
Manual for version 1.0

ASSA: Algorithms for Stochastic
Sensitivity Analysis

4

M.J.W. Jansen

2 O

ASSA: Algori thms for

Stochast ic Sensit iv i ty

Analysis

Manua l f o r v e r s i on 1 .0

M . J . W . J a n s e n

We rkdoc ume n t 4

W e t t e l i j k e On d e r z o e k s t a ke n N a t u u r & M i l i e u

W a g e n i n g e n , n o v e m b e r 2 0 0 5

4 WOt werkdocument 4

The ‘Working Documents’ series presents interim results of research commissioned by the Statutory
Research Tasks Unit for Nature & the Environment (WOT N&M) from various external agencies. The
series is intended as an internal channel of communication and is not being distributed outside the
WOT Unit. The content of this document is mainly intended as a reference for other researchers
engaged in projects commissioned by the Unit. As soon as final research results become available,
these are published through other channels. The present series includes documents reporting
research findings as well as documents relating to research management issues.

Working document 4 has been accepted by Harm Houweling, who commissioned the

project on behalf of the Statutory Research Tasks Unit for Nature & the Environment.

The Working Documents series is published by the Statutory Research Tasks Unit for Nature & the
Environment (WOT N&M), part of Wageningen UR. This report is available from the secretary’s office,
and can be downloaded from www.wotnatuurenmilieu.wur.nl.

Statutory Research Tasks Unit for Nature & the Environment

(Wettelijke Onderzoekstaken Natuur & Milieu)

Postbus 47, 6700 AA Wageningen
Tel: (0317) 47 78 44; Fax: (0317) 42 49 88; e-mail: info@npb-wageningen.nl;
Internet: www.wotnatuurenmilieu.wur.nl

Project WOT-04-394 – 230017-05 [Werkdocument 4/ Working Document 4 − November 2005]

Keywords and phrases
Model input uncertainty; model output uncertainty; Monte Carlo; uncertainty analysis; analysis of variance;
regression-based sensitivity analysis; regression-free sensitivity analysis; numerical recipes.

©2005 Biometris

 Postbus 100, 6700 AC Wageningen.
 Tel: +31 (0)317 48 40 85; fax: +31 (0)317 48 35 54; e-mail: Biometris@wur.nl

ASSA's manual and source code can be downloaded free of charge from the website of WOT N&M, the Dutch
Statutory Research Tasks Unit for Nature & the Environment at Wageningen University and Research Centre. A
link to WOT N&M's website will be offered to the SAMO site, which contains references to several software
products for sensitivity analysis: http://sensitivity-analysis.jrc.cec.eu.int/forum/default.asp.

Permission and disclaimer
Permission to use, copy and distribute this software and its documentation for any purpose is granted without
fee, provided that the entire package (manual, c-code and header file) is kept together and that this permission
and disclaimer notice appears in all copies. WOT N&M, Biometris, Plant Research International and Wageningen
UR make no warranty of any kind, expressed or implied, including without limitation any warranties of
merchantability and/or fitness for a particular purpose. WOT N&M, Biometris, Plant Research International and
Wageningen UR do not assume any liability for the use of this software. In no event will WOT N&M, Biometris,
Plant Research International or Wageningen UR be liable for any additional damages, including any lost profits,
lost savings, or other incidental or consequential damages arising from the use of or inability to use, this software
and its accompanying documentation, even if WOT N&M, Biometris, Plant Research International or Wageningen
UR has been advised of the possibility of such damages.

Contents

Abstract and Acknowledgements 7
1 Introduction 9
2 Overview of algorithms 11
2.1 Input generators 11
2.2 Analysis 11
2.3 Auxiliary routines 12
3 Supporting software required 13
4 Conventions 15
4.1 Data types 15
4.2 Special constants 16
4.3 Names for frequently recurring items 16
4.4 Symmetric matrices 16
5 Elementary procedures 17
5.1 Summary statistics 17
5.2 Matrix operations 18
5.3 Utilities 18
6 Basic random generators 19
7 Probabiliy distributions and related functions 21
7.1 Normal distribution 21
7.2 Lognormal distribution 22
7.3 Triangular distribution 23
7.4 Gamma distribution 24
7.5 Beta distribution 25
8 Generators in the unit hypercube 27
9 Variance components 33
10 Test functions 37
10.1 Test function sobol8 37
10.2 Test function normal8 38
11 Regression-based sensitivity analysis 41
11.1 General 41
11.2 Bootstrap percentile confidence interval 44
12 Regression-free sensitivity analysis 47
References 51
Appendix 1 Mathematical details 53
Appendix 2 NRC procedures required in ASSA 57
Appendix 3 ASSA-1.0 header-file 59
Appendix 4 ASSA-1.0 source-file 63

Algorithms for Stochastic Sensitivity Analysis 7

Abstract and Acknowledgements

Abstract
ASSA is a public-domain open-source library of algorithms for stochastic sensitivity analysis in
ANSI C. It is a documented collection of basic and more sophisticated algorithms in that field.

Acknowledgements
The research enabling the construction of ASSA has been performed in the framework of
strategic research of Biometris and in various consultation projects. The actual writing up was
supported by WOT N&M, the Dutch Statutory Research Task Unit for Nature & the Environment
at Wageningen University and Research Centre. The stimulating conversations with Harm
Houweling of that office constituted vital support. I am grateful to Jacques Withagen of
Biometris for code-checking and comparison of ASSA results with results from other software.

Algorithms for Stochastic Sensitivity Analysis 9

1 Introduction

In stochastic sensitivity analysis (SSA), the imperfectly known inputs of a
mathematical model are stochastic variables. The joint probability distribution of
these inputs is supposed to be known at the start of the analysis, so quite some
hard work has to be done in advance. The analysis assesses the effects on model
output caused by the uncertainty in distinct inputs. These inputs may comprise
parameters, exogenous variables, initial conditions and so on.

Instead of the effect of distinct individual inputs, one may just as well
analyse the effect of distinct groups of inputs.

The study of the combined effect of all uncertain inputs is often called
uncertainty analysis.

The adjective ‘stochastic’ in SSA is added to distinguish the subject from
all kinds of deterministic sensitivity analysis, but very often SSA is plainly called
sensitivity analysis. Some authors restrict the term SSA to stochastic differential
equation models, but we will use the term in the broader sense just described.

In the type of Monte Carlo analysis discussed here, one constructs a
random sample from the joint distribution of the inputs; the model is run for each
sampled input vector (sometimes very computer-intensive); after that, one looks
what the input variation does to the output. Usually, the computational effort is
nearly proportional to the number of model runs, so efficiency is sought for in
minimisation of the required number of runs (and nowhere else). The point is that
the results of the analysis become more accurate as the number of runs increases.

Various software products exist for SSA. Saltelli et al. (2000) contains an
overview of software available in the year 2000. The software packages
mentioned there are closed in the sense that you can hardly change or add
components. The section in the same book on generic algorithms is still far from
complete. Thus, there does not seem to exist a fairly complete, coherent, and
documented collection of algorithms for SSA in a basic programming language
like C or Fortran. The ASSA project has the purpose to begin filling this gap.

The collection is available in the public domain, in such a form that
everyone can use the software freely. It is hoped that users will suggest
improvements or additions. The long-term goal is a collection of documented
algorithms in the spirit of the famous series of Numerical Recipes (e.g. Press et
al., 1992), but with a slightly different legal status.

Model builders should be enabled to incorporate the algorithms into their
own software, for instance in order to accompany model statements with an
indication of inaccuracy due to input uncertainty. Another application is inclusion
of SSA algorithms into frameworks for building, coupling and analysing models.

The language used is ANSI C, written in such a style that translation into
another basic programming language should not give rise to serious problems.

At present, ASSA consists mainly of conventional algorithms for sensitivity
analysis. Apart from auxiliary routines, the algorithms can be divided into:

• algorithms for constructing model input samples; and
• algorithms for analysing the corresponding model output samples.

10 WOt werkdocument 4

All sensitivity analyses in the current version of ASSA are variance-based.
The long-term goals are:
• a gradually improving and extending collection of basic and more

advanced algorithms for SSA, leading to a moderate form of
standardisation;

• uniform description of these algorithms via C-programs;
• a form of publication inviting comments and additions, while enabling

flexible use of the algorithms.
This report is a manual, not a theoretical exposition. Appendix 1 is an

exception: it describes some details that we could not easily find in the literature
for sensitivity analysis. For an overview of the theory, see for instance Saltelli et
al. 2000). For theoretical details, see the literature cited.

Algorithms for Stochastic Sensitivity Analysis 11

2 Overview of algorithms

2.1 Input generators

Random generators are used to construct a sample from the distribution of
uncertain parameters or other model inputs. In the present version, the statistical
properties of the inputs can be described in terms of their grade correlation (often
loosely called rank correlation). Each of the individual variables is defined through
the type and parameters of its distribution.

There are two basic random generators: uniform(0,1) and multinormal(μ,
Σ). For the rest, the drawing of random samples is done in two steps.

The first step draws a sample from the k-dimensional unit-hypercube. Each
of the k variables thus sampled is more or less randomly and more or less
uniformly distributed over the interval (0,1). Some examples: independent;
dependent with given grade correlation; latin hypercube (McKay et al., 1979; Iman
and Conover, 1980; Stein, 1987; Owen, 1992); latin hypercube with forced rank
correlation (Iman and Conover, 1982; Helton and Davis, 2002); and – by way of
example – a systematic sample constructed from a saturated main-effect design.

The next step transforms these (0,1) variables into variables with the
required distribution. The distributions currently available are: uniform, triangular,
normal, log-normal, beta and gamma. Auxiliary routines are supplied to derive the
standard parameters of distributions from information about means and variances,
or about quantiles.

2.2 Analysis

In ASSA's present version, all sensitivity analyses are variance-based, i.e. they
perform some kind of analysis of variance on the model output. During the 1990's
there seems to have grown consensus that this form of sensitivity analysis is very
adequate for most purposes. The algorithms provide the possibility to estimate the
variance contributions of groups of inputs, which often facilitates the interpretation
of the results, especially when variables from different groups are stochastically
independent. There is an algorithm for the most common form of sensitivity
analysis: the one based on linear regression. We give a simple example of a
regression-free sensitivity analysis. It is shown how one can calculate a bootstrap
confidence interval for the sensitivity estimates from these analyses if the input
sample consists of independent draws from the input's uncertainty distribution.

An analysis based on spline-regression is still on the list of wishes. An
algorithm for winding stairs analysis (Jansen et al. 1994; Jansen, 1996) is in the
planning.

For the time being, only two simple test functions are included, from which
sensitivity properties can be calculated analytically.

12 WOt werkdocument 4

2.3 Auxiliary routines

ASSA contains routines to summarise the statistical properties of a sample:
variance matrix, correlation matrix, mean, variance, median and rank-correlation.
There is an algorithm to check if a symmetric matrix is positive definite. Graphical
routines are not included.

Algorithms for Stochastic Sensitivity Analysis 13

3 Supporting software required

The current version of ASSA frequently uses algorithms from Numerical Recipes
in C (NRC; Press et al., 1992). Thus, you may only use this version of ASSA in
applications where you are entitled to use the algorithms from Numerical Recipes.
The NRC procedures used for ASSA serve mainly to allocate and free memory
space for vectors and matrices, to generate uniform random numbers, and to
calculate special functions relating to probability distributions.

The NRC utility files nrutil.h and nrutil.c are used primarily
because their contents are called by the NRC routines used in ASSA, but also to
allocate and free memory space for vectors and matrices. For example the
procedures vector, free_vector, matrix, free_matrix,
ivector, free_ivector.

The NRC procedures used are: ran1, betacf, betai, gammln,
gammp, gasdev, gcf, gser, indexx. These and all other NRC
procedures are prototyped in nr.h.

We used the ANSI-C version 2.10 of numerical recipes. If you have an
older version 2.x it will probably work just as well, but you can obtain an upgrade
via www.nr.com.

Side effects
ASSA inherits the ease-of-use of NRC's vector and matrix routines, but also their
risk-of-use. A programming error like offering a 4-by-100 matrix to a procedure
that expects a 100-by-4 matrix will go unnoticed by the system. You may call
yourself lucky if such programming errors cause a halting of the execution by the
operating system. The latter would happen in the opposite case of offering a 100-
by-4 matrix to a procedure that expects a 4-by-100 matrix. Remember that a C-
programmer is supposed to know what he is doing, and carefully read the NRC
sections on vectors and matrices.

By the inclusion of nrutil.h and nrutil.c, NRC constructs like
DMAX or DSQR were available, but they have not been used in the recipes
themselves; possibly in examples. With some compilers, these NRC constructs
cause warnings that variables have been declared but not been used. To suppress
such warnings, you might adapt the NRC files, but we have chosen to use NRC as
it is.

Algorithms for Stochastic Sensitivity Analysis 15

4 Conventions

4.1 Data types

All floating point numbers are of the double type, all integers are of the (signed) long
type. Even the function main is of the long type. The NRC procedures are adapted to
this convention by brute force, namely by stating in the header file assa.h

/* include NRC ANSI prototypes */
#define float double
#define unsigned
#define int long
#ifndef ANSI
 #define ANSI
#endif
#include "nrutil.h"
#include "nr.h"
#undef float
#undef unsigned
#undef int

Similarly, in the file assa.c, we state

/* include NRC ANSI routines */
#define float double
#define unsigned
#define int long
#ifndef ANSI
 #define ANSI
#endif
#include "nrutil.c"
#include "ran1.c"
#include "gasdev.c"
#include "betacf.c"
#include "betai.c"
#include "gammln.c"
#include "gammp.c"
#include "gcf.c"
#include "gser.c"
#include "indexx.c"
#undef float
#undef unsigned
#undef int

The substitution of long for int would not generate correct C if one uses phrases
like long int, but these do not occur in the NRC-files.
 Full exploitation of the change from float to double in a numerical procedure,
would require that several precision parameters of the procedure are adapted. If you
really want to make such adaptations in the NRC routines used, you will find useful
hints in the C++ version of Numerical Recipes, which also has the double type as
default (Press et al., 2002; Appendix C).
 A type boolean is made available by the next statement in assa.h

typedef enum {false, true} boolean

16 WOt werkdocument 4

4.2 Special constants

Two special constants are defined in assa.h through

#define ASSA_MISSING -99999.
#define ASSA_EPS 3.0e-7

4.3 Names for frequently recurring items

N sample size
k number of input variables
X k-by-N input sample matrix
U k-by-N matrix with columns in the unit hypercube
y N-vector of model output corresponding to X
μ mean (called mu in the code)
σ2 variance (called sigmasq in code); ‘v’ is also used
V variance-covariance matrix
C correlation matrix

4.4 Symmetric matrices

In ASSA, symmetric double matrices – usually variance matrices – are allocated as
square matrices, but only the left lower triangle is used. Thus, if V is a k-by-k variance
matrix, you only need to assign values to the elements Vij with j≤i≤k.

Algorithms for Stochastic Sensitivity Analysis 17

5 Elementary procedures

Some elementary procedures are given, without much explanation. The procedures are
required occasionally, but they are no typical ASSA-material. We hope that it is
sufficiently obvious what these procedures have to do, and how they do it. If not,
please read the C-code.

5.1 Summary statistics

Procedure summary calculates mean, variance, minimum, maximum and median of
N-vector x = (x1 ... xN). Pointers to doubles where the results must be stored are
given as arguments.

void summary(double *x, long N,
 double *mean, double *var,
 double *min, double *max, double *med)

 Procedure msummary calculates means, variances, minima, maxima, medians
and k-by-k variance matrix of k-by-N sample matrix X.

void msummary(double **X, long k, long N,
 double *mean, double *var, double *min, double *max,
 double *med, double **V)

The results of msummary are stored in existing k-vectors mean, var, min, max, med,
and in existing k-by-k matrix V. Only the left lower triangle of V is filled, the rest is
left unchanged.
 Function quantile gets an N-vector x, which is treated as a sample from a
continuous distribution F. It calculates the ‘prob-quantile’: an estimate of the value ξ
such that the F(ξ) = prob.

double quantile(double prob, double *x, long N)

 The next procedure calculates the k-by-k variance matrix V of k-by-N matrix
X, which is treated as a sample of k N-vectors.

void calc_varcov(double **X, double **V, long k, long N)

 Void calc_corr treats k-by-k matrix V as a variance-matrix, and calculates
the corresponding k-by-k correlation matrix C. Only the lower triangular part of V is
taken into account, and only the lower triangle of C is assigned.

void calc_corr(double **C, double **V, long k)

 Procedure calc_rank calculates the ranks of N-vector x. If all x-values are
different, the lowest x-value gets rank 1 and the highest rank N. Duplicate or
multiplicate x-values get different ranks.

void calc_rank(double *x, double *rank, long N)

18 WOt werkdocument 4

5.2 Matrix operations

Procedure cholesky calculates the lower triangular square root, L say, of a positive
definite k-by-k symmetric matrix S, in the sense that L.LT = S, where LT is the
transposed of L. The k-by-k matrix L must have been declared in advance. The above-
diagonal part of L is filled with zero's. As stated earlier, only the left-lower triangle of
symmetric matrix S must have values, the upper part is ignored.

void cholesky(double **S, double **L, long k)

The procedure is used in ASSA for the generation of multinormal random variables.
 Procedure cholesky is also used as a step in the inversion of a positive
definite matrix; it works as follows. Routine lowinv calculates the inverse of k-by-k
lower-triangular matrix L and puts the result in existing n-by-n lower triangular matrix
LINV. The above-diagonal part of L is ignored; the above-diagonal part of LINV is
filled with zero's.

void lowinv(double **L, double **LINV, long k)

A variance matrix, or any other positive-definite symmetric matrix, can be simply
inverted by Cholesky decomposition and inversion of the ensuing lower-triangular
matrix. Such an inversion will be applied in the method of Iman and Conover to
construct input samples with a prescribed rank correlation (see chapter: Generators in
the Unitcube).
 Boolean function posdef checks if k-by-k matrix S is positive definite by
going through the steps made by cholesky, but instead of issuing an error message,
it returns false if S is not positive definite (and otherwise true).

boolean posdef(double **S, long k).

5.3 Utilities

Procedure error is used to end program execution, after issuing a message on the
standard error channel stderr.

void error(char text[]).

It may be used like this:

error("cholesky: input matrix not positive definite").

 On the other hand, void warning only issues a message and allows the
program to continue:

void warning(char text[]).

Algorithms for Stochastic Sensitivity Analysis 19

6 Basic random generators

The uniform(0,1) random generator in ASSA is ran1 from NRC. It is the heart of all
ASSA's random generators. In a program using ASSA, the seed is a long int,
seed say, that should be set to some negative value once, before any of the random
generators are called. This will initialise all random generators, since all of them are
based on ran1. Every random generator used afterwards should use a pointer to this
one and only seed as argument. There seems to be no need to reinitialise the generators
since ran1 has a very long cycle, but if you really want to reinitialise the random
generators within a program, assign a negative value to seed.
 A uniform random long int from the set {1, 2, ... N} can be drawn via

long any(long N, long *seed)

which rounds N*ran1(*seed) to the nearest larger integer.
 You can fill an existing long-vector x of size N with a random permutation of
the vector (1, 2, ... N) by applying

void perm(long *x, long N, long *seed)

This function draws any number out of 1...N, then from the remaining N-1 numbers,
and so on. The main task of the procedure is a bookkeeping of the numbers that have
not yet been drawn. The permutation is returned in long-vector x.
 You can fill an existing long-vector x of size N with a bootstrap sample of the
vector (1, 2, ... N) by applying

void boot(long *x, long N, long *seed)

This function draws N times any number out of 1...N. The bootstrap sample is returned
in long-vector x. The procedure can be used as follows: let y be an N-vector, then
y[x[1]], y[x[2]] ... y[x[N]] constitutes a bootstrap sample from y.
 The standard normal random generator, having mean μ=0 and variance σ2=1, is
NRC's gasdev, which internally calls ran1 as uniform(0,1) random generator (so it
uses the same seed).
 ASSA's multivariate normal generator

void mnor_mat(double **X, double *mean, double **V,
 long k, long N, long *seed)

fills an existing k-by-N double matrix X. The N columns of the matrix constitute N
independent draws from a k-dimensional normal distribution with mean vector mean
and with k-by-k variance matrix V. Here, as everywhere in ASSA, k-by-k symmetric
double matrices are allocated as full k-by-k square matrices, but only the lower
triangle is used (see the Conventions section). The function checks whether the matrix
V is positive definite. If not, a fatal error message is issued. The procedure is based on
NRC's cholesky decomposition. The internally used boolean function posdef checks
if V is positive definite by preliminary going through the steps to be made by
cholesky.

20 WOt werkdocument 4

Example

In this example, a mean vector 0, and a variance matrix V are constructed for 8
variables (all variances are 1, so the matrix also happens to be a correlation matrix).
The covariances are 0 except V[3][2] and V[5][4], which are 0.75. A multinormal
sample of size 1000 is drawn, with some seed, using mnor_mat. The properties of
resulting sample matrix X are calculated using msummary.

#include "assa.h"

int main()
{
 long seed=-290405, N=1000, k=8, i, j;
 double **V, **X, *mean, *var, *min, *max, *med;
 mean = vector(1, k);
 var = vector(1, k);
 min = vector(1, k);
 max = vector(1, k);
 med = vector(1, k);
 V = matrix(1, k, 1, k);
 X = matrix(1, k, 1, N);
 for (i=1; i<=k; i++) {
 mean[i] = 0;
 for (j=1; j<=k; j++) V[i][j] = (i==j)? 1: 0;
 }
 V[3][2] = 0.75; V[5][4] = 0.75;
 mnor_mat(X, mean, V, k, N, &seed);
 msummary(X, k, N, mean, var, min, max, med, V);
 for (i=1; i<=k; i++) {
 for (j=1; j<=i; j++) printf("%6.2f ", V[i][j]);
 printf("\n");
 }
 printf("\n\n");
 printf(" j mean var min max med\n");
 for (j=1; j<=k; j++) printf(
 "%6ld %6.3f %6.3f %6.3f %6.3f %6.3f\n",
 j, mean[j], var[j], min[j], max[j], med[j]);
 return 1;
}

#include "assa.c"

Algorithms for Stochastic Sensitivity Analysis 21

7 Probabiliy distributions and related functions

Assa contains cumulative distributions and related special functions for the normal,
lognormal, triangular, gamma and beta distributions. Firstly, there are the cumulative
distribution functions. The inverses of the cumulative distribution functions can be
used to transform uniform(0,1) random variables into random variables of other types.
The inverse F-1 of some continuous cumulative distribution function F, has the
property that F-1(F(x)) = x. It is well-known that for a random variable u with a
uniform(0,1) distribution, the transformation F-1(u) is random with distribution
function F. Some additional functions translate information about means and
variances, or about a pair of quantiles, into the usual parameters of the distributions.

7.1 Normal distribution

The cumulative standard normal distribution, with mean 0 and variance 1, is
implemented in the function

double pnormal(double x)

Argument x may have any real value; the function returns a double in the interval
(0,1). The code for pnormal is based on an approximation formula in Abramowitz
and Stegun (1965). The cumulative normal distribution with mean μ and variance σ2
can be obtained through

pnormal((x-mu)/sigma)

 The inverse of pnormal, the function

double invnormal(double p)

delivers the quantity, say x, such that pnormal(x)=p. If u is a uniform(0,1)
random variable, then invnormal(u) is a standard normal variable, with mean 0
and variance 1. The code for invnormal is based on an approximation formula in
Abramowitz and Stegun (1965). A normal variable with mean μ and variance σ2 is
obtained by

mu + sigma * invnormal(u)

with u uniform(0,1).
 The next function translates information about a pair of quantiles of the normal
distribution into the values of the mean and variance of that distribution.

void q2m_normal(double *mean, double *variance,
 double p1, double p2, double q1, double q2)

in which q2m is shorthand for ‘quantiles to moments’. The quantile information has
the following meaning. Let x denote the random variable; then p1 = P(x<q1) and p2 =
P(x<q2).

22 WOt werkdocument 4

Example

The following example calculates and prints parameters mu and sigma of a normal
distribution with 10% point 6 and 90% point 7. Next it constructs and prints a vector
of 1000 independent draws from this distribution.

#include "assa.h"
int main()
{
 long seed=-210205, N=1000, i;
 double *z, mu, sigmasq, sigma, p1, p2, q1, q2;
 z = vector(1, N);
 p1 = 0.1; p2 = 0.9;
 q1 = 6; q2 = 7;
 q2m_normal(&mu, &sigmasq, p1, p2, q1, q2);
 sigma = sqrt(sigmasq);
 printf("mu = %f sigma= %f\n", mu, sigma);
 for (i=1; i<=N; i++){
 z[i] = mu + sigma*invnormal(ran1(&seed));
 printf("%f\n", z[i]);
 }
 return 1;
}
#include "assa.c"

7.2 Lognormal distribution

For the lognormal distribution a small number of functions is available in ASSA.
The first one translates information about a pair of quantiles of the lognormal
distribution into the values of the mean and variance of that distribution.

void q2m_lognormal(double *mean, double *variance,
 double p1, double p2, double q1, double q2)

An error message follows if the information about the quantiles is inconsistent.
 The next function translates the mean and variance of a lognormal distribution
into the mean mu and the standard deviation sigma of the underlying normal
distribution.

void m2p_lognormal(double *mu, double *sigma,
 double mean, double variance)

Thus, if z is normal with mean mu and standard deviation sigma, exp(z) is lognormal
with mean and variance.

Example

This example shows how to draw a size-1000 sample from a lognormal distribution
with mean 10 and variance 1. The mean, variance, minimum, maximum and median of
the sample are calculated and printed.

#include "assa.h"
int main()
{

Algorithms for Stochastic Sensitivity Analysis 23

 long seed=-782393, N=1000, i;
 double *x, mean=10, variance=1, mu, sigma,
 smean, svar, smin, smax, smed;
 x = vector(1, N);
 m2p_lognormal(&mu, &sigma, mean, variance);
 for (i=1; i<=N; i++) x[i] = exp(mu + sigma * gasdev(&seed));
 summary(x, N, &smean, &svar, &smin, &smax, &smed);
 printf("%5.2f %5.2f %5.2f %5.2f %5.2f",
 smean, svar, smin, smax, smed);
 return 1;
}
#include "assa.c"

Note that there are two stochastically equivalent ways to draw a standard normal
random number, by gasdev(&seed) and by invnormal(ran1(&seed)).

7.3 Triangular distribution

The triangular distribution is included since its properties are so easy to understand,
and since it provides a useful refinement of the uniform distribution as a rough and
intuitive characterization of a random variable. It is parameterised by the locations of
its lower bound, its top and its upper bound. For example, the next figure shows the
density function of a triangular distribution with lower bound 0, top 2 and upper bound
3.

 The cumulative triangular distribution function has the prototype

double ptriang(double x, double low, double top, double hig).

Argument x may have any real value; the other arguments must satisfy low < hig
and low ≤ top ≤ hig; the function returns a double in the interval (0,1); it returns
0 if x≤low, and 1 if x≥hig.
 The prototype of the inverse triangular distribution is given by

double invtriang(double p, double low, double top, double hig).

24 WOt werkdocument 4

7.4 Gamma distribution

The gamma distribution is useful to describe positive random variables. Its density
function has two parameters, ‘shape’ parameter a>0 and ‘scale’ parameter b>0:

 f(x) = xa-1 e-x/b b-a / Г(a)

(We explicitly mention this density function because the gamma distribution is not
always parameterised in the same manner.) Its mean is μ = a b; its variance σ2 = a b2.
 The cumulative gamma distribution function is calculated by the function

double pgamma(double a, double b, double x)

the function returns a double in the interval (0,1). The code for this function uses
NRC’s incomplete gamma function.
 The prototype of the inverse gamma(a, b) distribution is

double invgamma(double p, double a, double b)

This inverse is calculated via bisection on the cumulative distribution function
pgamma. The precision of the result will probably suffice for most purposes, but you
may wish to alter the code for more precision.
 The next procedure translates the values of the mean and variance of a gamma
distribution into the corresponding values of the parameters a and b.

void m2p_gamma(double *a, double *b, double mean, double variance)

The prefix m2p is shorthand for ‘moments to parameters’.

Example

This example shows how to draw a size-1000 sample from a gamma distribution with
mean 10 and variance 1. The mean, variance, minimum, maximum and median of the
sample are calculated and printed. Note that the specification of the distribution is the
same as in a previous example for the lognormal distribution. In such a situation, there
seem to be no strong arguments to choose for the lognormal or the gamma distribution.

#include "assa.h"
int main()
{
 long seed=-784823, N=1000, i;
 double *x, mean=10, variance=1, a, b,
 smean, svar, smin, smax, smed;
 x = vector(1, N);
 m2p_gamma(&a, &b, mean, variance);
 for (i=1; i<=N; i++) x[i] = invgamma(ran1(&seed), a, b);
 summary(x, N, &smean, &svar, &smin, &smax, &smed);
 printf("%5.2f %5.2f %5.2f %5.2f %5.2f",
 smean, svar, smin, smax, smed);
 return 1;
}
#include "assa.c"

Algorithms for Stochastic Sensitivity Analysis 25

7.5 Beta distribution

The beta distribution describes a random variable with values between 0 and 1. If the
uniform and the triangular distribution are not satisfying to describe a random variable
that is bounded both from above and from below, the beta distribution may be useful.
It is parameterised by two parameters a>0 and b>0. The density function has the form

 f(x) = xa-1 (1-x)b-1 / B(a, b)

Its mean is μ = a / (a+b); its variance is σ2 = a b / {(a+b)2 (a+b+1)}. The cumulative
distribution function is realised by the routine

double pbeta(double a, double b, double x)

which returns a double in the interval (0,1). The code for this function uses NRC’s
incomplete beta function.
 The prototype of the inverse beta(a, b) distribution is

double invbeta(double p, double a, double b)

This inverse is calculated via bisection on the cumulative distribution function pbeta.
The precision of the result will probably suffice for most purposes, but you may wish
to alter the code for more precision.
 The next function translates the mean and variance of a beta distribution into
the parameters a and b:

void m2p_beta(double *a, double *b, double mean, double variance)

This function produces an error message if the mean lies outside the interval (0,1), or
if the variance is impossibly large.

Algorithms for Stochastic Sensitivity Analysis 27

8 Generators in the unit hypercube

All unit hypercube, UHC, generators to be mentioned in this chapter produce a k-by-N
matrix with values strictly between 0 and 1 (i.e. without attaining the boundaries). The
procedures for these generators have ‘uhc’ in their name. Each of the N columns of U
can be viewed as a point within a unit hypercube of dimension k. Resulting matrix U
will be used as a sample of N points in the k-unit-hypercube. The nature of the sample
ranges from totally random to almost totally deterministic. Invariably, the individual
rows of the matrix contain values that are uniformly distributed over the interval (0,1)
excluding 0 and 1. The k-by-N matrix U should exist before the procedures are called.
 We start with the most elementary – ordinary random – generator in the unit
hypercube, with this prototype:

void uhc_basic(double **U, long k, long N, long *seed)

It fills existing k-by-N matrix U with N independent draws from the uniform
distribution on the k-unit hypercube. Thus each element of U is uniform(0,1)
independent from all others.
 The next procedure produces N correlated, marginally uniform draws in the k-
dimensional unit-cube.

void uhc_corr(double **U, double **C, long k, long N, long *seed)

Existing k-by-N matrix U is filled with N independent draws from a correlated
marginally uniform distribution on the k-dimensional unit-hypercube. Within a draw,
each of the k elements are from a uniform(0,1) distribution, while the elements have
correlation matrix C, or very nearly so. These properties concern the distribution from
which is drawn, the sample properties will deviate, especially in small samples.
The procedure is based on a remarkable property of the multinormal distribution,
namely the near-equality of its Pearson and rank correlation (grade correlation to be
very precise). Let k-vector z have a multinormal distribution with mean vector 0, and
covariance matrix C. Thus, each component zi of z has a standard normal distribution.
Let Ф denote the standard normal distribution function. Then Ф(zi) has a uniform(0,1)
distribution, since the distribution function of any continuous random variable is
uniform(0,1). But the remarkable fact is that the correlation between Ф(zi) and Ф(zj) is
very nearly equal to C[i][j]: the difference is 0.018 at most (see Appendix 1 for
details). With mnor_mat() the procedure fills a matrix with N independent
multinormal(0, C) drawings. Next it applies the function Ф to them.

First best?
In several aspects, the first two generators mentioned above are also the best ones.
Their simplicity is an advantage when you have to explain the procedure. Moreover,
since they produce N mutually independent draws from the k-unitcube, you can easily
enlarge the sample, and you have special possibilities to evaluate the precision of the
results of the ensuing sensitivity analysis. The results of that analysis are random, so
there will be a question about their accuracy. Only with a sample consisting of
independent draws, you can say something about the precision on the basis of one
sample. With the other sampling methods that will follow in this chapter, you will
need to make multiple samples and compare and combine the analysis results of these

28 WOt werkdocument 4

samples in order to assess result precision. So an independent sample is always the
best choice? Not under all circumstances. Although you can calculate the precision,
you will know in advance that the precision is lower than the, harder to assess,
precision of the procedures to follow. Thus you have a choice problem if you want to
calculate precision of results – as you should.
 The next procedure performs basic latin hypercube sampling, which takes care
that the marginal sample distribution of each variable is highly uniform (McKay,
Beckman and Conover, 1979; Iman and Conover, 1980).

void luhc_basic(double **U, long k, long N, long *seed)

The k-by-N matrix U gets N latin hypercube draws from the distribution on the k-unit-
hypercube; within one draw, the elements are independently uniform(0,1). But the
whole N-sample U[i][·] of the i-th variable contains precisely 1 value in each of the
intervals (0, 1/N), (1/N, 2/N) ... ((N-1)/N, 1).
 For the construction of the UHC generators, ASSA has two auxiliary rank
matrix generators. These auxiliary generators are called by the other generators. Here
is the first:

void rank_mat(long **R, double **C, long k, long N, long *seed)

Existing matrix R will be filled with a random k-by-N rank matrix for a given
population rank correlation matrix C. The procedure is based on the near-equality of
the Pearson and rank correlation of the multinormal distribution (see above). It fills a
matrix with N independent multinormal(0, C) drawings, and then calculates the rank
per row.
 A correlated latin hypercube sample in the unit hypercube can be obtained via

void luhc_corr(double **U, double **C, long k, long N, long *seed)

By this procedure, existing k-by-N matrix U gets N latin hypercube draws in the k-
dimensional unit-hypercube; within one draw, each element is uniform(0,1). The
sample's rank correlation is randomly drawn given population rank correlation matrix
C using rank_mat.
 Just as one can force highly uniform marginal sample distributions by drawing
a latin hypercube instead of an ordinary random sample, one may wish to force the
sample's rank correlation matrix, to be close to a desired correlation matrix. A set of
ranks with such a forced correlation can be obtained via the second auxiliary rank
matrix generator of ASSA:

void iman_rank_mat(long **R, double **C, long k, long N, long *seed)

By this procedure, the rows of existing k-by-N integer matrix R will hold vectors of
ranks with correlation-matrix very close to given C. Exact equality cannot be attained
in general, since correlations between two permutations of the vector (1...N) cannot
attain any value between -1 and 1. The procedure is an accurate implementation of the
method of Iman and Conover for the construction of such a matrix as described by
Helton and Davis (Iman and Conover, 1982; Helton and Davis, 2002). Internally, the
procedure uses lowinv to calculate the inverse of correlation matrix C.
 The next procedure produces a latin hypercube sample with forced sample
rank-correlation

Algorithms for Stochastic Sensitivity Analysis 29

void luhc_iman(double **U, double **C, long k, long N, long *seed)

By this procedure, existing k-by-N matrix U is filled with N latin hypercube draws
from the distribution on the k-unit-hypercube. Within a draw, each element is uniform
(0,1). The correlation matrix of the rows of U closely resembles given C. The
procedure is an accurate implementation of the method of Iman and Conover as
described by Helton and Davis, and uses iman_rank_mat (Iman and Conover,
1982; Helton and Davis, 2002).
 A very high degree of non-correlation may be reached by the following even
more systematic way of sampling. The procedure is based on a so-called SAturated
MAin effect fractional factorial design (cf. Dey, 1985, Section 2.4.1). The dimensions
of the matrix U must have special values for this purpose. Let prime be a prime
number (i.e. ≥2) and let power be a long int ≥2. The procedure will fill an
existing k-by-N matrix U with N= primepower columns and k= (primepower-1)
/ (prime-1)rows (the latter division always produces an integer).

void uhc_sama(double **U, long prime, long power, long *seed)

U will contain highly-restricted random draws in the k-unit-hypercube. The correlation
between the rows of U is very close to 0. The original deterministic design, constructs
(primepower-1)/(prime-1) orthogonal factors of length N= primepower at
prime levels 0...prime-1. Next the factors are randomised, augmented with a
homogeneous(0,1) term and divided by prime. Of course the user need not use all the
rows of matrix U in his subsequent calculations, but when uhc_sama is called, a matrix
U of the dimensions mentioned should exist.

Example

#include "assa.h"
int main()
{
 long seed=-140105, k1=3, N1=10,
 prime=3, power=2, k2=4, N2=9;
 long i,j;
 double **U1, **U2;
 U1 = matrix(1,k1,1,N1);
 U2 = matrix(1,k2,1,N2);
 uhc_basic(U1, k1, N1, &seed);
 for (j=1; j<=N1; j++) {
 for (i=1; i<=k1; i++) printf(" %10.4f", U1[i][j]);
 printf("\n");
 }
 printf(":\n");
 luhc_basic(U1, k1, N1, &seed);
 for (j=1; j<=N1; j++) {
 for (i=1; i<=k1; i++) printf(" %10.4f", U1[i][j]);
 printf("\n");
 }
 printf(":\n");
 uhc_sama(U2, prime, power, &seed);
 for (j=1; j<=N2; j++) {
 for (i=1; i<=k2; i++) printf(" %10.4f", U2[i][j]);
 printf("\n");
 }

30 WOt werkdocument 4

printf(":\n");
 return 1;
}
#include "assa.c"

Figure. Three – for clarity somewhat small – samples from uhc_basic(.,3,10,.),
luhc_basic(.,3,10,.) and uhc_sama(.,3,2,.). Graphs of two rows from the sample matrix against
one-another. In the latin hypercube sample each of the ten horizontal slices contains one point,
while the same applies to the vertical slices. In the sama sample, each combination of a
horizontal and a vertical slice contains one point.

Which one to choose?

There remains a problem of choice, already with the small number of alternatives
presented above. Primarily the choice depends on the uncertainty distribution of the k
inputs studied. The dependence or independence of the k components dictates whether
to choose a unitcube sampler with or without correlation.
 If model runs are inexpensive, if you like simplicity, and if you know how to
use resampling methods to assess result precision of the sensitivity analysis, you might
use uhc_basic or uhc_corr. You can enlarge the sample if the precision is
unsatisfactory, without discarding outcomes of model runs made before.
 If model runs are expensive, replicated latin hypercube sampling with forced
correlation via luhc_iman is probably the most attractive candidate. You can force
non-correlation if the inputs are independent. Three replicates will give only a very
rough impression of result precision. An great advantage is that the Iman-Conover
method is well-known. In case of non-correlation, you might consider to use the more
exotic uhc_sama, which is probably even more accurate than Iman-Conover.

Example

With the method of Iman and Conover for correlated latin hypercube samples, the next
code produces a sample of size 1000 of 3 correlated random variables. The
intermediate unitcube sample is stored in matrix U. Next the three variables are
transformed into a normal(10, 1) variable, a gamma(1, 2) variable, and a beta(2, 3)
variable, just to show how the inverse distribution functions can be applied. For a
realistic application, the parameters of the distributions should be carefully
determined.

#include "assa.h"
int main()
{

Algorithms for Stochastic Sensitivity Analysis 31

 long seed=-030205, k=3, N=1000;
 long i,j;
 double **U, **X, **C;
 U = matrix(1, k, 1, N);
 X = matrix(1, k, 1, N);
 C = matrix(1, k, 1, k);

 C[1][1]=1;
 C[2][1]=0; C[2][2]=1;
 C[3][1]=0.5; C[3][2]=0; C[3][3]=1;
 luhc_iman(U, C, k, N, &seed);
 for (i=1; i<=N; i++){
 X[1][i] = 10 + 1*invnormal(U[1][i]);
 X[2][i] = invgamma(U[2][i], 1, 2);
 X[3][i] = invbeta(U[3][i], 2, 3);
 }
 for (i=1; i<=N; i++){
 for (j=1; j<=k; j++) printf("%10.4f", X[j][i]);
 printf("\n");
 }
 return 1;
}
#include "assa.c"

Analysis of the sample printed by the above code, shows that the means and variances
of the sample of the three variables are respectively

mean: 9.9996 1.9999 0.4000
variance: 1.0003 3.9952 0.0400

You can check that these sample values are close to the distribution values. The
covariance matrix of the three rows of intermediate unitcube sample U is equal to

 0.0834
 0.0003 0.0834
 0.0405 0.0006 0.0834

Which shows that the variance of each intermediate u-variable is very close indeed to
the expected value 1/12 of a uniform(0, 1) variable. The sample correlation between
the uncorrelated variables is very close to 0, while the sample correlation between the
unitcube first and third variable is equal to 0.0405/0.0834=0.4856: quite close to the
value 0.5 of the target rank correlation C[3][1]. If the function luhc_iman(U, C, k,
N, &seed) would be replaced by uhc_corr(U, C, k, N, &seed), the sample
values would often be further from the target values.

Algorithms for Stochastic Sensitivity Analysis 33

9 Variance components

In the first quarter of the 20-th century, the word 'variance', and the technique of
analysis of variance components have been introduced in statistical genetics. The
purpose was to assess the relative influences of factors like parents and environment
on some property of a plant or an animal. The variance was chosen because the
variances contributed by independent causes of variability nicely sum up to the total
variance (e.g. Fisher Box, 1978, p 53). Later, analysis of variance components
experiments were conducted to assess the prospects of a genetic selection program
(e.g. Comstock and Robinson, 1948). If, for instance, environment contributes much
more than parents to the variance of a property, little can be gained through genetic
selection.
 Application of analysis of variance components to model output, stems from
the 1990s (Sobol, 1990; Jansen, Rossing and Daamen, 1994; Sobol, 1995; McKay,
1996; Saltelli, Tarantola and Chan, 1999; Jansen, 1999; Saltelli, Chan and Scott, 2000,
Ch 8). The new purpose of the analysis of variance components was to pinpoint major
sources of model output uncertainty and evaluate the prospects to reduce this
uncertainty by gaining more accurate information about some inputs (or by better
control of some inputs). Some model experiments are almost the same as the old
genetics experiments. The additivity of the variance contributions of independent
components remains the major reason to chose variance as measure of uncertainty. A
second advantage is that properties of the variance relevant for sensitivity analysis can
often be found in the classical statistical literature.
 The type of sensitivity analysis sketched above is called variance-based
because uncertainties and uncertainty contributions are expressed as variances and
variance components. Some of these variance-based sensitivity analyses are non-
parametric, namely when they do not rely on an estimated parametric relationship
between input and output. The analysis of variance is a formal elaboration of the
intuitive idea that a factor is important if the model output studied changes much when
that factor assumes new random values while the other factors remain the same. The
statistical methods have remained essentially the same with the change of application
from genetics to uncertainty analysis, but the experimental designs differ somewhat,
mainly because of the practical restrictions in genetics as to number of replications and
possibilities to obtain offspring from combinations of parents.
 Denote the model inputs by x = (x1...xk), and denote the output studied by y.
With the deterministic models studied here y is a function, f(x) say, of x. The variance
of y = f(x), induced by the distribution D of x = (x1...xk) will be called VTOT

 VTOT = Var[y] y = f(x), x ~ D

 Let S denote a subset of the x’s, possibly one single x. The uncertainty
contribution of subset S will be expressed in two ways. Firstly by the top marginal
variance: the variance reduction that would occur in case one would get perfect new
information about the inputs S. And secondly by the bottom marginal variance: the
variance that will remain as long as one gets no new information about S. In both cases
the new information is added to the information already present in input distribution
D.

34 WOt werkdocument 4

 More formally, the variance that would remain in case input group S should
become perfectly known, has the expectation E[Var[f(x)|S]]. Accordingly, the top
marginal variance TMVS of S is defined as

 TMVS = VTOT - E[Var[f(x)|S]].

 Let ⌐S indicate the complementary subset of all inputs not comprised in S. The
variance that would remain in case ⌐S should become perfectly known, has the
expectation E[Var[f(x)|⌐S]]. Thus we define the bottom marginal variance of S as

 BMVS = E[Var[f(x)|⌐S]].

Obviously

 BMVS + TMV⌐S = VTOT.

 The following well-known variance decomposition rule for conditional
distributions

 Var[y] = Var[E[y|S]] + E[Var[y|S]]

leads to an equivalent expression for TMVS:

 TMVS = Var[E[y|S]].

 For an independent group S,

 BMVS ≥ TMVS,

the possible difference being caused by interaction. See the literature cited for details
like this.
 In ASSA, top and bottom marginal variances are usually expressed as fractions
of VTOT, and are then called relative top and bottom marginal variances.
 When S consists of a single input xi, η2

i ≡ TMVi / VTOT is equal to the so-
called correlation ratio of y and xi. Note that the correlation ratio is not the same as
the correlation coefficient. Only when E[y|xi] is linear in xi, η2

i is equal to the squared
correlation coefficient between y and xi, say ρ2

i, but when E[y|xi] is nonlinear in xi, η2
i

is greater than ρ2
i.

 When S consists of more than one component, TMVS / VTOT is also called the
correlation ratio, CRS say. The concept is not based upon a specific form of E[y|S] as
function of S and it applies to a distribution rather than to a finite sample.
 The relative bottom marginal variance can also be called the complementary
correlation ratio, CCRS say. From the mentioned relation BMVS + TMV⌐S = VTOT,
with ⌐S denoting the complement of S, it follows that CCRS = 1 - CR⌐S .
 The next table mentions various names used in the literature for TMVS / VTOT
and BMVS / VTOT which have the same meaning for an independent group S of
inputs (of course the group S may also consist of a single input).

Algorithms for Stochastic Sensitivity Analysis 35

TMVS / VTOT BMVS / VTOT
relative top marginal variance
correlation ratio CRS
first order sensitivity index

relative bottom marginal variance
complementary correlation ratio CCRS
total effect sensitivity index

Note

In general, TMV is a much more useful concept than BMV, and we advise to use
BMV only in exceptional cases. TMVS assesses the maximal improvement of
prediction precision that might be attained by better knowledge about group S, or by
better control of that group. If TMVS is large, additional research about S might prove
fruitful. If it would be utterly unrealistic, however, to expect to gain better knowledge
about some input group S, you might use BMVS to assess the uncertainty that would
always remain even if you succeeded in eliminating all uncertainties about the other
inputs. If, in such a case, BMVS would be very large, research about the other inputs
would seem rather futile.

Algorithms for Stochastic Sensitivity Analysis 37

10 Test functions

Simple functions, whose sensitivity-properties can be calculated analytically, are
useful as examples to illustrate theoretical concepts. Moreover, they can be used to
evaluate the performance of algorithms for SSA. And finally, they can be handy
during software development as stand-in for true models. For the time being, only two
such functions are mentioned. See Saltelli et al., 2000 for many others.

10.1 Test function sobol8

Non-monotonic test function sobol8 (e.g. Saltelli et al., 2000; Section 2.9) is defined as

 sobol8(x) = Πi=1...8 gi(xi),

with

 gi(xi) = (|4xi – 2| + ai) / (1+ai) .

The x’s are assumed to be independent homogeneous (0,1); and 8-vector a is given
by

a = (0, 1, 4.5, 9, 99, 99, 99, 99).

The ASSA prototype of this function is

double sobol8(double *x)

where x1...8 is an existing 8-vector.
 It is easy to see that the expectation of gi is E[gi] = 1, while E[gi

2] = 1 + ⅓
(1+ai)2. By the independence of the g’s, it follows that E[sobol8] = 1, and that VTOT =
Var[sobol8] = Π (E[gi

2]) - 1. The top marginal variances of the xi’s are given by
TMVi = Var[gi] / VTOT = (E[gi

2] – 1) / VTOT, while the bottom marginal variances
of the xi’s equal BMVi = 1 - Var[Πj≠i(gj)] / VTOT = 1 - {Πj≠i(E[gj

2]) - 1} / VTOT.
The values of these variance components for the given a-parameters are presented in
the next table.

Input TMV/VTOT BMV/VTOT
x1
x2
x3
x4
x5...8

0.716192
0.179048
0.023676
0.007162
0.000072

0.787144
0.242198
0.034317
0.010460
0.000105

Variance components of Sobol’s test function, relative to VTOT=0.465424

Note the difference in the last decimals with the values in the reference mentioned:
possibly the latter values have been obtained by Monte Carlo methods. In this
example, with independent inputs, and with many interactions, BMV > TMV, solely
due to interactions.

38 WOt werkdocument 4

10.2 Test function normal8

Test function normal8 is defined as

 normal8(x) = x1

2 / √2 + (x2+x3) / √(7/4) + 2 (x4-x5) + x6x7 √2 + x8.

The arguments are assumed to have the following distribution: the marginal
distribution of each xi is normal with mean 0 and variance 1; all correlations are equal
0, except ρ(x2,x3) and ρ(x4,x5), which equal 3/4.

The ASSA prototype of this function is

double normal8(double *x)

where x1...8 is an existing 8-vector.
 The function normal8(x) may be written as a sum of functions of independent
groups, namely the groups {x1}, {x2,x3}, {x4,x5}, {x6,x7}, {x8}. They may be
described as independent groups with additive effects. For such groups, the top and
bottom marginal uncertainty contributions are equal. Thus one might speak
unequivocally about the uncertainty contributions of these groups. They are listed in
the following table.

Group Absolute Relative (%)

x1
x2, x3
x4, x5
x6, x7
x8

1
2
2
2
1

12.5
25
25
25
12.5

The uncertainty contributions of independent groups with additive effects.

 The next table gives the relative top and bottom marginal variances of the
individual x’s as percentage of the total variance. Note the large differences in the top
and bottom marginal contributions of x2...x6. When x2 is known, x3 adds little
information and vice versa. One might say that x2 and x3 are exchangeable in their
effect on f. The opposite happens with x4 and x5: one might say that they are
complementary in their effect on f. x6 and x7 are also complementary, be it in a
different way, namely by their interaction.

Input BMV TMV
x1
x2
x3
x4
x5
x6
x7
x8

12.5
3.1
3.1

21.9
21.9
25
25
12.5

12.5
21.9
21.9
3.1
3.1
0
0

12.5
Top and bottom marginal variances (in %)

Algorithms for Stochastic Sensitivity Analysis 41

11 Regression-based sensitivity analysis

11.1 General

For a long period, the most common form of SSA was an analysis via linear
regression. In this chapter we describe the procedure: it performs an approximate SSA
based on a linear regression approximation of the relation between the model inputs
x=(x1...xk) and the studied model output y=f(x). The analysis starts with a sample of N
draws from the uncertainty distribution of model input vector x. For each of these
sampled x’s the model output y has been calculated with the model software. The
procedure, called rsens_lin works by fitting various linear regressions to the
sample. It keeps record of the residual mean squares of these linear models. The
advantage of using rsens_lin, instead of fitting these models yourself, is that
rsens_lin does the bookkeeping for you.
 For instance, let a model output sample y have been calculated for an input
sample of N vectors x. The correlation ratios, that is marginal variances, of grouped or
individual x’s can then be estimated by the procedure, which starts as follows.

void rsens_lin(long ngroup, long k, long N,
 double **X, double *y, long *key,
 double *rsquadlin, double *corrat, double *c_corrat)

/*
input ngroup: integer >= 2; number of input groups distinguished
input k: integer >= ngroup; number of model input variables
input N: integer > k+1; number of model runs
input X: k-by-N real matrix, rows contain model input variables
input y: real N-vector, the model output for varying inputs
input key: integer k-vector; grouping of the k model inputs
output rsquadlin: rsquared adjusted of the regression of y on all x-s
output corrat: real ngroup-vector; correlation ratio of the groups
output c_corrat: real ngroup-vector;complementary correlation ratios
*/

The results corrat and c_corrat are calculated as differences of percentages of
variance accounted for (adjusted R2). In the output of rsens_lin, negative values
of corrat and c_corrat are replaced by 0.
 The result corrat will contain the estimated correlation ratio of the groups
distinguished, that is the relative top marginal variance. Result c_corrat will
contain the estimated complementary correlation ratio, that is the relative bottom
marginal variance.
 In classical linear least squares regression, the y-variable is modelled as

 y = α0 + Σi∈I αixi + ε

where I is some subset of {1...k} with unknown parameters αi, and random ε. In our
case, however, y is a deterministic function of more or less random x’s, while the error
is caused by the fact that f(x) cannot be written as α0 + Σ αixi. If the classical
regression model applies, the residual mean square is an unbiased estimate of the
expected squared error; but in our case the residual mean square will in general be
biased as estimate of the expected squared error, even in the case of an ordinary
random sample of x’s. Fortunately, the bias shrinks to 0 for large sample sizes.

42 WOt werkdocument 4

 In the current version of ASSA, Rsquared-adjusted of the regression of y on a
k-by-N matrix X is returned by the function

double rsquad(double *y, double **X, long k, long N)

Rsquared-adjusted is defined in terms of the mean-square, msy, of y (i.e. y's variance)
and the mean-square, msr, of the regression residual (i.e. the residual variance).
These mean squares are derived from ssy, the sum-of-squares of y, and ssr, the sum of
squares of the residual.

R2

adjusted = 1 - msr/msy = 1 - [ssr/(N-k-1)] / [ssy/(N-1)],

where ssr and ssy denote the total and residual sum of squares.
 Function rsquad does not perform linear regression but merely calculates the
regression residual via projection on the space orthogonal to the x-vectors (the rows of
X) and the constant vector. The projection is done by Gramm-Schmidt
orthogonalisation of the x-vectors. For this orthogonalisation rsquad internally uses
an auxiliary procedure

void rop(double *res, double *y, double *x, long N)

which puts the residual of orthogonal projection of N-vector y on N-vector x into N-
vector res.

Note

Instead of R2

adjusted, some algorithms for regression-based SA use the multiple
correlation coefficient, that is (unadjusted) R2 = 1 - ssr/ssy. The difference is negligible
if the number, k, of regressors is small compared with the sample size, N (as it should
be). The adjustment for the number of regressors is mainly useful in the standard
situation where the regression residuals are independent random, with equal variance.
In the context of sensitivity analysis, there are no strong arguments for one type of R2
in favour the other.

Example

#include "assa.h"
int main(int argc, char *argv[])
{
 long seed, N=1000, k=8, ngroup=5, *key, i, j;
 double **V, **X, *mu, *y, *x, rsquad, *corrat, *c_corrat;
 if (argc!=2) error("usage: xmprsens seed");
 seed = atol(argv[1]);
 if (seed > 0) seed = -seed;
 x = vector(1, k);
 mu = vector(1, k);
 key = ivector(1, k);
 corrat = vector(1, k);
 c_corrat = vector(1, k);
 y = vector(1, N);
 V = matrix(1, k, 1, k);
 X = matrix(1, k, 1, N);
 /* construct mean and variance matrix of multinormal inputs */

Algorithms for Stochastic Sensitivity Analysis 43

 for (i=1; i<=k; i++) {
 mu[i] = 0;
 for (j=1; j<=k; j++) V[i][j] = (i==j)? 1: 0;
 }
 V[3][2] = 0.75; V[5][4] = 0.75;
 /* take size-N ordinary random sample */
 mnor_mat(X, mu, V, k, N, &seed);
 /* calculate values y of testfunction normal8 */
 for (i=1; i<=N; i++) {
 for (j=1; j<=k; j++) x[j] = X[j][i];
 y[i] = normal8(x);
 }
 /* define the studied independent groups of inputs */
 key[1]=1; key[2]=key[3]=2; key[4]=key[5]=3;
 key[6]=key[7]=4; key[8]=5;
 printf("\nvariable: ");
 for (i=1; i<= k; i++) printf("%ld ", i);
 printf("\ngroup : ");
 for (i=1; i<= k; i++) printf("%ld ", key[i]);
 printf("\n");

 /* linear-regression-based sensitivity analysis */
 rsens_lin(ngroup, k, N, X, y, key, &rsquad, corrat, c_corrat);
 printf("rsquad = %5.3f\n\n", rsquad);
 for (i=1; i<=ngroup; i++)
 printf("group%ld: corrat = %5.1f; c_corrat = %5.1f \n",
 i, 100*corrat[i], 100*c_corrat[i]);
 /* here you can calculate bootstrap bootstrap interval */
 return 1;
}
#include "assa.c"

 The example program is written in such a way that you can easily repeat the
analysis, with different seeds, to get an impression of the sampling variability of the
estimates. The next subsection takes another approach to sampling variability.
 With seed 23032005 (actually you shouldn’t take such systematic seeds), the
program gives the following output.

variable: 1 2 3 4 5 6 7 8
group : 1 2 2 3 3 4 4 5
rsquad = 0.645

group1: corrat = 0.0; c_corrat = 0.1
group2: corrat = 24.9; c_corrat = 22.9
group3: corrat = 30.8; c_corrat = 26.9
group4: corrat = 0.0; c_corrat = 0.2
group5: corrat = 11.1; c_corrat = 12.1

Note the low value 0.645 of R-squared-adjusted: only 65% of the variation of y can be
explained by linear regression on the x’s. From the section on test functions, we know
that for each group the true values of the correlation ratio, CR, and the complementary
correlation ratio, CCR, are equal in this example; the estimates, however, are seen to
be different. The estimated CR and CCR of group 1 (x1) are near zero, whereas we
know that their true value is 12.5%. The same applies to group 4 (x6 and x7) which has
25% as theoretical CR and CCR. Nonlinear effects, here amounting to 37.5% of the
variation, are simply not seen by this linear analysis. At the end of a linear regression-
based sensitivity analysis, you always have to check if the unexplained variance, here

44 WOt werkdocument 4

estimated as 35.5%, is small compared with the variance effects in which you are
interested. This is not the case here, so we conclude that the analysis just performed
has no practical value. In the next chapter we discuss a way-out.

11.2 Bootstrap percentile confidence interval

Since the N samples in the above example, were drawn independently, you can
calculate a bootstrap confidence interval for the estimated sensitivity indices. The
computational effort is negligible, since no additional model runs are required. For
simplicity, we will use the percentile method as described in Efron and Tibshirani
(1993, Chapter 13). The idea is that the sample’s distribution is a fair approximation of
the uncertainty distribution of the inputs, so that you may study properties of the
uncertainty distribution by studying the sample distribution. From the N sampled
input-vectors, and the corresponding outputs, a ‘new’ sample of size N is drawn
several times, say nboot times. Procedure boot, draws such a new sample: it just
draws N times, with replacement, from the numbers 1...N. Some of these numbers will
occur more than once in the new sample, while others may be absent. This new
sample, together with corresponding model output y, is analysed just as the original
sample, yielding new sensitivity estimates, one for each fake sample, nboot all
together. The α and (1-α) percentiles of these nboot estimates, constitute the
bootstrap (1-2α) percentile confidence intervals.
 The next C-block can be inserted in the above program, at the place indicated.
It shows how to calculate a 1-2α bootstrap percentile confidence interval for the 2-nd
correlation ratio (of the 2-nd group: x2 and x3). Matrix BX is a bootstrap sample from
the columns of original sample matrix X; vector by is filled with the N corresponding
model outputs. Function calc_quant calculates the α and (1-α) quantiles of the
nboot-vector bc2.

Example (continued)

 {
 /* this block calculates a bootstrap percentile confidence
 interval: correlation ratio of group 2 as an example */
 long nboot=100, t, *bsam;
 double alpha=0.05, low, hig, estc2, **BX, *by, *bc2;
 bsam = ivector(1, N);
 BX = matrix(1, k, 1, N);
 by = vector(1, N);
 bc2 = vector(1, nboot);
 estc2 = corrat[2];
 printf("\nlinear regression based estimate of c2: %5.1f\n",
 100*estc2);
 for (t=1; t<=nboot; t++){
 boot(bsam, N, &seed);
 for (i=1; i<=N; i++) {
 by[i] = y[bsam[i]];
 for (j=1; j<=k; j++) BX[j][i] = X[j][bsam[i]];
 }
 rsens_lin(ngroup, k, N, BX, by, key,
 &rsquad, corrat, c_corrat);
 bc2[t] = corrat[2];
 }
 low = quantile(alpha, bc2, nboot);

Algorithms for Stochastic Sensitivity Analysis 45

 hig = quantile(1-alpha, bc2, nboot);
 printf("90 percent bootstrap confidence limits: ");
 printf("%5.1f %5.1f\n", 100*low, 100*hig);
 }

With seed 23032005, inclusion of the above bootstrap block in the program gives the
following additional output.

linear regression based estimate of c2: 24.9
90 percent bootstrap confidence limits: 21.0 28.7

Algorithms for Stochastic Sensitivity Analysis 47

12 Regression-free sensitivity analysis

We will illustrate the working of regression-free sensitivity analysis by means of an
archetypical example. In a sense all other regression-free methods derive from this
example.
 To estimate the TMV of a stochastically independent subset S of the inputs, we
construct two ordinary random samples of some size N, say X1 and X2, from the input
distribution that have the same values for the inputs of S, while the other inputs are
drawn independently. Next the two N-vectors of the studied model output, y1 and y2
say, are calculated, and from then on the values of the inputs can be forgotten, but the
way the outputs were constructed still matters. The two sample variances v1 and v2 of
the y-vectors are estimates of the total output variance VTOT. The geometric mean of
these two is a combined estimate of VTOT.

 VTOT^ = √ (v1 v2) .

It is intuitively clear that the vectors y1 and y2 will be much the same if S is a very
sensitive input group, and conversely. And indeed, it can be shown that the (Pearson)
correlation between the vectors y1 and y2 is an estimate of the relative TMV, that is the
correlation ratio.

 (TMVS / VTOT)^ = corr(y1, y2).

If you wish to estimate the BMV of the same subset S, calculate the following

 (BMVS / VTOT)^ = mean [½ (y1i – y2i)2] / √ (v1 v2) .

(e.g. Sobol, 1990; Jansen, Rossing and Daamen, 1994; Saltelli et al., 2000).

Example

In the next example we estimate the relative TMV, in %, of input group S = {x2, x3}
for the normal8 test function. You may compare the result with the theory of Section
10, and the regression-based estimation of Section 11.

#include "assa.h"
int main(int argc, char *argv[])
{
 long N=1000, k=8, seed, i, j;
 double **V, **X1, **X2, *mu, *y1, *y2, *x,
 v1, v2, m1, m2, cov12, VTOT, TMV;
 if (argc!=2) error("usage: xmpanova seed");
 seed = atol(argv[1]);
 if (seed > 0) seed = -seed;
 x = vector(1, k);
 mu = vector(1, k);
 y1 = vector(1, N); y2 = vector(1, N);
 V = matrix(1, k, 1, k);
 X1 = matrix(1, k, 1, N); X2 = matrix(1, k, 1, N);

 /* construct mean-vector and variance matrix of multinormal inputs */
 for (i=1; i<=k; i++) {

48 WOt werkdocument 4

 mu[i] = 0;
 for (j=1; j<=k; j++) V[i][j] = (i==j)? 1: 0;
 }
 V[3][2] = 0.75; V[5][4] = 0.75;
 /* take independent size-N ordinary random input samples X1 and X2 */
 mnor_mat(X1, mu, V, k, N, &seed);
 mnor_mat(X2, mu, V, k, N, &seed);
 /* equate the 2-nd and 3-rd rows of sample X2 to those of X1
 in order to calculate the TMV of the independent group
 formed by the 2-nd and 3-rd inputs */
 X2[2]=X1[2]; X2[3]=X1[3];
 /* calculate values y1 and y2 of test function normal8 */
 for (i=1; i<=N; i++) {
 for (j=1; j<=k; j++) x[j] = X1[j][i];
 y1[i] = normal8(x);
 for (j=1; j<=k; j++) x[j] = X2[j][i];
 y2[i] = normal8(x);
 }
 /* if you wish, you can delete the X-matrices: */
 free_matrix(X1, 1, k, 1, N); free_matrix(X2, 1, k, 1, N);
 /* calculate top marginal variance of x[2] and x[3] */
 m1=0; m2=0; v1=0; v2=0; cov12=0;
 for (i=1; i<=N; i++) {m1+=y1[i]; m2+=y2[i];}
 m1 /= N; m2 /= N;
 for (i=1; i<=N; i++)
 {v1+=SQR(y1[i]-m1); v2+=SQR(y2[i]-m2);
 cov12+=(y1[i]-m1)*(y2[i]-m2);}
 v1 /= (N-1); v2 /= (N-1); cov12 /= (N-1);
 VTOT = sqrt(v1*v2);
 TMV = 100 * cov12/VTOT;
 printf("tmv = %5.2f; vtot = %5.2f\n", TMV, VTOT);
 /* here you can calculate bootstrap confidence interval */
 return 1;
}
#include "assa.c"

With seed 1234567890, the analysis gives the output

tmv = 23.68; vtot = 7.66

Bootstrap percentile confidence interval

 {
 /* block calculating bootstrap percentile confidence interval
 for TMV of group with x2 and x3 */
 long nboot=100, *bsam;
 double alpha=0.05, low, hig, esttmv, *btmv, *by1, *by2;
 bsam = ivector(1, N);
 btmv = vector(1, nboot);
 by1 = vector(1, N); by2 = vector(1,N);
 esttmv = TMV;
 printf("\nregression-free estimate of TMV: %6.1f\n", esttmv);
 for (j=1; j<=nboot; j++){
 boot(bsam, N, &seed);
 for (i=1; i<=N; i++)
 {by1[i]=y1[bsam[i]]; by2[i]=y2[bsam[i]];}
 m1=0; m2=0;
 for (i=1; i<=N; i++) {m1+=by1[i]; m2+=by2[i];}
 m1 /= N; m2 /= N;
 v1=0; v2=0; cov12=0;
 for (i=1; i<=N; i++) {

Algorithms for Stochastic Sensitivity Analysis 49

 v1+=SQR(by1[i]-m1); v2+=SQR(by2[i]-m2);
 cov12+=(by1[i]-m1)*(by2[i]-m2);
 }
 v1 /= (N-1); v2 /= (N-1); cov12 /= (N-1);
 VTOT = sqrt(v1*v2);
 TMV = 100 * cov12/VTOT;
 btmv[j] = TMV;
 }
 low = quantile(alpha, btmv, nboot);
 hig = quantile(1-alpha, btmv, nboot);
 printf("90 percent bootstrap confidence limits: ");
 printf("%6.1f %6.1f\n", low, hig);
 }

Inclusion of the above block in the main program, and running it with the same seed,
yields this additional output

regression-free estimate of TMV: 23.7
90 percent bootstrap confidence limits: 18.5 28.0

Algorithms for Stochastic Sensitivity Analysis 51

References

Abramowitz, M. and Stegun, I.A., 1965, Handbook of mathematical functions, Dover,
New York.

Efron, B. and Tibshirani, R.J., 1993, An introduction to the bootstrap, Chapman &
Hall, London.

Comstock, R.E. and Robinson, H.F., 1948, The components of genetic variance in
populations of biparental progenies and their use in estimating the average
degree of dominance. Biometrics 4, 254-266.

Dey, Aloke, 1985, Orthogonal fractional factorial designs, Wiley Eastern Limited,
New Delhi.

Fisher Box, J., 1978, R.A. Fisher: the life of a scientist, Wiley & Sons, New York.
Helton, J.C. and Davis, F.J., 2002, Latin hypercube sampling and the propagation of

uncertainty in analyses of complex systems, Sandia National Laboratories,
Albuquerque, Report SAND2001-0417.

Iman, R.L. and Conover, W.J., 1980, Small sample sensitivity analysis techniques for
computer models with an application to risk assessment, Communications in
Statistics A: theory and methods, 9, 1749-1842.

Iman, R.L. and Conover, W.J., 1982, A distribution-free approach to inducing rank
correlation among input variables, Commun. statist.-simula. computa.,11(3),
311-334.

Jansen, M.J.W., Rossing, W.A.H. and Daamen, R.A., 1994, Monte Carlo estimation of
uncertainty contributions from several independent multivariate sources, In:
Grasman, J. and Van Straten, G. (eds.), Predictability and Nonlinear Modelling
in Natural Sciences and Economics, p334-343, Kluwer, Dordrecht.

Jansen, M.J.W., 1996, Winding stairs sample analysis program WINDINGS 2.0,
GLW-note MJA-96-2, GLW-DLO, Wageningen.

Jansen, M.J.W., 1997, Maximum entropy distributions with prescribed marginals and
normal score correlations, Pages 87-92 in: Beneš V. & Štĕpán (Eds.),
Distributions with given marginals and moment problems, Kluwer, Dordrecht.

Jansen, M.J.W., 1999, Analysis of variance designs for model output, Computer
Physics Communications 117, 35-43.

Kernighan and Ritchie, 1988, The C programming Language, second edition, Prentice
Hall, New Jersey

McKay, M.D., Beckman, R.J. and Conover, W.J., 1979, A comparison of three
methods for selecting values of input variables in the analysis of output from a
computer code, Technometrics, 21, 239-245.

McKay, M.D., 1996, Variance-based methods for assessing uncertainty importance in
NUREG-1150 analyses, Los Alamos National Laboratory, LA-UR-96-2695.
Also available as http://www.jrc.it/uasa/services/samo_group/download/paper.ps

Owen, A.B., 1992, A central limit theorem for latin hypercube sampling,
J.R.Statist.Soc.B 54, 541-551.

Press, W.H., Teukolsky, S.A., Vettering, W.T. and Flannery, B.P., 1992, Numerical
recipes in C: the art of scientific computing, second edition, Cambridge
University Press, Cambridge.

Press, W.H., Teukolsky, S.A., Vettering, W.T. and Flannery, B.P., 2002, Numerical
recipes in C++: the art of scientific computing, second edition, Cambridge
University Press, Cambridge.

52 WOt werkdocument 4

Saltelli, A., Tarantola, S. and Chan, K.P.S., 1999, A quantitative model-independent
method for global sensitivity analysis of model output, Technometrics 41, 39-56.

Saltelli, A., Chan, K. and Scott, E.M., 2000, Sensitivity analysis, Wiley, Chichester.
Sobol, I.M., 1990, Sensitivity estimates for nonlinear mathematical models,

Matematicheskoe Modelirovanie 2, 112-118 (in Russian), translated in
Mathematical Modelling and Computational Experiments, vol 1, 407-414.

Sobol, I.M., 1995, Sensitivity analysis of nonlinear models using sensitivity indices,
International symposium SAMO95: theory and applications of sensitivity
analysis of model output in computer simulation, September 1995, Belgirate,
Italy.

Stein, M., 1987, Large sample properties of simulations using latin hypercube
sampling, Technometrics, 29, 143-151.

Algorithms for Stochastic Sensitivity Analysis 53

Appendix 1 Mathematical details

Ordinary random samples

In this appendix it will be shown how
uhc_corr draws a sample from a
continuous multivariate distribution with
standard homogeneous marginals and rank
correlations very close to the desired rank
correlation. We could not easily find the
material of this appendix in the SSA
literature.
 The procedure is based on the
property that the Pearson and rank
correlations of a multinormal distribution
are very nearly equal (see Figure). Applying
this property, uhc_corr works as follows.
Firstly, a multinormal sample of k variables,
say z1 ... zk, is drawn with mean 0, and
covariance matrix C. The standard normal
marginals zi are transformed into standard
homogeneous xi by means of the mapping xi
= Φ(zi), where Φ denotes the standard
normal distribution function.

Pearson and rank correlation of the multinormal distribution

Before we can demonstrate the property mentioned, we have to introduce the concept
of rank correlation for random variables, since, originally, rank correlation is only
defined for samples. The distributional rank correlation between two continuous
random variables x1 and x2, with marginals F1 and F2 is defined as the correlation
between the corresponding standard homogeneous variables F1(x1) and F2(x2). Some
authors use the term grade correlation instead.
 Obviously, the distributional rank correlation between two standard
homogeneous variables is equal to their ordinary Pearson correlation. Moreover, the
distributional rank correlation between two variables is invariant under monotonically
increasing transformations per variable. There exists a close connection between
distributional and sample rank correlation: the sample rank correlation of a large
ordinary random sample from a pair of variables with distributional rank correlation
ρ*, will tend to ρ*.
 It will be shown that the distributional rank correlation between any two
variables standard homogeneous variables xi and xj from which uhc_corr draws a
sample is close to the desired value cij:

Bivariate normal distribution: rank correlation
versus ordinary correlation. The two can be
seen to be very nearly equal.

54 WOt werkdocument 4

 rcorr(xi, xj) = corr(xi, xj)
 = (6/π) arcsin(cij/2)
 = cij + ηij

in which the approximation error ηij satisfies |ηij| ≤ 0.018.
 We will give a proof for the first two variables x1 and x2. Amazingly, no such
proof was given by Iman and Conover (1982), who proposed the method. Denote their
desired rank correlation c12 by ρ, and denote their actual rank correlation by ρ*. The
variables z1 and z2 are bivariate normal with standard normal marginals and
correlation ρ. Thus, x1=Φ(z1) and x2=Φ(z2) are standard homogeneous; so both have
mean 1/2 and variance 1/12. Their correlation may be calculated via the introduction
of two auxiliary standard normal variables, ε1 and ε2 that are independent of each other
and of z1 and z2. By the definition of Φ, one has

 xi = Φ(zi) = P(εi<zi) = P(εi-zi<0) ,

so that the expectation E[x1x2] satisfies

 E[Φ(z1)Φ(z2)] = E[P(ε1-z1<0|z1) P(ε2-z2<0|z2)] = P(ε1-z1<0 ∩ ε2-z2<0).

Now ε1-z1 and ε2-z2 have normal distributions with mean 0, variance 2, and correlation
ρ/2. The probability that both are negative is given by

 P(ε1-z1<0 ∩ ε2-z2<0) = 1/4 + arcsin(ρ/2) / (2π)

(see for instance Abramowitz and Stegun, 1964; formula 26.3.19). So that

 E[x1x2] = E[Φ(z1)Φ(z2)] = 1/4 + arcsin(ρ/2) / (2π).

The correlation between x1 and x2 follows as ρ* = (6/π) arcsin(ρ/2); which concludes
the first part of the proof. The closeness of ρ* to ρ is ascertained numerically: max(|ρ-
ρ*|) appears to have the value 0.018 (see figure).

A different interpretation

In the previous section it was shown that uhc_corr draws a sample from a
continuous multivariate distribution with standard homogeneous marginals and rank
correlations very close to the desired rank correlation. Note that a distribution is not
uniquely defined by its marginals and correlation matrix, so that there are more
distributions satisfying the specifications.
 Amazingly, the procedure can also be interpreted in a different way:
uhc_corr draws from the maximum-entropy distribution with standard
homogeneous marginals and normal-score correlation matrix C. This distribution is
unique, and its property of maximal entropy is attractive in the context of uncertainty
analysis: of all distributions satisfying the given constraints, the one with maximal
entropy contains the least information. Adopting any other distribution would be
tantamount to assuming that we know more than we actually do (Jansen, 1997).

Algorithms for Stochastic Sensitivity Analysis 55

Restricted random samples: imposing correlations on samples

Procedure iman_rank_mat is also based on the near-equality of rank and Pearson
correlations in the multinormal distribution. This procedure, which produces a rank-
matrix with correlations very close to a correlation matrix given by the user. It is based
on Iman and Conover (1982) and follows the clear summary of that paper by Helton
and Davis (2002) using van der Waerden scores.
 First of all, iman_rank_mat can be used to introduce rank correlations in an
ordinary random sample e.g. from uhc_basic. But this method for introducing rank
correlation into a sample is most often applied to latin hypercube samples. This
happens in luhc_iman, which internally calls iman_rank_mat, and forces these
ranks on a simple uncorrelated latin hypercube sample.

Algorithms for Stochastic Sensitivity Analysis 57

Appendix 2 NRC procedures required in ASSA

Routines

double gammp(double a, double x)
Cumulative gamma distribution with shape parameter a and scale parameter 1

double gammln(double xx)
Logarithm of gamma function

void gser(double *gamser, double a, double x, double *gln)

Incomplete gamma function via series development; used by gammp

void gcf(double *gammcf, double a, double x, double *gln)

Incomplete gamma function via continued fraction; used by gammp

double betai(double a, double b, double x)
Cumulative beta distribution with parameters a and b

double betacf(double a, double b, double x)
Cumulative beta(a,b) distribution via continued fraction

void indexx(long n, double arr[], long indx[])

Sorting algorithm; integer n-vector indx contains the indices of the smallest, next
smallest … largest elements of real n-vector arr

double ran1(long *idum)
Real uniform 0-1 random generator

double gasdev(long *idum)
Standard normal random generator (mean 0; variance 1)

Frequently used utilities

vector and free_vector
(elements changed to double precision by preprocessor)

matrix and free_matrix
(elements changed to double precision by preprocessor)

ivector and free_ivector
(elements changed to long precision by preprocessor)

imatrix and free_imatrix
(elements changed to long by preprocessor)

Algorithms for Stochastic Sensitivity Analysis 59

Appendix 3 ASSA-1.0 header-file

/*
 assa header file
 version 1.0, may 2005
 Michiel Jansen
 Biometris, Wageningen-UR
*/

#include <stdio.h>
#include <math.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

/* INCLUDE NRC ANSI PROTOTYPES */
#define float double
#define unsigned
#define int long
#ifndef ANSI
 #define ANSI
#endif
#include "nrutil.h"
#include "nr.h"
#undef float
#undef unsigned
#undef int

/* DEFINITION OF TYPE BOOLEAN */
typedef enum {false, true} boolean;

/* SPECIAL CONSTANTS */
#define ASSA_MISSING -99999.
#define ASSA_EPS 3.0e-7

/* ELEMENTARY PROCEDURES */

/* summary statistics */
void summary(double *x, long N,
 double *mean, double *var,
 double *min, double *max, double *med);
void msummary(double **X, long k, long N,
 double *mean, double *var, double *min, double *max,
 double *med, double **V);
double quantile(double prob, double *x, long N);
void calc_varcov(double **X, double **V, long k, long N);
void calc_corr(double **C, double **V, long k);
void calc_rank(double *x, double *rank, long N);

60 WOt werkdocument 4

/* matrix operations */
void cholesky(double **S, double **L, long k);
void lowinv(double **L, double **LINV, long k);
boolean posdef(double **S, long k);

/* utilities */
void error(char text[]);
void warning(char text[]);

/* BASIC RANDOM GENERATORS */
long any(long N, long* seed);
void perm(long* x, long N, long* seed);
void boot(long *x, long N, long *seed);
void mnor_mat(double **X, double *mean, double **V,
 long k, long N, long *seed);

/* PROBABILITY DISTRIBUTIONS AND RELATED SPECIAL FUNCTIONS */
double pnormal(double x);
double invnormal(double p);
void q2m_normal(double *mean, double *variance,
 double p1, double p2, double q1, double q2);

void q2m_lognormal(double *mean, double *variance,
 double p1, double p2, double q1, double q2);
void m2p_lognormal(double *mu, double *sigma,
 double mean, double variance);

double ptriang(double x, double low, double top, double hig);
double invtriang(double p, double low, double top, double hig);

double pgamma(double x, double a, double b);
double invgamma(double p, double a, double b);
void m2p_gamma(double *a, double *b, double mean, double
variance);

double pbeta(double x, double a, double b);
double invbeta (double p, double a, double b);
void m2p_beta(double *a, double *b, double mean, double variance);

/* GENERATORS IN THE UNIT HYPERCUBE */
void uhc_basic(double **U, long k, long N, long *seed);
void uhc_corr(double **U, double **C, long k, long N, long *seed);
void luhc_basic(double **U, long k, long N, long *seed);
void rank_mat(long **R, double **C,
 long k, long N, long *seed);
void luhc_corr(double **U, double **C, long k, long N, long
*seed);
void iman_rank_mat(long **R, double **C,
 long k, long N, long *seed);
void luhc_iman(double **U, double **C, long k, long N, long
*seed);
void uhc_sama(double **U, long prime, long power, long *seed);

Algorithms for Stochastic Sensitivity Analysis 61

/* TEST FUNCTIONS */
double sobol8(double *x);
double normal8(double *x);

/* REGRESSION-BASED SENSITIVITY ANALYSIS */
double rsquad(double *y, double **X, long k, long N);
void rsens_lin(long ngroup, long k, long N,
 double **X, double *y, long *key,
 double *rsquadlin, double *corrat, double *c_corrat);
void rop(double *res, double *y, double *x, long N);

Algorithms for Stochastic Sensitivity Analysis 63

Appendix 4 ASSA-1.0 source-file

/*
 assa c-file
 version 1.0, may 2005
 Michiel Jansen, Biometris, Wageningen-UR
*/

/* INCLUDE NRC ANSI ROUTINES */
#define float double
#define unsigned
#define int long
#ifndef ANSI
 #define ANSI
#endif
#include "nrutil.c"
#include "ran1.c"
#include "gasdev.c"
#include "betacf.c"
#include "betai.c"
#include "gammln.c"
#include "gammp.c"
#include "gcf.c"
#include "gser.c"
#include "indexx.c"
#undef float
#undef unsigned
#undef int

/* ELEMENTARY PROCEDURES */

/* summary statistics */

void summary(double *x, long N,
 double *mean, double *var,
 double *min, double *max, double *med)
{
 long i, *ind;
 double z, alpha, min_, max_, mean_, var_;
 if (N<=1) error("summary: sample size <= 1");
 mean_ = 0; var_ = 0; min_ = x[1]; max_ = x[1];
 for (i=1; i<=N; i++) {
 z = x[i];
 min_ = (min_ < z)? min_ : z;
 max_ = (max_ > z)? max_ : z;
 mean_ += z;
 }
 mean_ /= N;
 *mean = mean_;
 *min = min_;

64 WOt werkdocument 4

 *max = max_;
 for (i=1; i<=N; i++) {
 z = x[i] - mean_;
 var_ += z*z;
 }
 var_ /= (N-1);
 *var = var_;
 ind = ivector(1, N);
 indexx(N, x, ind);
 i = (long) floor(0.5*N + 0.5);
 alpha = 1 - (0.5*N + 0.5 - i);
 *med = alpha*x[ind[i]] + (1-alpha)*x[ind[i+1]];
 free_ivector(ind, 1, N);
}

void msummary(double **X, long k, long N,
 double *mean, double *var, double *min, double *max,
 double *med,
 double **V)
/* med and V calculated only if med and V don't point to NULL */
{
 long i, j, j1, j2, *ind;
 double z, mean_, min_, max_, var_, alpha;
 if (N<=1) error("msummary: sample size <= 1");
 if (med != NULL) ind = lvector(1, N);
 for (j=1; j<=k; j++){
 mean_=0; var_=0; min_=X[j][1]; max_=min_;
 for (i=1; i<=N; i++) {
 z = X[j][i];
 min_ = (z<min_)? z : min_;
 max_ = (z>max_)? z : max_;
 mean_ += z;
 }
 mean_ /= N;
 mean[j] = mean_;
 min[j] = min_;
 max[j] = max_;
 for (i=1; i<=N; i++) {
 z = X[j][i] - mean[j];
 var_ += z*z;
 }
 var_ /= (N-1);
 var[j] = var_;
 if (med != NULL){
 indexx(N, X[j], ind);
 i = (long) floor(0.5*N + 0.5);
 alpha = 1 - (0.5*N + 0.5 - i);
 med[j] = alpha*X[j][ind[i]] + (1-alpha)*X[j][ind[i+1]];
 }
 }
 if (med != NULL) free_lvector(ind, 1, N);
 if (V != NULL)
 for (j1=1; j1<=k; j1++) for (j2=1; j2<=j1; j2++) {
 z = 0;
 for (i=1; i<=N; i++) z += (X[j1][i]-mean[j1]) *(X[j2][i]-mean[j2]);

Algorithms for Stochastic Sensitivity Analysis 65

 V[j1][j2] = z / (N-1);
 }
}

double quantile(double prob, double *x, long N)
{
 long i, *ind;
 double theta, qua;
 if (N<=1) error("quantile: sample size <= 1");
 ind = ivector(1, N);
 indexx(N, x, ind);
 i = (long) floor(prob*N + 0.5);
 if (i<1||i+1>N) error("quantile: sample too small");
 theta = 1 - (prob*N + 0.5 - i);
 qua = theta*x[ind[i]] + (1-theta)*x[ind[i+1]];
 free_ivector(ind, 1, N);
 return qua;
}

void calc_varcov(double **X, double **V, long k, long N)
{
 long i, j, j1, j2;
 double s, *mean;
 if (N<=1) error("calc_varcov: sample size <= 1");
 mean = vector(1, k);
 for (j=1; j<=k; j++){
 s=0;
 for (i=1; i<=N; i++) s += X[j][i];
 mean[j] = s/N;
 }
 for (j1=1; j1<=k; j1++) for (j2=1; j2<=j1; j2++) {
 s = 0;
 for (i=1; i<=N; i++) s += (X[j1][i]-mean[j1]) * (X[j2][i]-
mean[j2]);
 V[j1][j2] = s / (N-1);
 }
 free_vector(mean, 1, k);
}

void calc_corr(double **C, double **V, long k)
{
 double z;
 long j1, j2;
 for (j1=1; j1<=k; j1++) for (j2=1; j2<=j1; j2++) {
 z = V[j1][j1]*V[j2][j2];
 if (z != 0) C[j1][j2] = V[j1][j2] / sqrt(z);
 else C[j1][j2] = ASSA_MISSING;
 }
}

void calc_rank(double *x, double *rank, long N)
{

66 WOt werkdocument 4

 long i, *ind;
 ind = ivector(1, N);
 indexx(N, x, ind);
 for (i=1; i<=N; i++) rank[ind[i]] = i;
 free_ivector(ind, 1, N);
}

/* matrix operations */

void cholesky(double **S, double **L, long k)
{
 long i, j, m;
 double x;
 for (j=1; j<=k; j++) for (i=j; i<=k; i++){
 x = S[i][j];
 for (m=1; m<=j-1; m++) x -= L[j][m] * L[i][m];
 if (i==j){
 if (x<=0) error("cholesky: matrix not strictly positive definite");
 L[i][i] = sqrt(x);

 }
 else L[i][j] = x / L[j][j];
 }
 for (j=2; j<=k; j++) for (i=1; i<j; i++) L[i][j] = 0;
}

void lowinv(double **L, double **LINV, long k)
{
 long i,j,m;
 double s;
 for (i=1; i<=k; i++){
 for (j=1; j<i; j++) LINV[j][i] = 0;
 LINV[i][i] = 1 / L[i][i];
 for (j=i+1; j<=k; j++){
 s=0;
 for(m=i; m<j; m++) s -= L[j][m]*LINV[m][i];
 LINV[j][i] = s / L[j][j];
 }
 }
}

boolean posdef(double **S, long k)
{
 long i, j, m;
 double **L;
 double x;
 boolean pd = true;
 L = matrix(1, k, 1, k);
 for (j=1; j<=k; j++) for (i=j; i<=k; i++){
 x = S[i][j];
 for (m=1; m<=j-1; m++) x -= L[j][m] * L[i][m];
 if (i==j){

Algorithms for Stochastic Sensitivity Analysis 67

 if (x<=0) {pd = false; goto clear;}
 L[i][i] = sqrt(x);
 }
 else L[i][j] = x / L[j][j];
 }
 clear:
 free_matrix(L, 1, k, 1, k);
 return pd;
}

/* utilities */

void error(char text[])
{
 fprintf(stderr,"\n\nFatal error:\n");
 fprintf(stderr,"%s\n", text);
 fprintf(stderr,"Bye-bye\n");
 exit(1);
}

void warning(char text[])
{
 fprintf(stderr,"\n\nWarning:\n");
 fprintf(stderr,"%s\n", text);
}

/* BASIC RANDOM GENERATORS */

long any(long N, long *seed)
{
 double t;
 t = N * ran1(seed);
 if (t==0) return 1;
 else return ((long)ceil(t));
}

void perm(long *x, long N, long *seed){
 long i, j;
 long* z;
 z = ivector(1,N);
 for (i=1; i<=N; i++) z[i] = i;
 for (i=N; i>=1; i--) {
 j = any(i, seed);

68 WOt werkdocument 4

 x[i] = z[j];
 z[j] = z[i];
 }
 free_ivector(z,1,N);
}

void boot(long *x, long N, long *seed){
 long i;
 for (i=1; i<=N; i++) x[i] = any(N, seed);
}

void mnor_mat(double **X, double *mean, double **V,
 long k, long N, long *seed)
{
 long i,r,c;
 double *z;
 double **chol;
 z = vector(1,k);
 chol = matrix(1,k,1,k);
 if (posdef(V, k)== false)
 error("mnor_mat: V not positive definite");
 cholesky(V, chol, k);
 for (i=1; i<=N; i++) {
 for (r=1; r<=k; r++){
 z[r] = gasdev(seed);
 X[r][i] = mean[r];
 for (c=1; c<=r; c++) X[r][i] += chol[r][c] * z[c];
 }
 }
 free_matrix(chol,1,k,1,k);
 free_vector(z,1,k);
}

/* PROBABILITY DISTRIBUTIONS AND RELATED SPECIAL FUNCTIONS */

double pnormal(double x)
{ /* Abramowitz and Stegun */
 static double b[5] =
 { 0.319381530, -0.356563782, 1.781477937, -1.821255978, 1.330274429 };
 static double p = 0.2316419;
 static double pi = 3.1415927;
 double P, t;
 long j;
 if (x<-10.0) return pnormal(-10.0);
 if (x>10.0) return pnormal(10.0);
 if (x>=0.0) t=1/(1+p*x); else t=1/(1-p*x);
 P = 0;

Algorithms for Stochastic Sensitivity Analysis 69

 for (j=4; j>=0; j--) P=(b[j]+P)*t;
 P = P*exp(-x*x/2.0)/sqrt(2.0*pi);
 if (x>=0) return 1-P; else return P;
}

double invnormal(double p)
{
 /* Abramowitz and Stegun */
 static double c[3]= {2.515517, 0.802853, 0.010328};
 static double d[4]= {1.0, 1.432788, 0.189269, 0.001308};
 double q, t, xp, numerator, denominator;
 if (p<=.0||p>=1.0)
 {warning("invnormal: invalid argument\n"); return ASSA_MISSING;}
 q= 1-p;
 if (q>.5) q=p;
 t= sqrt(-2.0*log(q));
 denominator = d[0]+t*(d[1]+t*(d[2]+t*d[3]));
 numerator = c[0]+t*(c[1]+t*c[2]);
 xp = t - numerator/denominator;
 if (p<.5) xp = -xp;
 return xp;
}

void q2m_normal(double *mean, double *variance,
 double p1, double p2, double q1, double q2)
{
 double e1, e2, a, b;
 if (p1<=0 || p2<=0 || p1>=1 || p2>=1)
 error("q2m_normal: p1 or p2 out of range");
 if (p1==p2 || q1==q2) error("q2m_normal: p1=p2 or q1=q2");
 if ((p1-p2)/(q1-q2) < 0) error("q2m_normal: incompatible p1,p2,q1,q2");
 e1 = invnormal(p1); e2=invnormal(p2);
 /* solve q[i] = a + b*e[i] */
 b = (q1-q2)/(e1-e2);
 a = q1 - b*e1;
 *mean = a;
 *variance = b*b;
}

void q2m_lognormal(double *mean, double *variance,
 double p1, double p2, double q1, double q2)
{
 double e1, e2, lq1, lq2, a, b, mu, sigmasq;
 if (p1<=0 || p2<=0 || p1>=1 || p2>=1)
 error("q2m_lognormal: p1 or p2 out of range");
 if (q1<=0 || q2<=0)
 error("q2m_lognormal: q1 or q2 <= 0");
 if (p1==p2 || q1==q2) error("q2m_lognormal: p1=p2 or q1=q2");
 if ((p1-p2)/(q1-q2) < 0) error("q2m_lognormal: incompatible p1,p2,q1,q2");
 e1 = invnormal(p1); e2=invnormal(p2);

70 WOt werkdocument 4

 lq1 = log(q1); lq2 = log(q2);
 /* solve lq[i] = a + b*e[i] */
 b = (lq1-lq2)/(e1-e2);
 a = lq1 - b*e1;
 mu = a;
 sigmasq = b*b;
 *mean = exp(mu + sigmasq/2);
 *variance = (*mean)*(*mean) * (exp(sigmasq)-1);
}

void m2p_lognormal(double *mu, double *sigma,
 double mean, double variance)
{
 if (mean<=0 || variance <= 0)
 error("m2p_lognormal: mean or variance out of range");
 *sigma = sqrt(log(variance/(mean*mean)+1));
 *mu = log(mean) - (*sigma)*(*sigma)/2;
}

double ptriang(double x, double low, double top, double hig)
{
 double xi, tau;
 if (low >= hig) error("ptriang: low >= hig");
 if (top<low || top > hig) error("ptriang: top not between low and hig");
 if (x<=low) return 0.;
 if (x>=hig) return 1.;
 xi = (x-low)/(hig-low);
 tau = (top-low)/(hig-low);
 return (xi<=tau)? xi*xi/tau : 1-(1-xi)*(1-xi)/(1-tau);
}

double invtriang(double p, double low, double top, double hig)
{
 double xi, tau;
 if (low >= hig) error("invtriang: low >= hig");
 if (top<low || top > hig) error("invtriang: top not between low and hig");
 if (p<0 || p>1) error("invtriang: p not between 0 and 1");
 if (p==0) return low;
 if (p==1) return hig;
 tau = (top-low)/(hig-low);
 xi = (p<=tau)? sqrt(p*tau) : 1-sqrt((1-p)*(1-tau));
 return low + xi*(hig-low);
}

double pgamma(double x, double a, double b)
{
 if (x<0.0 || a<=0 || b<=0)
 {warning("Pgamma: invalid arguments"); return ASSA_MISSING;}
 if (x==0) return 0;
 return gammp(a, x/b);
}

Algorithms for Stochastic Sensitivity Analysis 71

double invgamma(double p, double a, double b)
{
 /* initial bracketing followed by bisection: might be slow */
 double low = 0.0, mid, hig = 1.0;
 static double BIGA = 400, BIG = 1e+37;
 if (p<0.0||p>1.0||a<=0||b<=0)
 {warning("Invgamma: invalid arguments"); return ASSA_MISSING;}
 if (p==0) return 0; if (p==1) return BIG;
 if (a > BIGA) { /* Wilson-Hilferty approximation */
 double w;
 w = invnormal(p)/sqrt(9*a) + 1 - 1/(9*a);
 return b * a * w*w*w;
 }
 while (gammp(a, hig/b)<p) {low = hig; hig = 2*hig;}
 while (hig-low>ASSA_EPS){
 mid = (low+hig)/2;
 if (gammp(a, mid/b)>=p) hig = mid; else low = mid;
 }
 return hig;
}

void m2p_gamma(double *a, double *b, double mean, double variance)
{
 *a = mean*mean/variance;
 *b = variance/mean;
}

double pbeta(double x, double a, double b)
{
 if (x<0.0||x>1.0||a<=0||b<=0)
 {warning("Pbeta: invalid arguments"); return ASSA_MISSING;}
 if (x==0) return 0;
 if (x==1) return 1;
 return betai(a, b, x);
}

double invbeta(double p, double a, double b)
{
 double low = 0.0, mid, hig = 1.0;
 if (p<0.0||p>1.0||a<=0||b<=0)
 {warning("Invbeta: invalid arguments"); return ASSA_MISSING;}
 if (p==0.0) return 0.0; if (p==1.0) return 1.0;
 while (hig-low>ASSA_EPS){
 mid = (low+hig)/2;
 if (betai(a, b, mid)>=p) hig = mid; else low = mid;
 }
 return hig;
}

void m2p_beta(double *a, double *b, double mean, double variance)
{

72 WOt werkdocument 4

 double z;
 if ((variance<=0.) || (variance>=mean*(1-mean)) || (mean<=0.) || (mean>=1.))
 error("m2p_beta: invalid mean and variance\n");
 z = variance/mean + mean;
 *a = (1-z) * mean / (z - mean);
 *b = (1-z) * (1-mean) / (z - mean);
}

/* GENERATORS IN THE UNIT HYPERCUBE */

void uhc_basic(double **U, long k, long N, long *seed)
{
 long i,j;
 for (i=1; i<=k; i++) for (j=1; j<=N; j++) U[i][j] = ran1(seed);
}

void uhc_corr(double **U, double **C, long k, long N, long *seed)
{
 long i,j;
 double *mean;
 if (posdef(C, k)== false)
 error("uhc_corr: cormat not positive definite");
 mean = vector(1,k);
 for (i=1; i<=k; i++) mean[i]=0.;
 mnor_mat(U, mean, C, k, N, seed);
 for (i=1; i<=k; i++) for (j=1; j<=N; j++)
 U[i][j] = pnormal(U[i][j]);
 free_vector(mean, 1, k);
}

void luhc_basic(double **U, long k, long N, long *seed)
{
 long i,j;
 long *z;
 z = ivector(1,N);
 for (i=1; i<=k; i++) {
 perm(z,N,seed);
 for (j=1; j<=N; j++) U[i][j] = (z[j] - 1 + ran1(seed))/N;
 }
 free_ivector(z,1,N);
}

void rank_mat(long **R, double **C,
 long k, long N, long *seed)
{
 /* matrix of sample ranks for given rankcorrelation */
 long i, j, r, *p;
 double *mean, **M;
 p = ivector(1,N);
 mean = vector(1, k);

Algorithms for Stochastic Sensitivity Analysis 73

 M = matrix(1,k,1,N);
 for (j=1; j<=k; j++)
 if (C[j][j] != 1.) error("rank_mat: diagonal c != 1");
 if (posdef(C,k) == false)
 error("rank_mat: C not positive definite");
 for (i=1; i<=k; i++) mean[i]=0.;
 mnor_mat(M, mean, C, k, N, seed);
 for (r=1; r<=k; r++){
 indexx(N, M[r], p);
 for (i=1; i<=N; i++) R[r][p[i]] = i;
 }
 free_matrix(M,1,k,1,N);
 free_vector(mean, 1, k);
 free_ivector(p,1,N);
}

void luhc_corr(double **U, double **C, long k, long N, long *seed)
{
 double **M;
 long i, j, *ind, **ranks;
 M = matrix(1,k,1,N);
 ranks = imatrix(1,k,1,N);
 ind = ivector(1,N);
 luhc_basic(M, k, N, seed);
 rank_mat(ranks, C, k, N, seed);
 for (i=1; i<=k; i++){
 indexx(N, M[i], ind);
 for (j=1; j<=N; j++) U[i][j] = M[i][ind[ranks[i][j]]];
 }
 free_ivector(ind,1,N);
 free_imatrix(ranks,1,k,1,N);
 free_matrix(M,1,k,1,N);
}

void iman_rank_mat(long **R, double **C,
 long k, long N, long *seed)
{
 /* matrix of ranks for method of iman */
 long i, j, r, c, *p;
 double *z, *waerden, **sigma, **chol, **invchol, **M1, **M2;
 z = vector(1,k);
 sigma = matrix(1, k, 1, k);
 p = ivector(1,N);
 waerden = vector(1,N);
 chol = matrix(1,k,1,k);
 invchol = matrix(1,k,1,k);
 M1 = matrix(1,k,1,N);
 M2 = matrix(1,k,1,N);
 if (N<k) error("iman_rank_mat: sample size less than number of variates");
 for (j=1; j<=k; j++)
 if (C[j][j] != 1.) error("iman_rank_mat: diagonal C != 1");
 if (posdef(C,k) == false)
 error("iman_rank_mat: C not positive definite");
 for (i=1; i<=N; i++) waerden[i] = invnormal(i/(N+1.0));

74 WOt werkdocument 4

 for (j=1; j<=k; j++){
 perm(p, N, seed);
 for (i=1; i<=N; i++) M1[j][i] = waerden[p[i]];
 }
 for (r=1; r<=k; r++) for (c=1; c<=r; c++){
 sigma[r][c] = 0;
 for (i=1; i<=N; i++) sigma[r][c] += M1[r][i]*M1[c][i];
 sigma[r][c] /= N;
 }
 if (!posdef(sigma,k)) error("iman_rank_mat: sample size too small?");
 cholesky(sigma, chol, k);
 lowinv(chol, invchol, k);
 /* make uncorrelated M2 */
 for (i=1; i<=N; i++) {
 for (r=1; r<=k; r++){
 M2[r][i] = 0;
 for (c=1; c<=r; c++) M2[r][i] += invchol[r][c] * M1[c][i];
 }
 }
 /* let M1 have the required correlations */
 cholesky(C, chol, k);
 for (i=1; i<=N; i++) {
 for (r=1; r<=k; r++){
 M1[r][i] = 0;
 for (c=1; c<=r; c++) M1[r][i] += chol[r][c] * M2[c][i];
 }
 }
 for (r=1; r<=k; r++){
 indexx(N, M1[r], p);
 for (i=1; i<=N; i++) R[r][p[i]] = i;
 }
 free_matrix(M2,1,k,1,N);
 free_matrix(M1,1,k,1,N);
 free_matrix(invchol,1,k,1,k);
 free_matrix(chol,1,k,1,k);
 free_vector(waerden,1,N);
 free_ivector(p,1,N);
 free_matrix(sigma, 1, k, 1, k);
 free_vector(z,1,k);
}

void luhc_iman(double **U, double **C, long k, long N, long *seed)
{
 double **M;
 long i, j, *ind, **ranks;
 M = matrix(1,k,1,N);
 ranks = imatrix(1,k,1,N);
 ind = ivector(1,N);
 luhc_basic(M, k, N, seed);
 iman_rank_mat(ranks, C, k, N, seed);
 for (i=1; i<=k; i++){
 indexx(N, M[i], ind);
 for (j=1; j<=N; j++) U[i][j] = M[i][ind[ranks[i][j]]];
 }
 free_ivector(ind,1,N);

Algorithms for Stochastic Sensitivity Analysis 75

 free_imatrix(ranks,1,k,1,N);
 free_matrix(M,1,k,1,N);

}

void uhc_sama(double **U, long prime, long power, long *seed)
{
 /*
 saturated main effect fractional factorial design
 (prime^power-1)/(prime-1) orthogonal factors at prime levels
 cf. Aloke Dey, 1985, Orthogonal fractional factorial designs, 2.4.1
 factors randomized, augmented with random term and scaled to unit interval
 still to do: allow less than maximum number of factors
 */
 long ncol; /* number of factors (columns) */
 long *x; /* x[1...power]: generating factors */
 long *k; /* k[1...power]: column specific coefficients of x[1...power] */
 long *z;
 long lead; /* leading coefficient of sum(k[j]*x[j]) */
 long row, col, nrow, i, j, a, cnt;
 const long unset=-1;
 if (prime<2) error("uhc_sama: prime should be at least 2");
 if (power<2) error("uhc_sama: power should be at least 2");
 for (i=2; i<=prime-1; i++)
 if (prime%i==0) error("uhc_sama: value is not a prime");
 nrow = (long)pow(prime,power);
 ncol = (nrow-1) / (prime-1);
 x = ivector(1,power);
 k = ivector(1,power);
 z = ivector(1, prime);
 for (row=0; row<nrow; row++){
 a = row;
 for (i=power; i>=1; i--) {x[i] = a%prime; a /= prime;}
 cnt = 0;
 for (i=0; i<nrow; i++) {
 a=i; lead = unset;
 for (j=power; j>=1; j--) {
 k[j] = a%prime;
 if (lead==unset && k[j]!=0){
 lead = k[j];
 if (lead!=1) goto exit;
 }
 a /= prime;
 }
 if (lead==1) {
 cnt++;
 a = 0;
 for (j=1; j<=power; j++) a += k[j]*x[j];
 U[cnt][row+1] = a%prime;
 }
 exit:;
 }
 }
 for (col=1; col<=ncol; col++){
 perm(z, prime, seed);

76 WOt werkdocument 4

 for (row=1; row<=nrow; row++)
 U[col][row] = (z[(long)floor(U[col][row]+
 1.001)]-1 + ran1(seed)) / prime;
 }
 free_ivector(z,1,prime);
 free_ivector(k,1,power);
 free_ivector(x,1,power);
}

/* TEST FUNCTIONS */

double sobol8(double *x)
{
 /* sobol test function, Saltelli et al. 2000 section 2.9
 x_1...x_8 assumed independent homogeneous on 0-1 */
 static double z[8] = {0,1,4.5,9,99,99,99,99};
 long i;
 double s=1;
 double *a;
 a = z-1;
 for (i=1; i<=8; i++) s *= (fabs(4*x[i]-2)+a[i]) / (1+a[i]);
 return s;
}

double normal8(double *x)
{
 /* test function for 8 standard normal x's
 zero correlation, except rho[3,2]=rho[5,4]=0.75 */
 return x[1]*x[1]/sqrt(2) + (x[2]+x[3])/sqrt(1.75) +
 (x[4]-x[5])*2 + x[6]*x[7]*sqrt(2) + x[8];
}

/* REGRESSION-BASED SENSITIVITY ANALYSIS */

double rsquad(double *y, double **X, long k, long N)
{
 /* calculates rsquared-adjusted of linear regression of y
 on the constant term and the rows of X */
 long i, j, j1, j2;
 double vary=0, rms=0, *res, *one, **X_;
 if (N-1-k <= 0) error("rsquad: N-k-1 <= 0");
 X_ = matrix(1, k, 1, N);
 one = vector(1, N);
 res = vector(1, N);
 for (i=1; i<=N; i++) one[i]=1;
 rop(res, y, one, N);
 for (i=1; i<=N; i++) vary += res[i]*res[i];

Algorithms for Stochastic Sensitivity Analysis 77

 vary /= (N-1);
 if (vary == 0) error("rsquad: y is constant");
 for (j=1; j<=k; j++) rop(X_[j], X[j], one, N);
 for (j1=1; j1<=k; j1++) {
 rop(res, res, X_[j1], N);
 if (j1<k) for (j2=j1+1; j2<=k; j2++) rop(X_[j2], X_[j2], X_[j1], N);
 }
 for (i=1; i<=N; i++) rms += res[i]*res[i];
 rms /= (N-1-k);
 free_vector(res, 1, N);
 free_vector(one, 1, N);
 free_matrix(X_, 1, k, 1, N);
 if (rms<vary) return 1 - rms/vary;
 return 0;
}

void rsens_lin(long ngroup, long k, long N,
 double **X, double *y, long *key,
 double *rsquadlin, double *corrat, double *c_corrat)
 /*
 input ngroup: integer >= 2; number of input groups distinguished
 input k: integer >= ngroup; number of model input variables
 input N: integer > k+1; number of model runs
 input X: k-by-N real matrix, rows contain model input variables
 input y: real N-vector, the model output for varying inputs
 input key: integer k-vector; grouping of the k model inputs
 output rsquadlin: rsquared adjusted of the regression of y on all x's
 output corrat: real ngroup-vector; correlation ratio of the groups
 output c_corrat: real ngroup-vector complementary correlation ratios
 */
{
 double **present, **absent;
 long group, j, npres, nabs;
 boolean grouppresent;
 if (ngroup<2) error("rsens_lin: ngroup < 2");
 if (k<ngroup) error("rsens_lin: k < ngroup");
 if (N<=k+1) error("rsens_lin: N <= k+1");
 for (j=1; j<=k; j++) if (key[j]<1 || key[j] >ngroup)
 error("rsens_lin: out-of-bounds grouping in key");
 /* check if all levels 1...ngroup present in key */
 for (group=1; group<=ngroup; group++){
 grouppresent=false;
 for (j=1; j<=k; j++)
 if (key[j]==group) {grouppresent=true; break;}
 if (grouppresent==false)
 error("rsens_lin: incomplete key");
 }
 present = (double **) malloc((size_t)((k+1)*sizeof(double*)));
 absent = (double **) malloc((size_t)((k+1)*sizeof(double*)));
 if (!present || !absent) error("rsens_lin: insufficient memory");
 *rsquadlin = rsquad(y, X, k, N);
 for (group=1; group<=ngroup; group++){
 npres=0; nabs=0;
 for (j=1; j<=k; j++){
 if (key[j]==group) {npres++; present[npres] = X[j];}

78 WOt werkdocument 4

 else {nabs++; absent[nabs] = X[j];}
 }
 corrat[group] = rsquad(y, present, npres, N);
 c_corrat[group] = *rsquadlin - rsquad(y, absent, nabs, N);
 }
 free((char*) present);
 free((char*) absent);
}

void rop(double *res, double *y, double *x, long N)
{
 double xy=0, xx=0, alpha;
 long i;
 for (i=1; i<=N; i++){
 xy += x[i]*y[i];
 xx += x[i]*x[i];
 }
 alpha = (xx>0)? xy/xx : 0;
 for (i=1; i<=N; i++) res[i] = y[i]-alpha*x[i];
}

Algorithms for Stochastic Sensitivity Analysis 79

80 WOt werkdocument 4

WOt-onderzoek

Verschenen werkdocumenten
in de reeks Wettelijke Onderzoekstaken – vanaf mei 2005

Werkdocumenten zijn verkrijgbaar bij het secretariaat van Wettelijke Onderzoekstaken Natuur
& Milieu (voorheen Natuurplanbureau), gebouw Alterra-Oost, te Wageningen.

T 0317 – 47 78 45
F 0317 – 42 49 88
E info@npb-wageningen.nl

De werkdocumenten zijn ook te downloaden via de WOt-website
www.wotnatuurenmilieu.wur.nl

2005

1 Eimers, J.W. (Samenstelling)
 Projectverslagen 2004.

2 Hinssen, P.J.W.

Strategisch Plan van de Unit Wettelijke Onderzoekstaken Natuur & Milieu, 2005 – 2009.

3 Sollart, K.M.
 Recreatie: Kennis- en datavoorziening voor MNP-producten. Discussienotitie.

4 Jansen, M.J.W.

ASSA: Algorithms for Stochastic Sensitivity Analysis. Manual for version 1.0.

5 Goossen, C.M. & S. de Vries

Beschrijving recreatie-indicatoren voor de Monitoring en Evaluatie Agenda Vitaal Platteland (ME
AVP)

6 Mol-Dijkstra, J.P.

Ontwikkeling en beheer van SMART2-SUMO. Ontwikkelings- en beheersplan en
versiebeheerprotocol.

7 Oenema, O.
 How to manage changes in rural areas in desired directions?

8 Dijkstra, H.
 Monitoring en Evaluatie Agenda Vitaal Platteland; inventarisatie aanbod monitoringsystemen.

9 Ottens, H.F.L & H.J.A.M. Staats

 BelevingsGIS (versie2). Auditverslag.

10 Straalen, F.M. van

Lijnvormige beplanting Groene Woud. Een studie naar het verdwijnen van lanen en
perceelsrandbegroeiing in de Meierij

11 Programma Commissie Natuur

Onderbouwend Onderzoek voor de Natuurplanbureau-functie van het MNP; Thema’s
en onderzoeksvragen 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 8418.897]
>> setpagedevice

