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Abstract 

Genomic selection has been described as a method that can revolutionize plant 

breeding. A wide series of studies on simulated and real data have demonstrated the 

potential of this approach for breeding for complex traits. Genomic selection methods use 

genome-wide marker data to predict the breeding value of unphenotyped individuals by 

forming a regression model on a training population, but the vast majority of methods 

ignore prior information on QTLs. Incorporation of prior information could improve the 

prediction accuracy of genomic selection. 

Recently several methods have been developed to meet this objective. These 

methods propose a special treatment of markers that are known to capture the effects of 

major genes. In the studied cases, these markers are either known genes or markers 

identified by Genome-Wide Association Studies. 

The main aim of this study is to evaluate the potential of incorporating information 

derived by QTL mapping experiments that are commonly found in literature. This is achieved 

by applying two different approaches. The first is by fitting specific markers as fixed effects 

in an RR-BLUP model (RR-BLUP/FIXED) and the second is to estimate separate shrinkage 

parameters for these markers (W-BLUP). 

For this purpose, a simulation study was conducted. The simulation included 

generation of marker data under linkage disequilibrium, simulation of a QTL mapping 

experiment and genomic prediction of hybrid performance. 

The results imply that it is possible to increase the prediction accuracy by 

incorporating prior information but further research is required in order to specify the 

conditions that promote this increase. 
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1. Introduction 

1.1. Breeding for quantitative traits 

1.1.1. Quantitative traits 

Quantitative genetics is a major pillar of plant breeding science due to the fact that 

many important agronomic traits such as yield are quantitative. These traits are complex and 

regulated by many genes. In most cases, the phenotype for these traits is measured on a 

continuous scale and is affected strongly by the environment. 

 

1.1.2. Conventional approach 

1.1.2.1. Variance components 

The genetics of quantitative traits is studied using a biometrical approach. This 

approach is based on the decomposition of the phenotypic variance in variance 

components. The phenotypic variance can be divided in genetic and environmental variance, 

under the assumption of no genotype by environment interaction. This decomposition is 

easily achieved by replication of the observed genotypes. The genetic variance can be 

further separated in additive, dominance and epistatic variance. The most important part of 

the genetic variance is the additive variance as it is the one that can be used to predict the 

performance of the progeny. The part of the phenotypic value that is due to additive effects 

is called breeding value. Using the variance components, the broad and narrow sense 

heritability coefficients can be defined as𝑏𝑠
2 =

𝜎𝐺
2

𝜎𝑃
2 and𝑛𝑠

2 =
𝜎𝐴

2

𝜎𝑃
2 respectively. In most cases of 

plant breeding, the phenotype is used as a selection criterion rather than the breeding value, 

but the heritability coefficient is used to predict the response to selection. 

1.1.2.2. Best Linear Unbiased Prediction 

Breeding values can be estimated by Best Linear Unbiased Prediction (BLUP) 

(Henderson, 1975). For example, for the mixed model 𝑦 = 𝑿𝛽 + 𝒁𝑎 + 𝑒 , where 𝛽 is a 

vector of fixed effects,𝑎 is a vector of random genotype effects, 𝑿 and 𝒁 the corresponding 

design matrices, 𝑒~𝑁(0, 𝑰𝜎𝑒
2), 𝑎~𝑁(0, 𝑨𝜎𝑎

2) and 𝑨is the relationship matrix,BLUP for 𝑎 can 

be obtained by solving the Mixed Model Equations (MME): 

 𝛽
 

𝑎 
 =  

𝜲𝐓𝐗 𝐗𝐓𝐙

𝐙𝐓𝐗 𝐙𝐓𝐙 +
𝜎𝑒

2

𝜎𝑎
2 𝐀−𝟏 

−𝟏

 
𝐗𝐓𝑦

𝐙𝐓𝑦
 [eq. 1] 
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In this case, 𝑨 consists of kinship coefficients that are estimated by pedigree data 

and define the covariance between genotypes. The variance components 𝜎𝑒
2 and 𝜎𝑎

2 can be 

estimated by Restricted Maximum Likelihood (REML). 

1.1.2.3. Prediction of hybrid performance 

In hybrid breeding, the prediction of hybrid performance can be done in several 

ways such as: i) line performance per se, ii) prediction based on the general combining 

ability (GCA) and iii) BLUP (Schrag et al., 2009, Zhao et al., 2015). In the BLUP method, 

prediction is based on both the GCA and the specific combining ability (SCA) effects by using 

pedigree information to estimate the kinship between the individuals.  

Prediction based on both the general and specific combining ability can be more 

accurate when dominance effects are significant. The separation of genetic variance in 

additive and dominance effects is achieved by the analysis of a diallel design when all 

possible hybrids are of interest or a factorial design when parents are divided in heterotic 

pools or males and females. A factorial design can be analyzed using REML for the mixed 

model: 

𝑦 = 𝑿𝛽 + 𝒁𝐹𝑔𝐺𝐶𝐴𝑓𝑒𝑚𝑎𝑙𝑒 + 𝒁𝑀𝑔𝐺𝐶𝐴𝑚𝑎𝑙𝑒 + 𝒁𝑆𝑔𝑆𝐶𝐴 + 𝑒                                        [eq. 2] 

where 𝑔𝐺𝐶𝐴𝑓𝑒𝑚𝑎𝑙𝑒  and  𝑔𝐺𝐶𝐴𝑚𝑎𝑙𝑒  are vectors of the female and male GCA effects 

respectively and 𝑔𝑆𝐶𝐴  is the vector of SCA effects. The design matrices 𝒁𝐹  and 𝒁𝑀 , code for 

the male and female parents and the design matrix 𝒁𝑆  codes for the identity of the hybrid. 

A description of the analysis of a diallel design by REML can be found in 

literature(Möhring et al., 2011). 

 

1.1.3. Marker-basedapproach 

In the last decades, marker-based approaches have been implemented in plant 

breeding. QTL mapping is able to locate regions of the genome with significant association to 

the trait. This information can lead to the identification of a gene, or can be used directly in 

marker-assisted selection. Marker-Assisted Selection (MAS) is used for the introgression of a 

trait by selecting the individuals that have the desirable allele of a marker that is linked to 

the trait of interest. MAS has been applied successfully in breeding for simple monogenic or 

oligogenic traits. 
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In the case of quantitative traits, QTLs have been identified, major genes have been 

characterized, but marker-assisted selection has not been effective. The reason is that 

marker assisted selection is designed for introgressing a small number of genes. 

Furthermore, QTL mapping is not able to locate minor genes with a small effect that can 

however be very important in cases such as the breeding of quantitative traits in elite 

germplasm. This is because QTL mapping includes hypothesis testing to select the markers 

that are associated to the trait and to avoid false positives.  

 

1.2. Genomic selection 

1.2.1. Concept 

Driven by the availability of genome-wide marker data, genomic selection was 

described by Meuwissen et al. (Meuwissen et al., 2001) as a form of marker assisted 

selection that is based on estimating breeding values. 

Genomic selection (GS) or Genome-wide selection or Whole-genome regression is a 

selection method based on the prediction of the breeding value from genome-wide marker 

data. The basic steps are: i) phenotype and genotype a training population, ii) construct a GS 

modelestimating regression coefficients for all markersand iii) use this model to calculate 

the Genomic Estimated Breeding Values (GEBVs)  in a breeding population and select 

without phenotyping in the following generations. 

Unlike MAS, it does not include statistical testing for the allocation of QTL’s. GS uses 

a large number of markers to capture the genetic variance, so that ideally all polygenes 

affecting the trait will be selected, even the ones with a small effect. For this reason GS is 

well-suited for quantitative traits. 

The last decade, the interest in genomic selection is increasing and many reviews 

have been published exposing the potential of genomic selection(Bernardo and Yu, 2007, de 

los Campos et al., 2013a, Desta and Ortiz, 2015, Heffner et al., 2009, Jannink et al., 2010, 

Nakaya and Isobe, 2012) 
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1.2.2. Statistical methods for GS 

1.2.2.1. The curse of dimensionality 

The statistical methods proposed for genomic selection aim at tackling the “large p - 

small n” problem that is caused by the use of many markers. This problem, mentioned also 

as “the curse of dimensionality”, arises when the number of variables p (markers) is higher 

than the number of observations n (individuals). The result is over-fitting that decreases the 

predictive ability of the model for individuals not included in the training population. 

In general, this problem can be handled:i) by variable selection or dimension 

reduction methods (e.g. forward selection, stepwise regression, PLS, PCR etc.)(Bernardo and 

Yu, 2007, Resende et al., 2014)to decrease the number of variables, or ii) by shrinkage 

methods. In the second case, that is more suitable for genomic selection, the regression 

coefficients are shrunk towards zero. This way, a bias is introduced and the variance of the 

coefficient is reduced in order to balance the goodness of fit and the complexity of the 

model (de los Campos et al., 2013a). Shrinkage is usually applied either in the context of 

penalized or Bayesian regression.  

1.2.2.2. Penalized regression and BLUP 

1.2.2.2.1. Ridge regression and LASSO 

The two most important methods of penalized regression are ridge regression (RR) 

and least absolute shrinkage and selection operator (LASSO). Both methods differ from 

ordinary least squares estimation, as they impose a penalty term in the error function that is 

minimized. This way the coefficients are shrunk towards zero. The penalty is regulated by 

the shrinkage (or regularization) parameter λ. In ridge regression, λis applied on the sum of 

the squared regression coefficients. In contrast, LASSO applies λ on the sum of the absolute 

values of the regression coefficients. This way, in RR small coefficients receive less shrinkage 

than in LASSO, small effects are captured by the model and RR can be more suitable for 

highly complex traits. LASSO shrinks the coefficients of small effects to zero or very close to 

zero, and therefore can be used for variable selection. The fact that in LASSO the number of 

non-zero estimates cannot be higher than the number of observations, makes LASSO less 

suitable for genomic selection (de los Campos et al., 2013a). 

1.2.2.2.2. RR-BLUP 

The parameter λ can be chosen by cross-validation, but in the practice of genomic 

selection λ is estimated as the ratio of the residual variance and the variance of marker 
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effects, under the assumption of equal variance for all marker effects (Meuwissen et al., 

2001).In the second case, the shrinkage imposed by ridge regression is equivalent to the 

shrinkage imposed by BLUP according to the model: 

𝑦 = 𝑿𝛽 + 𝒁𝑢 + 𝑒                                                                                                           [eq. 3] 

Where 𝑢~𝛮(0, 𝜎𝑢
2)is a vector of marker effects fitted as random,𝒁  the design 

matrix for marker effectsand 𝑿𝛽  the fixed part of the model (environments etc.). 

For this reason ridge regression is applied in a mixed model context and is 

mentioned as RR-BLUP. RR-BLUP is the most common method for genomic selection. 

BLUP estimates can be obtained by solving the MME:  

 𝛽
 

𝑢 
 =  

𝜲𝐓𝐗 𝐗𝐓𝐙

𝐙𝐓𝐗 𝐙𝐓𝐙 +
𝜎𝑒

2

𝜎𝑢
2 𝐀−𝟏 

−𝟏

 
𝐗𝐓𝑦

𝐙𝐓𝑦
 [eq. 4] 

There are two ways to implement RR-BLUP. The first is by REML analysis of the 

mixed model followed by BLUP(Piepho, 2009). This way the variance of marker effects 𝜎𝑢
2is 

directly estimated. This can be done using mixed model software such as ASReml. For mixed 

models with a single random factor (apart from the residual variance), an R package named 

rrBLUP has been developed (Endelman, 2011). 

An alternative is to use available estimates of the variance of additive genotype 

effects 𝜎𝐴
2 in order to estimate 𝜎𝑢

2(Resende et al., 2014).Several approaches exist for coding 

the design matrices and estimating 𝜎𝑢
2  . The simplest approach is to code additive effects as 

{aa, Aa, AA} = {-1, 0, 1} and estimate 𝜎𝑢
2 as 

𝜎𝐴
2

𝑚
  , where 𝑚 is the number of markers(Technow 

et al., 2012, Zhao et al., 2015).Alternatively 𝜎𝑢
2 can be estimated as 

𝜎𝐴
2

 2𝑝𝑗 (1−𝑝𝑗 )𝑗
  ,where 𝑝𝑗  is 

the marker allele frequency. Other approaches include coding as {aa, Aa, AA} = {0, 1, 2} 

followed by mean centeringand standardization (Resende et al., 2014). 

The Genomic Estimated Breeding Values for unphenotyped individuals can be 

calculated as 𝒁𝑩𝑢  where 𝒁𝑩 is the design matrix for marker effects for the individuals of the 

breeding population. 
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1.2.2.2.3. G-BLUP 

G-BLUP is equivalent to ridge regression, but the effects modeled are the genotype 

effects. The G-BLUP formulation is similar to kinship-BLUP, but in G-BLUPthe genomic 

relationship matrix𝑮is estimated by marker data(VanRaden, 2008). 

𝑦 = 𝑿𝛽 + 𝑔 + 𝑒                                                                                                              [eq. 5] 

Where 𝑔 = 𝒁𝑢,   𝑔~𝑁 0, 𝑮𝜎𝑔
2 ,   𝑮 =

𝒁𝒁𝑻

 2𝑝𝑗 (1−𝑝𝑗 )𝑗
 

1.2.2.3. Bayesian shrinkage 

Shrinkage of estimates can be also obtained in Bayesian methods by assigning a 

prior density to marker effects. Ridge regression can be applied in a Bayesian context 

(Bayesian Ridge Regression – BRR) by using a Gaussian prior for the marker effects. Also, 

Bayesian methods can induce variable selection if the prior distribution has high density 

around zero(de los Campos et al., 2013a). 

In genomic selection, a series of Bayesian methods have been applied that, in 

contrast to RR-BLUP, do not assume normally distributed marker effects. BayesA assigns a 

scaled-t prior that has thicker tails and higher mass at zero than the Gaussian.The prior in 

BayesB is a mixture of a scaled-t and a point of mass at zero(Meuwissen et al., 2001). The 

mixture is regulated by the parameter π that defines the proportion of markers with zero 

variance. In BayesC, the mixture has a Gaussian distribution instead of a scaled-t(Habier et 

al., 2011). Parameter πcan be either predefined or considered unknown and estimated from 

the data. 

1.2.2.4. Genomic selection for hybrid prediction 

RR-BLUP (and G-BLUP) can be extended to model both additive and dominance 

effects of the markers (or genotypes). G-BLUP for hybrid prediction is similar to the BLUP 

method mentioned in 1.1.2.2. with the difference that the relationship matrix is estimated 

by marker data. 

The RR-BLUP model is: 

𝑦 = 𝟏𝐧 + 𝒁𝐴𝑢𝐴 + 𝒁𝐷𝑢𝐷 + 𝑒                                                                                        [eq. 6] 

where 𝑢𝐴  and 𝑢𝐷  are vectors of the additive and dominance marker effects 

respectively and 𝒁𝐴  and 𝒁𝐷  the corresponding design matrices. 

The coefficients can be estimated by solving the mixed model equations: 
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𝜇 
𝑢 𝐴
𝑢 𝐷

 =  

𝟏𝐧
𝐓𝟏𝐧 𝟏𝐧

𝐓𝐙𝐀 𝟏𝐧
𝐓𝐙𝐃

𝐙𝐀
𝐓𝟏𝐧 𝐙𝐀

𝐓𝐙𝐀 + λA𝐈𝐦 𝐙𝐀
𝐓𝐙𝐃

𝐙𝐃
𝐓𝟏𝐧 𝐙𝐃

𝐓𝐙𝐀 𝐙𝐃
𝐓𝐙𝐃 + λD𝐈𝐦

 

−𝟏

 

𝟏𝐧
𝐓𝑦

𝐙𝐀
𝐓𝑦

𝐙𝐃
𝐓𝑦

 [eq. 7] 

where 𝜆𝛢 =
𝜎𝑒

2

𝜎𝑢𝐴
2    ,      𝜆𝐷 =

𝜎𝑒
2

𝜎𝑢𝐷
2  

The variance components that define the shrinkage parameters can be estimated by 

REML analysis of the mixed model: 

𝑦 = 𝟏𝐧 + 𝒁𝐹𝑢𝐺𝐶𝐴𝑓𝑒𝑚𝑎𝑙𝑒 + 𝒁𝑀𝑢𝐺𝐶𝐴𝑚𝑎𝑙𝑒 + 𝒁𝑆𝑢𝑆𝐶𝐴 + 𝑒                                         [eq. 8] 

(Zhao et al., 2014, Zhao et al., 2015). The two variance components of GCA effects can then 

be pooled if the male and female parents do not belong two separate heterotic pools. The 

variances of additive and dominance marker effects can be estimated by the variance of GCA 

and SCA effects respectively, as explained in section 1.2.2.2.2. 

 

1.2.3. Prediction accuracy 

Prediction accuracy is defined as the correlation between the genomic estimated 

breeding values and the true breeding values. In the case of simulation studies, this measure 

can be easily estimated. When real data are used, the phenotypic values are usually the 

predictands and the prediction accuracy is the correlation between the GEBVs and the 

phenotypic values divided by the square root of the heritability. In other cases, mainly in 

animal breeding, the predictand can be the EBVs (estimated breeding values) estimated by 

BLUP or the deregressed EBVs (Daetwyler et al., 2013). 

 

1.2.4. Factors that affect prediction accuracy 

1.2.4.1. Linkage Disequilibrium 

Linkage disequilibrium (LD) is the association between alleles at different loci. The 

most common measure of LD intensity is the r2 which is the correlation between alleles at 

the two loci.An r2 value of 0.1 is generally considered to indicate a significant LD.LD is 

caused by mutation, migration, selection and random drift, and it decays over generations 

due to recombination. 
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It is obvious that the prediction accuracy of genomic selection will depend on the LD 

between the genes and the markers.The level of LD varies between populations largely 

depending on the effective population size. 

1.2.4.2. Number of markers 

The minimum number of markers needed depends on the LD span (length of interval 

with significant LD).  

For multiparental populations, the number of markers can be calculated based on 

the effective population size and the size of the genome(Desta and Ortiz, 2015).The number 

of markers used for genomic selection in biparental populations is generally smaller. 

It is reported that prediction accuracy increases with the number of markers until a 

plateau is reached. For very large number of markers, the prediction accuracy can decrease 

as a consequence of the “large p - small n” problem. 

1.2.4.3. Size of training population 

The size of the training population is reported to be in many cases more important 

than increasing the number of markers.The optimal ratio of training to breeding population 

size, depends on the genetic distances, the heritability and the number of QTLs (Nakaya and 

Isobe, 2012). Furthermore, the smaller the training population size, the stronger the “large p 

- small n” problem. 

1.2.4.4. Relatedness between training and breeding population 

The relatedness between the training and the breeding population is shown to be 

one of the most important factors that affect the prediction accuracy. This issue is related to 

the decrease of prediction accuracy over selection cycles, which creates the need for 

updating the model. 

In genomic selection of hybrids, where single-cross performance is predicted from 

the performance of related hybrids, relatedness between training and breeding population 

is also affected by the structure of the training population. Prediction accuracy is affected by 

whether none, only one or both parents of a hybrid in the breeding population have been 

used as parents for the training population. 
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1.2.4.5. Genetic architecture and statistical model 

A high number of QTLs can decrease the prediction accuracy(Daetwyler et al., 2013), 

butthe efficiency of genomic selection relative to MAS or phenotypic selection should also 

be considered. 

An important aspect is the agreement between the true architecture and the one 

assumed by the genetic model. If the number of genes is small and major genes are present, 

variable selection methods might perform better that RR-BLUP, as RR-BLUP assumes equal 

variance for all markers. Bayesian methods with rather uninformative priors can have a 

more stable performance across different trait architectures(Daetwyler et al., 2013, de los 

Campos et al., 2013a). 

1.2.4.6. Heritability 

Obviously, heritability has a positive correlation with prediction accuracy. The higher 

the heritability the more accurate the estimation of marker effects in the training 

population. In a breeding scheme, the potential of genomic selection relative to phenotypic 

selection is maximized when heritability is high in the training population and low in the 

breeding population. 

 

1.3. Incorporation of QTL information 

1.3.1. Concept 

In most cases, the methods used for genomic selection treat markers in a way that 

ignores prior knowledge of QTLs and candidate genes, although such information is usually 

available. In recent literature, methods for incorporating prior information have been 

proposed and studied in simulated and real data. 

 

1.3.2. Methods 

1.3.2.1. RR-BLUP/FIXED 

Bernardo (Bernardo, 2014) studied in simulation experiments the advantage of 

modelling effects of known major genes as fixed effects in a RR-BLUP model. The method 

was compared to RR-BLUP without fixed marker effects. The simulated trait architecture 

included 100 minor genes and 1, 2, 3 or 10 major genes jointly accounting for 50% of the 
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genetic variation in all 4 cases. Modelling a subset of the major genes as fixed was also 

studied. 

He concluded that: i) when modelling one gene as fixed, the method is more 

advantageous for high h2(heritability on an entry-mean basis) (> 0.5) and high R2 (percentage 

of VG explained by the gene), ii) relative efficiency is higher when the training population is 

smaller, iii) the rate of decline of prediction accuracy on the next cycles is lower than in 

ordinary RR-BLUP, iv) when many major genes (10) are modelled as fixed, model was less 

useful and v) there is difficulty in simultaneously estimating the fixed effects of more than a 

few major genes. 

In his simulations he assumed perfect linkage between the known major genes and 

the corresponding markers. It would be interesting to expand his simulations in order to 

evaluate the benefit from using the same approach for mapped QTLs linked to 

uncharacterized genes. 

Other studies confirmed these conclusions following the same approach in a G-BLUP 

context. Rutkoski et al. (Rutkoski et al., 2014) analyzed real data of quantitative stem rust 

resistance in 365 breeding lines of wheat. For the selection of markers with fixed effects, 

they ranked the markers based on p-values from a genome-wide association study of the 

same population and added markers stepwise to the model, calculating 5-fold cross 

validation accuracy within the training set. 

In another study, the author also used real data (Fusarium resistance of inbred lines 

of maize) and conducted a GWAS including the three most significant SNPs as fixed effects in 

a G-BLUP model achieving higher prediction accuracy (Zila, 2014). 

1.3.2.2. W-BLUP 

Another study by Zhao et al.(Zhao et al., 2014) introduced a different method also 

based on RR-BLUP named W-BLUP. In contrast to the previous method, W-BLUP categorizes 

markers into two groups separating the functional markers from the rest, and shrinks both 

groups giving larger weight to the functional markers that are linked to known major genes.  

The mixed model can be written as: 

𝑦 = 𝟏𝒏 + 𝒁𝐴𝑢𝐴 + 𝒁𝐷𝑢𝐷 + 𝒁𝐴𝐹
𝑢𝐴𝐹

+ 𝒁𝐷𝐹
𝑢𝐷𝐹

+ 𝑒                                                  [eq. 9] 

Best linear unbiased predictions can be obtained by solving the mixed model 

equations: 
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[eq. 10] 

where n the number of observations, m the number of markers and f the number of 

functional markers. 

The proportion of the additive (or dominance variance) explained by the marker 

effects is estimated by multiple regression. These proportions are used in order to separate 

the variance components in the variance of the genome-wide markers effects and the 

variance of each functional marker effect according to the following procedure: 

𝜆𝛢 =
𝜎𝑒

2

𝜎𝑢𝐴
2   ,    𝜆𝐴𝐹𝑓

=
𝜎𝑒

2

𝜎𝑢𝐴𝐹𝑓

2   , 𝜆𝐷 =
𝜎𝑒

2

𝜎𝑢𝐷
2   ,  𝜆𝐷𝐹𝑓

=
𝜎𝑒

2

𝜎𝑢𝐷𝐹𝑓

2  

𝜎𝑢𝐴𝐹𝑓

2 = 𝑃𝐴𝐹𝑓
∗ 𝜎𝐺𝐶𝐴

2    ,         𝜎𝑢𝐷𝐹𝑓

2 = 𝑃𝐷𝐹𝑓
∗ 𝜎𝑆𝐶𝐴

2    , 

𝑃𝐴𝐹𝑓
=

𝑆𝑆𝐴𝐹𝑓

𝑆𝑆𝐺𝐶𝐴
   ,   𝑃𝐷𝐹𝑓

=
𝑆𝑆𝐷𝐹𝑓

𝑆𝑆𝑆𝐶𝐴
 

𝑆𝑆𝐺𝐶𝐴 = 𝑆𝑆𝑇 ∗
𝜎𝐺𝐶𝐴

2

𝜎𝑃
2    ,      𝑆𝑆𝑆𝐶𝐴 = 𝑆𝑆𝑇 ∗

𝜎𝑆𝐶𝐴
2

𝜎𝑃
2     ,       

where SST relates to the same number of replications as used in the estimation of  𝜎𝑃
2 

𝜎𝐺𝐶𝐴
2 =

(𝑁𝐹 − 1) ∗ 𝜎𝐺𝐶𝐴𝐹

2 + (𝑁𝑀 − 1) ∗ 𝜎𝐺𝐶𝐴𝑀

2

𝑁𝐹 + 𝑁𝑀 − 2
 

𝜎𝑢𝐴
2 =  𝑃𝐴𝐹𝑓

𝑓
1 ∗ 𝜎𝐺𝐶𝐴

2    ,      𝜎𝑢𝐷
2 =  𝑃𝐷𝐹𝑓

𝑓
1 ∗ 𝜎𝑆𝐶𝐴

2  

The variance components for residual, GCA and SCA are estimated by REML as 

explained in section 1.2.2.4. (eq. 8). 

Zhao et al. used phenotypic and genotypic data of a set of 135 wheat lines (15 male 

and 120 female) and 1604 (out of 1800 possible) hybrids. The training set included 10 male, 

80 female and 610 hybrids derived from these 90 parents and the validation set the rest of 

the parents and hybrids derived from them. W-BLUP was able to increase the prediction 

accuracy for heading time and plant height. Furthermore it was shown by simulations that 
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the gain in prediction accuracy achieved by W-BLUP was much higher when the functional 

marker was in linkage equilibrium with all other markers. 

1.3.2.3. Other methods 

De los Campos et al. (de los Campos et al., 2013a) reviewing the methods used in GS, 

recognized the need to incorporate prior information and suggested the Bayesian context as 

appropriate for dealing with this challenge. He mentioned two Bayesian approaches: i) 

grouping the markers using different priors (Calus et al., 2010) and ii) using an 

antedependence model to allow borrowing of information across markers by specifying 

spatial correlation between marker effects(Yang and Tempelman, 2012).  

Garrick et al. (Garrick et al., 2014) mention a method named BayesRS(Brondum et 

al., 2012)as more appropriate for including prior information. This approach is not used for 

introducing information from QTL mapping, but for using the results of a Bayesian model 

with locus specific variance as prior distribution for another population.  

Su et al. (Su et al., 2014) tested G-BLUP models where the G matrix was weighted 

using data from prior Bayesian models or GWAS. In the case of GWAS the weighting factors 

were either the square of the estimated SNP effect or the negative ten logarithm of the P-

value. The G-BLUP weighted with GWAS results was also used by de los Campos et al. (de los 

Campos et al., 2013b). 

 

1.4. Aim of the project 

For most of the important breeding traits, literature contains QTL information 

derived by QTL mapping studies. The potential gain from incorporating this information has 

not been studied so far and it can be affected by a wide series of factors. 

Some of these factors are related to the accuracy of the QTL information, either due 

to limited power of the QTL mapping experiment or due to differences between the 

mapping and the breeding population in the present QTLs. Obviously, these factors can have 

a negative impact on the method, but the inclusion of an elimination procedure based on 

cross-validation can be used to avoid decrease in prediction accuracy. 

Other factors influence in general the prediction accuracy of genomic selection 

methods. These factors could also influence the relative gain from using methods as RR-

BLUP/FIXED and W-BLUP compared to standard RR-BLUP. 
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In this study I will attempt to obtain a general overview of these parameters and 

their importance. For this reason, marker and phenotype data will be simulated, to be 

analyzed with these three methods under a series of different scenarios. 
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2. Materials & Methods 

2.1. General scheme 

The procedure followed, consisted of: i) simulation of marker data under linkage 

disequilibrium, ii) simulation of genotype and phenotype for a set of 200 lines (100 male and 

100 female) and all 10000 possible hybrids (in a factorial design), iii) simulation of QTL 

mapping between two contrasting lines, iv) application of genomic selection methods to 

estimate the regression coefficients in a training population consisting of a subset of the 

hybrids and v) estimation of prediction accuracy in a different subset of hybrids. 

Several different scenarios were simulated with values of a series of parameters 

varying from one scenario to the other. A base scenario where the parameters were 

assigned medium values was compared to scenarios where one parameter value at a time 

was altered. 

Table 1: Parameter values of the base scenario 

Base scenario 

Training population size 510 

Broad sense heritability 0.6 

Trait Architecture 20 genes 

LD (average r2 between adjacent markers) 0.096 

 

Table 2: Value of the varying parameter in the 16 other scenarios 

16 other scenarios 

Training population size 100 300 700 900 

Broad sense heritability 0.3 0.45 0.75 0.9 

Trait Architecture 5 genes 10 genes 50 genes 100 genes 

LD 

(average r2 between 

adjacent markers) 

0.051 

(2000markers) 

0.071 

(1500markers) 

0.113 

(500markers) 

0.123 

(300markers) 

 

2.2. Simulation of LD 

500 haplotypes of a genome of 6 Morgan divided in 6 chromosomes were simulated. 

Each Morgan included 10000 monomorphic biallelic loci. Random mating withmutation rate 
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of 10-5was simulated for 1000 generations to generate variation in these loci, create a 

realistic LD profile and reach mutation-drift equilibrium. The number of cross-overs was 

drawn from a Poisson(5) distribution assuming no interference (Coster et al., 2010).During 

these 1000 generations the number of haplotypes was 500, implying an effective population 

size of 250 individuals. Then, 400 of the simulated haplotypes were used to form 200 

individuals. Selfing of these individuals for 8 generations led to 200 lines. During selfing 

mutation rate was set to zero to decrease the number of loci with very low minor allele 

frequency as done in similar simulations(Coster et al., 2010). 

The average r2 between adjacent markers was used as the measure of linkage 

disequilibrium. For the estimation of r2, the calculations were done using the markers that 

have a minor allele frequency above 0.05. The 200 lines were crossed in a factorial design to 

simulate the genotypes of 10000 hybrids. The simulation of this population was done using 

the package “HaploSim” for R. The next steps of the simulation were iterated 20 times. 

 

2.3. Simulation of genotypic and phenotypic values 

QTLs were assigned to 20 markers with MAF above 0.1. This level of MAF is used in 

several other simulations(Daetwyler et al., 2013). The values of the additive effects are 

presented in Appendix I. All QTLs were assigned positive dominance effects of 50% of the 

additive values. The QTL genotypes were used to calculate the total genotypic values of the 

lines and hybrids. A deviate sampled from a normal distribution was added to these values 

to estimate the phenotypic values. The mean of this normal distribution was zero and the 

standard deviation calculated in order to simulate specific value of the broad sense 

heritability coefficient.  

 

2.4. QTL mapping 

In general, QTL mapping was simulated in an approximate way in order to be 

automated and applied in every iteration.Two contrasting lines were selected on the basis of 

their genotypic values.An F3 population was simulated and the genotypic and phenotypic 

values were estimated as described above. Using the package “qtl” for R, a one qtl scan was 

performed using on average 200 markers. The average distance between adjacent markers 

was 3 cM and the maximum 9 cM. The result included the most significant peak position of 

every chromosome, with a minimum LOD score of three. The marker with MAF above 0.1 
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that was closer to each peak was selected to be treated like a functional marker. This marker 

was selected from all the available markers and the distance from the estimated peak of the 

QTL was on average 0.015cM. These markers are not functional since they do not constitute 

causative variation (Andersen and Lübberstedt, 2003)and will be referred to in this text as 

linked markers. 

The result roughly represents a case where the set of QTLs that are known does not 

include all the most important QTLs that segregate in the training population. This is led by 

identifying only one QTL per chromosome.  

 

2.5. Genomic selection 

2.5.1. General 

The training population consisted of a random subset of the 10000 hybrids. For 

genomic selection, 1000 markers were randomly chosen from the available markers that 

have MAF above 0.05. For every individual of the training population three phenotypic 

values were simulated assuming no genotype by environment interaction. The data were 

analyzed by RR-BLUP, RR-BLUP/FIXED and W-BLUP. In all steps described below, analysis was 

done on the level of the replication, not on genotype means. 

 

2.5.2. RR-BLUP 

RR-BLUP was applied as explained in section 1.2.2.4. In the design matrices (eq.6), 

the additive effects are coded as {aa,Aa,AA}={-1,0,1} and the dominance effects are coded as 

0 or 1 for the homozygotes and heterozygotes respectively following the F infinity metric 

(Technow et al., 2012, Zhao et al., 2014). 

Solving the MME (eq. 7), function “make.positive.definite” from Corpcor package for 

R was used when the system was computationally singular(Technow et al., 2012) 

The variance components that define the shrinkage parameters were estimated by 

REML as described in the introduction using the R package “lme4”. 

The two variance components of GCA effects were pooled as no heterotic pools are 

assumed or simulated. The pooled variance of GCA effects was divided by the number of 

markers to estimate the variance of the additive marker effects, assuming equal variance for 
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all markers (Technow et al., 2012, Zhao et al., 2014). In the same way, the variance of 

dominance marker effects was estimated by the variance of SCA effects. 

 

2.5.3. RR-BLUP/FIXED 

The same approach as before was used, but the effects of linkedmarkers were fitted 

as fixed. Model: 

𝑦 = 𝜲𝐴𝐹
𝛽𝐴𝐹

+ 𝜲𝐷𝐹
𝛽𝐷𝐹

+ 𝒁𝐴𝑢𝐴 + 𝒁𝐷𝑢𝐷 + 𝑒                                                          [eq. 11] 

The mixed model equations are the same as before, with the vector 𝟏𝒏 replaced by 

the (n×2f) matrix𝐗which is the combination of 𝜲𝐴𝐹
 and 𝜲𝐷𝐹

 . 

 
 
 
 
 
𝛽 𝐴𝐹

𝛽 𝐷𝐹

𝑢 𝐴
𝑢 𝐷  

 
 
 
 

=  

𝜲𝐓𝐗 𝐗𝐓𝐙𝐀 𝐗𝐓𝐙𝐃

𝐙𝐀
𝐓𝐗 𝐙𝐀

𝐓𝐙𝐀 + λA𝐈𝐦 𝐙𝐀
𝐓𝐙𝐃

𝐙𝐃
𝐓𝑿 𝐙𝐃

𝐓𝐙𝐀 𝐙𝐃
𝐓𝐙𝐃 + λD𝐈𝐦

 

−𝟏

 

𝐗𝐓𝑦

𝐙𝐀
𝐓𝑦

𝐙𝐃
𝐓𝑦

 [eq. 12] 

In the mixed model analysis of the factorial design for the estimation of combining 

ability effects, the linked markers are also fitted as fixed. 

𝑦 = 𝜲𝐴𝐹
𝛽𝐴𝐹

+ 𝜲𝐷𝐹
𝛽𝐷𝐹

+ 𝒁𝐹𝑢𝐺𝐶𝐴𝑓𝑒𝑚𝑎𝑙𝑒 + 𝒁𝑀𝑢𝐺𝐶𝐴𝑚𝑎𝑙𝑒 + 𝒁𝑆𝑢𝑆𝐶𝐴 + 𝑒           [eq. 13] 

This procedure is slightly different from including linked markers as fixed factors in a 

mixed model of marker effects and estimating the variance components directly. The reason 

is that the variance of the linked markers is included in the GCA variance. However, it can be 

argued that when many markers are used, the variance of the linked markers is also 

captured by the variance of the genome-wide markers. 

For the selection of the markers that will be finally fitted as fixed, a backward 

elimination procedure was followed, without ranking the candidate markers.The training 

population was divided in training and test set in a 5-fold cross-validation scheme, meaning 

that the model was build using 80% of the training population and validated in the remaining 

20%. The mean prediction accuracy (Pearson correlation coefficient between the GEBVs and 

the phenotypes of the test set) over the five folds was used as the elimination criterion. 

When all candidate linked markers were dropped from the model, standard RR-BLUP was 

performed instead. 
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2.5.4. W-BLUP 

W-BLUP was applied as described in the introduction. In the multiple regression of 

the linked marker effects, the additive effects were fitted first in the model, followed by the 

dominance effects. W-BLUP also included the same elimination procedure as RR-

BLUP/FIXED. 

 

2.6. Estimation of prediction accuracy 

The breeding population consisted of a random set of 3000 hybrids that are not 

present in the training population. Prediction accuracy is estimated as the Pearson 

correlation coefficient between the GEBVs and the simulated genotypic values. 

 

2.7. Other simulations 

2.7.1. Relatedness between training and breeding population 

In additional scenarios, the training population included only hybrids derived by a 

random sample of 50 male and 50 female parents. This way, the 10000 hybrids were divided 

in three sets. The set “H2” of 2500 hybrids with both parents used for the training 

population, the set “H1”  of 5000 hybrids with only one parent used and the set “H0”  of 

2500 hybrids with none of the parents used. According to this division three breeding 

populations were defined consisting of 1500 hybrids each. 

This approach was included in the base scenario, estimating three prediction 

accuracies for every method.The elimination procedure was based on the cross-validation 

prediction accuracy in the same way as in the first scenarios, where the test and training sets 

were complementary random subsets of the training population. 

 

2.7.2. Number of linked markers and distance from the gene 

In order to gain more insight in the performance of the methods, more sets of 

scenarios were formed. These scenarios did not include QTL mapping or elimination, but 

included the division of the hybrids in the three sets described above. The other parameters 

were as in the base scenario. 
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Eight scenarios were run, where the genes were assumed known and were used as 

functional markers to compare the three methods. Different number of the most important 

genes (1, 2, 3, 4, 5, 6, 10 or 20) was fitted to test the number of genes and extent of 

explained variance that maximizes the gain of incorporating this information. 

In addition, to test the effect of not using the causative mutation as linked marker, 

six scenarios with varying distance between the linked marker and the gene were run. 

Rare errors in the simulations occurred due tomarkers that were not polymorphic in 

the training set. In these cases, the corresponding iterations were replaced.  
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3. Results 

3.1. Main Results 

The results obtained from 20 iterations of the scenarios described in tables1 and 2 

were used to graphically represent the effect of four parameters (training population size, 

heritability, trait architecture and linkage disequilibrium) on the prediction accuracy. 

In general, high values of prediction accuracy were obtained in all scenarios and no 

further increase was achieved by incorporating QTL information.  

The size of the training population had high impact on the prediction accuracy 

(Figure 1).  

 

Figure 1: Effect of training population size on prediction accuracy 

The effect of heritability is also apparent in Figure 2. 
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Figure 2: Effect of broad sense heritability coefficient on prediction accuracy 

In contrast, prediction accuracy was independent of trait architecture (Figure 3) 

(Appendix I). 

 

Figure 3: Effect of trait architecture on prediction accuracy 

Effect of LD was observed, but prediction accuracy was very high even for low values 

of r2 between adjacent markers (Figure 4). 
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Figure 4: Effect of linkage disequilibrium (r2 between adjacent markers) on prediction accuracy 

 

3.2. Additional Results 

3.2.1. H2, H1 and H0 hybrid sets 

In order to explain the high accuracy, the results of the alternative base scenario are 

presented in Figure 5, allowingcomparing the prediction accuracy of the three hybrid sets. 

 

Figure 5: Prediction accuracy of the three methods for the three different sets of hybrids 
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3.2.2. Known genes 

Assuming a varying number of genes known (always the ones with the highest 

simulated effect), the prediction accuracies observed for the three different hybrid sets are 

presented separately in the Figures 6 to 8 The prediction accuracy obtained by using a 

multiple regression model of the functional markers is also depicted in the figures. 

In these scenarios W-BLUP run into an error, as the high variance explained by the 

functional markers led to the estimation of negative variance (and negative λs) for the 

genome-wide markers. 

All methods performed better when applied to the hybrid set “H2”. 

 

Figure 6: Effect of the number of fitted known genes on prediction accuracy for hybrids with both 
parents evaluated indirectly in the training population 
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Figure 7: Effect of the number of fitted known genes on prediction accuracy for hybrids with only one 
parent evaluated indirectly in the training population 

While the prediction accuracy of RR-BLUP was strongly affected by the relation 

between breeding and training population, the other methods performed almost the same 

when applied to hybrid set “H1” or “H0”.  

 

Figure 8: Effect of the number of fitted known genes on prediction accuracy for hybrids with none of 
the parents evaluated indirectly in the training population 
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the gene itself, W-BLUP is not facing a problem and its performance is similar to RR-

BLUP/FIXED.  

 

 

Figure 9: Effect of the distance between the linked marker and the gene on prediction accuracy for 
hybrids with both parents evaluated indirectly in the training population 

 

 

Figure 10: Effect of the distance between the linked marker and the gene on prediction accuracy for 
hybrids with only one parent evaluated indirectly in the training population 
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Figure 11: Effect of the distance between the linked marker and the gene on prediction accuracy for 
hybrids with none of the parents evaluated indirectly in the training population 
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4. Discussion 

4.1. Parameters that affect prediction accuracy 

Among the four parameters that were studied, the architecture of the trait did not 

have any effect on prediction accuracy (Figure 3).On the other hand, the size of the training 

population and heritability obviously affected prediction accuracy (Figures 1 and 2). 

The effect of linkage disequilibrium was surprisingly small and high prediction 

accuracy could be achieved even for low levels of LD. This can be explained by the fact that 

both parents of all hybrids of the breeding population were used as parents of hybrids 

evaluated in the training population. In this case, the individuals of the breeding population 

are not unrelated to the ones in the training population and both their paternal and 

maternal haplotypes are evaluated in the training population in various background. Also, in 

a training population of 510 hybrids derived from a set of 100 male and 100 female lines, 

every parent is represented by approximately 5 hybrids. This results in prediction accuracies 

that are closer to the ones achieved when predicting the breeding values of the training 

population. Under these circumstances, the LD levels needed are much lower. 

The same explanation can answer the generally high values achieved in all of the 

first scenarios. 

When the training population was not random but only a subset of the parents was 

used, very high differences were observed between the three sets of hybrids. The prediction 

accuracy of the “H2” set was even higher thanin the first scenarios because fewer parents 

were used for the same size of training population resulting in the evaluation of 10 hybrids 

of each parent. The other sets of hybrids had significantly lower prediction accuracy. The 

difference between the different sets of hybrids is much higher thanin similar 

studies(Technow et al., 2012). This can be due to the lower LD and the smaller size of the 

training population. 

 

4.2. Comparison of methods 

In the first scenarios, no gain in selection accuracy could be achieved by 

incorporating QTL information. The explanation is obviously related with the fact that the 

breeding population consisted of hybrids with both parents evaluated indirectly in the 
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training population. The contribution of the linked markers in the training population was 

already captured by the standard RR-BLUP model. 

It should be mentioned that the error of W-BLUP mentioned above that led to 

negative λs for the genome-wide markers, was also observed in 5 of the first scenarios. 

Specifically, when h2=0.3 this error occurred with frequency 0.3, for h2=0.45 with frequency 

0.2, for training population size of 100 with frequency 0.25, for TP size=300 with frequency 

0.1 and for r2=0.123 with frequency 0.05. This led to the lower average prediction accuracy 

presented in Figures 1, 2 and 4. 

The elimination procedure was considered part of W-BLUP and RR-BLUP/FIXED. It 

can be concluded that in the studied scenarios elimination successfully prevented decrease 

in prediction accuracy, that could have been a possible result of including information of 

QTLs with low explained variance in the breeding population. This was apparent in the 

results when heritability was not below 0.6 and training population size not below 300. For 

low heritability or small training population size, the 5-fold cross-validation prediction 

accuracy was not an accurate estimator of the prediction accuracy in the breeding 

population.However, generalization should be avoided for cases with different relatedness 

between training and breeding population. 

Comparing the three methods specific for each set of hybrids (Figure 5), it is 

apparent that incorporating QTL information can be advantageous when the prediction 

accuracy of RR-BLUP is low. Thisdifference between RR-BLUP and the other methods could 

be underestimated because the eliminationcan drop from the modellinked markers that 

cannot increasethe cross-validation prediction accuracy, even if these markers would be 

useful for prediction in the “H1” or “H0” hybrid sets. For example in this scenario that 

included QTL mapping, elimination and prediction specific for every hybrid set, in RR-

BLUP/FIXED (W-BLUP) in 7 (2) out of 20 iterations no linked markers were included and in 9 

(12) out of 20 only one was included. Furthermore, the standard deviations depicted in the 

Figure 5 are derived from only 20 iterations. 

Fitting genes that are assumed known (Figures 6 to 8), the results for the “H2” set 

are in accordance to literature showing that fitting genes as fixed factors is beneficial, when 

the explained variance is high. Furthermore, RR-BLUP/fixed does not perform well when 

many genes are fitted(Bernardo, 2014). 
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Interestingly, in “H1” set, RR-BLUP/FIXED is also outperformed by RR-BLUP when 

only one gene is fitted. This is in contrast to prediction of set “H2”, probably because in that 

case the random genome-wide part of the model compensates for the low explained 

variance of the fitted gene. Also, in contrast to RR-BLUP,the methods that incorporate QTL 

information perform the same forthe hybrid sets “H1” and “H0”. These results stress the 

strong effect of predicting hybrids of “H2” type, implying that prediction of “H1” hybrids is 

closer to prediction of “H0” than of “H2” type, at least when LD is not high. 

Varying the distance of the linked marker from the gene reveals that it can be 

advantageous to incorporate QTL information when the distance is less than 1cM and the 

predictive ability of the random genome-wide part of the model is very low (Figure 11).The 

importance of this finding should be further investigated, because if the genome-wide part is 

not capturing much information, phenotypic selection could be a more efficient method. 

Including the prediction accuracy of a multiple regression model, shows how RR-

BLUP/FIXED combine the random genome-wide part of the model and the fixed part. In the 

case of fitting known genes it seems that predicting only based on the known genes would 

be optimal. Of course such prediction would ignore the rest of the QTLs, with possible 

consequences on the decay of prediction accuracyor, in the case of hybrid selection, the 

accuracy of predicting the best hybrids. 

Concerning W-BLUP, the problem of estimating negative λs occurs when the 

variance of the additive (or dominance) functional markers effects is higher than the GCA (or 

SCA) variance. A naïve solution would be to set the negative variances to ~0, leading to very 

high λfor the genome-wide markers. This was attempted (results are not presented), but the 

problem persisted when only the additive (or only the dominance) effect was artificially set 

to zero. Another solution could involve a different method for estimating the GCA and SCA 

variance. If these components are estimated by a fixed-effects model instead of a mixed 

model, the obtained estimates are slightly higher but the problem still remains for the 

additive variance. A possible explanation for this is that there is correlation between the 

additive and dominance effects, and fitting the additive effects first when the variance of the 

linked markers is estimated leads to overestimation of additive and underestimation of 

dominance effects. It should be also studied whether there is a different metric for coding 

the effects instead of the F infinity metric (that was used in this study and in the study that 

introduced W-BLUP) that could decrease this correlation. Alternatively, a more 

straightforward approach that could be equivalent of W-BLUP is to estimate the variance 
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components by REML analysis of a mixed model that includes the linked markers as random 

but not with the common variance of the genome-wide marker effects. 

RR-BLUP/FIXED is clearly not able to include more than 6 effects. W-BLUP is worth 

improving because it may be able to accommodate more information. This is supported by 

the fact that when elimination was included in the scenario, W-BLUP was finally fitting more 

linked markers than RR-BLUP/FIXED, resulting in an average number of 1.53 markers for W-

BLUP and 1.13 markers for RR-BLUP/FIXED. 

To summarize the results concerning the incorporation of information coming from 

QTL mapping experiments, the scenario that includes QTL mapping and prediction in the 

three hybrid sets shows that it is possible to increase the prediction accuracy. The results 

from the scenarios with varying distance between the linked marker and the gene, imply 

that the increase in prediction accuracy depends on the accuracy of the QTL mapping 

experiment in estimating the location of the QTL. The distance of 1cM reported above as an 

approximate threshold, will depend on the LD span. It is not easy to predict the results for a 

population with higher LD. If LD span is longer, it will lead to higher explained variance of a 

linked marker and at the same time it will increase the prediction accuracy of standard 

genomic selection methods. Further research will be mandatory in order to answer this 

question. 

4.3. Further research 

First of all, the effect of LD, heritability, population size and trait architecture on the 

performance of these methods should be studied for all types of hybrids. Also, other types 

of breeding schemes should be used including the long-term response to selection that is 

reported to be influenced by fitting known genes as fixed effects(Bernardo, 2014). 

RR-BLUP/FIXED can be applied in more straightforward procedure using more 

powerful REML software that can estimate the variance of effects directly. 

W-BLUP should be improved to avoid the error that was observed, because possible 

superiority of W-BLUP over RR-BLUP/FIXED could be observed in case of including many 

linked markers that combined will have high explained variance. 

These methods can be compared with other possible alternatives like the weighted 

G-BLUP (de los Campos et al., 2013b, Su et al., 2014). 
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It would be interesting to compare any method that can incorporate QTL 

information with methods that do not assume common variance for marker effects. 

Bayesian methods could have a better performance than RR-BLUP when major genes are 

present. 

Finally, GWAS has been applied in identifying markers that could be specially treated 

in genomic selection. It would be interesting to combine results from GWAS on the training 

population and QTL mapping results reported in literature. This way, the conditions under 

which inclusion of QTL mapping results could be beneficial, can be identified.  
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5. Conclusions 

The results of this study in combination with the brief available literature imply 

thatconditionally, prediction accuracy can increase by including available QTL information. 

These conditions can be generally defined as high variance of the linked marker effects and 

low predictive ability of the genome-wide markers.  

It can be also concluded that RR-BLUP/FIXED is apotent method for introducing prior 

information. The verified limitations of this method when many markers are specially 

treated, creates the need for the development of alternatives. In order for W-BLUP to serve 

this role, the way of its implementation needs to be strengthened and clarified. 

Further research may specify cases where the gain in prediction accuracy relative to 

standard methods is maximized. Furthermore, the methods of collecting and introducing 

prior information can be improved to combine GWAS, QTL mapping, characterized genes 

and previous GS models. 
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7. Appendices 

7.1. Appendix I: Size of simulated QTL effects 

 

 

Figure12:  Size of simulated QTL effects of a very simple trait regulated by 5 QTLs 

 

 

Figure13:  Size of simulated QTL effects of a simple trait regulated by 10 QTLs 

 

 

Figure14:  Size of simulated QTL effects of a medium trait regulated by 20 QTLs 
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Figure15:  Size of simulated QTL effects of a complex trait regulated by 50 QTLs 

 

 

Figure26:  Size of simulated QTL effects of a complex trait regulated by 100 QTLs 
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