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Abstract

Autonomous low cost instruments like PASTIS57 could deliver temporally and spatially
dense datasets on regional phenology. In this research PASTIS57 is compared with ter-
restrial laser scanning (TLS) for spring phenology monitoring. A dataset with a high
temporal resolution is gathered in a temperate broadleaf forest in The Netherlands in
spring 2014. Data processing methods are designed for optimal plant area index (PAI)
derivation from PASTIS57 data. We compare PAI derived from PASTIS57 and TLS
measurements. We fit logistic models to PAI time series to derive descriptive variables.
Start of season dates derived from PASTIS57 measurements are compared with start of
season dates derived from TLS, field observations and meteorology data. We implement
a processing method for PASTIS57 data which removes cloud-influenced measurements
(lowering CV(RMSE) of model fitting with > 2%). PAI measurements from PASTIS57
instruments show similar trends as TLS measurements. Difference in measured spring
PAI increase is smaller then 0.54. PAI during the leaf-off periods and leaf-on periods is
measured lower by PASTIS57 by 0.8 ± 0.2 and 0.4 ± 0.4. Start of season dates derived
from PASTIS57 are later than TLS for three plots (by 2, 6 and 8 days) and earlier by
5 days for the fourth plot. Compared to field observations, PASTIS57 is earlier for that
same plot by 8 days and later for the other plots by 1, 6 and 6 days. These results show
PASTIS57 to be a cost-effective method for large-scale phenology monitoring. With
more research focusing on the methods to employ these instruments, they could prove
valuable for global phenology monitoring.

Keywords: spring phenology monitoring, autonomous low cost instruments, PASTIS57,
terrestrial lidar, TLS
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1. Introduction

Forests are of global importance because of the ecological and economical services they
provide. An increasing topic of interest is the dynamics of carbon stocks (Herold and
Skutsch, 2011, De Sy et al., 2012). Accurate information on forest structure and its
biophysical variables is essential for research on forests. Knowledge on forest vegetation
density is important for modeling evapotranspiration, photosynthesis and carbon and
nutrient cycles (Waring and Running, 2010).
The structure of a forest is often represented using the plant area index (PAI). This

index is defined as the single-sided plant surface area per unit ground surface area. It
includes the surface of both foliage and woody elements. That is why we use the term PAI
instead of the commonly used term leaf area index, which name implies that only foliage
surfaces are considered. Plant area volume density (PAVD) profiles are the derivative
of PAI over height. They describe the distribution of plant density along the vertical
dimension. PAVD profiles are used to investigate vertical forest structure. Most passive
remote sensing systems are unable to provide these profiles. Destructive harvesting, leaf-
litter traps and digital hemispherical photography have been used to estimate plot-level
PAI (Rich, 1990, Jonckheere et al., 2004). Terrestrial lidar scanning (TLS) has recently
come into focus as a method for estimating local PAI and PAVD profiles (Jupp et al.,
2009).
Leaf development during spring is an important process in deciduous forests. Research

on spring phenology is important for ecological research and global warming research.
Specific interest goes out to the start of season (SOS) variable. This indicates the day
of the year when leafs start to emerge. This event is easily measured and is influenced
by relatively few factors unlike events that take place in summer or fall. It is a variable
used in indicating shifting phenological cycles under the influence of climate change. To
investigate phenological variables like these, extensive PAI measurements are needed.
However, PAI data with a high temporal detail of leaf-development during spring is only
limitedly available in literature (Bequet et al., 2011, Eitel et al., 2013). Phenological
studies relate the timing of budburst (when leafs emerge from their buds) in temperate
forests to temperature (Melaas et al., 2013, Vitasse et al., 2009, Karlsen et al., 2007,
Black et al., 2000), growing degree-days (Von Wuehlisch et al., 1996) and temperature
extremes and radiation levels (Bequet et al., 2011). Different models are used to estimate
SOS, these vary in methodology and results (Botta et al., 2000, Richardson and Keefe,
2009). Budburst takes place earlier for understory species so they can benefit from
spring light levels before the canopy closes up (Richardson and Keefe, 2009, Gond et al.,
1999). Ryu et al. (2014) have shown that the onset of greenness in MODIS NDVI data
is determined by understory canopy development. Active systems (Culvenor, 2012, Eitel
et al., 2013, Jupp et al., 2009) and some passive systems (Ryu et al., 2014) provide PAVD
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profiles. These can aid understanding of air- and spaceborn remote sensing greenness
products.
Most terrestrial active and passive instruments for forest structure assessment require

manual operation. This limits the temporal resolution of datasets that can be acquired.
Recently, low cost systems that can measure PAI autonomously at high temporal res-
olutions were developed. Amongst these are active systems as presented in Culvenor
(2012), Eitel et al. (2013). These are powered by solar panels and actively transmit
their measurements to the internet. They deliver datasets with a temporal resolution of
a day or less. Using active lidar ranging, these instruments can deliver PAVD profiles.
Another system, PASTIS57, uses passive sensors to measure transmittance (Baret et al.,
2010, Simic et al., 2012). It saves data locally and lasts 8 months on one battery charge.
At a cost of €200 (Jan Verbesselt, personal communication, September 5, 2014) these
instruments can be applied in large-scale phenology monitoring campaigns. Literature
on PASTIS57 does not provide validation.
Large-scale phenology data would be valuable for ecological and global warming re-

lated research. That is why we focus on a new type of instrument for acquiring such data.

The objectives of this research are:

RQ1: How to optimize PASTIS57 data processing for monitoring PAI?

RQ2: How do PAI values measured with the PASTIS57 instrument compare to PAI
values derived from TLS?

RQ3: How do start of season dates from PASTIS57 compare to TLS, meteorology and
field observation start of season dates?

We will acquire a temporally dense TLS dataset with multiple scans per week throughout
the spring season. Throughout the season data will also be acquired with PASTIS57
instruments. We will validate the PASTIS57 instrument for the purpose of measuring
spring phenology. SOS derived from both instruments will be compared to meteorological
and field observation derived SOS.
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2. Study Area and Data Collection

2.1. Study area
The Dassenbos study area (51.9829º N, 5.6557º E) is a pedunculate oak (Quercus robur)
dominated forest with a small presence of birch trees (Betula spp.) in the upper canopy.
The forest is about 40 years old and is located on flat terrain.

Plot A B C D
Canopy
closure

Closed Intermediate Intermediate Open

Canopy
composi-
tion

85% Quercus
robur, 15%
Betula spp.

85% Quercus
robur, 15%
Betula spp.

95% Quercus
robur, 5% Betula
spp.

97% Quercus
robur, 3% Betula
spp.

Understory
composi-
tion

Dense with all
understory
species present
close (2m) to the
plot center.

Medium, all
understory
species present
but at 5m from
plot center.

Open, some S.
nigra individuals
present 4m from
plot center.

Open, two S.
nigra individuals
close to each
other at 2.5m
from plot center.

Ground
layer com-
position

70% Rubus spp.,
30% unpopulated

50% Rubus spp.,
50% Lonicera
spp.

85% Rubus spp.,
15% Lonicera
spp.

100% Rubus spp.

Table 2.1.: Canopy, understory and ground layer characteristics of the studied plots

Four plots were established within the forest. These were chosen for their varying
canopy closure and different composition of undergrowth. Characteristics of the plots
are described in Tab. 2.1. Hemispherical photographs taken with a Nikon D7000 camera
with a Sigma 4.5mm lens are shown in Fig. 2.1. A map of the study area with the field
plots and the locations of the meteorology stations used is shown in Fig. 2.2.

2.2. Sensor data
For this study data was collected with a terrestrial lidar scanner and with low cost
autonomous PASTIS57 instruments (Baret et al., 2010). Six PASTIS57 instruments were
installed on February 27th and measured throughout the spring season. Only for day of
year (DOY) 175-176 and DOY 183 is unavailable. On the first days the instruments had
to be removed temporarily. On DOY 183 the internal clock of the instruments were set
to a wrong timezone. Terrestrial laser scanning (TLS) data was gathered on 48 days.
From DOY 55 until DOY 136 three measurements were gathered each week on monday,

7



Figure 2.1.: Hemispherical photographs of plots A-D made on May 23rd using a Nikon
D7000 camera and Sigma 4.5mm F2.8 lens.

wednesday and friday. On monday April 14th (DOY 104) data could not be gathered
due to persistent bad weather conditions. Data was gathered on tuesday, wednesday and
friday that week instead. From DOY 139 to 164 data was gathered two times per week
for four weeks until DOY 164. Then once a week for four weeks until DOY 191.

2.2.1. PASTIS57

Six PASTIS57 instruments were used to measure incoming radiation at a 5-minute inter-
val. Each instrument has six LED based sensors with a 22º zenith field-of-view (Baret
et al., 2010). The ratio between measured irradiance at instruments in and outside the
forest is used to calculate transmittance and PAI. Four instruments were placed at plots
A, B, C and D. Two instruments were placed outside the forest to capture all incoming
radiation (one serving as backup). All instruments were mounted on 1.3m high posts.

8



Figure 2.2.: Maps showing location of study area and meteorology stations and plot
locations.
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PASTIS57 TLS

Data 6 measurements at 57.5°
zenith

point cloud

Time required - 20 minutes/plot fieldwork, 2
minutes/scan

Influenced by - wet foliage, rain, wind
Approximate price €200 (Jan Verbesselt,

personal communication,
September 5, 2014)

€50,000 -
€150,000(Newnham et al.,
2012)

Table 2.2.: Comparison of the PASTIS57 and TLS instruments

2.2.2. Terrestrial lidar

Terrestrial lidar data was gathered using a RIEGL VZ-400 3D terrestrial scanner (RIEGL
Laser Measurement Systems GmbH). The instrument has a scan resolution of 0.35 mrad.
It emits an infrared laser beam and can measure up to 350 m. The instrument records
up to four returns per emitted light pulse.
For each measurement the TLS is positioned on a tripod at a height of approximately

1.45m. The laser viewpoint is oriented East. Minimum range is set to 0.5m and scan
resolution to 0.06º. The scanner has a zenith field-of-view of 30º to 130º. Therefore two
combined scans are required to capture the full hemisphere. Reflectors are placed North
and South of the scanner in order to combine the scans together. A 360º scan is made
in upright position and a subsequent scan in 90º tilted position.

2.3. Meteorological data
Hourly sunshine and hourly temperature data were available from the nearby Veenkam-
pen meteorology station (51.9808ºN, 5.6217ºE) going back to 2012. Hourly mean tem-
perature was measured at 1.5 m height. Hourly mean temperatures were averaged for
each day to calculate the daily mean temperature (WMO, 2011). Data from 2001 to
2011 was acquired from the Haarweg meteorology station (51.9707ºN, 5.6426ºE). The
location of the meteorology stations is shown in Fig. 2.2.

2.4. Phenology field observations
During the field campaign, leaf-setting notes have been recorded on visually apparent
changes. Budburst of canopy oak and birch trees as well as the understory vegetation
was described. These observations were always done by the same person to maintain
objectivity.
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Figure 2.3.: PASTIS57 instrument during the field campaign. The front cover is removed
and the six sensors are mounted on top oriented to different azimuth angles.
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3. Methods

3.1. Sensor data processing
PASTIS57 and TLS data were processed to provide comparable PAI time series. For
PASTIS57, daily PAI estimates are derived. For TLS PAI is derived per measurement
which amounts to 1 to 3 times per week.

3.1.1. PASTIS57

Per instrument we only 4 out of 6 sensors could be used. This was because the orientation
of the six sensors varied between instruments placed inside and outside the forest. For
plots A, C and D, the used sensors were oriented to 0, 135, 180 and 315º azimuth, for plot
B the used sensors were oriented to 0, 45, 180 and 225º azimuth (with North being 0º
azimuth). Instruments measured every 5 minutes. Measurements were not synchronized
between instruments. This was corrected for by changing the time of each measurement
to the nearest whole 5 minutes. Data from DOY 176, 176 and 183 was excluded, for the
first two days the instruments outside the forest had to be removed. On the third day
the internal clock of the instruments was set to a wrong timezone. Measurements where
one of four values exceeded 4000 were removed because sensors saturate at that value.
To derive PAI values, the Beer-Lambert equation (Eq. 3.1) (Baret et al., 2010) is

used. G(z) is the projection function describing light transmittance for different leaf
angle distributions. For the hinge angle (57.5º zenith), this function is approximately
0.5 regardless of leaf angle distribution (Jupp et al., 2009). Apparent transmittance
Po(z) is acquired by dividing the signal si of the instrument located in the forest by the
signal of the instrument located outside the forest so. Eq. 3.2 is used to calculate PAI.

PAI = −cos(57.5º)
G(57.5º)

log(Po(57.5º)) (3.1)

PAI = −1.075 log(
si

so
) (3.2)

We average four values measured by instruments located in and outside the forest.
We then apply Eq. 3.2 once on those two averages. This gives a single PAI estimate
for each plot for every 5 minutes. Infinite and negative PAI estimates are removed. Fig.
3.1 shows PAI estimations for three subsequent days. This data shows occasional large
spread of estimates. To minimize the influence of outliers the median is used as the PAI
estimate for that day (the implementation of this processing step can be found in App.
C in processP57.R).
Fig. 3.1 shows similar patterns for plots A, C and D on each of the three days. Data

for plot B is not shown because the patterns were different because the sensors were
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Figure 3.1.: PAI values for three days for plots A, C and D derived from PASTIS57 data

oriented different. For plots A, C and D PAI on DOY 98 is estimated higher because
all PAI estimates for that day are higher. PAI values for DOY 98 show a large spread
throughout the day. This indicates that an external factor influences PAI calculations
for all instruments. Cloud cover and the changing diffuse and direct light conditions
associated with it are a major factor causing spread of PAI estimations. Hourly sunshine
duration data was available from the Veenkampen meteorology station. This data was
used to remove data for days when less than 4 hours of sunshine was recorded (the
implementation of this processing step can be found in App. C in filterP57.R)..

3.1.2. Terrestrial lidar

Per measurement, the upright and tilted scans are combined using the measured reflector
positions. Local topography is corrected by fitting a surface to returns classified as
ground returns.
Pgap(θ, z) is used for deriving PAI from point cloud data (Calders et al., 2014a,b)

(Eq.3.3). Pgap(θ, z) gives the probability of a pulse not hitting any vegetation below
height z. It calculates this for a laser pulse emitted in a zenith range around zenith angle
θ. The numerator gives the number of returns measured. If ns returns are measured for
a laser pulse, each return represents a value of n−1

s .

Pgap(θ, z) = 1−
�

wi(zi < z, θ)

N(θ)
(3.3)

13



w = 1/ns

Pgap(θ, z) is then used to derive PAI using a solid-angle-weighted normalized profile
Jupp et al. (2009).

3.2. Fitting logistic models to PAI time series
In order to compare different instruments, descriptive variables are needed on which
PAI time series can be compared. In this study, we will derive these variables by fitting
logistic growth models to PAI time series. These models have commonly been used to
describe growth in ecology (Che et al., 2014). Eq. 3.4 shows the logistic model. Fitting
the model to a PAI time series gives estimates of L, U , k and tm variables. These
indicate the lower and upper PAI asymptote, growth rate and the inflection point (the
implementation of this process can be found in App. C in sigmoids.R)..

y (t) =
U − L

1 + e(−k(t−tm))
+ L (3.4)

The acquired variables will be used to describe characteristics of the leaf-off, leaf-
setting and leaf-on phenology periods.

3.3. Deriving start of season
Start of season (SOS) describes the DOY that leafs start to emerge for deciduous species.
It is a good indicator of shifting growing seasons. We used logistic models fitted to PAI
measurements to derive SOS. We define SOS as the moment when the PAI value inferred
from the logistic model exceeds the upper limit of the 95% prediction interval of the lower
asymptote L (Che et al., 2014). Fig. 3.2 illustrates this method for the filtered PASTIS57
data of plot A (the model exceeds 1.60 on DOY 83).
SOS was derived from meteorological data according to a method described in Jeong

et al. (2012), Chiang and Brown (2007). This model implements a chilling requirement
besides mean temperature as as a driving factor for budburst. This requirement models
the fact that cold days in winter induce growth in spring time. In the model, mean
temperature is accumulated in a growing degree days variable (GDD). This is the sum
of daily average temperatures (T ) exceeding a threshold Th from the start of a year:

GDD(t) =
t�

Jan1

max (T − Tth, 0) (3.5)

For Tth we used a value of 5°C (Bequet et al., 2011, Jeong et al., 2012, Botta et al.,
2000).
The number of chill days NCD(t) is calculated as the number of days since November

1 of the previous year for which daily mean temperature T was below Tth. SOS is then
defined as the day when

GDD(t) ≥ a+ be
cNCD(t) (3.6)
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Figure 3.2.: Illustration of SOS derivation. The black solid line represents filtered
PASTIS57 PAI estimates. The red solid line represents the logistic model
fitted to the data. The blue dashed lines represent upper and lower limits of
the 95% confidence interval of the lower asymptote L. The green dashed line
represents the derived SOS DOY 83, when the PAI of the model surpasses
the upper limit of the confidence interval.
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For a, b and c we used values a = −68, b = 638 and c = −0.010, which were ap-
proximated in Botta et al. (2000) for cool deciduous broadleaf forests (r2 = 0.59) (the
implementation of this process can be found in App. C in 01runModel.R).

3.4. Instrument intercomparison
During the field campaign no ground truth PAI values were gathered. Direct methods
like usage of litter traps during the autumn leaf-fall period or destructive sampling can be
used (Cutini et al., 1998). We will use TLS data as ground truth during this study. TLS
data has been validated for PAI derivation Calders et al. (2014a,b). We will compare
PASTIS57 derived PAI time series with TLS derived PAI time series.
PAI estimates acquired should be stable over the leaf-off period since only woody

biomass is present in this period. Stability of measurements in the leaf-off phase is
evaluated by the size of the prediction interval of the lower asymptote.
Variables derived from model fitting are used for comparing time series. Absolute PAI

values of the upper and lower asymptotes as well as relative PAI increase derived from
PASTIS57 and TLS are compared. PASTIS57 SOS is compared with leaf phenology
field observations and TLS and meteorology derived SOS.
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4. Results

4.1. PASTIS57 PAI processing
Unfiltered daily derived PAI values from PASTIS57 measurements are shown in the top
panel of Fig. 4.1. PAI changes with a maximum of 0.1 for most days. On several days
however, PAI is about 0.5 higher at all plots compared to the days prior and after. This
is visible on DOY 98, 119 and 147-149. Days with steady lower values surround these
days with higher PAI measurements (DOY 96-105, 120-125 and 137-154).
These sudden increases were assumed to be caused by clouds causing irregular irradi-

ation. PAI estimates were removed from the time series depending on the duration of
sunlight measured on a day. Registered sunshine hours and the filtered PAI time series
are shown in the middle and bottom panel of Fig. 4.1. Most PAI increases mentioned
before are now removed, although some remain around DOY 154-160. Out of 123 PAI es-
timates, 53 were removed leaving 70 PAI estimates. At the end of the leaf-setting period
data is removed for six (DOY 117-122) and seven (DOY126-132) subsequent days.
Model fitting results (Tab. 4.1) show an improved fit on the filtered data. CV(RMSE)

is reduced by 2, 2.4, 2 and 1.4 percent for plots A, B, C and D respectively. Confidence
intervals decreased in size by 0.03, 0.01, 0.02 and -0.02 for the L asymptote and by 0.02,
0.01, 0.02 and -0.01 for the U asymptote.

4.2. PAI time series
The third panel of Fig. 4.1 shows filtered PAI measurements from the PASTIS57 instru-
ments. The S-curve with increasing PAI is visible in the data. All plots have a PAI of
1.4± 0.2 during the leaf-off period from DOY 58 to 90. Then the PAI increases sharply
for all plots. The PAI at plot A is consistently higher than the PAI at other plots during
the leaf-setting period. Plot B and C increase up to 3.8 to reach a similar PAI as plot
A. PAI for plot D ends up lower at about 3.6.
Fig. 4.2 shows PAI measurements derived from the TLS instrument. The S-curve

with increasing PAI is visible in the TLS data. All plots show a stable PAI of 2.1± 0.1
for DOY 55-90. PAI increases until DOY 120 when PAI increase stops and the leaf-on
plateau is reached. Plot B reaches the highest PAI at about 4.8, plot D ends up at about
4.6 and plot A and C reach about 4.2. Around DOY 128 PAI of all plots decreases by
0.1 to 0.2. PAI values for all plots continue to increase with about 0.3.
Parameter results of fitting logistic models to the different PAI time series are shown

in Tab. 4.1. Differences between PASTIS57 and TLS derived PAI measurements can be
identified from these variables. Lower asymptotes L representing PAI levels during leaf-
off periods shows that PAI estimated using PASTIS57 is 0.8±0.2 lower than TLS derived
PAI during the leaf-off period. Upper asymptotes U representing PAI levels during leaf-

17



Figure 4.1.: PASTIS57 PAI measurements and filtering results. Top panel: unfiltered
daily PAI values for all plots derived from PASTIS57 measurements. Mid-
dle panel: hours of sunshine per day measured at Veenkampen meteorology
station. Bottom panel: filtered PAI time series from PASTIS57 measure-
ments. Grey rectangles indicate days that were filtered.
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Plot Data CV(RMSE) L U k tm[DOY ] SOSmod

[DOY ]

A P57 5.3 1.50 (1.43; 1.57) 4.05 (4.00; 4.10) 0.16 (0.14; 0.18) 108

(106.79; 108.81)

85

P57f 3.3 1.55 (1.49; 1.60) 4.04 (4.00; 4.08) 0.15 (0.13; 0.17) 109

(107.47; 109.07)

83

TLS 1.5 2.22 (2.19; 2.24) 4.17(4.14; 4.20) 0.18(0.17; 0.20) 111

(110.1; 111.3)

88

B P57 6.9 1.34 (1.27; 1.40) 4.12 (4.07; 4.17) 0.22 (0.19; 0.26) 112

(110.72; 112.45)

95

P57f 4.5 1.31 (1.25; 1.37) 4.07 (4.02; 4.11) 0.19 (0.16; 0.22) 112

(111.27; 112.89)

92

TLS 1.7 2.29 (2.25; 2.32) 4.89 (4.86; 4.93) 0.20 (0.19; 0.22) 110

(109.9; 110.9)

90

C P57 6.4 1.58 (1.52; 1.65) 4.09 (4.04; 4.15) 0.24 (0.20; 0.29) 113

(111.83; 113.62)

98

P57f 4.4 1.63 (1.57; 1.68) 4.05 (4.01; 4.10) 0.21 (0.18; 0.26) 113

(112.20; 113.95)

99

TLS 1.6 2.10 (2.07; 2.12) 4.08 (4.05; 4.10) 0.21 (0.19; 0.24) 113

(112.1; 113.0)

93

D P57 7.2 1.41 (1.34; 1.47) 3.89 (3.83; 3.94) 0.22 (0.18; 0.27) 113

(111.86; 113.81)

97

P57f 5.8 1.41 (1.34; 1.49) 3.86 (3.80; 3.92) 0.18 (0.14; 0.22) 114

(112.36; 114.84)

99

TLS 2.4 2.23 (2.19; 2.27) 4.59 (4.55; 4.63) 0.18 (0.16; 0.21) 113

(112.6; 114.0)

91

Table 4.1.: Parameters of the fitted logistic growth models. P57 represents PASTIS57
data, P57f represents filtered PASTIS57 data. SOSmod gives the SOS DOY
derived from the fitted model. Values in parentheses indicate the lower and
upper limit of 95% confidence intervals.
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Figure 4.2.: PAI values for all plots derived from TLS measurements
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on periods show that PAI estimated by PASTIS57 is 0.4± 0.4 lower than TLS in leaf-on
period. PAI increase (U −L) reveals increases of 2.49, 2.76, 2.42 and 2.45 for PASTIS57
and 1.95, 2.60, 1.98 and 2.36 for TLS for plots A, B, C and D respectively. Confidence
intervals for the lower asymptote L show that PASTIS57 measurements are less stable
than TLS during leaf-off period; the confidence interval is about 0.13 as compared to
0.03 for TLS. Fig. 4.3 shows PAI measurements derived from filtered PASTIS57 and
TLS data for plot A.
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Figure 4.3.: PAI values for plot A derived from PASTIS57 and TLS measurements

4.3. Deriving start of season
SOS was derived from the fitted logistic models for PASTIS57 and TLS measurements.
Resulting SOS DOY are shown in the SOSmod column in Tab. 4.1. SOS DOY for
PASTIS57 are 83, 92, 99 and 99 for plots A to D respectively. SOS estimates are
combined in Tab 4.2.
Compared to TLS derived SOS, PASTIS57 is 5 days earlier for plot A and 2, 6 and 8

days later for plots B, C and D respectively.
Field observations indicate SOS between DOY 90-92 for birch trees and DOY 93-94 for

oak trees. Plots A and B have about 15% birch trees (Tab. 2.1), so measuring an earlier
SOS at those plots is more likely. We will thus assume SOS to be 91 for plots A and B
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and 93 for plots C and D. Compared to these, PASTIS57 derived SOS is about 8 days
early for plot A, one day late at plot B and 5 days late for plots C and D. The model
predicting SOS for 2014 from meteorological data is illustrated in Fig. The resulting
SOS is 115, this is more than 16 days later than the PASTIS57 derived SOS estimates
for all plots.

Plot PASTIS57 TLS field observations meteorological data

A 83 88 ± 91 115
B 92 90 ± 91 115
C 99 93 ± 93 115
D 99 91 ± 93 115

Table 4.2.: SOS estimates (in DOY) for all plots estimated from four different sources of
data.
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Figure 4.4.: Graph showing derivation of SOS using the NCD-GDD model. The black
solid line represents cumulative GDD from January 1. The black dashed
line represents the right side of Eq. 3.6 incorporating NCD. The red dashed
line represents the derived SOS.
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5. Discussion

The first objective of this research was to optimize PASTIS57 data processing for moni-
toring PAI. Results of initial data processing showed sudden PAI increases. Dr. Frédéric
Baret (personal communication) raised some possible explanations: sunlight could be
scattered into a sensor indirectly; sunlight could reach instruments in- and outside of the
forest at uneven times; low light conditions could lead to division of two very small num-
bers causing extreme PAI estimates. A filtering technique was applied which removed
the PAI estimate for a day if sunshine duration was less than 4 hours. This method
lowered CV(RMSE) from 5.3%-7.2% to 3.3%-5.8%.
This data processing method can be improved. It removes many data points and it

can not guarantee that remaining data is not influenced by clouds. Also, the threshold
of 4 sunlight hours ignores the changing amount of sunlight hours throughout the year.
Filtering could be improved by assessing cloud presence on a smaller time interval.
Available meteorology data provides sunshine duration values for hourly and ten minute
time intervals. These values could be used to identify when clouds might have influenced
measurements. Data gathered before, during and after these periods could be ignored
when deriving PAI. Periods with either constant sunshine or no sunshine can safely be
used for PAI derivation. These indicate clear skies and constant cloud cover, conditions
in which valid PAI measurements can be derived. When the sun is near the horizon
signal values are low due to low irradiance levels. Dividing such small numbers for PAI
estimation can lead to wrong extreme PAI estimates and should thus be avoided.
PASTIS57 measurement stability was improved by filtering but is still less than TLS

measurement stability. One reason for this is the difference in resolution of the two in-
struments. A TLS based PAI estimate is derived from more data points than a PASTIS57
estimate.
Improvements to PASTIS57 derived estimates can also be achieved by sampling design.

Position and orientation of sensors can optimize measurements. Baret et al. (2010)
explain how they orient all six sensors North to reduce direct irradiation effects. It has
to be investigated in future work which sampling design produces the best results.
The second objective of this research was to compare PASTIS57 PAI measurements

to TLS PAI measurements. It was found that PASTIS57 derived PAI estimates were
0.8±0.2 lower during leaf-off and 0.4±0.4 lower during the leaf-on period. PAI increase
measured using PASTIS57 was higher by 0.1-0.5. PAI estimates from TLS measurements
are more stable (model fitting confidence interval of ±0.10 for PASTIS57 versus ±0.03
for TLS).
Whether TLS or PASTIS57 values better approximate ground truth PAI values can not

be determined with remote sensing instruments. Lovell et al. (2012) argue that passive
systems will underestimate PAI while active systems overestimate PAI. The reason would
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be that passive systems measure the amount of dark vegetation on a light sky. Light
scattering and diffraction will increase the apparent size of canopy gaps. Active systems
measure vegetation density by recording the return of a finite light beam. This will lead
to a dilation of the size of objects measured and thus to an overestimation of PAI. We
therefore recommend direct methods like litter traps during autumn leaf-fall period or
destructive sampling to calibrate PASTIS57 for accurate PAI estimates (Cutini et al.,
1998)).
Hemispherical photography was also acquired but not used due to flawed results, a

discussion on this is found in App. B.
The third objective of this research was to compare PASTIS57 start of season dates

with start of season dates derived from TLS, meteorology and field observation data. We
found that PASTIS57 derived start of season (SOS) shows higher variance than TLS,
field observation and meteorology derived SOS.
Only plot A PASTIS57 SOS is earlier than TLS SOS (by 5 days). This is caused

by masking of TLS data of the plot. A branch was located within the 0.5 m minimum
range of the TLS causing it to be registered by the device as a canopy gap. This led to
high Pgap values and thus to a low PAI estimate (Calders et al., 2014a). In some scans,
the branch would be registered in the 55 to 60° zenith range. Due to the scaling of PAI
on this zenith range, estimates were even lower for these scans. Therefore the 115 to
245° azimuth range of TLS scans at plot A was masked. However, the branch was part
of a shrub that initiated growth as one of the first plants at plot A (DOY 76). Due
to the masking of this data in TLS data, this early growth was not registered by TLS.
PASTIS57 estimates did include this shrub in SOS estimates, that is why PASTIS57
measurements estimated earlier SOS plot A.
Compared to the other three TLS estimates PASTIS57 SOS estimates might be later

because of the limited field-of-view of the sensors. This is limited to the hinge angle
zenith range and a limited azimuth range. TLS SOS estimates are different because the
full hemisphere is captured in scans. This makes that different parts of the vegetation
are used for SOS derivation.
Meteorology derived SOS dates are very late compared to all other estimates. Analysis

of meteorology data of previous years showed this season had the second highest GDD
and second lowest NCD (see Fig. 5.1). These extreme values led to an SOS that could
not be derived from the model. Driving factors like mean temperature and chilling days
during winter seem to have more complex influences than what is included in the model.
Models like the GDD-NCD can not be relied upon for SOS estimation.
SOSmod as shown in Tab. 4.1 was calculated for TLS, unfiltered and filtered PASTIS57

data with the same method. This causes two problems. Firstly, the arbitrarily chosen size
of the confidence interval influences derived SOS. Choosing a bigger confidence interval
leads to a later SOS prediction. Therefore this method needs to be calibrated to ground
truth data to get correct SOS estimates.
A second problem is that the size of the confidence interval is dependent on the number

of measurements in the time series. Thus a dataset with less measurements will lead to
a later SOS estimate because the confidence interval is larger.
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Figure 5.1.: Comparison of GDD and NCD for the years 2002-2014 (figure was first
published in Calders et al. (2014a)).
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6. Conclusion

In this research we compared low cost autonomous instruments with terrestrial lidar for
spring phenology monitoring. We gathered a temporally dense dataset of terrestrial lidar
and PASTIS57 data. We compared PASTIS57 derived plant area index (PAI) with TLS
derived PAI. Logistic model fitting results were compared for the different data series.
Start of season (SOS) was estimated from PAI data series and estimates were compared.
The most important result was that PASTIS57 could deliver PAI time series that

stayed within a PAI range of 1 to TLS data. Fits of logistic models had a CV(RMSE)
of 3.3%-5.8% for filtered PASTIS57 data and 1.5%-2.4% for TLS. Start of season (SOS)
was estimated within 8 days of TLS derived SOS and varied 6 days at most with field
observations.
PASTIS57 has been shown to be a cost-effective method for accurate large-scale phe-

nology monitoring. It could be applied in monitoring campaigns measuring climate
change induced phenology shifts.
Limitations found were that the sampling design of a PASTIS57 study needs to be

well laid out. Many irradiance effects influence measurements. Proper positioning of
instruments and their sensors in and outside of the forest can avoid such influences.
Similarly, data processing needs to be laid out in an optimal way to derive the most
accurate PAI values. Actual PAI values could not be measured using TLS and PASTIS57
instruments.
Further research should apply PASTIS57 in field campaigns where results can be

validated and calibrated. Ground-truth PAI values could be acquired using a direct
method. Phenological variables should be compared to regional phenology databases
and air- and spaceborn sensor derived phenological time series. Research on PASTIS57
should focus on optimizing sampling design and data processing. Autonomous low cost
instruments could fill a gap in available data acquiring techniques to make large-scale
low cost longterm forest structure monitoring possible.
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A. Fieldwork Guidelines Dassenbos 2014

Introduction
Four plots (A – B – C – D) are established in Dassenbos. The objective is to measure
budburst with a range of different sensor. First measurements were done on 24 Feb 2014.
The intention is to revisit the plots every Mon/Wed/Fri. Data is stored on the bananas
lidar-computer (office C207).

Overview sensors
1. TLS

2. HP with DSLR

3. HP with smartphone

4. PASTIS57

Measurement protocol
Visit plot A first, then B, C and D.

Terrestrial LiDAR

1. Set up tripod at 1.45m

2. Put scanner on tripod with screw number 1.

3. Orient the y-axis towards North (270º on scanner mount).

4. Adjust tripod position so that plummet laser is above small wooden pole

5. Adjust the camera settings to light conditions

6. Make new riscan project

7. First scan = upright = ScanPos001. Pattern = 006centre

8. Second scan = tilted 90deg = ScanPos002. Pattern = 006hemi

9. Make a new riscan project for each plot
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Hemispherical photos with DSLR

1. Camera should have correct settings already:

a) Aperture priority (A) with F-stop fixed at 2.8, ISO 400

b) Bracketing enabled to take 3 pictures (with normal exposure, one under, one
over).

c) Have the “lower wheel” on Cl so you can hold button and take 3 pics in one
go.

2. Tripod height at 1.3m. Level bulb oriented towards North.

3. Bracketing is enabled. Take the 3 pictures.

Hemispherical photos with smartphone

1. Make 1 photo per plot.
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B. Hemispherical photography

Hemispherical photographs were gathered during the field campaign. PAI values derived
from them never gave a valid PAI time series. We have included our approach in this
appendix for possible future investigation.

B.1. Introduction
Hemispherical photographs were gathered during the field campaign to provide another
PAI time series next to TLS for comparison. This method is often employed for PAI
measurements Jonckheere et al. (2004). Optimal estimations can only be derived when
photographs are made with even light conditions. During our field campaign this was
not the priority because TLS measurements can be made under any light conditions.
Therefore hemispherical photographs were often gathered in sub-optimal light conditions.

B.2. Methods
Digital hemispherical photographs were made using a Nikon D7000 camera with a Sigma
4.5mm F2.8 lens. The camera was set to aperture priority, F-stop fixed to 2.8, ISO set
to 400, Autofocus, bracketing is set to take 3 pictures (one with normal exposure, one
underexposed, one overexposed). The camera is positioned on a tripod so that the top
of the lens is 1.4m from the ground. The camera is oriented towards the canopy with the
top pointing North. It was then leveled using a leveling bulb attached to the camera.
Three photographs were made and checked for proper focusing.
Photos were made at the four field plots every monday, wednesday and friday through-

out the whole campaign. Because of the fixed schedule occasionally photos were made
under sub-optimal weather conditions.
A manual selection of photographs was made to correct for exposure differences be-

tween measurements. Images containing sun flare were excluded. This made for gaps in
the time series with a maximum length of eight days.
Photos were processed using the Hemisfer software package (Swiss Federal Institute

for Forest, Snow and Landscape Research WSL). Analysis was done for 14 rings of 5º,
thus the 0-70º zenith angle range was used. Only the blue band is used because it shows
most contrast between vegetation and sky (Zhao et al., 2011). Gamma correction is set
to 2.2. The Ridler and Calvard (1978) method was used for the tresholding process.
This method was shown to produce most accurate and robust results for a wide range
of situations in Jonckheere et al. (2005). Norman & Campbell and Chen & Cihlar (with
p = 0.02) methods are applied as in Schleppi et al. (2007) and Calders et al. (2011).
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B.3. Results
PAI time series acquired using hemispherical photography is shown in Fig. B.1. PAI
values often vary more then 1 between subsequent measurements. PAI values range from
about 0 to 2.5-3 during the field campaign. A PAI increase of about 1.0 to 2.0 seems to
be present from DOY 100 to 130.
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Figure B.1.: PAI time series derived from hemispherical photography for plot A and D.

B.4. Discussion
PAI variations like these are something unexpected which we did not see in litera-
ture(Mussche et al., 2001). The variance could be caused by sub-optimal weather condi-
tions during data gathering. Many photographs contain both direct sunlight and clouds.
But not all photographs are influenced like this, so we expected more PAI estimates in
the same range as the other data series. The precise factors leading to the large variation
in PAI were not determined.
PAI estimations from hemispherical photographs are lower then PASTIS57 and TLS

estimates by at least 1. This difference might partially be caused by the underestimation
known for passive instruments as described in Section 5.
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C. R script listings

processP57.R Process PASTIS57 csv files into daily PAI measurements

1 # Derive daily PAI values and save to plot
2 # by Tom Schenkels
3
4 setwd("/Users/tom/Dropbox/Studie/Thesis/Projects/")
5 source("inc/frontmatter.R")
6 removeSuperfluousData = TRUE
7
8 # readP57file(fname string filename): data frame with timesynced ,
9 readP57file <- function(fname){
10 # Supply english names for columns
11 columnNames = c("datetime", "ID", "V1", "V2", "V3", "V4", "V5",

"V6", "Temp.")
12
13 # Read csv , apply english column names
14 df = read.csv(
15 sep=";",
16 header=FALSE ,
17 skip=10,
18 col.names=columnNames ,
19 as.is=c(1),
20 fname)
21
22 # Add rounded off time variable Datetime
23 posixDatetime = as.POSIXct(df$datetime ,format="%d/%m/%Y - %X")
24 df$DateTimeS <-as.POSIXct(round(as.double(posixDatetime)/(5*60))

*(5*60),origin =(as.POSIXlt(’1970 -01 -01’)))
25
26 # Remove data before 27-2
27 df = df[df$DateTimeS >= as.POSIXct("2014 -02 -27 00:00"),]
28
29 # Remove unnecessary columns
30 if(removeSuperfluousData){
31 df = df[, !(names(df) %in% c("datetime", "Temp.", "ID"))]
32 }
33 return(df)
34 }
35
36 # Read A-D and o1 csv files
37 ######
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38
39 # PASTIS NUMBERS IN DASSENBOS:
40 # "OUTSIDE FOREST" SENSORS:
41 # 213 orientations
42 # & 211 (211 replaced by 209 on 22 April 2014)
43 # PLOT A: 227,
44 # PLOT B: 240
45 # PLOT C: 188
46 # PLOT D: 190
47
48 P57_C = readP57file("PAI/PASTIS57/Data/188_140702_1102. csv")
49 P57_D = readP57file("PAI/PASTIS57/Data/190_140702_1105. csv")
50
51 #P57_o2B = readP57file ("Data/209_140514_1008. csv")
52 #P57_o2A = readP57file ("Data/211_140422_1400. csv")
53 #P57_o2 = merge(sort=FALSE , all.x=TRUE , all.y=TRUE , P57_o2A , P57_

o2B)
54 P57_o1 = readP57file("PAI/PASTIS57/Data/213_140702_1125. csv")
55
56 P57_A = readP57file("PAI/PASTIS57/Data/227_140702_1053. csv")
57 P57_B = readP57file("PAI/PASTIS57/Data/240_140702_1057. csv")
58
59 nRemoved = as.numeric(c())
60
61 #####
62 # f: calculates PAIs for a plot , prints plot to output and returns

data.
63 # :df(daily;doy and PAI stats , complete;complete PAI calculations)
64 ######
65 derivePAI = function(dfOpen , dfClosed ,
66 openWiresToRemove , closedWiresToRemove ,
67 plotname){
68 ####### PLOT doy vs PAI median , 95% bars
69 # sync open & closed instrument dataframes
70 P57_oXc = merge(dfOpen , dfClosed , by="DateTimeS")
71
72 # remove wrong wires from both (5&6 for open site , dynamic for

closed site)
73 all = 1: length(P57_oXc)
74 drops = append(openWiresToRemove + 1, closedWiresToRemove + 7)
75 keeps = all[! all %in% drops]
76 P57_oXc = P57_oXc[, keeps , drop=FALSE]
77 names(P57_oXc) = "DateTimeS"
78 rm(all ,drops ,keeps , closedWiresToRemove , openWiresToRemove)
79
80 # filter 4079 values (check a good amount is removed)
81 for(i in 2:9) P57_oXc = P57_oXc[ P57_oXc[i] < 4000, ]
82
83 # apply averaging for open site and closed site values
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84 P57_oXc[’avg_o’] = apply(P57_oXc[,2:5], 1, mean)
85 P57_oXc[’avg_c’] = apply(P57_oXc[,6:9], 1, mean)
86
87 # apply PAI = -cos(HA)/G(HA)*log(transmitted/incident) = -1.075*

log(transmitted/incident)
88 P57_oXc[’PAI’] = -1.075*log(P57_oXc$avg_c/P57_oXc$avg_o)
89 # remove <= 0 and infinite values
90 P57_oXc = do.call(data.frame , lapply(P57_oXc , function(x)

replace(x, x<=0| is.infinite(x),NA)))
91 P57_oXc["doy"] = as.numeric(strftime(P57_oXc$DateTimeS , format="

%j"))
92
93 # add daily mean and median values by looping over days
94 doy = vector (); mean = vector (); sd = vector (); median = vector

(); q25 = vector (); q75 = vector ();
95 for(i in unique(P57_oXc$doy)) {
96 doy = append(doy , i)
97 # get day PAI values without 0, Inf & NAs
98 dailyPAIs = P57_oXc[P57_oXc$doy==i & !is.na(P57_oXc$PAI) & is.

finite(P57_oXc$PAI), ’PAI’]
99 mean = append(mean , mean(dailyPAIs))
100 sd = append(sd, sd(dailyPAIs))
101 median = append(median , median(dailyPAIs))
102 q25 = append(q25 , quantile(dailyPAIs , c(.25), na.rm = TRUE)

[[1]])
103 q75 = append(q75 , quantile(dailyPAIs , c(.75), na.rm = TRUE)

[[1]])
104 }
105 P57_oXc_doy = data.frame(doy , mean , sd, median , q25 , q75)
106 rm (i, dailyPAIs , doy , mean , sd, median , q25 , q75)
107
108 qplot(doy , median , data=P57_oXc_doy , geom = c("point"))+
109 geom_smooth(aes(y=median)) # span=1
110
111 return(list(daily = P57_oXc_doy , complete = P57_oXc))
112 }
113
114 A = derivePAI(P57_o1, P57_A, c(5,6), c(5,6))
115 B = derivePAI(P57_o1, P57_B, c(3,4), c(3,4))
116 C = derivePAI(P57_o1, P57_C, c(5,6), c(5,6))
117 D = derivePAI(P57_o1, P57_D, c(5,6), c(5,6))
118
119 # Add plot letters to daily dataframes
120 A$daily[’plot’] = as.factor("A")
121 B$daily[’plot’] = as.factor("B")
122 C$daily[’plot’] = as.factor("C")
123 D$daily[’plot’] = as.factor("D")
124
125 # remove bad days: DOY 175 -176 for moving and DOY183 for Nepal
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time
126 A$daily = A$daily[
127 A$daily$doy != 175&
128 A$daily$doy != 176&
129 A$daily$doy != 183,]
130 B$daily = B$daily[
131 B$daily$doy != 175&
132 B$daily$doy != 176&
133 B$daily$doy != 183,]
134 C$daily = C$daily[
135 C$daily$doy != 175&
136 C$daily$doy != 176&
137 C$daily$doy != 183,]
138 D$daily = D$daily[
139 D$daily$doy != 175&
140 D$daily$doy != 176&
141 D$daily$doy != 183,]

filterP57.R Filter PASTIS57 data using sunshine hours

1 setwd("/Users/tom/Dropbox/Studie/Thesis/Projects/")
2 source("inc/frontmatter.R")
3
4 # Set filenames
5 P57File = "PAI/Output/2014 -07 -15_20.42_PAI_P57.csv"
6 sunlightFile = "Meteo/weather_summary_10min.txt"
7
8 # Get P57 data ready
9 P57 = read.csv(P57File , header = TRUE)

10 P57 = P57[P57$method == "" ,2:6]
11 P57$type = as.factor("PAI [m2 -1 m2]")
12
13 # Get sunlight data ready
14 sunlight = read.table(sunlightFile , header = TRUE)
15 doy = sunlight$DOY
16 sunlight_hours = sunlight$cumulative_daily_sunlight_.hours.
17 sunlight = data.frame(DOY = doy , instrument="", plot="", method=""

, PAI = sunlight_hours , type = "daily sunlight hours [h]")
18 rm(doy , sunlight_hours)
19 sunlight = sunlight[sunlight$DOY >= 58, ]
20
21 # Determine dark days with a low amount of sunlight
22 darkdoys = sunlight[sunlight$PAI < 4, 1]
23
24 # Plot data with darkday plotted
25 p = qplot(DOY , PAI , data=rbind(P57 , sunlight), geom = c("line"),
26 color=plot)
27 p = p + facet_grid(type ~ ., scales="free")
28 p = p + ylab("PAI and sunlight hours")
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29 p = p + geom_vline(xintercept = darkdoys , alpha = .5)
30 p
31
32 # Remove darkday data and save csv
33 P57_sundays = P57[!P57$DOY %in% darkdoys ,] # remove darkdoys from

P57
34 P57_sundays$method = "filtered >5h sunlight"
35 P57_sundays$type = as.factor("PAI [m2 -1 m2]’")
36 #save.data("PAI_P57_5-sun -hours", P57_sundays [ ,1:5])

sigmoids.R Fit logistical models to PASTIS57 measurements

1 # Fit sigmoids for PASTIS57 data
2 # by Tom Schenkels
3
4 setwd("/Users/tom/Dropbox/Studie/Thesis/Projects/")
5 source("inc/frontmatter.R")
6
7 # Set filenames
8 # HPfile = "PAI/Output/2014 -07 -01_16.43_PAI_HPs.csv"
9 P57file = "PAI/Output/2014 -07 -15_20.42_PAI_P57.csv"
10 P57sfile = "PAI/Output/2014 -07 -22_00.15_PAI_P57_5-sun -hours.csv" #

use only sunny day data (>5 hours)
11 # TLSfile = "PAI/Output/2014 -07 -09_11.05_PAI_TLS.csv"
12 paiFileName = "PAIAll"
13
14 # Read
15 # HP = read.csv(HPfile)
16 P57 = read.csv(P57file)
17 P57s = read.csv(P57sfile)
18 # TLS = read.csv(TLSfile)
19 # data = rbind(HP, P57 , P57s , TLS)
20 data = rbind(P57 , P57s)
21
22 data$label = sprintf("%s plot %s %s",data$instrument , data$plot ,

data$method)
23 unique(data$label)
24
25
26
27 ############ ESTABLISH SIGMOID FUNCTIONS
28 {
29 # function needed for visualization purposes
30 sigmoid = function(params , x) {
31 params [4]+ (( params [1]- params [4] )/ (1 + exp(-params [2] * (x -

params [3] ))))
32 }
33
34 sigmoid_deriv=function(params , x) {
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35 (params [2] * (params [1]- params [4]) * exp(params [2] * (params
[3] + x)))/(exp(params [2]*params [3])+exp(params [2]*x))^2

36 }
37
38 sigmoid_deriv2=function(params , x) {
39 (params [2]^2*(params [1]- params [4])*exp(params [2])*(params [3]+x

)*(exp(params [2]*params [3])-exp(params [2]*x)))/(exp(params
[2]*params [3])+exp(params [2]*x))^3

40 }
41
42 fitModel = function(df){
43 x = df$DOY
44 y = df$PAI
45 fitModel = nls(y ~ d +((a-d) / (1 + exp(-b * (x - c)))), trace

=FALSE ,start = list(a = 4.5, b = 0.1, c = 100,d=2))
46 params = coef(fitModel)
47 df$y2 = sigmoid(params , x)
48 y2<-df$y2
49 df$y3 = sigmoid_deriv(params , x)
50 y3<-df$y3
51 df$y4 = sigmoid_deriv2(params , x)
52 y4<-df$y4
53
54 m<-fitModel
55 RMSE=round(sqrt(mean(residuals(m)^2)), digits =2)
56 CVRMSE=round(RMSE/mean(df$PAI) ,3)*100
57 confint = signif(confint(fitModel) ,4)
58 ULLA = max(confint [4,])
59 SOS = x[which(df$y2 > ULLA)[1]]
60 # alternative method using ratio of difference to get SOS

border
61 LAL = (params [1]- params [4])/75
62 SOS2 = x[which(df$y2 > params [4]+ LAL)[1]]
63
64
65 print(paste("CVRMSE", CVRMSE))
66
67 print("U, k, tm, L")
68 print(signif(params ,4))
69 print(t(confint []))
70
71 print(
72 paste(
73 "U-L",
74 round(params [1]- params [4],2)
75 )
76 )
77
78 print(paste("SOS", SOS))
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79 print(paste("SOS2", SOS2))
80
81 return(df)
82 }
83 }
84
85
86 ############# DERIVE SIGMOIDS
87 P57_A_complete_sigmoid = fitModel(P57[P57$plot=="A" & P57$method

=="" ,])
88 P57_A_filtered_sigmoid = fitModel(P57s[P57s$plot=="A" ,])
89
90 P57_B_complete_sigmoid = fitModel(P57[P57$plot=="B" & P57$method

=="" ,])
91 P57_B_filtered_sigmoid = fitModel(P57s[P57s$plot=="B" ,])
92 P57_C_complete_sigmoid = fitModel(P57[P57$plot=="C" & P57$method

=="" ,])
93 P57_C_filtered_sigmoid = fitModel(P57s[P57s$plot=="C" ,])
94 P57_D_complete_sigmoid = fitModel(P57[P57$plot=="D" & P57$method

=="" ,])
95 P57_D_filtered_sigmoid = fitModel(P57s[P57s$plot=="D" ,])

01runModel.R Run NCD-GDD model on meteo data 2013-2014

1 ## Kim Calders , Tom Schenkels - May 2014
2 source("/Users/tom/Dropbox/Studie/Thesis/Projects/inc/frontmatter.

R")
3
4 NCD=22
5 GDD=0
6
7 a = -68; b = 638; c = -0.01 # jeong2012uncertainties
8
9 outfile <- file(’weather_station/GDD.txt’, ’w’) #make a space

seperated output file
10 writeLines(paste("DOY","Tmax","Tmin","GDD","NCD","f"), con=outfile

) #write header
11 con_in=file("weather_station/doy_in.txt",open="r")
12 while (length(oneLine <- readLines(con_in , n = 1, warn = FALSE)) >

0) { #this reads the input file line by line
13
14 if (. Platform$OS.type == "windows") {
15 inFile <- paste("data_doy\\",oneLine ,".txt",sep="")
16 } else {
17 inFile <- paste("weather_station/data_doy/",oneLine ,".txt",sep

="")
18 }
19
20 data <- read.csv(inFile , header=F)
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21 DOY=as.integer(oneLine)
22
23 #calculate
24 maxT=round(max(data$V5) ,2)
25 minT=round(min(data$V4) ,2)
26 avgT=mean(data$V3) #TS
27 #avgT=(maxT+minT)/2 #KC
28 baseT =5 #Bequet et al
29
30
31 dayGDD=avgT -baseT
32 if (dayGDD <0) {dayGDD =0}
33 GDD = GDD + dayGDD
34
35 if (avgT <5) {NCD=NCD+1}
36
37 f = a + b * exp(c*NCD)
38
39 #APPEND THESE TO A NEW MATRIX
40 writeLines(paste(DOY ,maxT ,minT ,GDD ,NCD ,f), con=outfile)
41
42 }
43 close(con_in)
44 close(outfile)
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