

Delft University of Technology

Impact of climate change on drinking water distribution networks

B.A. Wols^{1, 2, *}, P. van Thienen¹

INTRODUCTION

The integrity of drinking water distribution networks may be threatened by climate change via several pathways:

Climate change		Effect (environment)	Effect on drinking water distribution network
Wind	+		Uprooting of trees
Precipitation	-	Groundwater level	Differential settlements

Models are being developed to assess the impact of climate change on pipe failure:

- Statistical models
- Physical models to assess the impact of differential settlements

STATISTICAL MODEL

Meteorological data (KNMI) is compared to pipe failure data of drinking water distribution networks in the Netherlands (USTORE). Monthly averages over a period of 3 years were used. The diagrams show positive correlations for the failure frequency as a function of both mean temperature and rain deficit for both cohorts. This correlation is also seen for grey cast iron pipes, but not for PVC pipes.

PHYSICAL MODEL

Pipes are displaced by differential settlements of the soil. Pipe-soil behaviour is schematized as a beam on a spring foundation.

Asbestos-cement pipes:

Small diameter steel pipes (<300 mm):

A soil settlement S (x) induced by climate change, causes pipe deformation u(x), which depends on the pipe stiffness EI and pipesoil behaviour (modelled as springs with constant K):

$$\frac{d^2}{dx^2} \left(EI \frac{d^2 u(x)}{dx^2} \right) + K \cdot \left(u(x) - S_v \right) = q(x)$$

The displacements, bending moments (M) and increases in stresses σ_{norm} (compared to yield stress) are calculated by the model:

Mean temperature (°C)

Rain deficit (mm)

CONCLUSIONS

- Pipe failure is clearly correlated to two important climate parameters: mean temperature and precipitation.
- Increased differential settlements related to climate change may be one of the causes for higher failure rates.
- Increase in pipe stresses by differential settlements can be calculated by a physical model.

- ¹⁾ KWR Watercycle Research Institute, PO Box 1072, 3430 BB Nieuwegein, The Netherlands ²⁾ Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
- For more information: E bas.wols@kwrwater.nl T +31 (0)306069604

This study was conducted within the framework of the joint research program of the Dutch drinking water companies (BTO)

