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Preface 

Models evolve. Specialized models are constructed, and are sometimes applied for practical 
purposes. When constructing models, important decisions are made. On the other hand, models 
age, but the scientific core improves and extends, challenging new applications. Models are 
constructed on the basis of existing knowledge with respect to plant, soil, environment and are 
put into action. Finally, models go out of date and are replaced by newer models. 

Apart from scientific disciplines, therefore, general aspects on modelling are distinguished. 
During four seminars organized by the CT. de Wit Research School for Production Ecology 
attention was given to these aspects for agricultural modelling. Important questions to be 
addressed were statistics, scale, information systems and the future of modelling as such. 

During the four seminars, communications were given by distinguished national and 
international speakers. Each presentation was followed by a concise discussion. Each afternoon, 
the seminars were concluded by a general discussion. The speakers were invited to summarize 
their contribution as a paper, based upon previous scientific publications which are collected in 
this special issue of Quantitative Approaches in System Analysis. The papers are a review rather 
than an original contribution. 

At this place we like to thank the CT. de Wit Research School for Production Ecology for 
their financial and organizational support. 

A. Stein Dept. of Soil Science and Geology, Wageningen Agricultural 
University 

F.W.T. Penning de Vries DLO Research Institute for Agrobiology and Soil Fertility 

P.J. Schotman Dept. of Information Sciences, Wageningen Agricultural 
University 
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1. Models and statistics 

Given a practical problem, a model is constructed and applied. Many statistical 
question come into view. Statistics is applied primarily to quantify uncertainties. Also, the 
importance of some variables is stressed as compared to other variables. In this chapter some 
statistical questions occurring at the many stages of model development are highlighted. Since 
the realm of statistics is broad, attention is focused on those statistical methods that are closely 
related to modelling. 



1.1 Spatial and Temporal Variations with Applications in 
Agriculture 

Annette Kjaer Ersb0ll 

The Royal Veterinary and Agricultural University, Department of Mathematics and Physics, 
Thorvaidsensvej 40, 1871 Frederiksberg C, Denmark 

Classical statistics assume that sampling units are independent and therefore contain no reference to 
their spatial distribution. Therefore, knowledge concerning the spatial relation between the 
observations are not included. Similarly, repeated sampling of measurements in the experiment 
introduce temporal correlations. Agricultural experiments often contain at least one of these two 
items, i.e. correlation in space or time. It seems therefore natural to incorporate and utilize these 
correlations in the analysis. In the spatial analysis of field trials the variation between measurements 
at a certain distance can be modeled using the semivariogram. The knowledge of the spatial structure 
can be utilized in e.g. the statistical analysis of the field trial, the design of new experiments and 
spatial estimation of the measurements by kriging. The spatial semivariogram is briefly mentioned and 
estimation using kriging is described. Suggestions to extensions 'of the spatial semivariogram are 
given in which repeated measurements are included in the spatio-temporal semivariogram models. 
Examples of applications in agriculture are given. 

1. Spatial variation 

1.1 Semivariogram 

Let Z(x) be a random function and let Z(x) be the spatial (regionalized) variable, with position x, in 
a d-dimensional space D c Rd, 

Z(x) = {Z(Xi), VxieD}. (1) 

Let the random function Z(x) be given as 

Z(x) =/4x) + e(x) (2) 

where /J(X) is the mean and e(x) is a (zero mean) stochastic process at position x. 
The random function Z(x) is said to be intrinsic stationary when: 
1. The expectation exists and is independent of the position x 

E{Z(x)j =/i Vx. (3) 
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2. The variance between Z(x) and Z(x+h) is finite and does not depend on the position x. It is defined 
as 

VarfZfx) - Z(x + h)} = E{[Z(x) - Z(x + h)]2} (4) 
= 2y(h), Vx 

where y(h) is the semivariogram at distance h. 
Furthermore, the random function Z(x) is defined to be second-order stationary when (1) is 

satisfied and the covariogram (covariance function) exists. The covariance C(h) is defined as 

C(h) = E{Z(x + h)Z(x)} - /i2, Vx (5) 

where h is a vector of coordinates. The semivariogram y(h) is said to be isotropic if it is a function 
only of the distance and thereby directionally independent. 

Given the observations z(xt), i = 1 , . . ., n where n is the number of experimental units (e.g. 
plots) and xi is the position, then the semivariogram can be estimated. Probably the most frequently 
used estimator, originally proposed by Matheron (Cressie, 1991), is 

, n(h) 

^h>ir^X^)-^i+h))2 (6) 
2n(h) ,=i 

where n(h) is the number of pairs of observations at a distance h from each other. 
Cressie & Hawkins (1980) suggest other more robust semivariogram estimators as e.g. 

I n(h) ^ 

mAja»pl ^ 
2^0.457.^21 
{ n(h) I 

4 

(7) 

The semivariogram models are (in principle) characterized by the nugget variance (due to the 
phenomenon nugget effect), the sill and the range of influence. The nugget variance C0 is a positive 
finite value to which y(h) approaches as h approaches 0. This nugget effect may be due to small-scale 
variations less than the smallest sampling distance, measurement errors etc. 

In most cases y(h) increases with increasing distance h to a maximum (approximately the total 
variance of the data). This distance is the range of influence a. The semivariance C0 + C at distance 
a is called the sill. Models with a sill are called transition models (Journel & Huijbregts, 1978) and 
the sill value of a transition model is the a priori variance of Z(x). 

A semivariogram can be modeled by different functions (Journel & Huijbregts, 1978; Cressie, 
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1991). The two most commonly used semivariogram models are the spherical and exponential 
models. 

Spherical model with nugget effect: 

0 

^>^+#0. 
c0+c 

h=0 

0<h<a 

h > a 

(7) 

Exponential model with nugget effect: 

0 h=0 

Y( } ~ C0+cfl-exp(--^) h>0 (8) 

1.2. Applications 

As an example, the semivariogram for yield measurements in a Danish uniformity trial with 
spring barley at Jyndevad Experimental Station is given figure 1. The trial was laid out on sandy soil 
(clay content approximately 4 %) as 26 rows and 20 plots within each row, each plot with the 
dimension 1.5 x 8.5 m2. A strong anisotropy has been estimated and data has been adjusted towards 
isotropy. The anisotropy ratio (ß/a) and angle i|r have been estimated using the directional function 
given by Burgess et al. (1981) 

Q(0)=v/a2cos2(6 -i|r)+ß2sin2(0 -i|r) (9) 

The knowledge of the spatial structure in the uniformity trial at Jyndevad has been used in spatial 
experimental design of new field trials (Kristensen & Ersb0ll, 1992). The consequence of changing 
plot and block size and shape can be estimated as the residual variance. Different layouts can in this 
way be compared and the most optimal one can be chosen. 
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Figure 1: Empirical semivariogram and fitted spherical model for the Jyndevad uniformity trial. A strong 
anisotropy has been estimated and data has been adjusted towards isotropy. 

2 Estimation using kriging 

2.1 Kriging 

Kriging is a local estimation method which provides the best linear unbiased estimator (BLUE) of the 
response variable Z(x) based upon the observations z(xt), zify),. .., z(x, ) . Let Z(x) be the random 
function in study defined on supports v centered in JC, and either intrinsic or second-order stationary. 
The estimate of Z over a volume V centered in x0 is 

*A))=S xMxï> (10) 
i=i 

where Ai,i=\,.,..,n are weights assigned to the sampling point. An unbiased estimator 
with minimum estimation variance is obtained when 
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EVI 
n 

Y, AJ(V.,V.)+I|/=Y(V,,V), V/=l,...,n 
(11) 

1=1 

where 
i|/ is a Lagrange multiplier introduced to ensure minimization 
y is the average semivariogram, 

The estimation variance or kriging variance is then given by 

°v2=EVKv,>V)+x|/-7(V,V) (12) 
i=i 

The optimal weight At,i=\,... ,n concerning non-bias and minimum estimation variance is obtained 
by Lagrangian techniques. This procedure provides a system of n+1 linear equations in n+1 
unknowns which is the "kriging system" (or "kriging equations"), given in equation (11). This 
estimation procedure is called ordinary kriging. 

With point support and estimation at points the estimate, estimation variance and the kriging 
system is reduced to 

„ '=1 (13) 

'° ,=i 

Formulation of the kriging system assumes stationarity of the random variable Z(x). 
However, in practice drifts can be seen when 

E{Z(x)} = fi(x) (14) 

where /J(X) is the drift e.g. linear or quadratic. This drift can be taken into account in the estimation 
by introducing the drift parameters in the kriging system (cf. Journel & Huijbregts (1978)). This 
estimation procedure is called universal kriging. 

Hawkins & Cressie (1984) suggest an approach for robust kriging which is more robust 
against outliers or extreme observations compared to ordinary kriging. A robust semivariogram 
estimator is used and data are weighted (or edited) depending on the degree of contamination. 
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2.2 Applications 

The grain yield measurements in the Jyndevad uniformity trial have been estimated using 
ordinary kriging. The original yield measurements are seen in Figure 2. The kriged (estimated) yield 
measurements are seen in Figure 3 and the corresponding kriging variances are given in Figure 4. 
Another area in field experimentation where kriging can be useful is in relation to characterization and 
description of weed plants in a field. An example is a field trial with reduced input of herbicides where 
the number of weed plants have been estimated using kriging (Ersb0ll et al. 1994; Heisel et al. 1995). 

3 Spatio-temporal semivariogram 

Spatio-temporal models are models which in some way include both the spatial and temporal 
properties of the data. In relation to field experiments the combined spatio-temporal models may have 
different applications which can support or even improve the models and analysis obtained with more 
traditional methods. 

As an example consider the variance-covariance structure of a field experiment with repeated 
measures. The variance-covariance matrix can be estimated- using a spatio-temporal covariogram (or 
semivariogram). A (presumably) improved analysis of variance of the repeated measurements can then 

15 
62.00 56.86 5 1 J 1 

4 6- 5 ? 4143 
Y4l.4d 3 6 2 9 26.00 

Figure 2. The grain yield measurements in the Jyndevad uniformity trial. 



A.K. Ersb0ll 

Y 4 1 4 3 36.29 3 r i 4 
26.00 

Figure 3. The kriged grain yield measurements in the Jyndevad uniformity trial using ordinary kriging. 

be performed using the variance-covariance matrix by including both the spatial and temporal 

11.5 

11.0 -, 

10.5 -

10.0 

31.14 2 a o o" 82.00 

Figure 4. The kriging variance for the kriged grain yield measurements in the Jyndevad uniformity trial. 
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correlations. 
It should also be mentioned that spatial estimation of repeated measurements using kriging 

can be done using spatio-temporal models. The kriging estimation is then based on a semivariogram 
including variations between measurements at a certain distance as well as measurements with a 
certain separation in time at the same or at different plots. Two approaches are given for modeling 
the spatio-temporal semivariogram. A simple procedure given by Posa (1993) is described, and a 
suggestion to extend the model is given by Ersb0ll (1994). 

3.1 Simple spatio-temporal semivariogram 

Posa (1993) has suggested a simple spatio-temporal model for the combined semivariogram. By 
assuming a nugget effect and a range of influence independent of the time the spatio-temporal 
covariance is 

C(h\t) = Cfi(h) (15) 

where Ct is the partial sill at time t and p(h) is the correlation model of measurements with distance 
h. The semivariogram model is given by 

0 h=0 

C0+Crp(n) n>0 

in which the correlation model p(h) can be e.g. spherical or exponential. 

3.2 Extended spatio-temporal semivariogram 

Modeling the spatio-temporal semivariogram using the procedure outlined by Posa (1993) 
is based on strong assumptions about a time independent range of influence and a time independent 
nugget effect. An (extended) alternative to this procedure is given. The spatio-temporal 
semivariogram is estimated including both correlations in space and time, and combinations of these. 
An empirical semivariogram is estimated as 

T ( / l ' T ) = ^ L v S ( ^ ) _ ^ + t ) ) 2 <1?) 
2N{h,z) ij>z 

where 
z, and Zj are measurements at positions i and y 
z is the separation in time, z > 0 
N(h,z) is the number of pairs of observations with a distance h and separation in time z. 
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A model can then be fitted to the empirical spatio-temporal semivariogram. The usual semivariogram 
models have to incorporate the time. A suggestion for an exponential model is 

0 

y(h) = 

h=0,x=0 

h>0,x>0 C0+c[l-exp(-^) 

C0+cfl-exp(--) /i>0,T=0 

C 0 + c j l - e x p ( - ~ ) h>0,x>0 

(18) 

In this model a and ör are the ranges of influence in space and time, respectively. 

3.3 Applications 

Spatio-temporal models have been estimated as combined semivariograms for a long-term 
field experiment with reduced soil tillage (Rasmussen, 1991). Treatment eliminated residuals have 
been used in the estimations. The treatment effect has been estimated and eliminated using the 
procedure of treatment (median) polish, semivariogram estimation and estimation of treatment effects 
using the covariogram (Ersb0ll, 1994). 

The simple spatio-temporal semivariogram has been estimated for the experiment. Empirical 
semivariograms have been estimated for each year of experimentation using the treatment eliminated 
residuals. The simple spatio-temporal model has then been fitted to the empirical semivariograms 
assuming a time independent range of influence and nugget effect. An exponential model without a 
nugget effect has been fitted 

0 
y(h\t) = 

^ - e x p t - i ) ) 

h=0 

fc>0 
(19) 

The common range of influence a is estimated at 8.67 m.. The sills C, for each year of experimentation 
lie within the range. 3.1-26.9 (kg/ha)2. In figure 5 the 14 fitted semivariograms are shown. 

An exponential model with nugget effect has also been fitted to the empirical semivariograms. 
This has been performed with one restriction in order to obtain convergence. The semivariogram for 
the year 1974 has a constant semivariogram equal to the sill at all distances. The spatio-temporal 
semivariogram with nugget effect has a range of influence at 17.96 m, about the double of the range 
of influence when no nugget effect is included in the model. Although, introducing a nugget effect, 
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Figure 5: The fitted simple spatio-temporal semivariograms for the 14 years of experimentation. An exponential 
model without nugget effect has been used. The long-term field experiment with reduced soil tillage 

the sills C0 + C, are similar to the previous sills, estimated without a nugget effect. 

3.4 Extended spatio-temporal semivariogram 

The extended procedure to estimate the spatio-temporal semivariogram has also been used 
for the reduced soil tillage experiment. The empirical spatio-temporal semivariogram is shown in 
Figure 6. An exponential model with nugget effect as model (18) is fitted to the empirical 
semivariogram as 

y(h) = 

0 

6.746+8.452 

6.746+8.452 

6.746+8.4521 

1-exP(-Trb) 

l-exp(-

l-exp(-

0.440 '_ 

h -

25.862' 

h _ x -, 

25.862 0.440; 

h=0,x=0 

h>0,x>0 

h>0,x=0 

h>0,x>0 

(20) 
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Semivariance 

40 1 

Distance (year) 5 4 3 
4050 Distance (m) 

1 o'O 1 0 ' 

Figure 6. The empirical (extended) spatio-temporal semivariogram for the long-term field experiment with 
reduced soil tillage. 

with effective ranges of influence estimated at 77.6 m and 1.3 years, respectively. Standard erros of 
the parameters are given in Table 1. The nugget effect and sill are 6.7 and 15.2 (kg/ha)2, respectively. 
The fitted spatio-temporal semivariogram is shown in Figure 7. 

The nugget effect and sill estimated for this extended spatio-temporal semivariogram are of 
similar size as the parameters estimated seen using the simple spatio-temporal semivariogram. The 
estimate of the range of influence in space with the extended model is greater than the corresponding 
estimate for the simple model. This might be due to a possible correlation between neighboring plots 
Table 1 : Asymptotic standard errors of the parameters for extended spatio-temporal exponential 
model with nugget effect. 

Parameter 

a 

a 

Co 

C 

Asymptotic standard error 

1.747 

0.120 

0.316 

0.301 
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Distance (year) 5 4 
4Q50 Distance (m) 

Figure 7: An exponential model with nugget effect fitted to the extended spatio-temporal semivariogram. - The 
long-term field experiment with reduced soil tillage. 

at different years, which are included in the extended model, but not in the simple model. However, 
the correlation between years seems to be very small, only a few years. 
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1.2. Model Building in Animal Breeding 

R. Thompson1 and R. E. Crump2 

'IACR-Rothamsted, Harpenden, Herts. AL52JQ,UnitedKingdom 
2Roslin Institute, Edinburgh 1, Roslin, Midlothian EH25 9PS, United Kingdom 

This paper discusses the various stages of setting up a system to allow the genetic evaluation of 
pedigree beef cattle in the United Kingdom. These include developing models to take account 
of various environmental factors, including herd, season and contemporary group, and modelling 
genetic factors including maternal effects. Various approaches to validation are considered, 
including novel experimental designs. 

1. Introduction 

For about 30 years, the performance of pedigree beef cattle in the UK has been recorded 
as an aid to selection by pedigree breeders. Records of performance have been mostly collected 
on-farm although, until the mid-1980s, some were on central performance stations. The original 
schemes concentrated on measuring weights at approximately 100 day intervals, but now other 
traits including calving ease, ultrasonic fat depth, muscling score and ultrasonic muscle depth 
are measured on some animals. 

The scientific question is how should beef cattle breeders choose animals as parents, both 
from their own and other herds. The aim of breeders should be to choose parents so as to 
improve the economic merit of their offspring. This economic worth depends on value of the 
carcase of the animal, which in turn depends on the weight, composition and conformation of 
the carcase and on the value of the food eaten by the animal. The process of selection is made 
more difficult by the fact that the carcase value is only available on dead animals and we need 
live cows to produce calves. Another difficulty is that we do not observe the genotypic effect of 
an animal alone, we observe a phenotypic value, a combination of genetic and environmental 
effects. A further difficulty is that all animals are not observed in the same environment but in 
different herds in different years. In Britain, the average beef herd size is low (5 to 12 cows for 
the major beef breeds; Simm et al. 1990); this leads to low accuracies of predicted breeding 
values. 

2. Modelling environmental factors 

The weight measurements are influenced by several environmental factors and there is 
a need to adjust the measurements for these effects in genetic analysis. Alternative linear models 
were investigated . The different weights were not taken exactly at 200 and 400 days, so linear 
and quadratic adjustments for age were used. Sex, male and female, effects were included in the 
model. In order to adjust for herd, season and management effects, animals were grouped into 
contemporary groups. The groups were small, of the order of 6-10 animals, and variable as 
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different calving patterns existed. Various definitions of contemporary groups were compared, 
including having fixed time periods and natural periods. Three parameters MXDIF1, MXDIF2 
and MING were used to construct different schemes. The first two parameters were associated 
with the range of birth dates within groups and the third with the minimum size of the group. 
Natural periods involved grouping together animals according to their dates of birth provided 
the difference between the first and last animal born was less than MXDIF1 months. If the group 
size was less than MING, adjacent groups were merged together provided the dates of birth of 
the first and last born animals in the combined group was less than MXDF2 months. Schemes 
were compared by constructing the accuracy of mass selection, which depends on the residual 
variance and the average size of a contemporary group. 

There is an optional choice for the number of groups. As the number of groups increases, 
the residual variance decreases, but the group size decreases and so the number of comparisons 
within groups decrease. Crump et al. (1996) found that MXDIF1 = 3 months, MXDIF2 = 6 
months, and MING = 5 records, were reasonable choices of parameters in 5 beef breeds. 

3. Modelling Genetic Factors 

The major problem of not observing the animal's genetic value and only its phenotypic 
value is circumvented by essentially regressing the genotype on the phenotype. So that 

estimated genotype = RegGP x phenotype. (1) 

In the simplest case, RegGP depends on the genetic (a2
G) and residual (a2

e) variation, so that 

Regcp = a2
G/(o2

G + o2
e). (2) 

When we have related animals, we can use 

estimated genotypes = RegGP xphenotypes (3) 

with 

RegGP = G(G+E)A (4) 

where G describes genetic variation and covariation, and E residual variation and covariation. 
Usually, we use Fisher's infinitesimal model assuming a large number of genes, each of 

small effect (Fisher, 1918). Then the variance of an individual is o2
G and the covariance between 

parent and offspring is (1/2) o2
G and between parent and descendant t generations apart is (1/2)' 

o2
G . This is a geometric decline with generations. The other important covariances are those 

between full-sibs {\I7)<?G and between half-sibs (l/4)o2
G . The environmental variation matrix 

E in this application is diagonal, but in other applications can be modified; for example, to take 
account of common environmental effects when litters of pigs are reared in different pens. 

Of course, in applications, we need to adjust phenotypes for environmental effects using 
linear models discussed in the previous section. Equations can be set up similar to those for least 
squares, to simultaneously estimate environmental effects and predict breeding values. These 
equations, known in the animal breeding literature as Henderson's mixed model equations, take 
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account of the information that the variance of animal effects is G (Henderson, 1973). These 
equations give best linear unbiased predictions of genetic effects and give weighted least squares 
estimates of environmental effects, with weight proportional to (G+E)'\ These equations are the 
kernel of estimating genetic parameters; for example, a2

G and <?E , by maximum likelihood 
(Patterson & Thompson, 1971). These methods depend on weighted sums of squares of residual 
and terms that depend on the variance of observations, predictions and estimated environmental 
effects. 

In summary, this maximum likelihood approach gives efficient estimates of 
environmental effects and efficient predictions of breeding values. It also gives efficient 
estimates of variance parameters. Alternative variance models can be compared by comparing 
maximum likelihoods under the different models. 

One added complexity is that data is available on 27 beef breeds from 1970-1995. The 
number of records vary from breed to breed and from trait to trait. For example, for three breeds 
there were over 40,000 records on birth weight, over 30,000 records on 200-day weight, and 
over 15,000 records on 400-day weight. It is convenient to consider the modelling in two stages: 
(1) adjustment for environmental effects, and (2) investigation of different genetic models. These 
beef cattle suckle milk from their mothers until approximately 200 days, so that a calf s 200-day 
weight is influenced by its mother's milking ability. 

In considering birth weight and 200-day weight, it is necessary to consider these possible 
maternal effects that might have genetic and environmental effects. Mohiuddin (1995 ) estimated 
maternal and direct genetic variation in British beef populations, and found that there was 
maternal genetic variation in birth weight and 200-day weight, but that it was smaller than the 
direct genetic variation. He also found a negative genetic correlation between direct and maternal 
genetic variation. These negative genetic correlations have been found in other beef cattle 
analyses and in analyses of other species but no convincing biological explanation has been 
given for this. 

The development in this section is in terms of single traits but there is no conceptual 
difficulty in expanding to multivariate cases. Table 1 gives heritabilities (o2

G / a1
G + o2

e) and 
genetic and environmental correlations between traits. From these values G and P =G + E can 
be calculated. In general, the environmental correlations are smaller than the genetic 
correlations. There are two reasons for carrying out a multivariate analysis. Firstly, birth weight 
is correlated with 200-day weight, and so can help in predicting 200-day weight, especially if 
200-day weight is not recorded. Secondly, if animals are culled on the basis of recorded 
performance, the analysis takes account of the culling. 

Table 1: Genetic parameters (x 100) used in genetic evaluations. Heritabilities are on the 
diagonal; genetic and phenotypic correlations are above and below the diagonal, respectively. 

BWT 

W200 

W400 

FAT 

MSC 

BWT 

41 

35 

38 

0 

0 

W200 

49 

28 

72 

24 

10 

W400 

53 

82 

41 

36 

30 

FAT 

0 

0 

21 

29 

10 

MSC 

0 

0 

10 

0 

25 
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4. Validation 

There are two cases to consider. The first case is when no intervention is possible; then 
there is a natural time dimension. It is then natural to compare predictions for time period t with 
observations up to time period (t-1). This might be considered in a likelihood framework by 
allowing the variation parameters (o2

G and êE ) to vary with time (qT and2^. ) . One 
problem with this approach that tests differences of a2

GT will generally be of low power, 
especially in efficient breeding programmes which select parents intensely (Hill, 1990). 

One can partly overcome this if intervention is allowed, by not just selecting the highest-
ranking animals as parents but also the lowest-ranking animals as parents. Then comparisons 
between the high and low groups can give more powerful evidence if parameters are changing. 
Cameron & Thompson (1986) considered an interesting two-variate extension. In this case, one 
might be interested in genetic variation in X and Y and covariation between X and Y. The 
classical approach is to select high and low on X and observe responses in X and Y and select on 
high and low Y and observe responses in X and Y. It was found that selecting as parents animals 
as extreme as possible (as different from the mean animal as possible) gave substantially more 
information on the genetic parameters. 

5. Conclusion 

Work is ongoing to include other measures of traits in the procedure, including calving case ease 
and muscle depths. Other work is trying to relate more precisely measured traits to the traits of 
economic value, and it is hoped that trials will be set up to validate some of the predictive 
equations. 
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2. Models and scale 

Implications of scale in relation to building models are sometimes overlooked, in 
particular with respect to the use of models for practical problems. Attention is given to the 
scale-specifics of models: what is it, how to deal with it, up- and down-scaling and elements of 
inter- and extrapolation. 
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2.1 Models and Scale: Up- and Down-Scaling 

Jo Smith 

IACR-Rothamsted, Harpenden, Herts. AL5 2JQ, United Kingdom 

1. Introduction 

1.1 Scope 

The need to change the scale of a developed model is a problem that scientists in most 
areas of systems modelling must address at some time. In particular, with the further development 
of modelling tools to solve real problems posed by policy makers, advisers and farmers, modelling 
systems that can function at a number of different scales are increasingly needed. Such systems 
should be able to determine the optimum scale of operation, and to select the most appropriate 
model to use. The aim of this paper is to draw together, from the area of soil/crop systems 
dynamic modelling of nitrogen and carbon behaviour, some generally applicable methods for up-
and down-scaling so that a model performs at the scale at which data are available, and results are 
needed. 

1.2 Definitions 

In systems modelling, changing scale is often only considered in terms of changes to the 
spatial area incorporated in the model: up-scaling is an increase and down-scaling is a decrease 
in the size of the spatial area units. A small scale refers to large spatial units, whereas a large scale 
refers to small spatial units. In the context of this paper, a more general definition is used. 
Changing the scale of a model is defined as a change to the resolution of any values output from 
the model. Changes in scale may involve changing the resolution of any of the model input 
variables. This paper discusses the underlying scientific and modelling developments required to 
maintain model integrity when changing the resolution of input and output values. Examples are 
changes in spatial units - crop type from crop/ha to crop/5km2; temporal units - rate of 
mineralisation from (kg/ha)/day to (kg/ha)/week; and yield units - nitrogen requirement of the 
crop from (kg N) / (t Grain) to (g N) / (t Grain). 

1.3 Why change scale? 

Leffelaar (1990) discussed the level of organisation to which a problem should most 
appropriately be analysed and itemised the criteria that should be considered when determining 
the scale at which to perform simulations. These include objectives of the study, level of 
organisation of the scale or processes, scale of scientific understanding, possibility of clearly 
defining subsystems, possibility of validating the model of a system and possibility of returning 
to the field level of organization in the systems synthesis phase. Working within these criteria, two 
practical reasons for changing scale emerge: transferability of the model to novel environments 
and model robustness. 

An up-scaled model is often more reliably transferred to novel environments than a model 
developed with lower resolution. If a model describes the system using accurate scientific 
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paradigms of the underlying processes, the effects on each process of changing the environment 
will be simulated, and so the accuracy of the model will be maintained. It is often difficult to 
determine the underlying mechanisms at the larger scale because there is no opportunity for 
evaluating the simulation of each process. Therefore it becomes necessary to establish a 
description of the process mechanisms within a smaller scale model and then adapt the model for 
use at the larger scale. 

A down-scaled model, however, is often more robust than a model developed at the 
smaller scale. Our understanding of a system can be greatly enhanced by characterising its 
behaviour using statistical methods alone. General rules may be derived to apply at the larger 
scale. Although it may not be transferrable to novel environments, such a model is correct within 
the limits of its development. The statistically derived rules may then be adapted, for instance 
using scientifically meaningful multiplication constants, so that the model can be used at the 
smaller scale. The scaled-down model maintains overall accuracy at the large scale, because it is 
not subject to propagation of errors from the individually modelled sub-processes. As a result, the 
robustness of the larger scale model should confer robustness to the scaled-down model. 

In practice, however, the scale of system operation is dictated by the questions being 
asked of the system and the data available. As an example, a modelling system incorporating the 
dynamic field-based nitrogen-turnover model, SUNDIAL (Bradbury et al., 1993; Smith et al., 
1996a) and the static catchment nitrogen model, NEAP-N (Miles et al., 1995; Anthony et al., 
1996) is asked the questions "What is the peak nitrate concentration of nitrate leached from arable 
land?" and "When and where will the peak occur?". The questions demand that the models 
simulate peak nitrate concentration on a daily, weekly, or at least monthly basis for the field. 
However, if the attached database holds information about the dominant soil and land cover type 
on only a 1 x 1 km grid-square (e.g. Howard et al., 1995), the available data requires either that 
the system should run using l x l km grid-squares or that the data should be interpolated. The 
SUNDIAL model simulates nitrogen turnover with a weekly time-step, but is developed at the 
field scale. To use SUNDIAL with the available data either the data must be interpolated to the 
field scale or the spatial units of the model must be scaled-up to a 1 x 1 km grid-square. The 
NEAP-N model, conversely, is well adapted to simulate the nitrogen status of the soil on a 1 x 
1 km grid-square, but with an annual time-step. To obtain the required result using NEAP-N, the 
temporal units of the model must be scaled-down to provide results on at least a monthly basis. 
One way of achieving this is through an algorithm developed to express peak concentration in 
terms of model parameters. The scale of system operation is then dependent on the relative errors 
introduced by interpolation of data, spatial up-scaling or temporal down-scaling. The best 
methodology to use can only be determined by quantifying the likely errors and assessing the need 
for a model that is transferrable to a novel environment. 

1.4 What problems are encountered? 

Changes in scale may result in changes in the scope of the model. For example, 
gravitational leaching of water down the soil profile is not an important process in the soil micro 
aggregate and so may be omitted from an aggregate model (eg. Leffelaar, 1988). Scaling up from 
the aggregate to the plot requires the additional process of profile leaching to be included. The 
consequences of omitting or incorporating additional processes must be examined and methods 
devised to ensure model validity is maintained. 

Changes in scale also result in changes in the heterogeneity of the values of input variables. 
Up-scaling reduces accuracy and increases heterogeneity. The increased heterogeneity may be 
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continuous or discontinuous. For example, the variogram for volumetric water content indicates 
an increase in heterogeneity over the range 2 to 600 m (Addiscott & Tuck, 1996). Accurate up-
scaling from lysimeter to field requires some method of accommodating this increased spatial 
variability, either by interpolating the input data or by adapting the model. Statistical methods for 
interpolating continuous data are discussed elsewhere (e.g. Webster & Oliver, 1990). However, 
the methods for interpolating discontinuous data are not so clearly characterised. An example of 
the latter is the definition of crop type over the 5 km2 data units of a catchment model. There 
cannot be a continuous variation between crop species, but some method of describing the 
different crops incorporated in the data unit must nevertheless be established. 

Down-scaling, by contrast, increases the accuracy needed in the input variables and 
reduces heterogeneity. In order to down-scale, the heterogeneity of the larger scale input variables 
must be established and the influence of each variable on the large-scale model partitioned 
accordingly. Determining the influence of each variable and resolving the partitioning of results 
may require as much or more scientific understanding than would be needed for development 
from inception of the model with higher resolution. However, down-scaling can confer greater 
robustness to the model, and so both approaches are valid. 

Data requirements are generally greater for a model developed to describe processes with 
high resolution than with low resolution. There is often insufficient data to run and evaluate a 
detailed model at a larger scale. Scaling-up demands either that high resolution data requirements 
are fulfilled or the model is adapted to reduce the data requirement (Smith, 1995a). Methods of 
estimating input variables from the available data must be developed if the detailed model is to be 
applied unchanged. The accuracy of simulations achieved by simplifying the model or 
interpolating data should be compared when deciding on the best strategy for changing scale. 

It is clear that if a small scale model is used to simulate processes at a larger scale, the 
efficiency of the simulation must be maximized. Lord (pers.comm.) calculated that if a field-scale 
nitrogen model was applied in a national calculation on a field-by-field basis, the computer 
processor time required for the calculation would be prohibitively high. In addition, data entry 
would be extremely time-consuming. Methods must therefore be developed to reduce the number 
of unit calculations necessary and increase the efficiency of data entry. 

In the following text, potential solutions to the problems associated with changes in scope, 
heterogeneity, data requirement and computing efficiency will be discussed in the context of 
ongoing work to develop a new system for UK nitrate policy support, required to function at 
scales ranging from field and farm through to catchment, regional and national level (Powlson, 
1996). 

2. Changes in Scope 

2.1 Determining Changes in Scope 

A simple, but comprehensive and systematic procedure can be used for determining all 
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changes in scope associated with 
changing scale (Fig.1). This 
procedure is centred around 
drawing up lists to describe the 
characteristics of the system. The 
first stage is to list all questions 
that are driving the change in 
scale. This allows the output 
values required to answer each 
question to be inferred. All 
processes included in the model 
are then listed, and the processes 
that provide each required value 
are marked. Any required output 
value that is provided by none of 
the processes represents a 
necessary increase in the scope of the model 
additional processes. 

The data available to drive the simulation are listed and the input values required by each 
marked process itemized. Any inputs that are not included in the list of available data are added 
to the list output values that must be produced by some part of the model. Again, the processes 
that output each required value are marked, and the model is adapted to incorporate any further 
increases in scope necessary. 

This procedure continues until all required input values are included in the list of available 
data. Any process that influences none of the required output values represents a decrease in the 
scope, and the model is adapted to omit the redundant process. 

The next stage in determining the change in scope is to evaluate the accuracy with which 
each identified output value is simulated by the new model. Failure of the simulation may be due 
to propagation through the model of errors arising from the newly incorporated processes 
(Leenhardt, 1995). The error (ErrF(a) ) arising from the newly incorporated process (F(a)) must 
be lower than the acceptable error (Erracc) less the error (ErrG(F(a))) arising from the action of the 
rest of the model (G(F(a))) i.e. 

Figure 1 Systematic Determination of Changes in Scope 

The model is then adapted to incorporate the 

G(F(a)+ErrF{a)) < G(F(a)) + Err „ - Err G(F(a)) (1) 

Methods for determining the acceptable error are discussed by Smith et al., 1996b. If the standard 
errors of measurements are given, acceptable error may be defined statistically. Otherwise, the 
definition relies on arbitrary criteria. 

The accuracy required in the simulation of each incorporated process to achieve an overall 
result within the acceptable error may be determined by a very simple sensitivity analysis in which 
the process module is substituted by an input variable, /. 

The sensitivity analysis then allows the acceptable range of input values, (7 + Err,), to be 
obtained from the acceptable error as before, i.e. 

Glf+Errj) < G(I) + Err^ - Err G(I) (2) 

A more comprehensive method of estimating the uncertainty contributions from several 
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independent multivariate sources is discussed by Jansen et al. (1994). The error associated with 
the incorporated process must be within the acceptable range determined by the sensitivity 
analysis, i.e. 

Errm < Err, (3) 

If it is established that the errors in the incorporated processes are within the acceptable error, the 
failure of the simulation must be due to errors in the scientific concepts of the processes involved, 
and the model should be modified. 

Finally, the scope of the model is further refined by omitting any processes that the 
sensitivity analysis suggests are redundant at the larger scale. 

2.2 Incorporating and Omitting Processes 

The new system for UK nitrate policy support (Powlson, 1996) is designed to allow 
additional modules of processes to be easily incorporated as science develops. This requires that 
instead of describing the whole ecosystem using a complete model, as far as possible each process 
is characterised by an independent module. The ecosystem is then simulated by bringing 
appropriate modules together on a communicating framework. 

Ensuring that each process is characterised by an independent module, requires individual 
evaluation of process modules. A complete model can often give a valid result because errors in 
the underlying processes compensate. This is especially likely to occur when a model has been 
constructed using optimisation procedures to obtain parameters that cannot easily be measured 
(Addiscott et al., 1996; Smith, 1995b). Effectively, a portion of the description of one process is 
subsumed into the description of another. If the process module is then omitted from the model, 
errors are introduced by the remaining portion. It may be difficult to obtain data to evaluate the 
individual processes, and so a model is often not comprehensively evaluated in its components. 
It is important, in this case, that the model should not be sub-divided any further than evaluation 
allows. 

The communicating framework processes the questions entered into the system and calls 
the module that will provide the most accurate answer given the data and time available for the 
calculation. The framework will request the information demanded by the module from the most 
appropriate source: an attached database or another module. Mounting sub-divided models on 
such a framework, allows the strengths of one model to be borrowed by another. Work is ongoing 
to establish the precise nature of links between modules in the new system for UK nitrate policy 
support (e.g. Cropper et al., 1996). 

2.3 Model Evaluation 

Methods for evaluating the accuracy of a simulation and determining the acceptable error 
are discussed in detail elsewhere (Addiscott et al., 1996; Smith et al., 1996b). Each quantitative 
method described in this section provides information on a distinct aspect of the accuracy of the 
simulation. The method used to assess the goodness-of-fit between simulated and measured values 
depends on the type of measurements available (Fig.2). 

In the following equations: 
Of are the observed (measured) values, 
Pj are the predicted (simulated) values, 
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O is the mean of the observed (measured) data, 

P is the mean of the predicted (simulated) data, 
n is the number of paired values, 
N is the number of experiments, 
rrij is the number of replicates within each experiment, 
Pj is the simulation for they'th experiment, 

O . is the mean of the measurements in they'th experiment, 

d. is the mean deviation = Ö.-P.. 

If the experiments have been replicated, the lack of fit statistic, LOFIT (Whitmore, 1991), 
should be calculated. 

N _ N 

LOFIT = £ m.d? = £ m^Ö.-Pp* (4) 
j=l i=i 

This statistic allows the experimental errors to be distinguished from the failure of the model. 
Where individual replicate measurements are available, the significance of LOFIT may be 
determined using an F-test, i.e.: 

N N _ 

F = MSLOFIT = j - i i = i 

M SE ^ A / — \ 

;=1 i=\ 

where MSE is the mean squared error. According to statistical convention, a value of F greater 
than the critical 5% F value may be taken to indicate that the total error in the simulated values 
is significantly greater than the error inherent in the measured values. 

Where individual replicate values are not available, other tests must be used. After Loague 
& Green (1991), the total difference between the simulated and the measured values may be 
calculated as the root mean square error, RMSE, i.e.: 

100 
RMSE = ,£orr°;>2 /» (6) 

O N;=1 

If standard errors of the measurements (se(I)) are available, the statistical significance of RMSE 
may be assessed by comparing to the value obtained assuming a deviation corresponding to the 
95% confidence interval of the measurements (corrected from Smith et al., 1996b), i.e. 

100 
RMSEç™ -

o-N 
E('(,-2»5%XS.(0)"'» (7) 
t= l 

where t(n.2)95% is the Student's-t distribution for n-2 degrees of freedom with a two-tailed P-value 
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of 0.05. An RMSE value less than RMSE95% indicates that the simulated values fall within the 
95% confidence interval of the measurements. 

If no estimates of the standard errors are given, the accuracy of the simulation may be 
further assessed by calculating the modelling efficiency, EF, and the coefficient of determination, 
CD (Loague & Green, 1991). The modelling efficiency, EF, provides a comparison of the 
efficiency of the chosen model to the efficiency of describing the data as the mean of the 
observations, i.e.: 

n n 

(£(0.-0)> -£(/>.-0.)>) 
EF - -Ü Ü ( 8 ) 

t = i 

Values for EF can be positive or negative. A positive value indicates that the simulated values 
describe the trend in the measured data as effectively as the mean of the observations. A negative 
value indicates that the simulated values described the data less well than a mean of the 
observations. 

The coefficient of determination, CD, is a measure of the proportion of the total variance 
in the observed data that is explained by the predicted data. 

n n 

CD = £ ( 0 ; - o > i £(/>.-o)* (9) 
;=i »=i 

The lowest value of CD is 0. A value of 1 or above indicates that the deviation of the predictions 
from the mean of the measured values is less than that observed in the measurements, i.e. the 
model describes the measured data as well as the mean of the measurements. A CD value less than 
1 indicates that the deviation of the predictions from the mean of the measured values is greater 
than that observed in the measurements, i.e. the mean of the measurements describes the data 
better than the model. Taken together, EF and CD allow RMSE to be further interpreted where 
standard error values of the measurements are unavailable. 

The bias in the total difference between simulations and measurements may be determined 
by calculating the relative error, E (Addiscott & Whitmore, 1987). 

* = — Uto.-pyo. no) 

If the standard errors of measurements are available, the significance of E may again be 
determined by comparing to the value obtained assuming a deviation corresponding to the 95% 
confidence interval of the measurements (corrected from Smith et al, 1996b): 

100 A, 
*95% = E (f(n-2)95%x5e(0)/OJ. (11) 

An E value greater than E95% indicates that the bias in the simulation is greater than the 95% 


