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Abstract. AgentSpring  is  a  new agent-based modeling  framework  especially  suited  to  
model and simulate complex socio-technical systems, such as energy markets or transport  
infrastructures.  Common  problems  encountered  when  modeling  and  analyzing  such  
systems are how to represent the variety of facts that describe the system and how to allow  
agents  to  make  decisions  based  on  those  loosely  related  pieces  of  information.  
AgentSpring proposes a solution to these problems by modeling the systems as graphs  
consisting of agents, artifacts and relations between them. A graph is one of the most  
flexible data structures, and is made of vertices and edges that connect them. Agents use  
sophisticated queries  to reason over  and traverse the graph data structure and make  
decisions  based  on  the  results  they  discover.  They  continuously  update  the  graph  to  
include the effects of the decisions they have made. AgentSpring represents the simulated  
system as a constantly evolving graph of interconnected facts that can transparently be  
observed  and queried  in  real  time by  both agents  in  the  model,  and  the  modeler.  In  
addition,  AgentSpring  allows  for  the  composition  of  agent  behavior  modules,  where  
sophisticated behavior can be produced by combining simpler decision making rules. The  
modeler  can  easily  create  a  number  of  heterogeneous  agents  by  combining  these  
behavioral  "lego"  bricks.  Finally,  AgentSpring  is  open-source  and  is  continuously  
developed based on the feature requests and contributions of the modeler community.
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1 Models of Socio-technical Systems

Conceptualizing a phenomenon as a complex socio-technical system is a paradigm 
increasingly applied to  institutional economics and policy research (Chappin,  2011). 
Socio-technical are systems that span both technical and social components. Such systems 
include social structures  that develop around a  particular industrial system, for example, 
an industrial cluster, energy  or  transportation  infrastructure. They consist of a large 



number of diverse technical artifacts, such as machines, factories, pipelines and wires. 
They also include social components, such as organizations and institutions that shape the 
technical components and at the same time are shaped by them (Nikolic, 2009).

The common tool used to research such systems is agent-based modeling (Farmer, 2009). 
Typically, agent-based models (ABM) decompose a system into agents, artifacts and rules 
that determine their interaction. There are various ABM frameworks and philosophies that 
propose useful methodologies for decomposing the system or elaborating the behavior of 
an agent. This makes ABM a discipline on its own. Before finding their way into socio-
technical systems research, agent-based models have been applied in natural sciences to 
simulate such phenomena as spread of viruses or flocking birds.

There are significant differences between modeling bird flocks and social systems. Models 
of socio-technical systems contain multiple heterogeneous artifacts and actors who have to 
make decisions based on the versatile information compiled from the state of the system. 
This particular paradigm  inspired the development of a new agent-based modeling 
framework that would be especially suited for modeling socio-technical systems.

2 Why Another Agent-based Modeling Framework?

Given that ABM is increasingly applied to a wider range of domains, from biology, to 
architecture, to economics, researchers have become aware of the need for different tools 
to suit their domain. Different requirements for ABM tools explain the wide variety of 
ABM packages and frameworks already available. There are more than 60 ABM 
frameworks/libraries/packages available already1, some more popular than others. Some of 
the notable requirements and tools  that  implement  them  are: speed (GPU), simplicity 
(NetLogo), multi-model integration (FLAME), visual tools and IDE integration 
(RepastSymphony) or 3D visualization (MASON). 

Models of socio-technical systems present different set of requirements and challenges. 
Such models are commonly defined as having many heterogeneous agents, many different 
(social or institutional) relations and arrangements between these agents, a variety of 
technical artifacts and complicated decision making behavior. These modeling 
requirements justified an effort to create a new agent-based modeling framework to 
address them in a more straightforward fashion. Surely, these requirements could be 
fulfilled by the existing frameworks, provided some modifications were made. But there 
was also the opportunity to build a framework that would leverage off the new and 
powerful open source libraries and changing software development paradigms.

1 http://en.wikipedia.org/wiki/Comparison of agent-based modeling software  

http://en.wikipedia.org/wiki/Comparison_of_agent-based_modeling_software


3 AgentSpring Framework

Following sections review  the features of AgentSpring that differentiate it from other 
ABM frameworks and fulfill the requirements  presented by modeling socio-technical 
systems.

Fig.1. AgentSpring Framework structure.

3.1 Software Stack and Design Paradigm

AgentSpring is developed as an open-source tool. This implies that anyone can use and 
contribute to the platform. AgentSpring is available on-line. AgentSpring is based on Java 
technologies and runs on all popular operating systems: Linux, Windows, and Mac.

AgentSpring gets its name from and makes use of Spring Framework –  a popular 
enterprise  software development framework, that promotes the use of object oriented 
software patterns (Johnson et al, 2009). One such pattern calls for separation of data, logic 
and user interface (Krasner and Pope, 1988). Most modeling frameworks mix the three, 
which it is a reasonable choice when creating smaller models. However, the separation of 
concerns (Hursch and Lopes,1995) and other patterns are especially helpful guidelines for 
creating models and applications that are sophisticated, extend-able but transparent.

3.2 Graph Data Structure and Native Graph Database

Some of the existing ABM frameworks allow the model data to be stored in a relational 
database (RDMBS). RDMBS relies on tables to store information and usually require a 
table to be created for each type of object (Java class) to be stored. When modeling socio-
technical  systems with many different types of objects, RDBMS are not a very practical 
alternative. The RDBMS are optimized to deal with large numbers of things of the same 
type, not with smaller number of things of different types. In other words, the RDBMS's 
are designed to scale to size (many things), not complexity (many types).



To enable storing a complex network of heterogeneous actors and artifacts in a simulation 
environment AgentSpring makes use of graph data structures. Mathematics defines a 
graph a set of objects - called nodes - connected by links, called edges (Bondy and Murty, 
1976). There numerous types of graphs, or graph topologies, and their properties that are 
the target of study of graph theory and discrete mathematics. Computer science refers to a 
graph as an abstract data structure (ADS)  (Skiena,  1998). Most computer languages 
implement the common ADS, such as stacks, lists, maps, sets and trees, but not graphs. 
These data structures have distinct properties and provide methods enabling the developer 
to organize and work with data. It is only recently that the changing needs of the Internet 
technologies have contributed to the development of alternative data structures and 
databases, including native graph databases (Angles and Gutierrez, 2008).

A graph database is a database that uses graph data structures with nodes, edges, and 
properties to represent and store information (Eifrem, 2009). Java objects and relations 
between them already resemble a graph, making storing them in a graph database 
relatively straightforward. Every object can be mapped to a node, its primitive members 
(such as int, double and boolean) are mapped to node properties. Object's complex 
members are mapped to other vertices and an edge between them is created. Graph 
databases allow the graph to scale to hundreds of agents, millions of things and relations 
between them, as represented in appendix D.  Such graph databases already power the 
social networking and other Internet services. The application of graph databases in ABM 
is novel and promising as it allows for more straightforward representation and storage of 
the system modeled. Currently, AgentSpring uses Neo4J graph database2, which not only 
provides  excellent  performance,  but  also  features  Spring  Framework  integration  and 
supports multiple query languages.

3.3 Graph Queries

The ability to query the graph and inspect the state of the simulation is a key benefit of 
using a graph database in a simulation environment. These queries can be used both by the 
modeler and the agents in the model. The agents query their environment and use the 
information to drive their decision making logic. The modeler can use the queries to 
extract relevant information about the state and the outcomes of the simulation. 
AgentSpring makes use of four different methods to query the graph: Gremlin query 
language3, Cypher query language4 and SPARQL query language5.

Without overwhelming the reader with peculiarities and differences in these languages it 
is important to note that they can be used interchangeably. The choice is there to provide 

2 http://neo4j.org/  
3 https://github.com/tinkerpop/gremlin/wiki  
4 http://docs.neo4j.org/chunked/1.4/cypher-query-lang.html  
5 http://www.w3.org/TR/rdf-sparql-query/  

http://www.w3.org/TR/rdf-sparql-query/
http://docs.neo4j.org/chunked/1.4/cypher-query-lang.html
https://github.com/tinkerpop/gremlin/wiki
http://neo4j.org/


the modeler with flexibility to use the method best suited for the purpose. Examples of 
such queries will be discussed with more detail in the case study to follow.

3.4 Agent Behavior

AgentSpring decouples agents, their behaviors and their environments making the pieces 
reusable, composable and easy to manage. Experience has shown that modular and 
reusable models are the only kind of models that can accommodate changing scope and 
new research questions. This decomposition is inspired by the artificial intelligence classic 
“Scripts, Plans, Goals, and Understanding: An Inquiry Into Human Knowledge 
Structures” by Roger C. Schank and Robert P. Abelson. The book suggests that human 
behavior and understanding of the world is compartmentalized as scripts that are used to 
execute bigger plans and higher goals (Schank and Abelson, 1977). When executing a plan 
to go to a restaurant, a person would invoke a script to make reservation in advance, call a 
cab, perhaps dress up and so on. AgentSpring makes use of the scripts concept to encode 
agent behavior in a modular way. Agents behave  the simulation by invoking various 
scripts. Simulations are made by combining agents and scripts that rule their behavior in a 
predefined or random sequence. Modularity and composition of behavior logic are 
essential for making behavior-rich models.

Agents use graph queries defined by the modeler to extract the relevant pieces of 
information from the simulation. That information facilitates the decision making 
algorithms of the agent. The brevity and conciseness of the query languages allow to write 
powerful queries that collect information without iterating though lists or maps. The main 
advantages of using query languages for agent intelligence are two. Firstly, they provide 
the modeler with high level of expression - to encode complex questions in a 
straightforward way. Secondly, they provide a unmatched performance advantage for the 
level of complexity they embody. Performing a similar query iterating through lists, maps 
and other ADS or even using SQL queries on a relational database would penalize models 
performance significantly. 

3.5 User Interface

Finally, AgentSpring offers a web-based user interface. See figure 3  for a snapshot of a 
model  result  charts  displayed  via  the  web  interface.  This  feature  makes AgentSpring 
accessible both to the developer and the user (for example, a policy maker) via a familiar 
interface of any web browser. 

The interface allows to start, pause and stop the model, to change and create graphs by 
writing queries and to observe a textual log. Additionally, the interface can be used to 
select various predefined scenarios and to change key parameters in the model. The web 
interface also exposes the running simulation to a variety of statistical and visualization 



tools. Currently, AgentSpring includes a R6 library allowing seamless integration with the 
statistical package. A model in AgentSpring can also be controlled from command line 
without running the AgentSpring user interface. Please see figure in the appendix C for 
the snapshot of the user interface.

4 Case study: Interactions Between Power, Natural Gas and CO2 Markets in the EU

The following section serves to demonstrate the use of AgentSpring framework in building 
a model. The model explores the interactions between power, fuel (natural gas) and CO2 
markets  in  the  European  Union. The  purpose  of  the  model  is  explain  the  dynamics 
between the  different  energy  policies  and  the  actions  of  the  market  participants.  The 
following passages  discuss the actors and their behaviors, but not the outcomes of the 
simulation.

4.1 Model Structure

The main actors in the model are power producers who sell the generated electricity in the 
power market, they buy fossil fuels needed by their power plants in the fuel markets, and 
they purchase the CO2 emission allowances in the centralized EU ETS auction. In order to 
sell or buy in a power, fuel or CO2 the agents submit their bids or offers to the market. 
The market is cleared given the supply and demand and a uniform price and volume is 
determined.

Besides the bidding behavior the power producers invest in new power plants that change 
the supply dynamics  in the power  market.  The  new power  plants  have different  fuel 
requirements and CO2 emissions profile that affects the demand characteristics in the fuel 
markets and the CO2 allowances auction.

Fig.2. Model structure as a graph. Each icon represents a node, an arrow – an edge between the 
nodes. The graph consists of both agents (such as Power Producer) and artifacts (Power Plant, Bid).

6 http://www.r-project.org/  

http://www.r-project.org/


While the agents and the markets constitute the social components of the system, the 
technical artifacts in the model are the power plants, the power generating technologies 
and fuels. 

Fig.3. Relations between markets and agents are formed via bids and offers. Both bids and offers in 
the model are labeled as “Bid” and their nature is determined by the type of relationship (demand or 
supply).

Fig.4. Interactions between markets. The outcomes of the power market determine the inputs to the 
fuel and CO2 markets and vice-versa.

The diagram above is an abstraction of the interactions between markets. Power producers 
supply offers into the power market, one offer per power plant. The offer price is the 
marginal cost of producing one megawatt-hour. The principal components of marginal 
cost are fuel costs and the costs of CO2 emissions allowances. The prices of the fuels and 
CO2 allowances are determined in the fuel markets and the CO2 auctions. The 



commodities traders submit their offers to sell fuel and the government sets the volume of 
the CO2 allowance auction. The market clearing prices are incorporated in the offers to 
the power market, but the power market volume and the power plant portfolio determine 
the bid volumes submitted to the fuel markets and the CO2 auction. With these simple 
relations complex patterns emerge within a simulation. The different bidding and 
investment strategies of the power producers add to the unpredictability of the simulation 
outcomes.

The following passages will discuss a subsection of the model in more detail to exemplify 
the workings of AgentSpring.

4.2 Defining Agents

In order to define an agent in AgentSpring one has to declare  the Agent interface 
provided by the framework. It is also necessary to annotate the class with @NodeEntity 
annotation that will ensure that object is stored in the graph database.

@NodeEntity
public class PowerProducer extends AbstractAgent implements Agent {
....
}

4.3 Defining Artifacts

In order to define an artifact (a thing that is not an agent) in AgentSpring, such as a power 
plant, it is sufficient to provide the @NodeEntity annotation. The example below also 
show how to define relations to other artifacts and agents. In order to define a relation it is 
sufficient to annotate the class  member with @RelatedTo annotation and specify the 
name and the direction of the relationship.

@NodeEntity
public class PowerPlant {
  @RelatedTo(type = "technology", direction = Direction.OUTGOING)
  private PowerGeneratingTechnology technology;
  @RelatedTo(type = "owns", direction = Direction.INCOMING)
  private PowerProducer owner;
}

The above code is better explained by the diagram below.

Fig.5. Relations between agents and artifacts.



4.4 Defining Queries

The queries are defined within Java  interfaces annotated  with  with @Repository 
annotation and methods annotated with the @Query annotation containing the code of the 
query. Please see appendix B for the code of this example. It might look unconventional, 
but it is a  simple, brief and a  powerful method to express query logic. The query is 
expressed  in  Cypher  query  language.  The method  findPowerPlantsByOwner will 
return  all power plants owned by the power producer supplied as the argument to the 
query. The name of the relation between the PowerProducer and the PowerPlant is 
specified in the square brackets and the direction is specified by the symbol  >. This is 
consistent with the relationship definition within the PowerPlant class (see above).

The next two queries in the code are examples of calculations. The diagram on the next 
page shows the graph defining relations between the cash flows, agents and markets. Each 
cash flow object has a reference to a power plant that it is associated to. The queries find 
the  the  cash  flow  nodes  that  are  related  to  the  agent and  the  plant provided  as 
parameters and sum up their amount properties.

Fig.6. Cash flows between agents and markets.

4.5 Defining Behavior

Agent behavior is composed out of scripts. A script is a separate class that implements the 
Role interface provided by the framework. It is also annotated with @ScriptComponent 
annotation.  The  annotation  can  take  parameters  that  determine  the  order  of  script 
execution in the simulation schedule. The modeler has to implement a single method “act” 
that  contains  the  logic  of  the  agent's  behavior.  The  example  in  the  appendix  A 
demonstrates an investment script. In the example the agent iterates through its existing 
power plants and selects the type of the power plant (PowerGeneratingTechnology) 
that proved to be the most profitable. 



The script demonstrates the use of graph query methods already discussed. The method 
findPowerPlantsByOwner  returns  a  list  of  all  power  plants  owned  by  the  agent. 
Iterating  through  the  list,  the  return  on  assets  (ROA)  score  is  calculated  and  the 
PowerGeneratingTechnology with the highest score is selected. ROA is calculated by 
summing up the cash flows received and paid by the agent per year, dividing it by the 
capital invested.

5 Conclusions

As  agent-based  modeling  is  applied  to  model  and  simulate  socio-technical  systems 
researchers  find  themselves  in  need  of  tools  that  would  better  support  their  goals.  
Commonly, the socio-technical systems are distinguished as having many heterogeneous 
actors and artifacts embedded in a network of versatile relationships. The authors of this  
article present a new ABM framework – AgentSpring – specifically designed to support 
modeling of such systems.

AgentSpring introduces a few novelties into the modelers toolkit. Firstly, it uses graph data 
structure to describe the model and store the simulation data. It enables the modeler to use  
multiple graph query languages to perform analyses of the simulation outcomes. Queries  
are also integral to the decision making of the agents who use them to asses the state of  
their  environment.  Secondly,  the  framework  allows for  modular  composition  of  agent 
behavior. Such modularity aids the understanding of the model logic and allows the model 
to scale in complexity. Finally, AgentSpring features a rich web interface allowing to run 
the simulation and visualize the simulation results on-line. It also allows AgentSpring to 
seamlessly integrate with other tools in the modelers toolkit, such as R statistical package.

AgentSpring is already being used by multiple projects and institutions. It is open-source 
and continuously developed. In order to use it or contribute to the development, please 
find it at http://github.com/alfredas/AgentSpring.
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Appendix A. Investment Script.

@ScriptComponent
public class InvestInPowerGenerationTechnologiesRole extends 
AbstractRole<PowerProducer> implements Role<PowerProducer> {

@Autowired
PowerPlantRepository plantRepository;

public void act(PowerProducer producer) {
  PowerGeneratingTechnology bestTechnology = null;
  double maxRoa = 0;
  for (PowerPlant plant : plantRepository.findPowerPlantsByOwner(producer)) {
    double revenue = plantRepository.calculateCashFlowsForPowerPlantToAgent(owner, 
plant);
    double costs = plantRepository.calculateCashFlowsForPowerPlantFromAgent(owner, 
plant);
    double averageAnnualIncome = (revenue  costs) / (getCurrentTick() + 1);
    double capital = plant.getInvestedCapital();
    double roa = averageAnnualIncome / capital;
    if (plantRoa >= maxRoa) {
      bestTechnology = plant.getTechnology();
      maxRoa = plantRoa;
    }
  }
  buildPlant(bestTechnology);
}
....
}

Appendix B. Query Repository.

@Repository
public interface PowerPlantRepository extends GraphRepository<PowerPlant> {

@Query("start owner=node({owner}) match (owner)[:owns]>(plant) return plant")
Iterable<PowerPlant> findPowerPlantsByOwner(@Param("owner") PowerProducer owner);

@Query("start plant=node({plant}), agent=node({agent}) match (agent)<[:to](flow)
[:plant]>(plant) return sum(flow.amount)")
double calculateCashFlowsForPowerPlantToAgent(@Param("agent") PowerProducer agent, 
@Param("plant") PowerPlant plant);

@Query("start plant=node({plant}), agent=node({agent}) match (agent)[:from]>(flow)
[:plant]>(plant) return sum(flow.amount)")
double calculateCashFlowsForPowerPlantFromAgent(@Param("agent") PowerProducer agent, 
@Param("plant") PowerPlant plant);
}



Appendix C. Snapshot of AgentSpring User Interface.

Appendix D. Visualization of a Running Simulation. Different color represent different 
relations between agents and artifacts (around 650000 relations).


