil content which are 

suitable for power generation or for the production of biodiesel.  In 2006, Indonesia 

launched - due to energy crisis - a new renewable energy program, which aimed to 

source 17 percent of its energy needs from renewable resources by 2025. Since then, 

the Indonesian national policy began introducing Jatropha plant as the favored biofuel 

source. However, jatropha oil has not been traded at price levels that satisfactorily 

reward growers/farmers. Moreover, jatropha plantation suffer from low oil 

productivity and intensive labor. Therefore, one of the strategies to improve the 

economics of this potentially profitable plant is to increase the value of the side 

streams of oil production (trimmed stems/branches, seed or kernel cake, seed shells, 

and fruit hulls). 

Our research objectives were to develop sustainable technologies of jatropha oil 

extraction and jatropha biomass fractionations within a framework of bioconversions 

(enzymatic and microbial processings) that could suit the requirement for in situ 

(local) application, in this case Indonesia. The questions to answer include, firstly, 

which part of jatropha lignocellulosic biomass can be depolymerized to sugars and 

then valorized to chemicals/fuels, in particular to bioethanol?  Secondly, can a 

microbial method of jatropha oil extraction improve the oil yield in comparison to 

other known processes? Thirdly, can a microbial method of oil extraction preserve the 

original structure of jatropha protein? Fourthly, can jatropha fruit by-products after 

valorization give higher added-value products than just the seeds?   

Initially, we investigated the effect of dilute sulfuric acid pretreatment on enzymatic 

digestibility of jatropha seed shells, fruit hulls, and seed-cake (Chapter 2). The aim 

was to estimate the feasibility of releasing monomeric sugars from the several 

Jatropha fractions.  Jatropha fruits consist of (in w/w dry fruits) 50% seed kernels, 

20% husks (seed shells) and 30% hulls (fruit exocarp). The fruit contains 23.5% of 

vegetable oil. Fractionation of the fruit byproducts, mainly protein and carbohydrate, 

will increase the economy of jatropha processing factory. In this study, we 

investigated the effect of pretreatment using dilute sulfuric acid (0  500 mM) at 120 
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oC for 30 minutes on enzymatic digestibility of milled jatropha biomass: seed shell, 

seed-cake or fruit hull at 10% (w/w) solids loading by determining glucose and xylose 

release. We found that the lignocellulose fractions of the jatropha seed shell and the 

jatropha seed cake were relatively recalcitrant to dilute sulfuric acid pretreatments 

suggesting that more intense pretreatment is necessary to disrupt lignin barriers 

sufficiently to improve enzymatic digestibility. However, dilute sulfuric acid 

pretreatment solubilized 65% of the available protein in the jatropha seed cake. After 

dilute acid pretreatment, the lignocellulose fraction of the jatropha fruit hull proved 

relatively more susceptible to hydrolysis by cellulases (GC220). As much as 70% 

glucose and 100% xylose was obtained from the jatropha fruit hull after a 

pretreatment with 500 mM sulfuric acid. A pretreatment at higher temperature may 

resolve the need of more diluted acid concentration and a shorter time to achieve 

comparable or higher sugar yields.  

Based on our findings that the jatropha fruit hull was relatively more susceptible to 

hydrolysis by cellulases (GC220), we optimized the experimental variables (sulfuric 

acid concentration, time, and temperature) for jatropha fruit hull pretreatment and its 

hydrolysis into sugars (Chapter 5). Simultaneous saccharification and fermentation of 

jatropha fruit hull hydrolyzates by Saccharomyces cerevisiae for ethanol production 

was also studied. Dilute sulfuric acid pretreatment of jatropha fruit hull at high 

temperatures (140 to 180 oC) performed in a 110-mL stainless steel reactor was 

investigated to enhance the enzymatic digestibility of its lignocellulosic components. 

Carbohydrates accounted for 43% of the dry matter of jatropha fruit hull biomass. The 

goal of the study was to optimize the pretreatment conditions (acid concentration, 

time, and temperature) in order to obtain the highest sugar yield after subsequent 

enzymatic hydrolysis. A Box-Behnken Design was applied to the experimental set up 

in order to reduce the number of experiments. The optimal pretreatment conditions 

are 30-min incubations at a temperature of 178 oC with a sulfuric acid concentration 

of 0.9% (w/v). Using these pretreatment conditions for a fruit solid loading of 9.52% 

followed by a 24-h enzymatic hydrolysis resulted in a liberation of 100% of all 

pentoses present (71% yield and 29% degradation to furfural) and 83% of the 

hexoses (78% yield and 5% degradation to 5-hydroxymethylfurfural). The 

simultaneous saccharification and fermentation experiment showed that acid-
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pretreated fruit hull can be used as a substrate for Saccharomyces cerevisiae to 

produce ethanol.   

A microbial method of jatropha oil extraction to improve the oil yield in comparison to 

other known processes is elaborated in Chapter 3. A traditional Java method of 

coconut oil extraction assisted by paddy crabs was investigated to find out if crabs or 

crab-derived components can be used to extract oil from jatropha seed kernels. Using 

the traditional Java method the addition of crab paste liberated 54% w/w oil from 

grated coconut meat. Oil extraction using crab paste carried out under controlled 

temperatures and in the presence of antibiotics showed that at 30 oC or 37 oC enzymes 

from crab played a dominant role in liberating oil from grated coconut meat and 

aqueous jatropha kernel slurries. However, at higher temperature (50 oC), 

thermophilic bacterial strains present inside crabs played a significant role in the 

extraction of oil from both oilseeds tested. A thermophilic bacterial strain isolated 

from crab paste and identified based on 16s rRNA sequence as Bacillus licheniformis 

strain BK23, when added as starter culture, was able to liberate 60% w/w oil from 

aqueous jatropha kernel slurry after 24h at 50 oC. Further studies of BK23 and 

extraction process optimization are the challenges to improve Jatropha oil extraction 

yield and process economy.  

Because Bacillus licheniformis strain BK23 degraded protein in liberating the oil, we 

investigated alternative microbial methods of oil extraction with the aim to preserve 

the original structure of jatropha protein (Chapter 4). We investigated the use of 

bacterial cells isolated from paddy crab for the extraction of oil from jatropha seed 

kernels in aqueous media while simultaneously preserving the protein structures of 

this protein-rich endosperm. A bacterial strain  which was marked as MB4 and 

identified by means of 16S rDNA sequencing and physiological characterization as 

either Bacillus pumilus or Bacillus altitudinis  enhanced the extraction yield of 

jatropha oil. The incubation of an MB4 starter culture with preheated kernel slurry in 

aqueous media with the initial pH of 5.5 at 37 oC for 6 h liberated 73% w/w of the 

jatropha oil. Since MB4 produces xylanases, it is suggested that strain MB4 facilitates 

oil liberation via degradation of hemicelluloses which form the oil-containing cell wall 

structure of the kernel. After MB4 assisted oil extraction, SDS-PAGE analysis showed 

that the majority of jatropha proteins were preserved in the solid phase of the 
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extraction residues. The advantages offered by this process are: protein in the residue 

can be further processed for other applications, no purified enzyme preparation is 

needed and the resulting oil can be used for biodiesel production. 

Chapter 6 presents the retrospectives of our research findings and the perspectives of 

the future utilization of jatropha, specifically in Indonesia. In valorization of the 

jatropha fruit biomass into variuos products (oil, protein isolate, lignin, biogas, bio-oil, 

etc.), most known techniques (pretreatment, hydrolysis, fermentation, extraction, 

separation, anaerobic digestion, pyrolysis) are applicable for local (Indonesia) 

conditions. From our economic analysis, it is clearly seen that a total valorization 

through whole crop biorefinery processing of jatropha biomass could improve the 

economy value of this biofuel crop significantly.  
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Scriptie titel:  

Valorisatie van biomassa van jatropha vruchten voor energietoepassingen  

Samenvatting 

Jatropha curcas, L wordt beschouwd als een van de beste kandidaten voor 

toekomstige bio-energie productie omdat het zaad een hoog oliegehalte heeft 

waardoor het geschikt is voor energieopwekking of voor de productie van biodiesel. 

In 2006 lanceerde Indonesië een nieuw programma met als doel om in 2025 17 

procent van zijn energiebehoefte uit hernieuwbare bronnen te halen. De Jatropha 

plant werd hierin gezien als de favoriete biobrandstofbron. Boeren en telers kunnen 

echter onvoldoende verdienen aan jatropha olie als gevolg van de lage olie 

productiviteit en hoge arbeidskosten in de plantage. Eén van de strategieën om de 

economische aspecten van dit potentieel winstgevende gewas te verbeteren is om de 

waarde van de zijstromen van de olieproductie (takken, zaden, perscake, zaadschillen 

en fruit) te verhogen.  

De doelstelling van ons onderzoek was om duurzame bioconversie technologieën voor 

de extractie van Jatropha olie en fractionering van jatropha biomassa te ontwikkelen, 

met als eis dat deze in Indonesie zou kunnen worden toegepast. De vragen die 

beantwoord moesten worden waren: 

1) Hoe kan lignocellulose bevattend jatropha biomassa gedepolymeriseerd 

worden tot suikers en vervolgens omgezet in chemicaliën en brandstoffen (met 

name ethanol)? 

2) Kunnen we de olieopbrengst verbeteren ten opzichte van andere bekende 

werkwijzen door middel van een waterige extractie met behulp van 

microorganismen? 

3) Kan deze microbiële extractie de originele structuur en waarde van jatropha 

eiwit in stand houden?  

4) Draagt de verwaarding van de zijstromen bij aan de economie van de jatropha 

plantage? 

In eerste instantie hebben we onderzocht wat het effect van een voorbehandeling met 

verdund zwavelzuur is op de enzymatische hydrolyse van jatropha zaadschillen, 

vruchtvlees, en perscake (Hoofdstuk 2). Het doel was om een indruk te krijgen van de 
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mogelijkheden om de monomere suikers uit de verschillende jatropha fracties te 

halen. In deze studie werd het effect van voorbehandeling met verdund zwavelzuur 

(0-500 mM) bij 120 °C gedurende 30 minuten op de enzymatische verteerbaarheid 

van gemalen jatropha biomassa door het bepalen van de hoeveelheid glucose en 

xylose die werd vrijgemaakt. De lignocellulose fracties van de Jatropha zaadschillen en 

de perscake waren relatief recalcitrant hetgeen indiceert dat een intensere 

voorbehandeling nodig is om de lignine barrières voldoende te verbreken. Deze 

voorbehandeling hydrolyseerde 65 % van het beschikbare eiwit in de Jatropha 

perscake. Het hydrolysaat dat rijk is aan aminozuren zou verder gefractioneerd 

kunnen worden tot enkele aminozuren voor de bereiding van N-chemicals. Het 

Jatropha vruchtvlees bleek relatief meer gevoelig voor hydrolyse door cellulases: 70% 

van het glucose en 100% van het xylose kon worden vrijgemaakt na een 

voorbehandeling met 500 mM zwavelzuur. Lagere zwavelzuurconcentraties en 

kortere incubatietijden kunnen toegepast worden door de voorbehandeling bij hogere 

temperatuur toe te passen. 

Op Java wordt een traditionele methode gebruikt om kokosolie te extraheren, waarbij 

gebruik wordt gemaakt van krabben uit rijstvelden. In hoofdstuk 3 wordt het 

onderzoek beschreven waarin deze methode wordt toegepast op het vrijmaken van 

olie uit Jatropha zaadkernen. De traditionele Java-methode, waarbij krabpasta wordt 

toegevoegd aan het kokosvlees, bevrijdt 54% w/w olie. Bij incubatie bij 30 en 37 °C 

had de toevoeging van antibiotica nauwelijks effect op het proces, zowel bij 

kokosvlees als bij Jatropha zaadkernen, hetgeen aangeeft dat enzymen uit de 

krabpasta verantwoordelijk waren voor het vrijmaken van de olie. Het bleek echter 

dat bij 50 °C de olie grotendeels werd vrijgemaakt met behulp van thermofiele 

bacteriestammen die in de krabpasta aanwezig waren. Een thermofiele bacteriestam 

werd geïsoleerd uit de krabpasta en werd op basis van 16S rRNA-sequentie 

geidentifieerd als Bacillus licheniformis BK23. Wanneer deze stam werd toegevoegd 

als starter culture aan een waterige slurrie van jatropha zaadkernen, werd 60% van 

de olie vrijgemaakt na 24 uur bij 50 °C. Verdere studies van BK23 en optimalisatie van 

de extractie zijn nodig om het extractie rendement te verbeteren en de proces kosten 

te verlagen.  
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Omdat de B. licheniformis stam BK23 bij het vrijmaken van de olie ook het eiwit dat 

aanwezig is in de zaadkernen afbrak, onderzochten we alternatieve methoden voor 

microbiële olie extractie met als doel de oorspronkelijke structuur van jatropha eiwit 

te behouden (hoofdstuk 4). We onderzochten het gebruik van bacteriële cellen 

geïsoleerd uit rijstveld krab voor de winning van olie uit jatropha zaadkernen in 

waterige media, waarbij tegelijkertijd de eiwit structuren van deze eiwitrijke 

endosperm werd behouden. Een bacteriestam - die werd gekenmerkt als MB4 en 

geïdentificeerd door middel van 16S rDNA sequencing en fysiologische 

karakterisering als ofwel Bacillus pumilus of Bacillus altitudinis - verbeterde het 

extractie rendement van jatropha-olie. De incubatie van een MB4 starterculture met 

voorverwarmde kernel suspensie in waterige media met de initiële pH van 5.5 bij 37 ° 

C gedurende 6 h bevrijdde 73% w / w van de jatropha olie. MB4 produceert xylanases 

en dit suggereert dat het vrijmaken van de olie gebeurt via de afbraak van 

hemicellulose in de oliehoudende celwand structuur. SDS-PAGE analyse toonde aan 

dat het Jatropha eiwit grotendeels ongeschonden bleef in dit proces. De voordelen van 

deze werkwijze zijn: dat het eiwit in het residu verder verwerkt kan worden voor 

andere toepassingen, dat er geen gezuiverd enzympreparaat nodig is en dat de 

verkregen olie gebruikt kan worden voor biodiesel.  

Gebaseerd op onze bevindingen dat het voorbewerkte jatropha vruchtvlees relatief 

gevoeliger is voor hydrolyse door cellulases, optimaliseerden we de experimentele 

variabelen (zwavelzuur concentratie, tijd en temperatuur) voor voorbehandeling en 

hydrolyse van jatropha vruchtvlees tot suikers (hoofdstuk 5). Ook werd de 

gelijktijdige versuikering en fermentatie van jatropha vruchtvlees hydrolysaten door 

Saccharomyces cerevisiae voor de productie van ethanol bestudeerd. Voorbehandeling 

van jatropha vruchtvlees met verdund zwavelzuur bij hoge temperaturen (140-180 ° 

C), uitgevoerd in een 110 ml roestvrij-stalen reactor werd onderzocht om de 

enzymatische verteerbaarheid van de lignocellulose componenten te verbeteren. Het 

doel van de studie was de voorbehandelingsomstandigheden (zuurconcentratie, tijd 

en temperatuur) te optimaliseren om na enzymatische hydrolyse de hoogste 

suikeropbrengst te verkrijgen. De Box-Behnken method werd toegepast om het aantal 

experimenten te verminderen. De optimale condities voor de voorbehandeling zijn 30 

minuten incubatie bij een temperatuur van 178 °C met een zwavelzuur concentratie 

van 0.9% (w/v). Door deze voorbehandeling condities te gebruiken bij 9.52% (w/w) 
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fruit, gevolgd door een 24-h enzymatische hydrolyse werd 100% van alle aanwezige 

pentoses vrijgemaakt (71% opbrengst en 29% afbraak tot furfural) en 83% van de 

hexoses (78 % rendement en 5% afbraak tot 5-hydroxymethylfurfural). Het 

gelijktijdige saccharificatie en fermentatie experiment toonde aan dat met zuur 

voorbehandeld vruchtvlees gebruikt kan worden als substraat voor Saccharomyces 

cerevisiae om ethanol te produceren.  

Hoofdstuk 6 presenteert de retrospectieven van onze onderzoeksresultaten en de 

perspectieven van de toekomstige benutting van jatropha, met name in Indonesië. In 

valorisatie van de jatropha fruit biomassa tot verscheidene producten (olie, eiwit 

isolaat, lignine, biogas, bio-olie, etc.), zijn de meeste bekende technieken 

(voorbehandeling, hydrolyse, fermentatie, extractie, scheiding, anaërobe gisting, 

pyrolyse) toepasbaar onder lokale (Indonesië) condities. Uit onze economische 

analyse wordt duidelijk dat een totale valorisatie van jatropha biomassa via 

bioraffinage, de economische waarde van deze biobrandstof gewas aanzienlijk kan 

verbeteren. 
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