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Abstract and Acknowledgements 

Abstract 
ASSA is a public-domain open-source library of algorithms for stochastic sensitivity analysis in 
ANSI C. It is a documented collection of basic and more sophisticated algorithms in that field.  
 
Acknowledgements 
The research enabling the construction of ASSA has been performed in the framework of 
strategic research of Biometris and in various consultation projects. The actual writing up was 
supported by WOT N&M, the Dutch Statutory Research Task Unit for Nature & the Environment 
at Wageningen University and Research Centre. The stimulating conversations with Harm 
Houweling of that office constituted vital support. I am grateful to Jacques Withagen of 
Biometris for code-checking and comparison of ASSA results with results from other software.  





Algorithms for Stochastic Sensitivity Analysis 9 

1 Introduction 

In stochastic sensitivity analysis (SSA), the imperfectly known inputs of a 
mathematical model are stochastic variables. The joint probability distribution of 
these inputs is supposed to be known at the start of the analysis, so quite some 
hard work has to be done in advance. The analysis assesses the effects on model 
output caused by the uncertainty in distinct inputs. These inputs may comprise 
parameters, exogenous variables, initial conditions and so on. 

Instead of the effect of distinct individual inputs, one may just as well 
analyse the effect of distinct groups of inputs.  

The study of the combined effect of all uncertain inputs is often called 
uncertainty analysis.  

The adjective ‘stochastic’ in SSA is added to distinguish the subject from 
all kinds of deterministic sensitivity analysis, but very often SSA is plainly called 
sensitivity analysis. Some authors restrict the term SSA to stochastic differential 
equation models, but we will use the term in the broader sense just described. 

In the type of Monte Carlo analysis discussed here, one constructs a 
random sample from the joint distribution of the inputs; the model is run for each 
sampled input vector (sometimes very computer-intensive); after that, one looks 
what the input variation does to the output. Usually, the computational effort is 
nearly proportional to the number of model runs, so efficiency is sought for in 
minimisation of the required number of runs (and nowhere else). The point is that 
the results of the analysis become more accurate as the number of runs increases. 

Various software products exist for SSA. Saltelli et al. (2000) contains an 
overview of software available in the year 2000. The software packages 
mentioned there are closed in the sense that you can hardly change or add 
components. The section in the same book on generic algorithms is still far from 
complete. Thus, there does not seem to exist a fairly complete, coherent, and 
documented collection of algorithms for SSA in a basic programming language 
like C or Fortran. The ASSA project has the purpose to begin filling this gap.  

The collection is available in the public domain, in such a form that 
everyone can use the software freely. It is hoped that users will suggest 
improvements or additions. The long-term goal is a collection of documented 
algorithms in the spirit of the famous series of Numerical Recipes (e.g. Press et 
al., 1992), but with a slightly different legal status.  

Model builders should be enabled to incorporate the algorithms into their 
own software, for instance in order to accompany model statements with an 
indication of inaccuracy due to input uncertainty. Another application is inclusion 
of SSA algorithms into frameworks for building, coupling and analysing models.  

The language used is ANSI C, written in such a style that translation into 
another basic programming language should not give rise to serious problems.  

At present, ASSA consists mainly of conventional algorithms for sensitivity 
analysis. Apart from auxiliary routines, the algorithms can be divided into: 

• algorithms for constructing model input samples; and 
• algorithms for analysing the corresponding model output samples. 
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All sensitivity analyses in the current version of ASSA are variance-based. 
The long-term goals are: 
• a gradually improving and extending collection of basic and more 

advanced algorithms for SSA, leading to a moderate form of 
standardisation; 

• uniform description of these algorithms via C-programs; 
• a form of publication inviting comments and additions, while enabling 

flexible use of the algorithms. 
This report is a manual, not a theoretical exposition. Appendix 1 is an 

exception: it describes some details that we could not easily find in the literature 
for sensitivity analysis. For an overview of the theory, see for instance Saltelli et 
al. 2000). For theoretical details, see the literature cited. 
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2 Overview of algorithms  

2.1 Input generators 

Random generators are used to construct a sample from the distribution of 
uncertain parameters or other model inputs. In the present version, the statistical 
properties of the inputs can be described in terms of their grade correlation (often 
loosely called rank correlation). Each of the individual variables is defined through 
the type and parameters of its distribution.  

There are two basic random generators: uniform(0,1) and multinormal(μ, 
Σ). For the rest, the drawing of random samples is done in two steps.  

The first step draws a sample from the k-dimensional unit-hypercube. Each 
of the k variables thus sampled is more or less randomly and more or less 
uniformly distributed over the interval (0,1). Some examples: independent; 
dependent with given grade correlation; latin hypercube (McKay et al., 1979; Iman 
and Conover, 1980; Stein, 1987; Owen, 1992); latin hypercube with forced rank 
correlation (Iman and Conover, 1982; Helton and Davis, 2002); and – by way of 
example – a systematic sample constructed from a saturated main-effect design. 

The next step transforms these (0,1) variables into variables with the 
required distribution. The distributions currently available are: uniform, triangular, 
normal, log-normal, beta and gamma. Auxiliary routines are supplied to derive the 
standard parameters of distributions from information about means and variances, 
or about quantiles. 
 
 
2.2 Analysis 

In ASSA's present version, all sensitivity analyses are variance-based, i.e. they 
perform some kind of analysis of variance on the model output. During the 1990's 
there seems to have grown consensus that this form of sensitivity analysis is very 
adequate for most purposes. The algorithms provide the possibility to estimate the 
variance contributions of groups of inputs, which often facilitates the interpretation 
of the results, especially when variables from different groups are stochastically 
independent. There is an algorithm for the most common form of sensitivity 
analysis: the one based on linear regression. We give a simple example of a 
regression-free sensitivity analysis. It is shown how one can calculate a bootstrap 
confidence interval for the sensitivity estimates from these analyses if the input 
sample consists of independent draws from the input's uncertainty distribution. 

An analysis based on spline-regression is still on the list of wishes. An 
algorithm for winding stairs analysis (Jansen et al. 1994; Jansen, 1996) is in the 
planning.  

For the time being, only two simple test functions are included, from which 
sensitivity properties can be calculated analytically.  
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2.3 Auxiliary routines 

ASSA contains routines to summarise the statistical properties of a sample: 
variance matrix, correlation matrix, mean, variance, median and rank-correlation. 
There is an algorithm to check if a symmetric matrix is positive definite. Graphical 
routines are not included. 
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3 Supporting software required 

The current version of ASSA frequently uses algorithms from Numerical Recipes 
in C (NRC; Press et al., 1992). Thus, you may only use this version of ASSA in 
applications where you are entitled to use the algorithms from Numerical Recipes. 
The NRC procedures used for ASSA serve mainly to allocate and free memory 
space for vectors and matrices, to generate uniform random numbers, and to 
calculate special functions relating to probability distributions. 

The NRC utility files nrutil.h and nrutil.c are used primarily 
because their contents are called by the NRC routines used in ASSA, but also to 
allocate and free memory space for vectors and matrices. For example the 
procedures vector, free_vector, matrix, free_matrix, 
ivector, free_ivector.  

The NRC procedures used are: ran1, betacf, betai, gammln, 
gammp, gasdev, gcf, gser, indexx. These and all other NRC 
procedures are prototyped in nr.h. 

We used the ANSI-C version 2.10 of numerical recipes. If you have an 
older version 2.x it will probably work just as well, but you can obtain an upgrade 
via www.nr.com.  
 
Side effects 
ASSA inherits the ease-of-use of NRC's vector and matrix routines, but also their 
risk-of-use. A programming error like offering a 4-by-100 matrix to a procedure 
that expects a 100-by-4 matrix will go unnoticed by the system. You may call 
yourself lucky if such programming errors cause a halting of the execution by the 
operating system. The latter would happen in the opposite case of offering a 100-
by-4 matrix to a procedure that expects a 4-by-100 matrix. Remember that a C-
programmer is supposed to know what he is doing, and carefully read the NRC 
sections on vectors and matrices. 

By the inclusion of nrutil.h and nrutil.c, NRC constructs like 
DMAX or DSQR were available, but they have not been used in the recipes 
themselves; possibly in examples. With some compilers, these NRC constructs 
cause warnings that variables have been declared but not been used. To suppress 
such warnings, you might adapt the NRC files, but we have chosen to use NRC as 
it is. 
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4 Conventions 

4.1 Data types 

All floating point numbers are of the double type, all integers are of the (signed) long 
type. Even the function main is of the long type. The NRC procedures are adapted to 
this convention by brute force, namely by stating in the header file assa.h 
 
/* include NRC ANSI prototypes */ 
#define float double 
#define unsigned 
#define int long 
#ifndef ANSI 
  #define ANSI 
#endif 
#include "nrutil.h" 
#include "nr.h" 
#undef float 
#undef unsigned 
#undef int 
 
Similarly, in the file assa.c, we state 
 
/* include NRC ANSI routines */ 
#define float double 
#define unsigned 
#define int long 
#ifndef ANSI 
  #define ANSI 
#endif 
#include "nrutil.c" 
#include "ran1.c" 
#include "gasdev.c" 
#include "betacf.c" 
#include "betai.c" 
#include "gammln.c" 
#include "gammp.c" 
#include "gcf.c" 
#include "gser.c" 
#include "indexx.c" 
#undef float 
#undef unsigned 
#undef int  
 
The substitution of long for int would not generate correct C if one uses phrases 
like long int, but these do not occur in the NRC-files. 
 Full exploitation of the change from float to double in a numerical procedure, 
would require that several precision parameters of the procedure are adapted. If you 
really want to make such adaptations in the NRC routines used, you will find useful 
hints in the C++ version of Numerical Recipes, which also has the double type as 
default (Press et al., 2002; Appendix C).  
 A type boolean is made available by the next statement in assa.h 

 
typedef enum {false, true} boolean 
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4.2 Special constants  

Two special constants are defined in assa.h through 
 
#define ASSA_MISSING -99999. 
#define ASSA_EPS 3.0e-7 
 
 

4.3 Names for frequently recurring items 

N sample size 
k number of input variables 
X k-by-N input sample matrix 
U k-by-N matrix with columns in the unit hypercube 
y N-vector of model output corresponding to X 
μ mean (called mu in the code) 
σ2 variance (called sigmasq in code); ‘v’ is also used 
V variance-covariance matrix 
C correlation matrix  
 
 

4.4 Symmetric matrices 

In ASSA, symmetric double matrices – usually variance matrices – are allocated as 
square matrices, but only the left lower triangle is used. Thus, if V is a k-by-k variance 
matrix, you only need to assign values to the elements Vij with j≤i≤k. 
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5 Elementary procedures 

Some elementary procedures are given, without much explanation. The procedures are 
required occasionally, but they are no typical ASSA-material. We hope that it is 
sufficiently obvious what these procedures have to do, and how they do it. If not, 
please read the C-code. 
 
 
5.1 Summary statistics 

Procedure summary calculates mean, variance, minimum, maximum and median of 
N-vector x = (x1 ... xN). Pointers to doubles where the results must be stored are 
given as arguments. 
 
void summary(double *x, long N, 
        double *mean, double *var,  
        double *min, double *max, double *med) 
 
 Procedure msummary calculates means, variances, minima, maxima, medians 
and k-by-k variance matrix of k-by-N sample matrix X.  
 
void msummary(double **X, long k, long N,  
        double *mean, double *var, double *min, double *max,  
        double *med, double **V) 
 

The results of msummary are stored in existing k-vectors mean, var, min, max, med, 
and in existing k-by-k matrix V. Only the left lower triangle of V is filled, the rest is 
left unchanged. 
 Function quantile gets an N-vector x, which is treated as a sample from a 
continuous distribution F. It calculates the ‘prob-quantile’: an estimate of the value ξ 
such that the F(ξ) = prob.  
 
double quantile(double prob, double *x, long N) 
 
 The next procedure calculates the k-by-k variance matrix V of k-by-N matrix 
X, which is treated as a sample of k N-vectors. 
 
void calc_varcov(double **X, double **V, long k, long N) 
 

 Void calc_corr treats k-by-k matrix V as a variance-matrix, and calculates 
the corresponding k-by-k correlation matrix C. Only the lower triangular part of V is 
taken into account, and only the lower triangle of C is assigned. 
 
void calc_corr(double **C, double **V, long k) 
 

 Procedure  calc_rank calculates the ranks of N-vector x. If all x-values are 
different, the lowest x-value gets rank 1 and the highest rank N. Duplicate or 
multiplicate x-values get different ranks. 
 
void calc_rank(double *x, double *rank, long N) 
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5.2 Matrix operations 

Procedure cholesky calculates the lower triangular square root, L say, of a positive 
definite k-by-k symmetric matrix S, in the sense that L.LT = S, where LT is the 
transposed of L. The k-by-k matrix L must have been declared in advance. The above-
diagonal part of L is filled with zero's. As stated earlier, only the left-lower triangle of 
symmetric matrix S must have values, the upper part is ignored.  
 
void cholesky(double **S, double **L, long k) 
 
The procedure is used in ASSA for the generation of multinormal random variables. 
 Procedure cholesky is also used as a step in the inversion of a positive 
definite matrix; it works as follows. Routine lowinv calculates the inverse of k-by-k 
lower-triangular matrix L and puts the result in existing n-by-n lower triangular matrix 
LINV. The above-diagonal part of L is ignored; the above-diagonal part of LINV is 
filled with zero's.  
 
void lowinv(double **L, double **LINV, long k) 

 
A variance matrix, or any other positive-definite symmetric matrix, can be simply 
inverted by Cholesky decomposition and inversion of the ensuing lower-triangular 
matrix. Such an inversion will be applied in the method of Iman and Conover to 
construct input samples with a prescribed rank correlation (see chapter: Generators in 
the Unitcube). 
 Boolean function posdef checks if k-by-k matrix S is positive definite by 
going through the steps made by cholesky, but instead of issuing an error message, 
it returns false if S is not positive definite (and otherwise true).   
 
boolean  posdef(double **S, long k). 

 
 

5.3 Utilities 

Procedure error is used to end program execution, after issuing a message on the 
standard error channel stderr.  
 
void error(char text[]). 
 
It may be used like this: 
 
error("cholesky: input matrix not positive definite"). 
 

 On the other hand, void warning only issues a message and allows the 
program to continue: 
 
void warning(char text[]). 
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6 Basic random generators 

The uniform(0,1) random generator in ASSA is ran1 from NRC. It is the heart of all 
ASSA's random generators. In a program using ASSA, the seed is a long int, 
seed say, that should be set to some negative value once, before any of the random 
generators are called. This will initialise all random generators, since all of them are 
based on ran1. Every random generator used afterwards should use a pointer to this 
one and only seed as argument. There seems to be no need to reinitialise the generators 
since ran1 has a very long cycle, but if you really want to reinitialise the random 
generators within a program, assign a negative value to seed. 
 A uniform random long int from the set {1, 2, ... N} can be drawn via 
 
long any(long N, long *seed) 
 
which rounds N*ran1(*seed) to the nearest larger integer. 
 You can fill an existing long-vector x of size N with a random permutation of 
the vector (1, 2, ... N) by applying 
 
void perm(long *x, long N, long *seed) 
 
This function draws any number out of 1...N, then from the remaining N-1 numbers, 
and so on. The main task of the procedure is a bookkeeping of the numbers that have 
not yet been drawn. The permutation is returned in long-vector x.  
 You can fill an existing long-vector x of size N with a bootstrap sample of the 
vector (1, 2, ... N) by applying 
 
void boot(long *x, long N, long *seed) 
 
This function draws N times any number out of 1...N. The bootstrap sample is returned 
in long-vector x. The procedure can be used as follows: let y be an N-vector, then 
y[x[1]], y[x[2]] ... y[x[N]] constitutes a bootstrap sample from y. 
 The standard normal random generator, having mean μ=0 and variance σ2=1, is 
NRC's gasdev, which internally calls ran1 as uniform(0,1) random generator (so it 
uses the same seed). 
 ASSA's multivariate normal generator 
 
void mnor_mat(double **X, double *mean, double **V, 
              long k, long N, long *seed) 
 
fills an existing k-by-N double matrix X. The N columns of the matrix constitute N 
independent draws from a k-dimensional normal distribution with mean vector mean 
and with k-by-k variance matrix V. Here, as everywhere in ASSA, k-by-k symmetric 
double matrices are allocated as full k-by-k square matrices, but only the lower 
triangle is used (see the Conventions section). The function checks whether the matrix 
V is positive definite. If not, a fatal error message is issued. The procedure is based on 
NRC's cholesky decomposition. The internally used boolean function posdef checks 
if V is positive definite by preliminary going through the steps to be made by 
cholesky.   
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Example 

 
In this example, a mean vector 0, and a variance matrix V are constructed for 8 
variables (all variances are 1, so the matrix also happens to be a correlation matrix). 
The covariances are 0 except V[3][2] and V[5][4], which are 0.75. A multinormal 
sample of size 1000 is drawn, with some seed, using mnor_mat. The properties of 
resulting sample matrix X are calculated using msummary. 

 
#include "assa.h" 
 
int main() 
{ 
   long seed=-290405, N=1000, k=8, i, j; 
   double **V, **X, *mean, *var, *min, *max, *med; 
   mean = vector(1, k); 
   var  = vector(1, k); 
   min  = vector(1, k); 
   max  = vector(1, k); 
   med  = vector(1, k); 
   V = matrix(1, k, 1, k); 
   X = matrix(1, k, 1, N); 
   for (i=1; i<=k; i++) { 
      mean[i] = 0; 
      for (j=1; j<=k; j++) V[i][j] = (i==j)? 1: 0; 
   } 
   V[3][2] = 0.75; V[5][4] = 0.75; 
   mnor_mat(X, mean, V, k, N, &seed); 
   msummary(X, k, N, mean, var, min, max, med, V); 
   for (i=1; i<=k; i++) { 
      for (j=1; j<=i; j++) printf("%6.2f ", V[i][j]); 
      printf("\n"); 
   } 
   printf("\n\n"); 
   printf("     j    mean     var     min     max     med\n"); 
   for (j=1; j<=k; j++) printf( 
        "%6ld  %6.3f  %6.3f  %6.3f  %6.3f  %6.3f\n", 
            j, mean[j], var[j], min[j], max[j], med[j]); 
   return 1; 
} 
 
#include "assa.c" 
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7 Probabiliy distributions and related functions 

Assa contains cumulative distributions and related special functions for the normal, 
lognormal, triangular, gamma and beta distributions. Firstly, there are the cumulative 
distribution functions. The inverses of the cumulative distribution functions can be 
used to transform uniform(0,1) random variables into random variables of other types. 
The inverse F-1 of some continuous cumulative distribution function F, has the 
property that F-1(F(x)) = x. It is well-known that for a random variable u with a 
uniform(0,1) distribution,  the transformation F-1(u) is random with distribution 
function F.  Some additional functions translate information about means and 
variances, or about a pair of quantiles, into the usual parameters of the distributions. 
 
 
7.1 Normal distribution 

The cumulative standard normal distribution, with mean 0 and variance 1, is 
implemented in the function 
 
double pnormal(double x) 
 
Argument x may have any real value; the function returns a double in the interval 
(0,1). The code for pnormal is based on an approximation formula in Abramowitz 
and Stegun (1965). The cumulative normal distribution with mean μ and variance σ2 
can be obtained through 
 
pnormal((x-mu)/sigma)  
 
 The inverse of pnormal, the function 
 
double invnormal(double p) 
 
delivers the quantity, say x, such that pnormal(x)=p.  If u is a uniform(0,1) 
random variable, then invnormal(u) is a standard normal variable, with mean 0 
and variance 1. The code for invnormal is based on an approximation formula in 
Abramowitz and Stegun (1965). A normal variable with mean μ and variance σ2 is 
obtained by 
 
mu + sigma * invnormal(u) 
 
with u uniform(0,1). 
 The next function translates information about a pair of quantiles of the normal 
distribution into the values of the mean and variance of that distribution. 
 
void q2m_normal(double *mean, double *variance, 
                double p1, double p2, double q1, double q2) 
 

in which q2m is shorthand for ‘quantiles to moments’. The quantile information has 
the following meaning. Let x denote the random variable; then p1 = P(x<q1) and p2 = 
P(x<q2). 
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Example 
 
The following example calculates and prints parameters mu and sigma of a normal 
distribution with 10% point 6 and 90% point 7. Next it constructs and prints a vector 
of 1000 independent draws from this distribution. 
 
#include "assa.h" 
int main() 
{ 
   long seed=-210205, N=1000, i; 
   double *z, mu, sigmasq, sigma, p1, p2, q1, q2; 
   z = vector(1, N); 
   p1 = 0.1; p2 = 0.9; 
   q1 = 6;   q2 = 7; 
   q2m_normal(&mu, &sigmasq, p1, p2, q1, q2); 
   sigma = sqrt(sigmasq); 
   printf("mu = %f sigma= %f\n", mu, sigma); 
   for (i=1; i<=N; i++){ 
      z[i] = mu + sigma*invnormal(ran1(&seed)); 
      printf("%f\n", z[i]); 
   } 
   return 1; 
} 
#include "assa.c" 
 
 
7.2 Lognormal distribution 

For the lognormal distribution a small number of functions is available in ASSA. 
The first one translates information about a pair of quantiles of the lognormal 
distribution into the values of the mean and variance of that distribution. 
 
void q2m_lognormal(double *mean, double *variance, 
                double p1, double p2, double q1, double q2) 
 
An error message follows if the information about the quantiles is inconsistent. 
 The next function translates the mean and variance of a lognormal distribution 
into the mean mu and the standard deviation sigma of the underlying normal 
distribution. 
 
void m2p_lognormal(double *mu, double *sigma,  
                   double mean, double variance) 
 
Thus, if z is normal with mean mu and standard deviation sigma, exp(z) is lognormal 
with mean and variance. 
 
Example 
 
This example shows how to draw a size-1000 sample from a lognormal distribution 
with mean 10 and variance 1. The mean, variance, minimum, maximum and median of 
the sample are calculated and printed.  
 
#include "assa.h" 
int main() 
{ 
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   long seed=-782393, N=1000, i; 
   double *x, mean=10, variance=1, mu, sigma, 
           smean, svar, smin, smax, smed; 
   x = vector(1, N); 
   m2p_lognormal(&mu, &sigma, mean, variance); 
   for (i=1; i<=N; i++) x[i] = exp(mu + sigma * gasdev(&seed)); 
   summary(x, N, &smean, &svar, &smin, &smax, &smed); 
   printf("%5.2f %5.2f %5.2f %5.2f %5.2f",  
           smean, svar, smin, smax, smed); 
   return 1; 
} 
#include "assa.c" 
 
Note that there are two stochastically equivalent ways to draw a standard normal 
random number, by gasdev(&seed) and by invnormal(ran1(&seed)). 
 
 
7.3 Triangular distribution 

The triangular distribution is included since its properties are so easy to understand, 
and since it provides a useful refinement of the uniform distribution as a rough and 
intuitive characterization of a random variable. It is parameterised by the locations of 
its lower bound, its top and its upper bound. For example, the next figure shows the 
density function of a triangular distribution with lower bound 0, top 2 and upper bound 
3. 
 
 

 
 
 The cumulative triangular distribution function has the prototype 
 
double ptriang(double x, double low, double top, double hig). 
 
Argument x may have any real value; the other arguments must satisfy low < hig 
and low ≤ top ≤ hig; the function returns a double in the interval (0,1); it returns 
0 if x≤low, and 1 if x≥hig. 
 The prototype of the inverse triangular distribution is given by  
 
double invtriang(double p, double low, double top, double hig). 
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7.4 Gamma distribution 

The gamma distribution is useful to describe positive random variables. Its density 
function has two parameters, ‘shape’ parameter a>0 and ‘scale’ parameter b>0:  
 
 f(x) = xa-1 e-x/b b-a / Г(a) 
 
(We explicitly mention this density function because the gamma distribution is not 
always parameterised in the same manner.) Its mean is μ = a b; its variance σ2 = a b2. 
 The cumulative gamma distribution function is calculated by the function 
 
double pgamma(double a, double b, double x) 
 
the function returns a double in the interval (0,1). The code for this function uses 
NRC’s incomplete gamma function. 
 The prototype of the inverse gamma(a, b) distribution is 
 
double invgamma(double p, double a, double b)  
 
This inverse is calculated via bisection on the cumulative distribution function 
pgamma. The precision of the result will probably suffice for most purposes, but you 
may wish to alter the code for more precision. 
 The next procedure translates the values of the mean and variance of a gamma 
distribution into the corresponding values of the parameters a and b. 
 
void m2p_gamma(double *a, double *b, double mean, double variance) 
 
The prefix m2p is shorthand for ‘moments to parameters’. 
 
Example 
 
This example shows how to draw a size-1000 sample from a gamma distribution with 
mean 10 and variance 1. The mean, variance, minimum, maximum and median of the 
sample are calculated and printed. Note that the specification of the distribution is the 
same as in a previous example for the lognormal distribution. In such a situation, there 
seem to be no strong arguments to choose for the lognormal or the gamma distribution.  
 
#include "assa.h" 
int main() 
{ 
   long seed=-784823, N=1000, i; 
   double *x, mean=10, variance=1, a, b, 
           smean, svar, smin, smax, smed; 
   x = vector(1, N); 
   m2p_gamma(&a, &b, mean, variance); 
   for (i=1; i<=N; i++) x[i] = invgamma(ran1(&seed), a, b); 
   summary(x, N, &smean, &svar, &smin, &smax, &smed); 
   printf("%5.2f %5.2f %5.2f %5.2f %5.2f",  
           smean, svar, smin, smax, smed); 
   return 1; 
} 
#include "assa.c" 
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7.5 Beta distribution 

The beta distribution describes a random variable with values between 0 and 1. If the 
uniform and the triangular distribution are not satisfying to describe a random variable 
that is bounded both from above and from below, the beta distribution may be useful. 
It is parameterised by two parameters a>0 and b>0. The density function has the form 

 f(x) = xa-1 (1-x)b-1   / B(a, b) 
 
Its mean is μ = a / (a+b); its variance is σ2 = a b / {(a+b)2 (a+b+1)}.  The cumulative 
distribution function is realised by the routine 
 
double pbeta(double a, double b, double x) 
 
which returns a double in the interval (0,1). The code for this function uses NRC’s 
incomplete beta function. 
 The prototype of the inverse beta(a, b) distribution is 
 
double invbeta(double p, double a, double b) 
 
This inverse is calculated via bisection on the cumulative distribution function pbeta. 
The precision of the result will probably suffice for most purposes, but you may wish 
to alter the code for more precision. 
 The next function translates the mean and variance of a beta distribution into 
the parameters a and b: 
 
void m2p_beta(double *a, double *b, double mean, double variance) 
 
This function produces an error message if the mean lies outside the interval (0,1), or 
if the variance is impossibly large. 





Algorithms for Stochastic Sensitivity Analysis 27 

8 Generators in the unit hypercube 

All unit hypercube, UHC, generators to be mentioned in this chapter produce a k-by-N 
matrix with values strictly between 0 and 1 (i.e. without attaining the boundaries). The 
procedures for these generators have ‘uhc’ in their name. Each of the N columns of U 
can be viewed as a point within a unit hypercube of dimension k. Resulting matrix U 
will be used as a sample of N points in the k-unit-hypercube. The nature of the sample 
ranges from totally random to almost totally deterministic. Invariably, the individual 
rows of the matrix contain values that are uniformly distributed over the interval (0,1) 
excluding 0 and 1. The k-by-N matrix U should exist before the procedures are called. 
 We start with the most elementary – ordinary random – generator in the unit 
hypercube, with this prototype: 
 
void uhc_basic(double **U, long k, long N, long *seed) 
 
It fills existing k-by-N matrix U with N independent draws from the uniform 
distribution on the k-unit hypercube. Thus each element of U is uniform(0,1) 
independent from all others. 
 The next procedure produces N correlated, marginally uniform draws in the k-
dimensional unit-cube. 
 
void uhc_corr(double **U, double **C, long k, long N, long *seed) 
 
Existing k-by-N matrix U is filled with N independent draws from a correlated 
marginally uniform distribution on the k-dimensional unit-hypercube. Within a draw, 
each of the k elements are from a uniform(0,1) distribution, while the elements have 
correlation matrix C, or very nearly so. These properties concern the distribution from 
which is drawn, the sample properties will deviate, especially in small samples. 
The procedure is based on a remarkable property of the multinormal distribution, 
namely the near-equality of its Pearson and rank correlation (grade correlation to be 
very precise). Let k-vector z have a multinormal distribution with mean vector 0, and 
covariance matrix C. Thus, each component zi of z has a standard normal distribution. 
Let Ф denote the standard normal distribution function. Then Ф(zi) has a uniform(0,1) 
distribution, since the distribution function of any continuous random variable is 
uniform(0,1). But the remarkable fact is that the correlation between Ф(zi) and Ф(zj) is 
very nearly equal to C[i][j]: the difference is 0.018 at most (see Appendix 1 for 
details). With mnor_mat() the procedure fills a matrix with N independent 
multinormal(0, C) drawings. Next it applies the function Ф to them. 
 
First best? 
In several aspects, the first two generators mentioned above are also the best ones. 
Their simplicity is an advantage when you have to explain the procedure. Moreover, 
since they produce N mutually independent draws from the k-unitcube, you can easily 
enlarge the sample, and you have special possibilities to evaluate the precision of the 
results of the ensuing sensitivity analysis. The results of that analysis are random, so 
there will be a question about their accuracy. Only with a sample consisting of 
independent draws, you can say something about the precision on the basis of one 
sample. With the other sampling methods that will follow in this chapter, you will 
need to make multiple samples and compare and combine the analysis results of these 
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samples in order to assess result precision. So an independent sample is always the 
best choice? Not under all circumstances. Although you can calculate the precision, 
you will know in advance that the precision is lower than the, harder to assess, 
precision of the procedures to follow. Thus you have a choice problem if you want to 
calculate precision of results – as you should.  
 The next procedure performs basic latin hypercube sampling, which takes care 
that the marginal sample distribution of each variable is highly uniform (McKay, 
Beckman and Conover, 1979; Iman and Conover, 1980). 
 
void luhc_basic(double **U, long k, long N, long *seed) 
 
The k-by-N matrix U gets N latin hypercube draws from the distribution on the k-unit-
hypercube; within one draw, the elements are independently uniform(0,1). But the 
whole N-sample U[i][·] of the i-th variable contains precisely 1 value in each of the 
intervals (0, 1/N), (1/N, 2/N) ... ((N-1)/N, 1). 
 For the construction of the UHC generators, ASSA has two auxiliary rank 
matrix generators. These auxiliary generators are called by the other generators. Here 
is the first: 
 
void rank_mat(long **R, double **C, long k, long N, long *seed) 
 
Existing matrix R will be filled with a random k-by-N rank matrix for a given 
population rank correlation matrix C. The procedure is based on the near-equality of 
the Pearson and rank correlation of the multinormal distribution (see above). It fills a 
matrix with N independent multinormal(0, C) drawings, and then calculates the rank 
per row. 
 A correlated latin hypercube sample in the unit hypercube can be obtained via 
 
void luhc_corr(double **U, double **C, long k, long N, long *seed) 
 
By this procedure, existing k-by-N matrix U gets N latin hypercube draws in the k-
dimensional unit-hypercube; within one draw, each element is uniform(0,1). The 
sample's rank correlation is randomly drawn given population rank correlation matrix 
C using rank_mat.  
 Just as one can force highly uniform marginal sample distributions by drawing 
a latin hypercube instead of an ordinary random sample, one may wish to force the 
sample's rank correlation matrix, to be close to a desired correlation matrix. A set of 
ranks with such a forced correlation can be obtained via the second auxiliary rank 
matrix generator of ASSA:  
 
void iman_rank_mat(long **R, double **C, long k, long N, long *seed) 
 
By this procedure, the rows of existing k-by-N integer matrix R will hold vectors of 
ranks with correlation-matrix very close to given C. Exact equality cannot be attained 
in general, since correlations between two permutations of the vector (1...N) cannot 
attain any value between -1 and 1. The procedure is an accurate implementation of the 
method of Iman and Conover for the construction of such a matrix as described by 
Helton and Davis (Iman and Conover, 1982; Helton and Davis, 2002). Internally, the 
procedure uses lowinv to calculate the inverse of correlation matrix C. 
 The next procedure produces a latin hypercube sample with forced sample 
rank-correlation 
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void luhc_iman(double **U, double **C, long k, long N, long *seed) 
 
By this procedure, existing k-by-N matrix U is filled with N latin hypercube draws 
from the distribution on the k-unit-hypercube. Within a draw, each element is uniform 
(0,1). The correlation matrix of the rows of U closely resembles given C. The 
procedure is an accurate implementation of the method of Iman and Conover as 
described by Helton and Davis, and uses iman_rank_mat (Iman and Conover, 
1982; Helton and Davis, 2002). 
 A very high degree of non-correlation may be reached by the following even 
more systematic way of sampling. The procedure is based on a so-called SAturated 
MAin effect fractional factorial design (cf. Dey, 1985, Section 2.4.1). The dimensions 
of the matrix U must have special values for this purpose. Let prime be a prime 
number ( i.e. ≥2) and let power be a long int ≥2. The procedure will fill an 
existing k-by-N matrix U with N= primepower  columns and k= (primepower-1) 
/ (prime-1)rows (the latter division always produces an integer).  
 
void uhc_sama(double **U, long prime, long power, long *seed) 
 
U will contain highly-restricted random draws in the k-unit-hypercube. The correlation 
between the rows of U is very close to 0. The original deterministic design, constructs 
(primepower-1)/(prime-1) orthogonal factors of length N= primepower at 
prime levels 0...prime-1. Next the factors are randomised, augmented with a 
homogeneous(0,1) term and divided by prime. Of course the user need not use all the 
rows of matrix U in his subsequent calculations, but when uhc_sama is called, a matrix 
U of the dimensions mentioned should exist. 
 
Example 
 
#include "assa.h" 
int main() 
{ 
   long seed=-140105, k1=3, N1=10, 
        prime=3, power=2, k2=4, N2=9; 
   long i,j; 
   double **U1, **U2; 
   U1 = matrix(1,k1,1,N1); 
   U2 = matrix(1,k2,1,N2); 
   uhc_basic(U1, k1, N1, &seed); 
   for (j=1; j<=N1; j++) { 
      for (i=1; i<=k1; i++) printf(" %10.4f", U1[i][j]); 
      printf("\n"); 
   } 
   printf(":\n"); 
   luhc_basic(U1, k1, N1, &seed); 
   for (j=1; j<=N1; j++) { 
      for (i=1; i<=k1; i++) printf(" %10.4f", U1[i][j]); 
      printf("\n"); 
   } 
   printf(":\n"); 
   uhc_sama(U2, prime, power, &seed); 
   for (j=1; j<=N2; j++) { 
      for (i=1; i<=k2; i++) printf(" %10.4f", U2[i][j]); 
      printf("\n"); 
   } 
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printf(":\n"); 
   return 1; 
} 
#include "assa.c" 
 

       
 
Figure. Three – for clarity somewhat small – samples from uhc_basic(.,3,10,.), 
luhc_basic(.,3,10,.) and uhc_sama(.,3,2,.). Graphs of  two rows from the sample matrix against 
one-another. In the latin hypercube sample each of the ten horizontal slices contains one point, 
while the same applies to the vertical slices. In the sama sample, each combination of a 
horizontal and a vertical slice contains one point. 
 
 
Which one to choose? 
 
There remains a problem of choice, already with the small number of alternatives 
presented above. Primarily the choice depends on the uncertainty distribution of the k 
inputs studied. The dependence or independence of the k components dictates whether 
to choose a unitcube sampler with or without correlation.  
 If model runs are inexpensive, if you like simplicity, and if you know how to 
use resampling methods to assess result precision of the sensitivity analysis, you might 
use uhc_basic or uhc_corr. You can enlarge the sample if the precision is 
unsatisfactory, without discarding outcomes of model runs made before. 
 If model runs are expensive, replicated latin hypercube sampling with forced 
correlation via luhc_iman is probably the most attractive candidate. You can force 
non-correlation if the inputs are independent. Three replicates will give only a very 
rough impression of result precision. An great advantage is that the Iman-Conover 
method is well-known. In case of non-correlation, you might consider to use the more 
exotic uhc_sama, which is probably even more accurate than Iman-Conover. 
 
Example 
 
With the method of Iman and Conover for correlated latin hypercube samples, the next 
code produces a sample of size 1000 of 3 correlated random variables. The 
intermediate unitcube sample is stored in matrix U. Next the three variables are 
transformed into a normal(10, 1) variable, a gamma(1, 2) variable, and a beta(2, 3) 
variable, just to show how the inverse distribution functions can be applied. For a 
realistic application, the parameters of the distributions should be carefully 
determined.  
 
#include "assa.h" 
int main() 
{ 
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   long seed=-030205, k=3, N=1000; 
   long i,j; 
   double **U, **X, **C; 
   U = matrix(1, k, 1, N); 
   X = matrix(1, k, 1, N); 
   C = matrix(1, k, 1, k); 
 
   C[1][1]=1;  
   C[2][1]=0; C[2][2]=1;  
   C[3][1]=0.5; C[3][2]=0; C[3][3]=1; 
   luhc_iman(U, C, k, N, &seed); 
   for (i=1; i<=N; i++){ 
      X[1][i] = 10 + 1*invnormal(U[1][i]); 
      X[2][i] = invgamma(U[2][i], 1, 2); 
      X[3][i] = invbeta(U[3][i], 2, 3); 
   } 
   for (i=1; i<=N; i++){ 
      for (j=1; j<=k; j++) printf("%10.4f", X[j][i]); 
      printf("\n"); 
   } 
   return 1; 
} 
#include "assa.c" 
 
Analysis of the sample printed by the above code, shows that the means and variances 
of the sample of the three variables are respectively 
 
mean:      9.9996    1.9999    0.4000 
variance:     1.0003    3.9952    0.0400 
 
You can check that these sample values are close to the distribution values. The 
covariance matrix of the three rows of intermediate unitcube sample U is equal to 
 
    0.0834 
    0.0003    0.0834 
    0.0405    0.0006    0.0834 
 
Which shows that the variance of each intermediate u-variable is very close indeed to 
the expected value 1/12 of a uniform(0, 1) variable. The sample correlation between 
the uncorrelated variables is very close to 0, while the sample correlation between the 
unitcube first and third variable is equal to 0.0405/0.0834=0.4856: quite close to the 
value 0.5 of the target rank correlation C[3][1]. If the function luhc_iman(U, C, k, 
N, &seed) would be replaced by uhc_corr(U, C, k, N, &seed), the sample 
values would often be further from the target values. 
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9 Variance components 

In the first quarter of  the 20-th century, the word 'variance', and the technique of 
analysis of variance components have been introduced in statistical genetics. The 
purpose was to assess the relative influences of factors like parents and environment 
on some property of a plant or an animal. The variance was chosen because the 
variances contributed by independent causes of variability nicely sum up to the total 
variance (e.g. Fisher Box, 1978, p 53). Later, analysis of variance components 
experiments were conducted to assess the prospects of a genetic selection program 
(e.g. Comstock and Robinson, 1948). If, for instance, environment contributes much 
more than parents to the variance of a property, little can be gained through genetic 
selection. 
 Application of analysis of variance components to model output, stems from 
the 1990s (Sobol, 1990; Jansen, Rossing and Daamen, 1994; Sobol, 1995; McKay, 
1996; Saltelli, Tarantola and Chan, 1999; Jansen, 1999; Saltelli, Chan and Scott, 2000, 
Ch 8). The new purpose of the analysis of variance components was to pinpoint major 
sources of model output uncertainty and evaluate the prospects to reduce this 
uncertainty by gaining more accurate information about some inputs (or by better 
control of some inputs). Some model experiments are almost the same as the old 
genetics experiments. The additivity of the variance contributions of independent 
components remains the major reason to chose variance as measure of uncertainty. A 
second advantage is that properties of the variance relevant for sensitivity analysis can 
often be found in the classical statistical literature.  
 The type of sensitivity analysis sketched above is called variance-based 
because uncertainties and uncertainty contributions are expressed as variances and 
variance components. Some of these variance-based sensitivity analyses are non-
parametric, namely when they do not rely on an estimated parametric relationship 
between input and output. The analysis of variance is a formal elaboration of the 
intuitive idea that a factor is important if the model output studied changes much when 
that factor assumes new random values while the other factors remain the same. The 
statistical methods have remained essentially the same with the change of application 
from genetics to uncertainty analysis, but the experimental designs differ somewhat, 
mainly because of the practical restrictions in genetics as to number of replications and 
possibilities to obtain offspring from combinations of parents.  
 Denote the model inputs by x = (x1...xk), and denote the output studied by y. 
With the deterministic models studied here y is a function, f(x) say, of x. The variance 
of y = f(x), induced by the distribution D of x = (x1...xk) will be called VTOT  
 
 VTOT = Var[y]  y = f(x),    x ~ D 
 
 Let S denote a subset of the x’s, possibly one single x. The uncertainty 
contribution of subset S will be expressed in two ways. Firstly by the top marginal 
variance: the variance reduction that would occur in case one would get perfect new 
information about the inputs S. And secondly by the bottom marginal variance: the 
variance that will remain as long as one gets no new information about S. In both cases 
the new information is added to the information already present in input distribution 
D. 
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 More formally, the variance that would remain in case input group S should 
become perfectly known, has the expectation E[Var[f(x)|S]]. Accordingly, the top 
marginal variance TMVS of S is defined as 
 
 TMVS = VTOT - E[Var[f(x)|S]].  
 
 Let ⌐S indicate the complementary subset of all inputs not comprised in S. The 
variance that would remain in case ⌐S should become perfectly known, has the 
expectation E[Var[f(x)|⌐S]]. Thus we define the bottom marginal variance of S as 
 
 BMVS = E[Var[f(x)|⌐S]].  
 
Obviously  
 
 BMVS + TMV⌐S = VTOT. 
 
 The following well-known variance decomposition rule for conditional 
distributions 
 
 Var[y] = Var[E[y|S]] + E[Var[y|S]]  
 
leads to an equivalent expression for TMVS: 
 
 TMVS = Var[E[y|S]]. 
 
 For an independent group S,  
 
 BMVS ≥ TMVS,  
 
the possible difference being caused by interaction. See the literature cited for details 
like this. 
 In ASSA, top and bottom marginal variances are usually expressed as fractions 
of VTOT, and are then called relative top and bottom marginal variances.  
 When S consists of a single input xi, η2

i ≡ TMVi / VTOT is equal to the so-
called correlation ratio of y and xi. Note that the correlation ratio is not the same as 
the correlation coefficient. Only when E[y|xi] is linear in xi, η2

i is equal to the squared 
correlation coefficient between y and xi, say ρ2

i, but when E[y|xi] is nonlinear in xi, η2
i 

is greater than ρ2
i.  

 When S consists of more than one component, TMVS / VTOT is also called the 
correlation ratio, CRS say. The concept is not based upon a specific form of E[y|S] as 
function of S and it applies to a distribution rather than to a finite sample.  
 The relative bottom marginal variance can also be called the complementary 
correlation ratio, CCRS say. From the mentioned relation BMVS + TMV⌐S = VTOT,  
with ⌐S denoting the complement of S,  it follows that CCRS = 1 - CR⌐S . 
 The next table mentions various names used in the literature for TMVS / VTOT 
and BMVS / VTOT which have the same meaning for an independent group S of 
inputs (of course the group S may also consist of a single input).  
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TMVS / VTOT BMVS / VTOT 
relative top marginal variance  
correlation ratio CRS 
first order sensitivity index 

relative bottom marginal variance 
complementary correlation ratio CCRS 
total effect sensitivity index 

 
Note 
 
In general, TMV is a much more useful concept than BMV, and we advise to use 
BMV only in exceptional cases. TMVS assesses the maximal improvement of 
prediction precision that might be attained by better knowledge about group S, or by 
better control of that group. If TMVS is large, additional research about S might prove 
fruitful. If it would be utterly unrealistic, however, to expect to gain better knowledge 
about some input group S, you might use BMVS to assess the uncertainty that would 
always remain even if you succeeded in eliminating all uncertainties about the other 
inputs. If, in such a case, BMVS would be very large, research about the other inputs 
would seem rather futile. 
 





Algorithms for Stochastic Sensitivity Analysis 37 

10 Test functions 

Simple functions, whose sensitivity-properties can be calculated analytically, are 
useful as examples to illustrate theoretical concepts. Moreover, they can be used to 
evaluate the performance of algorithms for SSA. And finally, they can be handy 
during software development as stand-in for true models. For the time being, only two 
such functions are mentioned. See Saltelli et al., 2000 for many others. 
 

10.1 Test function sobol8 

Non-monotonic test function sobol8 (e.g. Saltelli et al., 2000; Section 2.9) is defined as 

 sobol8(x) = Πi=1...8 gi(xi), 
 
with 
 
  gi(xi) = (|4xi – 2| + ai ) / (1+ai) . 
 
The x’s are assumed to be independent homogeneous (0,1); and  8-vector a  is given 
by  
 
a = (0, 1, 4.5, 9, 99, 99, 99, 99). 
 
The ASSA prototype of this function is  
 
double sobol8(double *x) 
 
where x1...8 is an existing 8-vector. 
 It is easy to see that the expectation of gi is E[gi] = 1, while E[gi

2] = 1 + ⅓ 
(1+ai)2. By the independence of the g’s, it follows that E[sobol8] = 1, and that VTOT = 
Var[sobol8] = Π (E[gi

2])  -  1. The top marginal variances of the xi’s are given by 
TMVi = Var[gi] / VTOT = (E[gi

2] – 1) / VTOT, while the bottom marginal variances 
of the xi’s equal BMVi = 1  - Var[Πj≠i(gj)] / VTOT = 1  - {Πj≠i(E[gj

2]) - 1} / VTOT. 
The values of these variance components for the given a-parameters are presented in 
the next table.  
 

Input TMV/VTOT BMV/VTOT 
x1 
x2 
x3 
x4 
x5...8 

0.716192 
0.179048 
0.023676 
0.007162 
0.000072 

0.787144 
0.242198 
0.034317 
0.010460 
0.000105 

Variance components of Sobol’s test function, relative to VTOT=0.465424 
 
Note the difference in the last decimals with the values in the reference mentioned: 
possibly the latter values have been obtained by Monte Carlo methods. In this 
example, with independent inputs, and with many interactions, BMV > TMV, solely 
due to interactions.  
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10.2 Test function normal8 

Test function normal8 is defined as 
 
 normal8(x) = x1

2 / √2 + (x2+x3) / √(7/4) + 2 (x4-x5) + x6x7 √2 + x8. 
 
The arguments are assumed to have the following distribution: the marginal 
distribution of each xi is normal with mean 0 and variance 1; all correlations are equal 
0, except ρ(x2,x3) and ρ(x4,x5), which equal 3/4. 
 
The ASSA prototype of this function is  
 
double normal8(double *x) 
 
where x1...8 is an existing 8-vector. 
 The function normal8(x) may be written as a sum of functions of independent 
groups, namely the groups {x1}, {x2,x3}, {x4,x5}, {x6,x7}, {x8}. They may be 
described as independent groups with additive effects. For such groups, the top and 
bottom marginal uncertainty contributions are equal. Thus one might speak 
unequivocally about the uncertainty contributions of these groups. They are listed in 
the following table. 
 

Group Absolute Relative (%) 

x1 
x2, x3 
x4, x5 
x6, x7 
x8 

1 
2 
2 
2 
1 

12.5 
25 
25 
25 
12.5 

The uncertainty contributions of independent groups with additive effects. 
 

 The next table gives the relative top and bottom marginal variances of the 
individual x’s as percentage of the total variance. Note the large differences in the top 
and bottom marginal contributions of x2...x6. When x2 is known, x3 adds little 
information and vice versa. One might say that x2 and x3 are exchangeable in their 
effect on f. The opposite happens with x4 and x5: one might say that they are 
complementary in their effect on f. x6 and x7 are also complementary, be it in a 
different way, namely by their interaction. 
 

Input BMV TMV 
x1 
x2 
x3 
x4 
x5 
x6 
x7 
x8 

12.5 
3.1 
3.1 

21.9 
21.9 
25 
25 
12.5 

12.5 
21.9 
21.9 
3.1 
3.1 
0 
0 

12.5 
Top and bottom marginal variances (in %) 
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11 Regression-based sensitivity analysis 

11.1 General 

For a long period, the most common form of SSA was an analysis via linear 
regression. In this chapter we describe the procedure: it performs an approximate SSA 
based on a linear regression approximation of the relation between the model inputs 
x=(x1...xk) and the studied model output y=f(x). The analysis starts with a sample of N 
draws from the uncertainty distribution of model input vector x. For each of these 
sampled x’s the model output y has been calculated with the model software. The 
procedure, called rsens_lin works by fitting various linear regressions to the 
sample. It keeps record of the residual mean squares of these linear models. The 
advantage of using rsens_lin, instead of fitting these models yourself, is that 
rsens_lin does the bookkeeping for you. 
 For instance, let a model output sample y have been calculated for an input 
sample of N vectors x. The correlation ratios, that is marginal variances, of grouped or 
individual x’s can then be estimated by the procedure, which starts as follows.  
 
void rsens_lin(long ngroup, long k, long N, 
            double **X, double *y, long *key,  
            double *rsquadlin, double *corrat, double *c_corrat) 
 
/* 
input ngroup: integer >= 2; number of input groups distinguished 
input k: integer >= ngroup; number of model input variables 
input N: integer > k+1; number of model runs 
input X: k-by-N real matrix, rows contain model input variables 
input y: real N-vector, the model output for varying inputs 
input key: integer k-vector; grouping of the k model inputs 
output rsquadlin: rsquared adjusted of the regression of y on all x-s 
output corrat: real ngroup-vector; correlation ratio of the groups 
output c_corrat: real ngroup-vector;complementary correlation ratios 
*/ 
 

The results corrat and c_corrat are calculated as differences of percentages of 
variance accounted for (adjusted R2). In the output of rsens_lin, negative values 
of corrat and c_corrat are replaced by 0. 
 The result corrat will contain the estimated correlation ratio of the groups 
distinguished, that is the relative top marginal variance. Result c_corrat will 
contain the estimated complementary correlation ratio, that is the relative bottom 
marginal variance. 
 In classical linear least squares regression, the y-variable is modelled as  
 

 y = α0 + Σi∈I αixi + ε 
 
where I is some subset of {1...k} with unknown parameters αi, and random ε. In our 
case, however, y is a deterministic function of more or less random x’s, while the error 
is caused by the fact that f(x) cannot be written as α0 + Σ αixi. If the classical 
regression model applies, the residual mean square is an unbiased estimate of the 
expected squared error; but in our case the residual mean square will in general be 
biased as estimate of the expected squared error, even in the case of an ordinary 
random sample of x’s. Fortunately, the bias shrinks to 0 for large sample sizes. 
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 In the current version of ASSA, Rsquared-adjusted of the regression of y on a 
k-by-N matrix X is returned by the function  
 
double rsquad(double *y, double **X, long k, long N) 

 
Rsquared-adjusted is defined in terms of the mean-square, msy, of y (i.e. y's variance) 
and the mean-square, msr, of the regression residual (i.e. the residual variance). 
These mean squares are derived from ssy, the sum-of-squares of y, and ssr, the sum of 
squares of the residual. 
 
R2

adjusted  = 1 - msr/msy = 1 - [ssr/(N-k-1)] / [ssy/(N-1)], 
 
where ssr and ssy denote the total and residual sum of squares.  
 Function rsquad does not perform linear regression but merely calculates the 
regression residual via projection on the space orthogonal to the x-vectors (the rows of 
X) and the constant vector. The projection is done by Gramm-Schmidt 
orthogonalisation of the x-vectors. For this orthogonalisation rsquad internally uses 
an auxiliary procedure 
 
void rop(double *res, double *y, double *x, long N) 
 
which puts the residual of orthogonal projection of N-vector y on N-vector x into N-
vector res. 
 
Note  
 
Instead of R2

adjusted, some algorithms for regression-based SA use the multiple 
correlation coefficient, that is (unadjusted) R2 = 1 - ssr/ssy. The difference is negligible 
if the number, k, of regressors is small compared with the sample size, N (as it should 
be). The adjustment for the number of regressors is mainly useful in the standard 
situation where the regression residuals are independent random, with equal variance. 
In the context of sensitivity analysis, there are no strong arguments for one type of R2 
in favour the other. 
 
Example 
 
#include "assa.h" 
int main(int argc, char *argv[]) 
{ 
   long seed, N=1000, k=8, ngroup=5, *key, i, j; 
   double **V, **X, *mu, *y, *x, rsquad, *corrat, *c_corrat; 
   if (argc!=2) error("usage: xmprsens seed"); 
   seed = atol(argv[1]); 
   if (seed > 0) seed = -seed; 
   x = vector(1, k); 
   mu = vector(1, k); 
   key = ivector(1, k); 
   corrat = vector(1, k); 
   c_corrat = vector(1, k); 
   y = vector(1, N); 
   V = matrix(1, k, 1, k); 
   X = matrix(1, k, 1, N); 
   /* construct mean and variance matrix of multinormal inputs */ 
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   for (i=1; i<=k; i++) { 
      mu[i] = 0; 
      for (j=1; j<=k; j++) V[i][j] = (i==j)? 1: 0; 
   } 
   V[3][2] = 0.75; V[5][4] = 0.75; 
   /* take size-N ordinary random sample */ 
   mnor_mat(X, mu, V, k, N, &seed); 
   /* calculate values y of testfunction normal8 */ 
   for (i=1; i<=N; i++) { 
      for (j=1; j<=k; j++) x[j] = X[j][i]; 
      y[i] = normal8(x); 
   } 
   /* define the studied independent groups of inputs */ 
   key[1]=1; key[2]=key[3]=2; key[4]=key[5]=3; 
      key[6]=key[7]=4; key[8]=5; 
   printf("\nvariable: "); 
   for (i=1; i<= k; i++) printf("%ld ", i); 
   printf("\ngroup   : "); 
   for (i=1; i<= k; i++) printf("%ld ", key[i]); 
   printf("\n"); 
 
   /* linear-regression-based sensitivity analysis */ 
   rsens_lin(ngroup, k, N, X, y, key, &rsquad, corrat, c_corrat); 
   printf("rsquad = %5.3f\n\n", rsquad); 
   for (i=1; i<=ngroup; i++) 
      printf("group%ld: corrat = %5.1f; c_corrat = %5.1f \n", 
                  i, 100*corrat[i], 100*c_corrat[i]); 
   /* here you can calculate bootstrap bootstrap interval */ 
   return 1; 
} 
#include "assa.c" 
 
 The example program is written in such a way that you can easily repeat the 
analysis, with different seeds, to get an impression of the sampling variability of the 
estimates. The next subsection takes another approach to sampling variability. 
 With seed 23032005 (actually you shouldn’t take such systematic seeds), the 
program gives the following output. 
 
variable: 1 2 3 4 5 6 7 8  
group   : 1 2 2 3 3 4 4 5  
rsquad = 0.645 
 
group1: corrat =   0.0; c_corrat =   0.1  
group2: corrat =  24.9; c_corrat =  22.9  
group3: corrat =  30.8; c_corrat =  26.9  
group4: corrat =   0.0; c_corrat =   0.2  
group5: corrat =  11.1; c_corrat =  12.1  
 
 
Note the low value 0.645 of R-squared-adjusted: only 65% of the variation of y can be 
explained by linear regression on the x’s. From the section on test functions, we know 
that for each group the true values of the correlation ratio, CR, and the complementary 
correlation ratio, CCR, are equal in this example; the estimates, however, are seen to 
be different. The estimated CR and CCR of group 1 (x1) are near zero, whereas we 
know that their true value is 12.5%. The same applies to group 4 (x6 and x7) which has 
25% as theoretical CR and CCR. Nonlinear effects, here amounting to 37.5% of the 
variation, are simply not seen by this linear analysis. At the end of a linear regression-
based sensitivity analysis, you always have to check if the unexplained variance, here 
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estimated as 35.5%, is small compared with the variance effects in which you are 
interested. This is not the case here, so we conclude that the analysis just performed 
has no practical value. In the next chapter we discuss a way-out. 
 
 
11.2 Bootstrap percentile confidence interval 

Since the N samples in the above example, were drawn independently, you can 
calculate a bootstrap confidence interval for the estimated sensitivity indices. The 
computational effort is negligible, since no additional model runs are required. For 
simplicity, we will use the percentile method as described in Efron and Tibshirani 
(1993, Chapter 13). The idea is that the sample’s distribution is a fair approximation of 
the uncertainty distribution of the inputs, so that you may study properties of the 
uncertainty distribution by studying the sample distribution. From the N sampled 
input-vectors, and the corresponding outputs, a ‘new’ sample of size N is drawn 
several times, say nboot times. Procedure boot, draws such a new sample: it just 
draws N times, with replacement, from the numbers 1...N. Some of these numbers will 
occur more than once in the new sample, while others may be absent. This new 
sample, together with corresponding model output y, is analysed just as the original 
sample, yielding new sensitivity estimates, one for each fake sample, nboot all 
together. The α and (1-α) percentiles of these nboot estimates, constitute the 
bootstrap (1-2α) percentile confidence intervals. 
 The next C-block can be inserted in the above program, at the place indicated. 
It shows how to calculate a 1-2α bootstrap percentile confidence interval for the 2-nd 
correlation ratio (of the 2-nd group: x2 and x3). Matrix BX is a bootstrap sample from 
the columns of original sample matrix X; vector by is filled with the N corresponding 
model outputs. Function calc_quant calculates the α and (1-α) quantiles of the 
nboot-vector bc2.  
 
Example (continued) 
 
   { 
      /* this block calculates a bootstrap percentile confidence 
         interval: correlation ratio of group 2 as an example */ 
      long nboot=100, t, *bsam; 
      double alpha=0.05, low, hig, estc2, **BX, *by, *bc2; 
      bsam = ivector(1, N); 
      BX = matrix(1, k, 1, N); 
      by = vector(1, N); 
      bc2 = vector(1, nboot); 
      estc2 = corrat[2]; 
      printf("\nlinear regression based estimate of c2: %5.1f\n", 
                100*estc2); 
      for (t=1; t<=nboot; t++){ 
         boot(bsam, N, &seed); 
         for (i=1; i<=N; i++) { 
            by[i] = y[bsam[i]]; 
            for (j=1; j<=k; j++) BX[j][i] = X[j][bsam[i]]; 
         } 
         rsens_lin(ngroup, k, N, BX, by, key,  
                   &rsquad, corrat, c_corrat); 
         bc2[t] = corrat[2]; 
      } 
      low = quantile(alpha, bc2, nboot); 
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      hig = quantile(1-alpha, bc2, nboot); 
      printf("90 percent bootstrap confidence limits: "); 
      printf("%5.1f  %5.1f\n", 100*low, 100*hig); 
   } 
 

With seed 23032005, inclusion of the above bootstrap block in the program gives the 
following additional output. 
 
linear regression based estimate of c2:  24.9 
90 percent bootstrap confidence limits:  21.0   28.7 
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12 Regression-free sensitivity analysis 

We will illustrate the working of regression-free sensitivity analysis by means of an 
archetypical example. In a sense all other regression-free methods derive from this 
example. 
 To estimate the TMV of a stochastically independent subset S of the inputs, we 
construct two ordinary random samples of some size N, say X1 and X2, from the input 
distribution that have the same values for the inputs of S, while the other inputs are 
drawn independently. Next the two N-vectors of the studied model output, y1 and y2 
say, are calculated, and from then on the values of the inputs can be forgotten, but the 
way the outputs were constructed still matters. The two sample variances v1 and v2 of 
the y-vectors are estimates of the total output variance VTOT. The geometric mean of 
these two is a combined estimate of VTOT.  
 
 VTOT^ = √ (v1 v2) . 
 
It is intuitively clear that the vectors y1 and y2 will be much the same if S is a very 
sensitive input group, and conversely. And indeed, it can be shown that the (Pearson) 
correlation between the vectors y1 and y2 is an estimate of the relative TMV, that is the 
correlation ratio. 
 
 (TMVS / VTOT)^ = corr(y1, y2). 
 
If you wish to estimate the BMV of the same subset S, calculate the following 
 
 (BMVS / VTOT)^ = mean [½ (y1i – y2i)2]  /  √ (v1 v2) . 
 
(e.g. Sobol, 1990; Jansen, Rossing and Daamen, 1994; Saltelli et al., 2000). 
 
Example 
 
In the next example we estimate the relative TMV, in %, of input group S = {x2, x3} 
for the normal8 test function. You may compare the result with the theory of Section 
10, and the regression-based estimation of Section 11. 
 
#include "assa.h" 
int main(int argc, char *argv[]) 
{ 
   long N=1000, k=8, seed, i, j; 
   double **V, **X1, **X2, *mu, *y1, *y2, *x,  
          v1, v2, m1, m2, cov12, VTOT, TMV; 
   if (argc!=2) error("usage: xmpanova seed"); 
   seed = atol(argv[1]); 
   if (seed > 0) seed = -seed; 
   x  = vector(1, k); 
   mu = vector(1, k); 
   y1 = vector(1, N); y2 = vector(1, N); 
   V  = matrix(1, k, 1, k); 
   X1 = matrix(1, k, 1, N); X2 = matrix(1, k, 1, N); 
 
   /* construct mean-vector and variance matrix of multinormal inputs */ 
   for (i=1; i<=k; i++) { 
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      mu[i] = 0; 
      for (j=1; j<=k; j++) V[i][j] = (i==j)? 1: 0; 
   } 
   V[3][2] = 0.75; V[5][4] = 0.75; 
   /* take independent size-N ordinary random input samples X1 and X2 */ 
   mnor_mat(X1, mu, V, k, N, &seed); 
   mnor_mat(X2, mu, V, k, N, &seed); 
   /* equate the 2-nd and 3-rd rows of sample X2 to those of X1 
      in order to calculate the TMV of the independent group  
      formed by the 2-nd and 3-rd inputs */ 
   X2[2]=X1[2]; X2[3]=X1[3]; 
   /* calculate values y1 and y2 of test function normal8 */ 
   for (i=1; i<=N; i++) { 
      for (j=1; j<=k; j++) x[j] = X1[j][i]; 
      y1[i] = normal8(x); 
      for (j=1; j<=k; j++) x[j] = X2[j][i]; 
      y2[i] = normal8(x); 
   } 
   /* if you wish, you can delete the X-matrices: */ 
   free_matrix(X1, 1, k, 1, N); free_matrix(X2, 1, k, 1, N); 
   /* calculate top marginal variance of x[2] and x[3] */ 
   m1=0; m2=0; v1=0; v2=0; cov12=0; 
   for (i=1; i<=N; i++) {m1+=y1[i]; m2+=y2[i];} 
   m1 /= N; m2 /= N; 
   for (i=1; i<=N; i++)  
      {v1+=SQR(y1[i]-m1); v2+=SQR(y2[i]-m2);  
       cov12+=(y1[i]-m1)*(y2[i]-m2);} 
   v1 /= (N-1); v2 /= (N-1); cov12 /= (N-1); 
   VTOT = sqrt(v1*v2); 
   TMV = 100 * cov12/VTOT; 
   printf("tmv = %5.2f; vtot = %5.2f\n", TMV, VTOT);  
   /* here you can calculate bootstrap confidence interval */ 
   return 1; 
} 
#include "assa.c" 
 
With seed 1234567890, the analysis gives the output 
 
tmv = 23.68; vtot =  7.66 
 

Bootstrap percentile confidence interval 
 
   { 
      /* block calculating bootstrap percentile confidence interval  
         for TMV of group with x2 and x3 */ 
      long nboot=100, *bsam; 
      double alpha=0.05, low, hig, esttmv, *btmv, *by1, *by2; 
      bsam = ivector(1, N); 
      btmv = vector(1, nboot); 
      by1 = vector(1, N); by2 = vector(1,N); 
      esttmv = TMV; 
      printf("\nregression-free estimate of TMV: %6.1f\n", esttmv); 
      for (j=1; j<=nboot; j++){ 
         boot(bsam, N, &seed); 
         for (i=1; i<=N; i++)  
            {by1[i]=y1[bsam[i]]; by2[i]=y2[bsam[i]];} 
         m1=0; m2=0;  
         for (i=1; i<=N; i++) {m1+=by1[i]; m2+=by2[i];} 
         m1 /= N; m2 /= N; 
         v1=0; v2=0; cov12=0; 
         for (i=1; i<=N; i++) { 
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            v1+=SQR(by1[i]-m1); v2+=SQR(by2[i]-m2); 
            cov12+=(by1[i]-m1)*(by2[i]-m2); 
         } 
         v1 /= (N-1); v2 /= (N-1); cov12 /= (N-1); 
         VTOT = sqrt(v1*v2); 
         TMV = 100 * cov12/VTOT; 
         btmv[j] = TMV; 
      }  
      low = quantile(alpha, btmv, nboot); 
      hig = quantile(1-alpha, btmv, nboot); 
      printf("90 percent bootstrap confidence limits: "); 
      printf("%6.1f  %6.1f\n", low, hig); 
   } 

 
Inclusion of the above block in the main program, and running it with the same seed, 
yields this additional output 
 
regression-free estimate of TMV:   23.7 
90 percent bootstrap confidence limits:   18.5    28.0 
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Appendix 1  Mathematical details 

 
Ordinary random samples 
 
 
In this appendix it will be shown how 
uhc_corr draws a sample from a 
continuous multivariate distribution with 
standard homogeneous marginals and rank 
correlations very close to the desired rank 
correlation. We could not easily find the 
material of this appendix in the SSA 
literature. 
 The procedure is based on the 
property that the Pearson and rank 
correlations of a multinormal distribution 
are very nearly equal (see Figure). Applying 
this property, uhc_corr works as follows. 
Firstly, a multinormal sample of k variables, 
say z1 ... zk, is drawn with mean 0, and 
covariance matrix C. The standard normal 
marginals zi are transformed into standard 
homogeneous xi by means of the mapping xi 
= Φ(zi), where Φ denotes the standard 
normal distribution function.  
 
Pearson and rank correlation of the multinormal distribution 
 
Before we can demonstrate the property mentioned, we have to introduce the concept 
of rank correlation for random variables, since, originally, rank correlation is only 
defined for samples. The distributional rank correlation between two continuous 
random variables x1 and x2, with marginals F1 and F2 is defined as the correlation 
between the corresponding standard homogeneous variables F1(x1) and F2(x2). Some 
authors use the term grade correlation instead.  
 Obviously, the distributional rank correlation between two standard 
homogeneous variables is equal to their ordinary Pearson correlation. Moreover, the 
distributional rank correlation between two variables is invariant under monotonically 
increasing transformations per variable. There exists a close connection between 
distributional and sample rank correlation: the sample rank correlation of a large 
ordinary random sample from a pair of variables with distributional rank correlation 
ρ*, will tend to ρ*. 
 It will be shown that the distributional rank correlation between any two 
variables standard homogeneous variables xi and xj from which uhc_corr draws a 
sample is close to the desired value cij: 

 
Bivariate normal distribution: rank correlation 
versus ordinary correlation. The two can be 
seen to be very nearly equal. 
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  rcorr(xi, xj) = corr(xi, xj)  
    = (6/π) arcsin(cij/2) 
    = cij + ηij 
 
in which the approximation error ηij satisfies |ηij| ≤ 0.018. 
 We will give a proof for the first two variables x1 and x2. Amazingly, no such 
proof was given by Iman and Conover (1982), who proposed the method. Denote their 
desired rank correlation c12 by ρ, and denote their actual rank correlation by ρ*. The 
variables z1 and z2 are bivariate normal with standard normal marginals and 
correlation ρ. Thus, x1=Φ(z1) and x2=Φ(z2) are standard homogeneous; so both have 
mean 1/2 and variance 1/12. Their correlation may be calculated via the introduction 
of two auxiliary standard normal variables, ε1 and ε2 that are independent of each other 
and of z1 and z2. By the definition of Φ, one has 
 
 xi = Φ(zi) = P(εi<zi) = P(εi-zi<0) , 
 
so that the expectation E[x1x2] satisfies 
 
 E[Φ(z1)Φ(z2)] = E[P(ε1-z1<0|z1) P(ε2-z2<0|z2)] = P(ε1-z1<0 ∩ ε2-z2<0). 
 
Now ε1-z1 and ε2-z2 have normal distributions with mean 0, variance 2, and correlation 
ρ/2. The probability that both are negative is given by 
 
  P(ε1-z1<0 ∩ ε2-z2<0) = 1/4 + arcsin(ρ/2) / (2π) 
 
(see for instance Abramowitz and Stegun, 1964; formula 26.3.19). So that 
 
 E[x1x2] = E[Φ(z1)Φ(z2)] = 1/4 + arcsin(ρ/2) / (2π). 
 
The correlation between x1 and x2 follows as ρ* = (6/π) arcsin(ρ/2); which concludes 
the first part of the proof. The closeness of ρ* to ρ is ascertained numerically: max(|ρ-
ρ*|) appears to have the value 0.018 (see figure). 
 
A different interpretation 
 
In the previous section it was shown that uhc_corr draws a sample from a 
continuous multivariate distribution with standard homogeneous marginals and rank 
correlations very close to the desired rank correlation. Note that a distribution is not 
uniquely defined by its marginals and correlation matrix, so that there are more 
distributions satisfying the specifications. 
 Amazingly, the procedure can also be interpreted in a different way: 
uhc_corr draws from the maximum-entropy distribution with standard 
homogeneous marginals and normal-score correlation matrix C. This distribution is 
unique, and its property of maximal entropy is attractive in the context of uncertainty 
analysis: of all distributions satisfying the given constraints, the one with maximal 
entropy contains the least information. Adopting any other distribution would be 
tantamount to assuming that we know more than we actually do (Jansen, 1997). 
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Restricted random samples: imposing correlations on samples 
 
Procedure iman_rank_mat is also based on the near-equality of rank and Pearson 
correlations in the multinormal distribution. This procedure, which produces a rank-
matrix with correlations very close to a correlation matrix given by the user. It is based 
on Iman and Conover (1982) and follows the clear summary of that paper by Helton 
and Davis (2002) using van der Waerden scores. 
 First of all, iman_rank_mat can be used to introduce rank correlations in an 
ordinary random sample e.g. from uhc_basic. But this method for introducing rank 
correlation into a sample is most often applied to latin hypercube samples. This 
happens in luhc_iman, which internally calls iman_rank_mat, and forces these 
ranks on a simple uncorrelated latin hypercube sample. 
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Appendix 2  NRC procedures required in ASSA 

Routines 
 
double gammp(double a, double x) 
Cumulative gamma distribution with shape parameter a and scale parameter 1 
 
double gammln(double xx) 
Logarithm of gamma function 
 
void gser(double *gamser, double a, double x, double *gln) 

Incomplete gamma function via series development; used by gammp 
 
void gcf(double *gammcf, double a, double x, double *gln) 

Incomplete gamma function via continued fraction; used by gammp 
 
double betai(double a, double b, double x) 
Cumulative beta distribution with parameters a and b 
 
double betacf(double a, double b, double x) 
Cumulative beta(a,b) distribution via continued fraction 
 
void indexx(long n, double arr[], long indx[]) 

Sorting algorithm; integer n-vector indx contains the indices of the smallest, next 
smallest … largest elements of real n-vector arr 
 
double ran1(long *idum) 
Real uniform 0-1 random generator  
 
double gasdev(long *idum) 
Standard normal random generator (mean 0; variance 1) 
 
 
Frequently used utilities 
 
vector and free_vector  
(elements changed to double precision by preprocessor) 
 
matrix and free_matrix  
(elements changed to double precision by preprocessor) 
 
ivector and free_ivector 
(elements changed to long precision by preprocessor) 
 
imatrix and free_imatrix 
(elements changed to long by preprocessor) 
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Appendix 3  ASSA-1.0 header-file 

/* 
  assa header file 
  version 1.0, may 2005 
  Michiel Jansen 
  Biometris, Wageningen-UR 
*/ 
 
 
#include <stdio.h> 
#include <math.h> 
#include <stddef.h> 
#include <stdlib.h> 
#include <string.h> 
#include <time.h> 
 
 
/* INCLUDE NRC ANSI PROTOTYPES */ 
#define float double 
#define unsigned 
#define int long 
#ifndef ANSI 
  #define ANSI 
#endif 
#include "nrutil.h" 
#include "nr.h" 
#undef float 
#undef unsigned 
#undef int 
 
 
/* DEFINITION OF TYPE BOOLEAN */ 
typedef enum {false, true} boolean; 
 
 
/* SPECIAL CONSTANTS */ 
#define ASSA_MISSING -99999. 
#define ASSA_EPS 3.0e-7 
 
 
/* ELEMENTARY PROCEDURES */ 
 
/* summary statistics */ 
void summary(double *x, long N, 
        double *mean, double *var,  
        double *min, double *max, double *med); 
void msummary(double **X, long k, long N,  
        double *mean, double *var, double *min, double *max,  
        double *med, double **V); 
double quantile(double prob, double *x, long N); 
void calc_varcov(double **X, double **V, long k, long N); 
void calc_corr(double **C, double **V, long k); 
void calc_rank(double *x, double *rank, long N); 
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/* matrix operations */ 
void cholesky(double **S, double **L, long k); 
void lowinv(double **L, double **LINV, long k); 
boolean  posdef(double **S, long k); 
 
/* utilities */ 
void error(char text[]); 
void warning(char text[]); 
 
 
/* BASIC RANDOM GENERATORS */ 
long any(long N, long* seed); 
void perm(long* x, long N, long* seed); 
void boot(long *x, long N, long *seed);  
void mnor_mat(double **X, double *mean, double **V, 
             long k, long N, long *seed); 
 
 
/* PROBABILITY DISTRIBUTIONS AND RELATED SPECIAL FUNCTIONS */ 
double pnormal(double x); 
double invnormal(double p); 
void q2m_normal(double *mean, double *variance, 
                double p1, double p2, double q1, double q2); 
 
void q2m_lognormal(double *mean, double *variance, 
                double p1, double p2, double q1, double q2); 
void m2p_lognormal(double *mu, double *sigma,  
                   double mean, double variance); 
 
double ptriang(double x, double low, double top, double hig); 
double invtriang(double p, double low, double top, double hig); 
 
double pgamma(double x, double a, double b); 
double invgamma(double p, double a, double b);  
void m2p_gamma(double *a, double *b, double mean, double 
variance); 
 
double pbeta(double x, double a, double b); 
double invbeta (double p, double a, double b); 
void m2p_beta(double *a, double *b, double mean, double variance); 
 
 
/* GENERATORS IN THE UNIT HYPERCUBE */ 
void uhc_basic(double **U, long k, long N, long *seed); 
void uhc_corr(double **U, double **C, long k, long N, long *seed); 
void luhc_basic(double **U, long k, long N, long *seed); 
void rank_mat(long **R, double **C, 
             long k, long N, long *seed); 
void luhc_corr(double **U, double **C, long k, long N, long 
*seed); 
void iman_rank_mat(long **R, double **C, 
             long k, long N, long *seed); 
void luhc_iman(double **U, double **C, long k, long N, long 
*seed); 
void uhc_sama(double **U, long prime, long power, long *seed); 
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/* TEST FUNCTIONS */ 
double sobol8(double *x); 
double normal8(double *x); 
 
 
/* REGRESSION-BASED SENSITIVITY ANALYSIS */ 
double rsquad(double *y, double **X, long k, long N); 
void rsens_lin(long ngroup, long k, long N, 
            double **X, double *y, long *key,  
            double *rsquadlin, double *corrat, double *c_corrat); 
void rop(double *res, double *y, double *x, long N); 
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Appendix 4  ASSA-1.0 source-file 

/* 
  assa c-file  
  version 1.0, may 2005 
  Michiel Jansen, Biometris, Wageningen-UR 
*/ 
 
 
/* INCLUDE NRC ANSI ROUTINES */ 
#define float double 
#define unsigned 
#define int long 
#ifndef ANSI 
  #define ANSI 
#endif 
#include "nrutil.c" 
#include "ran1.c" 
#include "gasdev.c" 
#include "betacf.c" 
#include "betai.c" 
#include "gammln.c" 
#include "gammp.c" 
#include "gcf.c" 
#include "gser.c" 
#include "indexx.c" 
#undef float 
#undef unsigned 
#undef int 
 
 
 
 
/* ELEMENTARY PROCEDURES */ 
 
/* summary statistics */ 
 
void summary(double *x, long N, 
        double *mean, double *var,  
        double *min, double *max, double *med) 
{ 
   long i, *ind; 
   double z, alpha, min_, max_, mean_, var_; 
   if (N<=1) error("summary: sample size <= 1"); 
   mean_ = 0; var_ = 0; min_ = x[1]; max_ = x[1]; 
   for (i=1; i<=N; i++) { 
      z      = x[i]; 
      min_   = (min_ < z)? min_ : z; 
      max_   = (max_ > z)? max_ : z; 
      mean_ += z; 
   } 
   mean_ /= N; 
   *mean = mean_; 
   *min  = min_; 
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   *max  = max_; 
   for (i=1; i<=N; i++) { 
      z      = x[i] - mean_; 
      var_  += z*z; 
   } 
   var_  /= (N-1); 
   *var  = var_; 
   ind = ivector(1, N); 
   indexx(N, x, ind); 
   i = (long) floor(0.5*N + 0.5); 
   alpha = 1 - (0.5*N + 0.5 - i); 
   *med  = alpha*x[ind[i]] + (1-alpha)*x[ind[i+1]]; 
   free_ivector(ind, 1, N); 
} 
 
 
void msummary(double **X, long k, long N, 
       double *mean, double *var, double *min, double *max,  
        double *med,  
        double **V) 
/* med and V calculated only if med and V don't point to NULL */ 
{ 
   long i, j, j1, j2, *ind; 
   double z, mean_, min_, max_, var_, alpha; 
   if (N<=1) error("msummary: sample size <= 1"); 
   if (med != NULL) ind = lvector(1, N); 
   for (j=1; j<=k; j++){ 
      mean_=0; var_=0; min_=X[j][1]; max_=min_; 
      for (i=1; i<=N; i++) { 
         z      = X[j][i]; 
         min_   = (z<min_)? z : min_; 
         max_   = (z>max_)? z : max_; 
         mean_ += z; 
      } 
      mean_  /= N; 
      mean[j] = mean_; 
      min[j]  = min_; 
      max[j]  = max_; 
      for (i=1; i<=N; i++) { 
         z      = X[j][i] - mean[j]; 
         var_  += z*z; 
      } 
      var_  /= (N-1); 
      var[j]  = var_; 
      if (med != NULL){ 
         indexx(N, X[j], ind); 
         i = (long) floor(0.5*N + 0.5); 
         alpha = 1 - (0.5*N + 0.5 - i); 
         med[j]  = alpha*X[j][ind[i]] + (1-alpha)*X[j][ind[i+1]]; 
      } 
   } 
   if (med != NULL) free_lvector(ind, 1, N); 
   if (V != NULL) 
      for (j1=1; j1<=k; j1++) for (j2=1; j2<=j1; j2++) { 
         z = 0; 
         for (i=1; i<=N; i++) z += (X[j1][i]-mean[j1]) *(X[j2][i]-mean[j2]); 
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         V[j1][j2] =  z / (N-1); 
      } 
} 
 
 
double quantile(double prob, double *x, long N) 
{ 
   long i, *ind; 
   double theta, qua; 
   if (N<=1) error("quantile: sample size <= 1"); 
   ind = ivector(1, N); 
   indexx(N, x, ind); 
   i = (long) floor(prob*N + 0.5); 
   if (i<1||i+1>N) error("quantile: sample too small"); 
   theta = 1 - (prob*N + 0.5 - i); 
   qua = theta*x[ind[i]] + (1-theta)*x[ind[i+1]]; 
   free_ivector(ind, 1, N); 
   return qua; 
} 
 
 
void calc_varcov(double **X, double **V, long k, long N) 
{ 
   long i, j, j1, j2; 
   double s, *mean; 
   if (N<=1) error("calc_varcov: sample size <= 1"); 
   mean = vector(1, k); 
   for (j=1; j<=k; j++){ 
      s=0;  
      for (i=1; i<=N; i++) s += X[j][i]; 
      mean[j] = s/N; 
   } 
   for (j1=1; j1<=k; j1++) for (j2=1; j2<=j1; j2++) { 
      s = 0; 
      for (i=1; i<=N; i++) s += (X[j1][i]-mean[j1]) * (X[j2][i]-
mean[j2]); 
      V[j1][j2] =  s / (N-1); 
   } 
   free_vector(mean, 1, k); 
} 
 
 
void calc_corr(double **C, double **V, long k) 
{ 
   double z; 
   long j1, j2; 
   for (j1=1; j1<=k; j1++) for (j2=1; j2<=j1; j2++) { 
      z = V[j1][j1]*V[j2][j2]; 
      if (z != 0) C[j1][j2] = V[j1][j2] / sqrt(z); 
         else C[j1][j2] = ASSA_MISSING; 
   } 
} 
 
 
void calc_rank(double *x, double *rank, long N) 
{ 
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   long i, *ind; 
   ind = ivector(1, N); 
   indexx(N, x, ind); 
   for (i=1; i<=N; i++) rank[ind[i]] = i; 
   free_ivector(ind, 1, N); 
} 
 
 
 
/* matrix operations */ 
 
void cholesky(double **S, double **L, long k) 
{ 
   long i, j, m; 
   double x; 
   for (j=1; j<=k; j++) for (i=j; i<=k; i++){ 
      x = S[i][j];  
      for (m=1; m<=j-1; m++) x -= L[j][m] * L[i][m]; 
      if (i==j){ 
         if (x<=0) error("cholesky: matrix not strictly positive definite"); 
         L[i][i] = sqrt(x); 
 
      } 
      else L[i][j] = x / L[j][j]; 
   } 
   for (j=2; j<=k; j++) for (i=1; i<j;  i++) L[i][j] = 0;     
} 
 
 
void lowinv(double **L, double **LINV, long k) 
{ 
   long i,j,m; 
   double s; 
   for (i=1; i<=k; i++){ 
      for (j=1; j<i; j++) LINV[j][i] = 0; 
      LINV[i][i] = 1 / L[i][i]; 
      for (j=i+1; j<=k; j++){ 
         s=0; 
         for(m=i; m<j; m++) s -= L[j][m]*LINV[m][i]; 
         LINV[j][i] = s / L[j][j]; 
      } 
   } 
}  
 
 
boolean posdef(double **S, long k) 
{ 
   long i, j, m; 
   double **L; 
   double x; 
   boolean pd = true; 
   L = matrix(1, k, 1, k); 
   for (j=1; j<=k; j++) for (i=j; i<=k; i++){ 
      x = S[i][j];  
      for (m=1; m<=j-1; m++) x -= L[j][m] * L[i][m]; 
      if (i==j){ 
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         if (x<=0) {pd = false; goto clear;} 
         L[i][i] = sqrt(x); 
      } 
      else L[i][j] = x / L[j][j]; 
   } 
   clear: 
   free_matrix(L, 1, k, 1, k); 
   return pd; 
} 
 
 
 
 
 
/* utilities */ 
 
void error(char text[]) 
{ 
   fprintf(stderr,"\n\nFatal error:\n"); 
   fprintf(stderr,"%s\n", text); 
   fprintf(stderr,"Bye-bye\n"); 
   exit(1); 
} 
 
 
void warning(char text[]) 
{ 
   fprintf(stderr,"\n\nWarning:\n"); 
   fprintf(stderr,"%s\n", text); 
} 
 
 
 
 
/* BASIC RANDOM GENERATORS */ 
 
 
 
long any(long N, long *seed) 
{ 
   double t; 
   t = N * ran1(seed); 
   if (t==0) return 1; 
   else return ((long)ceil(t)); 
} 
 
 
 
 
void perm(long *x, long N, long *seed){ 
   long i, j; 
   long* z; 
   z = ivector(1,N); 
   for (i=1; i<=N; i++) z[i] = i; 
   for (i=N; i>=1; i--) { 
      j = any(i, seed); 
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      x[i] = z[j]; 
      z[j] = z[i]; 
   } 
   free_ivector(z,1,N); 
} 
 
 
 
 
void boot(long *x, long N, long *seed){ 
   long i; 
   for (i=1; i<=N; i++) x[i] = any(N, seed); 
} 
 
 
void mnor_mat(double **X, double *mean, double **V, 
              long k, long N, long *seed) 
{ 
   long i,r,c; 
   double *z; 
   double **chol; 
   z = vector(1,k); 
   chol = matrix(1,k,1,k); 
   if (posdef(V, k)== false) 
       error("mnor_mat: V not positive definite"); 
   cholesky(V, chol, k); 
   for (i=1; i<=N; i++) { 
      for (r=1; r<=k; r++){ 
         z[r] = gasdev(seed); 
         X[r][i] = mean[r]; 
         for (c=1; c<=r; c++) X[r][i] += chol[r][c] * z[c]; 
      } 
   } 
   free_matrix(chol,1,k,1,k); 
   free_vector(z,1,k); 
} 
 
 
 
 
/* PROBABILITY DISTRIBUTIONS AND RELATED SPECIAL FUNCTIONS */ 
 
 
 
double pnormal(double x) 
{  /* Abramowitz and Stegun */ 
   static double b[5] =  
   { 0.319381530, -0.356563782, 1.781477937, -1.821255978, 1.330274429 }; 
   static double p  = 0.2316419; 
   static double pi = 3.1415927; 
   double P, t; 
   long j; 
   if (x<-10.0) return pnormal(-10.0); 
   if (x>10.0)  return pnormal(10.0); 
   if (x>=0.0) t=1/(1+p*x); else t=1/(1-p*x); 
   P = 0;  



Algorithms for Stochastic Sensitivity Analysis 69 

   for (j=4; j>=0; j--) P=(b[j]+P)*t; 
   P = P*exp(-x*x/2.0)/sqrt(2.0*pi); 
   if (x>=0) return 1-P; else return P; 
} 
 
 
double invnormal(double p) 
{ 
   /* Abramowitz and Stegun */ 
   static double c[3]= {2.515517, 0.802853, 0.010328}; 
   static double d[4]= {1.0, 1.432788, 0.189269, 0.001308}; 
   double q, t, xp, numerator, denominator; 
   if (p<=.0||p>=1.0)  
      {warning("invnormal: invalid argument\n"); return ASSA_MISSING;} 
   q= 1-p; 
   if (q>.5) q=p; 
   t= sqrt(-2.0*log(q)); 
   denominator = d[0]+t*(d[1]+t*(d[2]+t*d[3])); 
   numerator = c[0]+t*(c[1]+t*c[2]); 
   xp = t - numerator/denominator; 
   if (p<.5) xp = -xp; 
   return xp; 
} 
 
 
 
 
void q2m_normal(double *mean, double *variance,  
                double p1, double p2, double q1, double q2) 
{ 
   double e1, e2, a, b; 
   if (p1<=0 || p2<=0 || p1>=1 || p2>=1)  
      error("q2m_normal: p1 or p2 out of range"); 
   if (p1==p2 || q1==q2) error("q2m_normal: p1=p2 or q1=q2"); 
   if ((p1-p2)/(q1-q2) < 0) error("q2m_normal: incompatible p1,p2,q1,q2"); 
   e1 = invnormal(p1); e2=invnormal(p2); 
   /* solve q[i] = a + b*e[i] */ 
   b = (q1-q2)/(e1-e2); 
   a = q1 - b*e1; 
   *mean = a; 
   *variance = b*b; 
} 
 
 
 
void q2m_lognormal(double *mean, double *variance,  
                double p1, double p2, double q1, double q2) 
{ 
   double e1, e2, lq1, lq2, a, b, mu, sigmasq; 
   if (p1<=0 || p2<=0 || p1>=1 || p2>=1)  
      error("q2m_lognormal: p1 or p2 out of range"); 
   if (q1<=0 || q2<=0)  
      error("q2m_lognormal: q1 or q2 <= 0"); 
   if (p1==p2 || q1==q2) error("q2m_lognormal: p1=p2 or q1=q2"); 
   if ((p1-p2)/(q1-q2) < 0) error("q2m_lognormal: incompatible p1,p2,q1,q2"); 
   e1 = invnormal(p1); e2=invnormal(p2); 
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   lq1 = log(q1); lq2 = log(q2); 
   /* solve lq[i] = a + b*e[i] */ 
   b = (lq1-lq2)/(e1-e2); 
   a = lq1 - b*e1; 
   mu = a; 
   sigmasq = b*b; 
   *mean = exp(mu + sigmasq/2); 
   *variance = (*mean)*(*mean) * (exp(sigmasq)-1); 
} 
 
 
void m2p_lognormal(double *mu, double *sigma,  
                   double mean, double variance) 
{ 
   if (mean<=0 || variance <= 0)  
      error("m2p_lognormal: mean or variance out of range"); 
   *sigma = sqrt(log(variance/(mean*mean)+1)); 
   *mu = log(mean) - (*sigma)*(*sigma)/2; 
} 
 
 
double ptriang(double x, double low, double top, double hig) 
{ 
   double xi, tau; 
   if (low >= hig) error("ptriang: low >= hig"); 
   if (top<low || top > hig) error("ptriang: top not between low and hig"); 
   if (x<=low) return 0.; 
   if (x>=hig) return 1.; 
   xi = (x-low)/(hig-low); 
   tau = (top-low)/(hig-low); 
   return (xi<=tau)? xi*xi/tau : 1-(1-xi)*(1-xi)/(1-tau); 
} 
 
 
double invtriang(double p, double low, double top, double hig) 
{ 
   double xi, tau; 
   if (low >= hig) error("invtriang: low >= hig"); 
   if (top<low || top > hig) error("invtriang: top not between low and hig"); 
   if (p<0 || p>1) error("invtriang: p not between 0 and 1"); 
   if (p==0) return low; 
   if (p==1) return hig; 
   tau = (top-low)/(hig-low); 
   xi = (p<=tau)? sqrt(p*tau) : 1-sqrt((1-p)*(1-tau)); 
   return low + xi*(hig-low); 
} 
 
 
double pgamma(double x, double a, double b) 
{  
   if (x<0.0 || a<=0 || b<=0) 
   {warning("Pgamma: invalid arguments"); return ASSA_MISSING;} 
   if (x==0) return 0; 
   return gammp(a, x/b);  
} 
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double invgamma(double p, double a, double b) 
{ 
   /* initial bracketing followed by bisection: might be slow */ 
   double low = 0.0, mid, hig = 1.0; 
   static double BIGA = 400, BIG = 1e+37; 
   if (p<0.0||p>1.0||a<=0||b<=0) 
      {warning("Invgamma: invalid arguments"); return ASSA_MISSING;} 
   if (p==0) return 0; if (p==1) return BIG; 
   if (a > BIGA) { /* Wilson-Hilferty approximation */ 
      double w; 
      w = invnormal(p)/sqrt(9*a) + 1 - 1/(9*a); 
      return b * a * w*w*w; 
   } 
   while (gammp(a, hig/b)<p) {low = hig; hig = 2*hig;} 
   while (hig-low>ASSA_EPS){ 
      mid = (low+hig)/2; 
      if (gammp(a, mid/b)>=p) hig = mid; else low = mid; 
   } 
   return hig; 
} 
 
 
void m2p_gamma(double *a, double *b, double mean, double variance) 
{ 
   *a = mean*mean/variance; 
   *b = variance/mean; 
} 
 
 
double pbeta(double x, double a, double b) 
{  
   if (x<0.0||x>1.0||a<=0||b<=0) 
      {warning("Pbeta: invalid arguments"); return ASSA_MISSING;} 
   if (x==0) return 0; 
   if (x==1) return 1; 
   return betai(a, b, x);  
} 
 
 
double invbeta(double p, double a, double b) 
{ 
   double low = 0.0, mid, hig = 1.0; 
   if (p<0.0||p>1.0||a<=0||b<=0) 
      {warning("Invbeta: invalid arguments"); return ASSA_MISSING;} 
   if (p==0.0) return 0.0; if (p==1.0) return 1.0; 
   while (hig-low>ASSA_EPS){ 
      mid = (low+hig)/2; 
      if (betai(a, b, mid)>=p) hig = mid; else low = mid; 
   } 
   return hig; 
} 
 
 
void m2p_beta(double *a, double *b, double mean, double variance) 
{ 
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   double z; 
   if ((variance<=0.) || (variance>=mean*(1-mean)) || (mean<=0.) || (mean>=1.)) 
      error("m2p_beta: invalid mean and variance\n"); 
   z = variance/mean + mean; 
   *a = (1-z) * mean / (z - mean); 
   *b = (1-z) * (1-mean) / (z - mean); 
} 
 
 
 
 
/* GENERATORS IN THE UNIT HYPERCUBE */ 
 
void uhc_basic(double **U, long k, long N, long *seed) 
{ 
   long i,j; 
   for (i=1; i<=k; i++) for (j=1; j<=N; j++) U[i][j] = ran1(seed); 
} 
 
 
void uhc_corr(double **U, double **C, long k, long N, long *seed) 
{ 
   long i,j; 
   double *mean; 
   if (posdef(C, k)== false) 
      error("uhc_corr: cormat not positive definite"); 
   mean = vector(1,k); 
   for (i=1; i<=k; i++) mean[i]=0.; 
   mnor_mat(U, mean, C, k, N, seed); 
   for (i=1; i<=k; i++) for (j=1; j<=N; j++) 
         U[i][j] = pnormal(U[i][j]); 
   free_vector(mean, 1, k); 
} 
 
 
void luhc_basic(double **U, long k, long N, long *seed) 
{ 
   long i,j; 
   long *z; 
   z = ivector(1,N); 
   for (i=1; i<=k; i++) { 
      perm(z,N,seed); 
      for (j=1; j<=N; j++) U[i][j] = (z[j] - 1 + ran1(seed))/N; 
   } 
   free_ivector(z,1,N); 
} 
 
 
void rank_mat(long **R, double **C, 
              long k, long N, long *seed) 
{ 
   /* matrix of sample ranks for given rankcorrelation */ 
   long i, j, r, *p; 
   double *mean, **M; 
   p = ivector(1,N); 
   mean = vector(1, k); 
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   M = matrix(1,k,1,N); 
   for (j=1; j<=k; j++) 
      if (C[j][j] != 1.) error("rank_mat: diagonal c != 1"); 
   if (posdef(C,k) == false) 
      error("rank_mat: C not positive definite"); 
   for (i=1; i<=k; i++) mean[i]=0.; 
   mnor_mat(M, mean, C, k, N, seed); 
   for (r=1; r<=k; r++){ 
      indexx(N, M[r], p); 
      for (i=1; i<=N; i++) R[r][p[i]] = i; 
   } 
   free_matrix(M,1,k,1,N); 
   free_vector(mean, 1, k); 
   free_ivector(p,1,N); 
} 
 
 
void luhc_corr(double **U, double **C, long k, long N, long *seed) 
{ 
   double **M; 
   long i, j, *ind, **ranks; 
   M = matrix(1,k,1,N); 
   ranks = imatrix(1,k,1,N); 
   ind = ivector(1,N); 
   luhc_basic(M, k, N, seed); 
   rank_mat(ranks, C, k, N, seed); 
   for (i=1; i<=k; i++){ 
      indexx(N, M[i], ind); 
      for (j=1; j<=N; j++) U[i][j] = M[i][ind[ranks[i][j]]]; 
   } 
   free_ivector(ind,1,N); 
   free_imatrix(ranks,1,k,1,N); 
   free_matrix(M,1,k,1,N); 
} 
 
 
void iman_rank_mat(long **R, double **C, 
                   long k, long N, long *seed) 
{ 
   /* matrix of ranks for method of iman */ 
   long i, j, r, c, *p; 
   double *z, *waerden, **sigma, **chol, **invchol, **M1, **M2; 
   z = vector(1,k); 
   sigma = matrix(1, k, 1, k); 
   p = ivector(1,N); 
   waerden = vector(1,N); 
   chol = matrix(1,k,1,k); 
   invchol = matrix(1,k,1,k); 
   M1 = matrix(1,k,1,N); 
   M2 = matrix(1,k,1,N); 
   if (N<k) error("iman_rank_mat: sample size less than number of variates"); 
   for (j=1; j<=k; j++) 
      if (C[j][j] != 1.) error("iman_rank_mat: diagonal C != 1"); 
   if (posdef(C,k) == false) 
      error("iman_rank_mat: C not positive definite"); 
   for (i=1; i<=N; i++) waerden[i] = invnormal(i/(N+1.0)); 
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   for (j=1; j<=k; j++){ 
      perm(p, N, seed); 
      for (i=1; i<=N; i++) M1[j][i] = waerden[p[i]]; 
   } 
   for (r=1; r<=k; r++) for (c=1; c<=r; c++){ 
      sigma[r][c] = 0; 
      for (i=1; i<=N; i++) sigma[r][c] += M1[r][i]*M1[c][i]; 
      sigma[r][c] /= N; 
   } 
   if (!posdef(sigma,k)) error("iman_rank_mat: sample size too small?"); 
   cholesky(sigma, chol, k); 
   lowinv(chol, invchol, k); 
   /* make uncorrelated M2 */ 
   for (i=1; i<=N; i++) { 
      for (r=1; r<=k; r++){ 
         M2[r][i] = 0; 
         for (c=1; c<=r; c++) M2[r][i] += invchol[r][c] * M1[c][i]; 
      } 
   } 
   /* let M1 have the required correlations */ 
   cholesky(C, chol, k); 
   for (i=1; i<=N; i++) { 
      for (r=1; r<=k; r++){ 
         M1[r][i] = 0; 
         for (c=1; c<=r; c++) M1[r][i] += chol[r][c] * M2[c][i]; 
      } 
   } 
   for (r=1; r<=k; r++){ 
      indexx(N, M1[r], p); 
      for (i=1; i<=N; i++) R[r][p[i]] = i; 
   } 
   free_matrix(M2,1,k,1,N); 
   free_matrix(M1,1,k,1,N); 
   free_matrix(invchol,1,k,1,k); 
   free_matrix(chol,1,k,1,k); 
   free_vector(waerden,1,N); 
   free_ivector(p,1,N); 
   free_matrix(sigma, 1, k, 1, k); 
   free_vector(z,1,k); 
} 
 
 
void luhc_iman(double **U, double **C, long k, long N, long *seed) 
{ 
   double **M; 
   long i, j, *ind, **ranks; 
   M = matrix(1,k,1,N); 
   ranks = imatrix(1,k,1,N); 
   ind = ivector(1,N); 
   luhc_basic(M, k, N, seed); 
   iman_rank_mat(ranks, C, k, N, seed); 
   for (i=1; i<=k; i++){ 
      indexx(N, M[i], ind); 
      for (j=1; j<=N; j++) U[i][j] = M[i][ind[ranks[i][j]]]; 
   } 
   free_ivector(ind,1,N); 
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   free_imatrix(ranks,1,k,1,N); 
   free_matrix(M,1,k,1,N); 
 
} 
 
 
void uhc_sama(double **U, long prime, long power, long *seed) 
{ 
     /* 
     saturated main effect fractional factorial design 
     (prime^power-1)/(prime-1) orthogonal factors at prime levels 
     cf. Aloke Dey, 1985, Orthogonal fractional factorial designs, 2.4.1 
     factors randomized, augmented with random term and scaled to unit interval 
     still to do: allow less than maximum number of factors 
     */ 
     long ncol; /* number of factors (columns) */ 
     long *x; /* x[1...power]: generating factors */ 
     long *k; /* k[1...power]: column specific coefficients of x[1...power] */ 
     long *z; 
     long lead;   /* leading coefficient of sum(k[j]*x[j]) */ 
     long row, col, nrow, i, j, a, cnt; 
     const long unset=-1; 
     if (prime<2) error("uhc_sama: prime should be at least 2"); 
     if (power<2) error("uhc_sama: power should be at least 2"); 
     for (i=2; i<=prime-1; i++) 
        if (prime%i==0) error("uhc_sama: value is not a prime"); 
     nrow = (long)pow(prime,power); 
     ncol = (nrow-1) / (prime-1); 
     x = ivector(1,power); 
     k = ivector(1,power); 
     z = ivector(1, prime); 
     for (row=0; row<nrow; row++){ 
          a = row; 
          for (i=power; i>=1; i--) {x[i] = a%prime; a /= prime;} 
          cnt = 0; 
          for (i=0; i<nrow; i++) { 
               a=i; lead = unset; 
               for (j=power; j>=1; j--) { 
                    k[j] = a%prime; 
                    if (lead==unset && k[j]!=0){ 
                         lead = k[j]; 
                         if (lead!=1) goto exit; 
                    } 
                    a /= prime; 
               } 
               if (lead==1) { 
                    cnt++; 
                    a = 0; 
                    for (j=1; j<=power; j++) a += k[j]*x[j]; 
                    U[cnt][row+1] = a%prime; 
               } 
               exit:; 
          } 
     } 
     for (col=1; col<=ncol; col++){ 
         perm(z, prime, seed); 
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         for (row=1; row<=nrow; row++) 
            U[col][row] = (z[(long)floor(U[col][row]+ 
                                1.001)]-1 + ran1(seed)) / prime; 
     } 
     free_ivector(z,1,prime); 
     free_ivector(k,1,power); 
     free_ivector(x,1,power); 
} 
 
 
 
 
/* TEST FUNCTIONS */ 
 
double sobol8(double *x) 
{ 
   /* sobol test function, Saltelli et al. 2000 section 2.9  
      x_1...x_8 assumed independent homogeneous on 0-1      */ 
   static double z[8] = {0,1,4.5,9,99,99,99,99}; 
   long i; 
   double s=1; 
   double *a; 
   a = z-1; 
   for (i=1; i<=8; i++) s *= (fabs(4*x[i]-2)+a[i]) / (1+a[i]); 
   return s; 
} 
 
 
 
 
double normal8(double *x) 
{ 
   /* test function for 8 standard normal x's  
      zero correlation, except rho[3,2]=rho[5,4]=0.75  */ 
   return x[1]*x[1]/sqrt(2) + (x[2]+x[3])/sqrt(1.75) + 
          (x[4]-x[5])*2 + x[6]*x[7]*sqrt(2) + x[8]; 
} 
 
 
 
 
/* REGRESSION-BASED SENSITIVITY ANALYSIS */ 
 
double rsquad(double *y, double **X, long k, long N) 
{ 
   /* calculates rsquared-adjusted of linear regression of y  
      on the constant term and the rows of X */ 
   long i, j, j1, j2; 
   double vary=0, rms=0, *res, *one, **X_; 
   if (N-1-k <= 0) error("rsquad: N-k-1 <= 0"); 
   X_ = matrix(1, k, 1, N); 
   one = vector(1, N); 
   res = vector(1, N); 
   for (i=1; i<=N; i++) one[i]=1; 
   rop(res, y, one, N); 
   for (i=1; i<=N; i++) vary += res[i]*res[i]; 
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   vary /= (N-1); 
   if (vary == 0) error("rsquad: y is constant"); 
   for (j=1; j<=k; j++) rop(X_[j], X[j], one, N); 
   for (j1=1; j1<=k; j1++) { 
      rop(res, res, X_[j1], N); 
      if (j1<k) for (j2=j1+1; j2<=k; j2++) rop(X_[j2], X_[j2], X_[j1], N); 
   } 
   for (i=1; i<=N; i++) rms += res[i]*res[i]; 
   rms /= (N-1-k); 
   free_vector(res, 1, N); 
   free_vector(one, 1, N); 
   free_matrix(X_, 1, k, 1, N); 
   if (rms<vary) return 1 - rms/vary; 
   return 0; 
} 
 
 
void rsens_lin(long ngroup, long k, long N, 
            double **X, double *y, long *key,  
            double *rsquadlin, double *corrat, double *c_corrat) 
   /* 
   input ngroup: integer >= 2; number of input groups distinguished 
   input k: integer >= ngroup; number of model input variables 
   input N: integer > k+1; number of model runs 
   input X: k-by-N real matrix, rows contain model input variables 
   input y: real N-vector, the model output for varying inputs 
   input key: integer k-vector; grouping of the k model inputs 
   output rsquadlin: rsquared adjusted of the regression of y on all x's 
   output corrat: real ngroup-vector; correlation ratio of the groups 
   output c_corrat: real ngroup-vector complementary correlation ratios 
   */ 
{ 
   double **present, **absent; 
   long  group, j, npres, nabs; 
   boolean grouppresent; 
   if (ngroup<2) error("rsens_lin: ngroup < 2"); 
   if (k<ngroup) error("rsens_lin: k < ngroup"); 
   if (N<=k+1) error("rsens_lin: N <= k+1"); 
   for (j=1; j<=k; j++) if (key[j]<1 || key[j] >ngroup)  
      error("rsens_lin: out-of-bounds grouping in key"); 
   /* check if all levels 1...ngroup present in key */ 
   for (group=1; group<=ngroup; group++){ 
      grouppresent=false; 
      for (j=1; j<=k; j++) 
         if (key[j]==group) {grouppresent=true; break;} 
      if (grouppresent==false)  
         error("rsens_lin: incomplete key"); 
   } 
   present = (double **) malloc((size_t)((k+1)*sizeof(double*))); 
   absent  = (double **) malloc((size_t)((k+1)*sizeof(double*))); 
   if (!present || !absent) error("rsens_lin: insufficient memory"); 
   *rsquadlin = rsquad(y, X, k, N); 
   for (group=1; group<=ngroup; group++){ 
      npres=0; nabs=0; 
      for (j=1; j<=k; j++){ 
         if (key[j]==group) {npres++; present[npres] = X[j];} 
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                   else {nabs++;  absent[nabs] = X[j];} 
      } 
      corrat[group] = rsquad(y, present, npres, N); 
      c_corrat[group] = *rsquadlin - rsquad(y, absent, nabs, N); 
   } 
   free((char*) present); 
   free((char*) absent); 
} 
 
 
void rop(double *res, double *y, double *x, long N) 
{ 
   double xy=0, xx=0, alpha; 
   long i; 
   for (i=1; i<=N; i++){ 
      xy += x[i]*y[i]; 
      xx += x[i]*x[i]; 
   } 
   alpha = (xx>0)? xy/xx : 0; 
   for (i=1; i<=N; i++) res[i] = y[i]-alpha*x[i]; 
} 
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