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PREFACE 

The International Institute for Land Reclamation and Improvement was founded in 
Wageningen in 1956 and charged with the task of collecting and disseminating know
ledge in the fields mentioned in its name. 
During its first few years of existence, the Institute received a steadily increasing 
stream of visitors from abroad, who asked a wide variety of questions about matters 
of agro-hydrology in which the Dutch are known to have considerable experience : 
problems of waterlogging and the process of draining off excess water. It soon became 
clear that the guidance and training of these individual visitors took up a dispropor
tionate amount of the Institute's time, and this fact forced us to consider how - aside 
from our publication programme - we could best satisfy the vigorous interest that was 
being shown. 
And so the idea was born to organize a course that could systematically handle the 
subject of 'land drainage', and the basic knowledge relevant to it. Initial plans were 
drawn up in 1960. A Board, consisting of representatives from allied Dutch institu
tions, was appointed to supervise the scientific and practical programming. Prof. Dr. 
F. Hellinga served as the first Chairman of this Board. 
To handle the administrative, financial, and social matters connected with the course, 
cooperation was sought - and obtained - from the International Agricultural Centre 
at Wageningen. In 1962 the first 'International Course on Land Drainage' was launch
ed. Its language was English ; it lasted three months ; its participants numbered twenty-
five. 
What was originally regarded as an incidental event - one that might be repeated at 
some future date if need be - proved a 'hit' that demanded repetition, and the course 
became an annual event. The tenth course in 1971 brought the total number of partici-



pants to 281, who came from a total of 62 different countries. 
The Institute is grateful for the vast measure of cooperation it has always received 
from other Dutch institutions, which made their research and field experts available 
to lecture in the course, along with the Institute's own team of lecturers. 

From the outset, participants were provided with lecture notes to lend support to the 
spoken word. Many non-participants, however, were also interested in obtaining these 
notes, but we were unable to comply with requests for their supply because we felt 
that, in general, the text was not sufficiently 'balanced', not adequately 'crystallized', 
to be read independent of the lectures. Editing was often crude, although most texts 
have improved over the years. With the gradual refinement in the balance of the sub
ject-matter - tested against the needs of our students - and the ever-increasing pressure 
to make the notes available to a wider public, the Board of the Course decided in 1969 
to have the entire lecture notes re-edited, and then to have them issued by the Institute 
in a simple four-volume publication. 
An Editorial Committee consisting of members of the Institute's staff was set up to 
undertake the work. The Committee comprised: 

Mr. P. J. Dieleman, Chairman (1969-71) 
Mr. J. G. van Alphen (1969) 
Mr. G. P. Kruseman (1969-70) 
Mr. R. J. Oosterbaan (1970-71) 
Mr. S. J. de Raad (1970-71) 

By the middle of 1971, after two years of hard work, the Committee unfortunately 
broke up as, one by one, its members left for assignments in other parts of the world. 
During the last half of 1971, only one staff member, Mr. J. H. M. Aalders, continued 
the work of preparing the manuscript for publication. After his temporary appoint
ment came to an end, a Working Group of other staff was formed, whose aim was to 
finish the job within the framework designed by the original Editorial Committee. The 
members of this group were : 

Mr. J. Kessler, Chairman, 
Mr. T. Beekman, 
Mr. M. G. Bos, 
Mr. R. H. Messemaeckers van de Graaff, 
Mr. N. A. de Ridder, 
Mr. J. Stransky 
Mr. Ch. A. P. Takes, 
Mrs. M. F. L. Wiersma-Roche. 

Having served as Director of the Institute during the period when the International 
Course on Land Drainage came into being and when the decision to publish the lec
ture notes was made, I would like to express the satisfaction I feel with the issue of the 
first volume in the series. Over the last three years, a large proportion of the people 
employed at the Institute have given much of their time and energy, even their 
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leisure hours, to completing this work. I want to thank everyone involved, and I 
include not only the authors, the lecturers and the staff members already mentioned, 
but others too who worked so splendidly on the drawings, layout, and the produc
tion. It is my fervent hope that their communal effort will truly help in the proper 
implementation of land drainage throughout the world. 

Agadir (Morocco) 
May, 1972 

J. M. van Staveren 
Director (1956-1971) 
International Institute for 
Land Reclamation and 
Improvement. 
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INTRODUCTION 

Land drainage is the removal, by artificial means, of excess water from the soil or 
from the land surface, its objective being to make the land more suitable for use by 
man. In agriculture, its aims are to increase production, to sustain yields, or to reduce 
production costs - all helping the farming enterprise to maximize its net profit. As 
such, land drainage is an age-old practice. 
In The Netherlands, with much of its flat land lying below the water level of the sea 
or that of the rivers, drainage has always been a vital necessity. It developed from 
the building of simple sluices in natural channels through which the excess water could 
be discharged by gravity when the sea or river levels were low, into the present-day 
sophisticated system of parallel pipe drains, collector drains, main drains, and pump
ing stations. This development was paralleled by an increased understanding of the 
principles of drainage, upgrading it from a practice based on experience and skill into 
a science based on the complex interrelations between the hydrological, pedological, 
and agronomical conditions. 
In the nineteenth century the French hydrologists, Darcy and Dupuit, were the first 
to formulate the basic equations for groundwater flow through porous media and to 
apply them to flow to wells. At the beginning of the twentieth century, Rothe applied 
these equations to groundwater flow to drains, and he was to derive the first drainage 
formula. But it was Hooghoudt who, in the thirties, gave the real stimulus to a rational 
analysis of the drainage problem, by studying it in the context of the plant-soil-water 
system. Since then, great contributions towards a further refinement of this rational 
analysis have been made by scientists all over the world : Childs in England, Donnan, 
Luthin, and Kirkham in the United States, and Ernst and Wesseling in The Nether
lands. 
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But when drainage theories are applied in practice, we still face a number of limita
tions. These limitations are a consequence of the wide variability we encounter in 
nature when dealing with soils and plants. We are faced with such questions as : how 
to characterize a soil profile consisting of a large number of different layers changing 
in position and magnitude from one place to another; how to measure the physical 
soil 'constants' ; how to formulate the agronomical requirements in respect to 'excess' 
water? 
All these factors contribute to an inevitable inaccuracy which we have to accept when 
working in land drainage. Therefore, the statement made by Clyde Houston in 1961 
in still valid: 
'Although excellent progress has been made in recent years in developing drainage 
criteria and investigational tools, it still takes good judgement, local experience, and 
trial and error - along with a thorough understanding of the basic principles - to design 
a successful drainage system.' 

In the International Course on Land Drainage an effort is being made to cover, as 
completely as possible and within a period of three months, the underlying principles 
and the application of the rational approach to land drainage. 
About 30 lecturers of various disciplines each year contribute their specialized know
ledge and experience to the course. Even so, not all aspects that may have a bearing 
on successful drainage can be fully discussed or even mentioned within the time limit 
set by a three-month course. A choice has to be made and explicit emphasis is there
fore given to the agrohydrological aspects, while deliberately less attention is given to 
the hydraulics of open water flow and to engineering aspects which are more exten
sively treated in handbooks than are the agrohydrological aspects. 
The material presented in the four volumes of this publication is based on the lecture 
notes prepared by the lecturers of the Drainage Course. In many instances a subject 
has been presented by more than one lecturer during the ten years that the course has 
been held. As each lecturer contributed his knowledge of the subject, each chapter 
must be considered the result of their combined input. For this reason a list of their 
names is given with each chapter, apart from that of the actual author(s). 
For practical reasons, it was decided not to publish all the material in one large 
volume, but to make a logical subdivision into four volumes. The subjects have been 
grouped in such a way that each volume can be consulted independent of the others. 
Volume I describes the basic elements, physical laws, and concepts of the plant-soil-
water system in which the processes of land drainage take place. 
Volume II presents the drainage theories and mathematical models for groundwater 
flow and watershed runoff, and formulates the objectives of drainage for salinity con
trol and the prevention of waterlogging. 
Volume III discusses the various surveys and investigation techniques to determine 
the parameters of the plant-soil-water system which are to be introduced in the drain
age design computations. 
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Volume IV deals with the design and dimensioning of drainage systems, some of the 
main engineering features, and aspects of operation and maintenance. 
The reader will note that the basic principles of the subject have received the 
main emphasis in this publication. Although due attention has also been given to 
the application of these principles, no ready-made solutions could be presented that 
would fit all the different conditions under which drainage is applied. A thorough 
understanding of the principles, however, should enable the reader to introduce the 
modifications and special techniques adapted to the special conditions he is dealing 
with. 
We hope that the edited lecture notes of the International Course on Land Drainage, 
as presented now in these four Volumes of 'Drainage Principles and Applications', 
will find their way all over the world. Not only to our former participants and to those 
who will join the course in the future, but also to all the others who are dealing actively 
with practical or theoretical aspects of land drainage. Although a number of deficien
cies, inherent to the fact that the publication consists of edited lecture notes written 
by many authors, may become apparent, we trust that the book will prove its useful
ness. Any criticism and suggestions which might lead to improved future editions of 
this book will be welcomed. 

The editors 
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Hydrogeology of plains 

1.1 HYDROGEOLOGY AND DRAINAGE 

An area's drainage problems are closely related to its geomorphological and 

geogenetical conditions. The presence or absence of layers with good water-

transmitting properties, of barriers to groundwater flow, of springs, as well 

as the relation between groundwater and surface water (either fresh or salty), 

will directly or indirectly affect the groundwater conditions in or near the 

rootzone. The groundwater conditions of geomorphologically (and climatologic-

ally) similar regions are often comparable. Somewhat oversimplified, it can be 

stated that once the type of landscape is known the principal groundwater 

conditions of that landscape are known too. 

The present discussion will be restricted to flat areas, because it is in such 

areas that agriculture is preferably practised. Flat areas, if large enough, 

are called plains. They may have been formed by such different landforming 

agents as waves, running water, ice, and wind. Each agent leaves its mark by 

typical geomorphological features and typical internal sedimentary structures, 

causing more or less typical groundwater conditions. 

Such typical features, structures, and groundwater conditions will be dealt 

with in more detail below, but first the water-bearing layers will be clas

sified according to their water-transmitting characteristics. 

1.2 CLASSIFICATION OF WATER-BEARING LAYERS 

All plains referred to in this chapter are made up of unconsolidated or weakly 

consolidated sediments, laid down in horizontal or simply structured, well or 

poorly defined layers. A common feature of these layers is that they are thin 

with respect to their horizontal extension. 

For hydrogeological purposes the layers are classified as: 

- pervious 

- semi-pervious 

- impervious 

A layer is said to be pervious if its water-transmitting properties are 

favourable or, at least, favourable in comparison with those of overlying or 

underlying strata. The resistance to vertical flow within such a layer is small 

and may generally be neglected, so that only those energy losses caused by 



horizontal flow need be taken into account. 

A layer is considered semi-pervious if its water-transmitting properties are 

relatively unfavourable. The horizontal flow rate over a significant distance 

is negligible, but vertical flow cannot be neglected because the hydraulic 

resistance to such a flow is small due to the relatively small thickness of 

the layers. The flow of water in semi-pervious layers will therefore be 

considered essentially vertical. 

A layer is considered impervious if its water-transmitting properties are so 

unfavourable that only negligible amounts of water flow through it - whether 

vertically or horizontally. Completely impervious layers seldom occur near 

the surface but are common at greater depths, where compaction, cementation, 

and other consolidating processes have taken effect. The above classification 

is one of comparison, but the scale of the flow pattern must also be taken into 

account. A certain layer ïnay be considered impervious in a problem of shallow, 

horizontal flow over short distances, whereas it constitutes part of a complex 

semi-pervious layer in a problem of deep horizontal flow over great distances 

in an underlying pervious layer. 

The layers containing ground water combine into aquifer systems. For a 

mathematical treatment of groundwater flow problems, an aquifer system should 

be relatively simple and belong to one of the following types (Fig.1): 

- unconfined 

- confined 

- semi-confined. 

impervious 

I semi pervious 

I pervious 

semi confined 
C 
unconfined 

K ^ k 

piezometric surface 

phreatic surface (water table) 

k hydraulic conductivity 
Fig.1. Aquifer types. 

An unconfined aquifer, also called a phreatic or watertable aquifer, consists 

of the saturated part of a pervious layer which is underlain by an impervious 
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layer (Fig.lC). The upper boundary is formed by a free water table (phreatic 

surface). The water in an unconfined aquifer is called unconfined or phreatic 

water. 

A confined aquifer consists of a completely saturated pervious layer whose 

upper and lower boundaries are impervious layers (Fig.lA). Since completely 

impervious layers seldom occur near the surface, confined aquifers are rare 

in drainage problems. The water in wells tapping such aquifers stands above 

the top of the pervious layers. The water in a confined aquifer is called 

confined water. 

A semi-confined (or leaky) aquifer consists of a completely saturated pervious 

layer (Fig.IB). In the covering layer a water table is present, often differing 

in height from the piezometric head (Chap.6, Vol.1) of the water confined 

within the pervious layer. Because of this difference in hydraulic head, there 

will be a vertical flow component tending to raise or to lower the water table. 

The latter, for example, occurs when the aquifer is pumped. The water in a semi-

confined aquifer is called semi-confined water. 

The term artesian water is ill-defined. Originally it was used for water in 

aquifers whose piezometric level was above ground surface. Thus, a well tapping 

such an aquifer is free-flowing (Fig.2). In literature one may find the term 

used for water in any confined or semi-confined aquifer, regardless of the 

elevation of the piezometric head above the phreatic level, 

recharge 

Uil 
watertable 
obs. well 

perched water 

Fig.2 . Cross-section of aquifer system. 



Since, by definition, the covering layer of a confined aquifer does not 

transmit water, such aquifers are of little importance in drainage problems. 

In this and the following chapters, therefore, the aquifers considered are 

unconfined or semi-confined unless otherwise stated. 

1.3 STREAM-FORMED PLAINS 

Streams are one of the chief agents by which sediment is transported and 

deposited. When the stream's energy increases with increasing discharge, the 

water erodes and enlarges its channel and carries away the increased load 

until the load is in balance with the stream's transport capacity. When the 

stream's energy decreases, some of the load is dropped and the channel becomes 

shallower. The stream decreases its load by dropping those particles that 

require the most transport energy, and increases its load by picking up those 

particles that require the least energy. Thus due to the varying transport 

capacity of a stream, the available particles are sorted according to weight 

and size. Consequently stream deposits show a stratification of generally well-

sorted sediments. 

The stream's energy is at its lowest during base flow, i.e. when the river is 

fed by groundwater discharge only, and at its highest when the river is swollen 

due to large amounts of surface runoff (peak discharge). The energy, however, 

does not depend only on the volume of water but also on the gradient of the 

stream. A stream has a concave longitudinal section, i.e. the gradient 

decreases from headwaters to mouth (Fig.3). 

ul t imate base level = T? • Ä n T ' *. i ' i 

s e 0 ,evel F i g . 3 . Longitudinal section 
equilibrium pro"tÜ'è~-^5s^Sa!2 / . _ _ . ° f * r i v e r . 

\ ^ sea 

Obviously upon discharging into a large body of standing water (sea, lake) the 

stream's energy quickly reduces to zero. Hence a stream cannot cause any 

significant erosion below sea level. Consequently, near its mouth, the river's 

profile is tangential to sea level. Sea level is therefore called the ultimate 

base level of erosion, or simply the base level. The levels of lakes and other 
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upstream bodies of standing water form local base levels. They disappear when 

the lake has been silted up completely or has otherwise vanished. 

In equilibrium state the longitudinal section of a stream forms a smooth curve 

(Fig.3). The gradient of the curve decreases towards the sea and a condition of 

low energy is reached in which the elevation of the land is low, the slopes are 

gentle, and the stream load is reduced. However, the sea level, taken over long 

time spans, does not remain stable owing to such natural causes as climatic 

changes (e.g. glaciations) or tectonic movements of the ocean floors. Such 

events greatly influence the processes of erosion and sedimentation of a stream 

(Fig.4). 

ßgggbedrock [^Sx^j alluvium 
•frS&S:! young 
••;•»•:'>••« a l l u v i u m 

Fig.4. Aggraded 

valley plain. 

Along a stream, from its source high in the mountains down to its mouth where 

it enters the sea, the following land forms are found: 

- valleys and flood plains, 

- alluvial fans, 

- deltas, 

which will be discussed separately in the following. 

1.3.1 VALLEYS AND FLOOD PLAINS 

In mountainous regions the valleys of streams are narrow and V-shaped in cross 

section. The stream occupies the entire valley floor and there is no space for 

large scale agricultural activity. The stream is still in its phase of down-

cutting. In the middle and lower parts, where the longitudinal section of the 

river has already acquired a near equilibrium form, the erosion pattern changes 
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from vertical to horizontal and broad valleys may develop. Depending on the 

hydrological regime, the stream may be classed as either a meandering river or 

a braided river (Fig.5). 

oxbow lake 

A area of vertical 
erosion 

B area of horizontal 
erosion 

meandering river braided r iver 

Fig .5 . River types. 

meandering river 

When the difference between base flow and peak discharge of the stream is not 

too great and when the bed is approaching its equilibrium profile, the stream 

will develop a sinusoidal form, made up of a large number of bends which are 

called meanders. The outer sides of the bends are eroded and the eroded 

material is deposited on the inner sides, forming point bars. As a result, the 

meanders move slowly outward and downstream, developing a flat valley floor. 

During periods of peak discharge the water will overflow its banks and inundate 

all of the valley floor, which is therefore called a flood plain. When this 

happens the velocity and turbulence of the water decreases rapidly. The 

coarsest part of the suspended load (gravel and sand) settles down close to the 

stream channel, forming a natural levee. The finer particles come to rest 

farther away from the stream and the clay particles are deposited in shallow 

depressions known as backswamps. During the history of a valley, new stream 

channels develop regularly. The abandoned river beds (ox-bow lakes) fill up 

and, together with the levees, form a river ridge. Since these ridges are 

elevated and usually contain sandy material, they are well drained. The lower-

lying basins are usually made up of poorly permeable clays. As a result, swamps 
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are formed in which conditions are favourable for peat formation. 

Consequently flood plain deposits are characterized by extended, relatively 

thick and rather heterogeneous, predominantly fine-grained deposits, with 

intercalations of peat and buried stream-ridge deposits (Fig.6A). 

•V—agr sand HHH silt and clay 

A. meandering river. 
Fig.6. Cross-sections 

of river valleys. 

B. Braided river. 

braided rivers 

If there is a great difference between base flow and peak flow and the stream 

is loaded during peak discharge with coarse material, no meanders will be 

formed. Such conditions prevailed, for example, at the end of the Pleistocene 

glaciations when huge amount of debris were transported by the meltwater of the 

receding glaciers and ice sheets. Similar conditions occur in regions with a 

semi-arid climate where rivers with a highly variable discharge are found. 

During floods the river will erode the valley walls along more or less parallel 

lines and when the flood subsides the coarse-grained bed load will be left 

behind as bars and islands, obliging the stream to divide into a number of 

minor channels. Such a stream is said to be braided. The channels shift 

frequently, with the result that the deposits show characteristic scour and 

fill structures. Due to the varying transport capacity of each flood, the sedi

ment as a whole is very heterogeneous but is predominantly coarse-grained 



(Fig.6B). Hence, braided river sediments generally represent excellent aquifers. 

groundwater conditions 

Due to the climatic changes that took place at the end of the Pleistocene, many 

young flood plains are underlain by sediments of the braided river type. 

Consequently the river deposits of such a plain often show an upward grading 

from coarse to fine material. The upper finer-grained sediments, deposited by 

a meandering river, frequently form a poorly pervious layer, confining the water 

in the underlying pervious braided-river deposits (semi-confined aquifer). The 

latter are generally in hydraulic contact with the river, whose minimum level 

is often above the top of the coarse strata. Hence the water in these strata is 

under pressure. In humid areas the water table will usually be found at shallow 

depth and corresponds to the mean river level. 

During the high stage of the river the piezometric surface (Chap.6, Vol.1) of 

the water in the underlying aquifer will rise above the water table and there 

will be upward groundwater flow from the sand and gravel layers into the over

lying clayey deposits (Fig.7A). This upward flow contributes to the high water 

table, resulting in waterlogging in the backswamps and other local depressions 

of the flood plain. Near large meandering rivers like the Rhine, Po, Danube, 

Hwang Ho, and many others, these seepage phenomena can clearly be seen through

out most of the year. 

A HIGH STAGE 

• phreatic surface 
• piezometric surface 

B LOW STAGE 

Fig.7. The influence of a river on the 

groundwater regime of a flood plain. 
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During low stages of the river the piezometric surface will drop below the 

water table and a natural drainage flow will occur from the semi-pervious 

layer through the underlying coarse layers towards the river (Fig.7B). This 

natural drainage, however, is often insufficient to cope with the excess water 

from seepage and precipitation. 

In arid regions the water table is sometimes found at greater depth. However, 

the stream losses (influent seepage, Chap.10, Vol.11) may build up a ground

water mound (Chap.21, Vol.IÏI). When the groundwater level rises to close to 

the soil surface, salinization may occur, which renders leaching and drainage 

necessary. 

1.3.2 ALLUVIAL FANS 

Sometimes the transition between the mountainous area and the area of much 

smoother topography is gradual; sometimes it is abrupt: for example, when 

caused by faults. At such a sharp transition the transport capacity of the 

river decreases suddenly because it diverges in numerous channels over the 

plain at the foot of the mountains. The resulting deposition of alluvium is 

chiefly concentrated at the foot of the mountains in the form of a fan (Fig.8). 

Fig.8. Structure of 

an alluvial fan. 

steeply dipping contact 
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The sorting of the deposited material is relatively poor, but there is a 

tendency for the coarsest material (often up to boulder size) to settle near 

the top (or apex) of the fan, while silt and clay are deposited at its base. 

In major discharge channels, however, coarse-grained material may be carried 

far downstream. Alluvial fans vary considerably in size. Their radius may be 

up to 50 kilometers. The angle of dip of the fan surface rarely exceeds 10 and 

there are many alluvial fans with an angle of less than 5 or 6 . 

Alluvial fans are found near areas of bold relief, and their development is 

most conspicuous under moderately arid to semi-arid conditions. Characteristic 

of such climatic conditions are brief and infrequent periods of heavy rainfall. 

Alluvial fans also develop under humid conditions: for example, along the Alps 

and the Himalayas. They are flatter than the fans of arid regions owing to the 

abundance of running water which favours the development of gentler gradients. 

When a large number of rivers discharge along a steep mountain front, the fans 

of the individual streams often coalesce into a piedmont plain (or bahada). 

After heavy rainfall a river emerging from deep mountain valleys is loaded 

with detrital material. This material fills up the existing channels and causes 

the formation of new channels in another lower-lying section of the fan. This 

process is repeated again and again until the mountain stream and the alluvial 

fan have reached a stage of equilibrium. Three depositing agents can be 

distinguished on alluvial fans: 

- sheet floods 

- stream floods 

- streams. 

Sheet floods occur when large amounts of water and detritus emerge from the 

mountain valley. This viscous material tends to spread out in the form of a 

sheet covering all or parts of the fan. 

Stream floods are confined to definite channels and refer to floods caused by 

a lesser amount of water. Their spasmodic and impetuous character is such that 

the term "stream flood", rather than "stream", is applied. The deposits of 

violent stream floods tend to be identical with those of sheet floods except 

that they lack the lateral extension. 

Streams require a steady, rather than an abundant, supply of water from the 

mountains. Since a steady supply is largely lacking in the arid and semi-arid 

regions, the action of streams in such regions is insignificant. In more humid 
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regions, however, stream deposits are of considerable importance. 

The grain-size distribution of fan deposits varies widely and is a function of: 

- The range in particle size of the original detritus. 

- The type of the transporting and depositing agent. Sheet floods form deposits 

with a very low degree of sorting; stream deposits show fair to good sorting, 

whilst stream flood deposits occupy an intermediate position. 

- The distance the material is transported. Material transported over short 

distances is poorly sorted. Therefore, the deposits near the apex commonly 

have a lower hydraulic conductivity than would be expected from their grain 

size. The deposits in the central parts of the fan, though less coarse than 

in the apex, are better sorted and may have a fairly high hydraulic conduct

ivity. The best sorted sediments occur near the base of the fan; because of 

their fine texture, the hydraulic conductivity is relatively low. 

Alluvial fan deposits are laid down in beds approximately parallel to the 

surface of the fan. One might therefore expect a fair stratification, but, in 

fact, the fairly complicated development of most alluvial fans causes a complex 

internal structure. Layers of a particular grain size often vary widely in 

thickness as well as in areal extent. Sandy material often represents 

lenticular stream deposits, while mud-flow deposits are laid down in more 

continuous sheets. 

Interfingering of fine and coarse-grained layers is also a common feature, 

layers of coarse sand often wedging out in downstream direction. 

groundwater conditions 

In hydrological terms an alluvial fan can be divided into three zones (Fig.9): 

- the recharge zone 

- the transmission zone 

- the discharge zone. 

The recharge zone comprises the pervious gravel fields at the head of the 

alluvial fan. Because of the generally coarse-grained deposits, the ground 

water in this zone is unconfined. The water table is usually relatively deep 

and rather flat due to the high permeability of the gravels and coarse sands. 

The aquifer is recharged by infiltrating precipitation, runoff from the moun

tain front, losses from the river channels, percolating flood waters, and by 
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subsurface inflow through the gravel fill of the valley mouth. 

recharge zone 

1 I 1 
transmission zone discharge zone 

piezometric 
surface 

E g g ! ] stones g g g g gravel 

Fig.9. Cross-section of 

an alluvial fan. 

sand h-l~>z-id c'ay 

The transmission zone starts where clay layers are found in the subsoil; as a 

consequence, the deeper pervious layers are semi-confined aquifers. The surface 

layers present a phreatic aquifer that is recharged by flood water, rainfall 

channel losses, etc. Under the influence of the differences in hydraulic head 

between the various pervious layers, water will flow upward and recharge the 

phreatic reservoirs. The topographic slope is generally steeper than the slopes 

of the water table and of the piezometric surface. This means that in down

stream direction the water table is increasingly closer to the ground surface 

although it is seldom found at dangerously high levels in either the recharge 

or the transmission zone. The piezometric levels become higher and may even 

rise above ground surface, so that deep wells may yield free-flowing water. 

The discharge zone is found in the lower part of the fan where the topographic 

slope is slight and the water table shallow. Here too, the water in the deeper 

layers is under pressure and a vertical upward flow exists. Springs are often 

found at the foot of the fan, yielding water of better quality than that of the 

shallow ground water, which, especially in dry regions, may be quite salty due 

to the high evaporation rates. Drainage problems are generally limited to this 

part of the fan. 
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1.3.3 DELTAS 

A phenomenon comparable to the formation of alluvial fans is that of a stream 

flowing into a body of standing water (a lake or a sea) and forming a delta. 

The flow of the stream is checked by friction as the stream water diffuses into 

the standing water. The stream loses energy and deposits its load. This process 

of sedimentation is enhanced when the standing water is a salt water body. The 

salts dissolved in sea water tend to coagulate or flocculate the suspended fine 

particles into aggregates so large that they promptly settle to the bottom. 

In a typical delta three types of deposits may be recognized (Fig.10): 

- top-set beds 

- fore-set beds 

- bottom-set beds. 

^m clay 

Fig. 10. Cross-section of a delta, showing interface of fresh and salt 

water and outflow face at the coast. 

The bulk of material supplied, which is mostly sandy, is deposited under water 

in regularly stratified, inclined layers (fore-set beds). The mud is carried 

farther forward and settles in more or less horizontal layers (bottom-set 

beds). As a result of the lengthening of its course, the stream channel has to 

raise itself to retain its equilibrium profile. During this process horizontal 

layers (top-set beds) accumulate in the upstream part of the delta and the 

original valley mouth. Consequently, the delta slowly rises above sea level. 
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Many of the characteristics of valley deposits can" be recognized in the top-set 

beds: natural levees of relatively coarse material along the stream channels 

and relatively fine material on the flats between the channels. However, not 

all rivers build up deltas. At the mouth of many rivers the material brought 

into the sea is swept away by marine currents and comes to rest somewhere on 

the sea bottom. 

groundwater conditions 

The top layers of a delta are finer grained than the underlying fore-set beds; 

hence semi-confined aquifer conditions often occur. Owing to the influence of 

the tide on the deep ground water, the piezometric levels near the sea will 

also reflect the tidal movement (Chap.13, Vol.11). 

Since the bulk of the deltaic sediments has been deposited in a marine 

environment, the ground water in the deeper layers is initially entrapped sea 

water. Under the influence of the flow of fresh ground water from the valley 

towards the sea, the salty ground water will be slowly replaced by fresh water 

(Fig.10). This replacement will be effective throughout the delta except in the 

coastal area, where sea water intrudes, and here a fresh-water layer will be 

floating on salt water. The fresh-water body will be moving seawards because 

its phreatic level is above sea level; it flows out in a narrow zone at the 

coast. The initially sharp interface between the salt and fresh water bodies 

will, owing to diffusion and dispersion, gradually pass into a brackish trans

ition layer. The rate at which this transition layer develops depends on 

various factors, one of which is the permeability of the aquifer material. 

If the deltaic sediments consist of two coarse-grained layers separated by an 

impervious clay bed at a depth slightly below sea level, the upper aquifer may 

contain fresh water only, whereas the lower aquifer will contain fresh water 

floating on salt water near the coast. The interface of the two water bodies is 

as indicated in Fig.11. 

1.4 COASTAL PLAINS 

A coastal plain is an emerged part of the continental shelf. It may be a very 

narrow or even fragmentary strip of the former sea floor exposed along the 
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unconfined aquifer 

confined aquifer water 
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Fig.11. Cross-section of a delta, showing an upper clay layer intersecting 

the interface of fresh and salt water. The salt water body in the 

confined aquifer has the form of a wedge. 

margin of an old land area, or it may be a vast, almost featureless plain, 

fringing hundreds of kilometers of coastline. 

The sea floor emerges either because it is uplifted by regional crustal move

ments, or because of a universal drop in sea level, for instance due to 

glaciation. There are young coastal plains which have recently emerged and 

there are others formed in some earlier geological time and now lying far 

inland from the sea. In general, uplift of the sea floor is not a single or 

sudden event, nor is it continuous. Normally it is intermittent and often it is 

interrupted by resubmergence. This phenomenon has a great bearing on the 

internal structure of a coastal plain, i.e. on the horizontal and vertical 

distribution of coarse- and fine-grained materials. The sandy nearshore sedi

ments usually pass laterally into more clayey offshore sediments (Fig.12). 

When the sea level is rising, the various environments of deposition migrate 

landwards. Sediments of deeper-water zones cover areas of the sea floor where 

formerly only shallow-water sediments accumulated. Thus the alternating beds 

of clay and sand in the subsurface of coastal plains reflect migrating 

environments of deposition due to a changing sea level. 
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^m clay 

A. Sea level is constant. Sandy sediments are inshore 

and clayey sediments offshore in belts parallel to 

the coast. 

B. Rise in sea level to new constant level. Sediments 

are deposited as in A. New sediments overlap the old. 

Fig.12. Deposition 

of sediments 

along the 

coast. 

The sediment material is debris, either transported from the mainland by 

streams or formed by marine erosion of shores near and remote. The sediments 

are distributed in extensive beds and sorted by marine currents. While sedi

mentation is in progress, the sorting action of the water is remarkably 

delicate. The layers of sediment commonly show a great perfection of strati

fication. As deposited, the layers of a coastal plain have a gentle slope sea

ward, corresponding to the slope of the sea floor. The deeper layers often show 

a steeper dip due to downbending of the sea floor as the layers were deposited. 

If the offshore slopes are gentle, waves will not be able to attack a shore

line vigorously because the larger ones will break farther away from the coast. 

There a submarine sand bar will develop, which in time will emerge as a barrier 

If 



Hydrogeology of plains 

island or barrier chain with a lagoon behind it. Numerous breaches in the 

barrier chain will be maintained as tidal inlets, particularly opposite the 

mouths of streams. Thus the lower parts of such streams are at times essential

ly tidal rivers. The lagoons are the sites where fine material is deposited. 

During low tide extensive tidal flats may be exposed in the lagoonal areas 

behind the barrier chains. 

The surface of a newly emerged coastal plain is rather flat and slopes gently 

seaward. It may also be slightly undulating with large depressions containing 

swamps and lakes. The short and small streams which originate on the newly up

lifted coastal plain are known as consequent streams. Their origin and position 

are determined by the initial slope of the newly formed land. In general they 

take a course at about normal angles to the coastline, running parallel to each 

other. If the streams rise in the old land and extend their courses across the 

plain, they are called extended consequents. 

As time passes, consequent streams may develop natural levees. If, furthermore, 

a barrier bar or a dune ridge is present along the coast, the area between two 

such rivers is a closed basin in which water is standing for a certain period 

of time. In these quiet environments very fine-grained sediments are deposited, 

leading to the formation of swampy areas composed of heavy clay soils with poor 

internal drainage (Chap.2, Vol.1). Such conditions exist, for instance, on some 

of the coastal plains of southern Turkey. 

While the bulk of the coastal plain sediments are deposited in marine environ

ments, the upper layers may be of fluvial origin, at least in the areas border

ing the old land. Very often one can distinguish a transition from river sedi

ments to marine sediments from the old land seaward. Changing sea levels often 

give rise to the formation of terraces. When coastal plains are uplifted well 

above sea level, they become increasingly dissected by stream erosion. A 

typical network of natural drainage courses may develop. This erosion finally 

results in .characteristic landscapes known as cuesta landscapes, an example of 

which is the Paris Basin. The development of such landscapes will not be discus

sed here. 

Beach formations, sand bars, and dune ridges often comprise the younger 

portions of coastal plains. Splendid examples of coastal plains are found along 
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the Atlantic and the Gulf Coasts of the United States and in south-eastern 

England. 

groundwater conditions 

Groundwater conditions of coastal plains are complex, as will be obvious from 

the above description. In the outer lowlands of a newly emerged coastal plain, 

the groundwater table is shallow and natural drainage is often poor. Dune rid

ges along the coast and the higher river levees of the consequent streams may 

enclose vast depressions without a visible outlet, thus giving rise to vast 

swamps. The inner lowlands, bordering the old land, have deeper water tables 

and are better drained because the soils are more pervious owing to their 

coarser texture. Here are found the outcrops and recharge areas of the aquifers 

encountered at greater depths in the outer lowlands of the plain (Fig.13). 

recharge area 

swamp 

fbCHxHcl°y mmfsand 

Fig.13. Groundwater conditions in a coastal plain. In the recharge area there 

is unconfined groundwater. Towards the sea, the groundwater in the 

deeper sandy sediments is confined. Behind the dune ridge are swamps: 

shallow water tables and upward seepage flow from the deeper confined 

sandy layers. 

The groundwater in the deeper layers of lower portions of coastal plains is 

usually semi-confined and consequently an upward seepage flow may exist. The 

principal reasons for this are: 

- The aquifers dip seaward and are often bounded below and above by impervious 

or poorly pervious layers. 
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- A feature common to most coastal plains is that the nearer to the sea the 

finer grained and less pervious the aquifer material becomes (offshore 

sediments). 

- Many water-bearing layers, which may initially be very thick, wedge out sea

ward into impervious or poorly pervious layers. 

Since coastal plain deposits are laid down in different environments, different 

groundwater qualities can be expected. Water of low salt content is generally 

found in the outcrop of the aquifers, both near the surface and at greater 

depth. Near the coast the groundwater becomes brackish, and in the deeper 

layers entrapped sea water may be present. 

1.5 LACUSTRINE PLAINS 

As far as their origin is concerned, there are many different types of lakes: 

glacial, river-made, volcanic, fault-basin, and land-slide lakes. They must all 

be regarded as young landscape features. Most of them disappear in the course 

of time: they either fill up with sediments deposited by inflowing rivers or 

they are drained when an outlet of sufficient depth has developed. When this 

happens the lake floor emerges and can be used for agricultural and other 

activities. 

Lake floors are characterized by: 

- Flatness. The fine-grained sediments, whether of glacial or fluvial origin, 

have smoothed the floor in such a way that it has become entirely flat. 

- "Fossil" coastal features. In huge bodies of standing water the action of 

waves produces such morphological features as beaches, cliffs, and wave-cut 

platforms, while the combined action of waves and currents may produce sand 

bars and spits. Sand bars are sand ridges formed under water and running 

parallel to the shore. Spits resemble sand bars, but are connected at one end 

to a headland. The coarse material required for their formation is provided 

by erosion caused by the waves hammering the rocks surrounding the lake. These 

fossil beaches, cliffs, and terraces, outlining the former extent of the lake, 

are the most significant evidences of a former lake. 

- Delta structures, occurring where streams used to flow into the former lake. 

The sediments are coarse-grained, although the covering sediments may be more 
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finely textured. They are sometimes entirely of fluvial origin and, therefore, 

totally different from the actual lake floor sediments. 

- Sediments generally made up of finely laminated clays. The inflowing streams 

carried large quantities of material into the lake, of which the coarse 

material settled near the river mouth, the finer particles, such as silt and 

clay, being transported further into the lake. Lake-inwards, therefore, sedi

ments grade from coarse-grained to progressively finer-grained deposits. 

- Poor drainage. If the newly emerged lake floor has no visible outlet, in

flowing streams may flood large areas, especially during the rainy season. 

The water collects in local depressions, where swamps may form and where 

- in warmer climates - the water will evaporate, leaving behind the suspended 

sediments, mixed with fine salt crystals. Deposits from such ephemeral water 

bodies commonly build up clay-surface plains of extraordinary flatness, 

called playas. 

groundwater conditions 

Since there is such a wide variety of lakes, there is also a variety of the 

groundwater conditions in lake plains. In general, lake plain sediments are 

fine-grained and therefore do not transmit large quantities of groundwater. 

However, there are exceptions, for example at those sites where coarse sedi

ments, deposited along the rim of the lake have later been covered by fine sedi

ments. Here deep wells may yield large amounts of water.sometimes even free-

flowing. 

In humid regions, lake plains are often the sites of rich agricultural land, 

although artificial drainage is usually required. Water quality problems do not 

exist as the groundwater is fresh and is not subject to mineralization. In arid 

and semi-arid regions the situation may be quite different. The shallow water 

tables, which are found along the inflowing streams, often cause a strong 

capillary movement, rendering the soils salty. Leaching of these salts by rain 

or river water may cause an increase of the salt content of the groundwater. 

The leaching of buried playa deposits, if present, may add to the mineralization 

of the deeper groundwater. 

In the flat lake plains one might expect the water table to be rather flat as 

well. Locally, however, there may be large water-table gradients. In the re

charge areas the water table may be very high while in other parts of the plain, 

where rivers are absent, a very deep water table may be found. Despite these 
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large water-table gradients, the low transmissivity of the lake sediments 

prevents a rapid flow of the groundwater to the areas of low groundwater heads. 

1.6 GLACIAL PLAINS 

During the last one to two million years a major part of the northern hemi

sphere has repeatedly been under the influence of advancing and receding 

glaciers and continental ice-sheets. The erosion caused by these ice masses on 

the underlying hardrocks was very intensive and smoothed the preglacial land 

forms. Because of the low level of the sea during glacial periods, the melt 

waters locally eroded deep valleys and channels in those regions where thick 

sedimentary deposits occurred. 

The transport capacity of glaciers and land-ice sheets is extremely great, but 

their sorting capacity is almost zero. Hence, moraine deposits which result 

directly from the ice (e.g. glacial till or terminal moraines formed at the ice 

front) are unsorted. 

When the ice is advancing, it first penetrates existing valleys, as a result of 

which the discharge of the rivers is hampered and the water is forced to take 

another course to the sea. The slowly moving ice exerts a strong force on the 

valley walls, which are pushed up. Under the influence of the low level of the 

sea, the meltwater from the ice sheets erodes deep gullies and channels 

(During the Saale glaciation, channels as deep as 100 m below the present sea 

level were formed). The course of these channels differs strongly from that of 

the preglacial water courses, as far as their direction is concerned. When the 

ice-sheets recede, these glacial meltwater channels are filled with coarse and 

very coarse fluvioglacial deposits. These channels are even sometimes over

filled and there are extensive areas in front of the ice-sheets and terminal 

moraines where thick layers of fluvioglacial material are laid down, giving 

rise to broad outwash plains. The finest particles settle in glacial lakes 

where they form the well-known varves (alternating laminae of silt and clay). 

Glacial plains left behind after the recession of ice-sheets are usually gently 

undulating, with numerous local depressions in which water is standing (glacial 

lakes). In the following interglacial period, with its warmer climate, peat 

growth even occurs in such depressions. The drainage pattern on an emerged 
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glacial plain is at first undeveloped, but gradually a new system of streams 

and water courses comes into being, which is often different in capacity and 

direction from the underlying, buried glacial channels. 

During glacial periods, periglacial climatic conditions (cold and dry) prevail 

in the regions in front of the ice-sheets. In such regions with permanently 

frozen soils (permafrost) the principal agent of deposition is the wind. It 

transports sand from the barren land and deposits it elsewhere, giving rise to 

more or less thick layers of wind-blown sand, which may cover extensive areas. 

Further away and at the lee-side of hills, the finer silt particles may come 

to rest as thick layers of loess. 

groundwater conditions 

Young glacial plains are often characterized by poor drainage conditions. This 

is mainly due to the low permeability of the unsorted glacial deposits, such as 

boulder clay, till, etc. Broad glacial till plains that are undissected by 

erosion generally have a flat and shallow water table. Precipitation may cause 

flooding and a further rise of the groundwater level (Fig.l4A). 

Where such plains are dissected by streams(Fig.14B) or where a more undulating 

landscape prevails (Fig.l4C), the drainage conditions on the higher ground may 

be better. The excess water (mostly surface runoff) will collect in the depres

sions and low-lying valley floors, often leading to flooding and high ground

water tables. 

Eroding ice sheets and melt water sometimes cause the formation of deep fluvio

glacial channels between ridges of bedrock or till (Fig.l4D). The channels may 

be filled with coarse out-wash (or fluvioglacial) deposits or till. When filled 

with out-wash deposits, the buried glacial channels may serve as good subsur

face drainage channels. In such a landscape of undulating topography there is 

a groundwater flow from the higher ridges towards the lowlands in between. At 

the foot of these ridges one may find discharge areas, wet soils, and high 

water tables. Often the high ridges are composed of coarse materials in which a 

rapid groundwater flow prevails. In general, no drainage problems are encount

ered on these high areas. Where coarse-grained out-wash deposits wedge out into 

the less permeable till (Fig.15), the groundwater may be confined or semi-

confined. 
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ti l l on bedrock, land surface flat and not eroded, shallow and flat 
water table 

legend 
. land surface 
-water table 

t i l l on bedrock, land surface eroded 

C 

t i l l on bedrock, land surface controlled by topography of bedrock 

land surface controlled by bedrock and t i l l , lowlands filled with recent 
alluvium, buried glacial channel f i l led with t i l l 

Fig.14. Groundwater conditions in glacial landforms. 

original 
piez o metric 

surface 

t i l l plain 

Fig.15. Outwash deposits wedging out into glacial till. A free water table 

in the outwash on the left side. Confined groundwater in the outwash 

wedge under the till plain on the right side. 
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1 .7 LOESS PLAINS 

In desert regions and on bare agricultural lands in semi-arid regions, deflat

ion, i.e. the picking up and removal of loose particles by the wind, may cause 

serious erosion. In a few extremely dry years, losses of more than one meter 

of soil were reported in the USA. 

The blown-away particles are carried in two separate layers: 

- The lower layer consists of sand grains, and rises less than a meter above 

the ground surface. The sand is not transported very far and settles as dunes 

or ripples. 

- The upper layer consists of clouds of silt (and some clay) particles, which 

may rise to heights exceeding 3000 meters and may be carried over great 

distances. When deposited it is called loess, which is recognizable - in the 

absence of more conspicuous sedimentary forms - by a uniform grain size 

(10-15 micron). Loess layers of over 30 m thick have been reported; they 

thin out away from the source area. 

The Quaternary loess deposits are of two types: 

- Glacial loess, mostly found in Northern Europe and the northern part of the 

U.S.A. These deposits consist of fine material picked up from barren areas 

in front of the ice-sheets, with a periglacial climate (dry and cold). 

- Desert loess, found, for example, in western China. These deposits, which 

are sometimes more than 60 m thick, consist of material blown from the desert 

basins of central Asia. 

A further type, the so-called "loess-like deposits" are found in certain areas, 

for example in the Great Plain of Hungary. Such sediments are redeposited loess 

that was eroded by rivers and deposited under water elsewhere. These sediments 

differ from true loess by their slightly higher clay content. 

groundwater conditions 

Loess deposits usually have a good permeability. They represent deep unconfined 

aquifers, which, when dissected by rivers, drain easily towards the valleys. 

Local depressions may have a thin veneer of clayey material, which hampers in

filtration, thus often causing surface drainage problems. Moreover, thin layers 

of rather impervious concretionary limestone may develop, giving rise to 
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perched water tables (Fig.16). 

Fig.16. Groundwater conditions in loess deposits. 

1.8 GROUNDWATER CONDITIONS IN AREAS AFFECTED BY DISSOLUTION 

A process that takes place mostly below the surface is the dissolution of lime

stone by percolating water, resulting in large holes, caverns, and channels, 

through which water can flow easily. A typical topography (karst topography) 

often forms at the surface, consisting of dry valleys, sinks, disappearing 

streams, and large springs. Drainage problems will not arise when the soluble 

limestone is near the surface and if the surface has a relatively high topograp

hical position. The dry valleys (Fig.17) carry water only after heavy 

precipitation, and losses to the underground channels in the limestone are then 

extremely high. 

Fig.17. Groundwater 

conditions in a 

karst region. 
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When karstic limestone dips below deeply incised valleys or alluvial plains, 

buried springs may occur locally, causing groundwater mounds in the alluvial 

cover. Water from karst sources contains calcium bicarbonate and its biological 

quality is often poor because of the fast transport from recharge to discharge 

area. Examples of plains where the groundwater regime is influenced by karst 

phenomena are: 

- The Danube flood plain (Roumania) where the drainage problems are partly 

caused by an intensive feeding of the groundwater in the river alluvium from 

underlying karstic limestones. 

- The Konya-Plain (Turkey), which is underlain by thick cavernous limestone, 

cropping out along the rim of the plain. This karstic limestone is an excel

lent aquifer and it is recharged by precipitation and runoff from the surroun

ding hills. It dips under the poorly pervious lake sediments, which comprise 

the bulk of the basin fill. From the rim of the plain inward the water in 

this limestone aquifer yields free-flowing water. 

1.9 INFLUENCE OF FAULTS 

Owing to uplifting or downwarping forces in the interior of the earth, the 

layers of the crust are subject.to great strains. As a result, fractures 

(faults) may develop along which blocks of the crust may move. Faults may be 

due either to shearing under compression or to tearing apart under tension. 

Faults caused by compression tend to be tightly closed and generally act as 

groundwater barriers. Faults caused by tension are more irregular, rough, and 

open, and groundwater may move upward along them, sometimes from great depth. 

Both types of faults may bring aquifers into contact with impervious rock and 

cause the normal groundwater flow to stop abruptly. As a result springs may 

develop. If coarse sandy layers are offset by a fault, the layers in the fault 

zone are downbent and may assume an almost vertical position. Clay layers or 

lenses within the coarse sediments will cause a high resistance to horizontally-

moving groundwater. As a result, great differences in water table height are 

found on either side of the outcropping fault. These differences may be of the 

order of from several meters to 20 or 30 meters, as is known from the tectonic 

blocks in the Ville in W.-Germany. The more highly elevated land may be water

logged (Fig.18) and springs and marshes may occur. The lower-lying soils down

stream of the fault have a deep water table and are dry. 

28 



ground surface 

Hydrogeology of -plains 

^m> 
Fig.18. The effect of faulting on the water table elevation. The fault is 

partly sealed by downbent thin clay layers and thus acts as a barrier 

to groundwater flow which is from left to right. The high land has a 

shallow water table. The sunken land has a deeper water table. If the 

fault is completely sealed, groundwater is discharged through springs 

occurring along the fault. 

When a block of the earth's crust sinks away between two parallel faults, a 

graben or tectonic valley is formed (Fig.19). The valley walls consist of 

mountains (horsts), and may be quite steep. Springs often occur on the faults, 

discharging, from great depth, water that is sometimes warm and mineralized. 

Fig.19. Valley of tectonic origin. 
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Examples of tectonic valleys are the valleys of the Jordan River in the Near 

East, the Owens River in California, the Menderes and Gediz Rivers in Turkey. 

At present they are being filled up with river deposits. Beneath these 

deposits, depending on the geologic history of the region, one may find marine, 

aeolian, lacustrine, volcanic, or even glacial material, the thickness of which 

may exceed 1000 m. The Central Valley in California is filled with more than 

7000 m of sediments, mostly of marine origin and containing saline water. These 

are overlain by non-marine sediments, 200 to 1000 m thick, containing fresh 

water. 
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PURPOSE AND SCOPE 

Elucidation of a number of physical and chemical characteristics of soils 

- and related aspects - which have a direct relation to agricultural water 

management and plant growth. 
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2.1 GENERAL 

2.1.1 SOIL AND LAND 

The term "soil" is often used loosely and conveys different things to different 

people, including soil scientists. 

For civil engineers it is a general term for unconsolidated earth as distin

guished from solid rock. 

The soil physicist considers soil a porous medium, suitable to be treated 

mathematically. 

The soil chemist sees the soil as a powder, mostly coloured, fine or coarse 

grained, with an upper limit of 2 mm (fine earth), having complicated chemical 

and physical propertiest 

The pedologist regards the soil as a natural body, and is mainly interested in 

the result of biochemical weathering of the soil parent material, the soil 

profile with its various pedogenetic layers or horizons. The pedologist 

examines and classifies soils as they occur in their natural environment. He 

lays minor emphasis on their practical utilization. Nevertheless his findings 

may be as useful to highway and construction engineers as to the farmer or 

agronomist. 

For the soil surveyor soil is a collection of natural bodies occupying 

portions of the earth's surface. They support plants and have properties due 

to the integrated effect of climate and living matter acting upon parent 

material, as conditioned by relief, over periods of time. In this sense soils 

are landscapes as well as profiles (layered vertical sections). For the agro

nomist the soil is a medium for plant growth and he is especially interested in 

the conditions of the topsoil. 

Finally the drainage specialist, who may be regarded as representing a 

combination of civil-engineer, hydrologist, soil physicist, and agronomist, is 

primarily concerned with soil properties which affect the movement of water 

into and through soils. 

The term "land" comprises more than the term soil. There are many definitions 

of land. In agricultural land classifications, land is considered a complex of 

all the factors above, on, and below the earth's surface, which affect man's 

agricultural, pastoral, and forestry activities. 

36 



Soils 

In the physical environment that determines land use or natural vegetation, the 

soil is only one factor. Others are the climate and the land features associated 

with the soil: topography and hydrology. 

2.1.2 MAJOR COMPONENTS AND FUNCTIONS OF SOIL IN RELATION TO PLANT GROWTH 

The soil can be regarded as a porous medium, i.e. a material system in which 

solid, liquid and/or gaseous materials are present. 

In a mineral soil, the mineral materials occupy a substantial volumetric 

fraction, up to 50-60% by volume. The organic matter content of a mineral soil 

is usually very low, generally less than 3%. 

Organic soils have an organic matter content of more than 20% by weight. These 

soils are also referred to as peat or peaty soils (organic matter largely unde-

composed) or muck soils (organic matter largely decomposed). 

Soils provide crops with essential plant nutrients, in addition to water and 

oxygen for root respiration. Unless the supply of water and oxygen can be 

maintained, the rate of uptake of nutrients is reduced. 

Other aspects of soil which have a bearing on plant growth are (Chap.4, Vol.1): 

- its temperature should be favourable to plant growth, 

- its mechanical resistance to the movements of roots and shoots should not be 

too high, 

- it should provide an environment free of chemical or biological conditions 

detrimental to plant growth, such as extreme acidity, excess soluble salts, 

toxic substances, disease organisms. 

2.1.3 FACTORS OF SOIL FORMATION 

The soil is a product of the action of climate on the parent rock at the earth's 

surface, as modified by landscape (topography and hydrology) and vegetation, the 

final result depending greatly on the factor time. The wide variety in each of 

these factors throughout the world is responsible for the many different soils 

that occur (see for example BUNTING, 1965 or PAPADAKIS, 1969). 

parent material 

Locally, the parent material may be the predominant factor that determines the 

soil. Such material may be basic or acid, calcareous or non-calcareous, etc. 

(Compare: granite, basalt, shale, sandstone, limestone, loess, alluvial 
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deposits, etc.)- The mineralogical and granular composition of the parent 

material (rock or unconsolidated sediments) will greatly determine the nature 

of the soil that results from its weathering. For example, clay soils are 

formed from basalt, a fine-grained rock low in quartz and consisting almost 

entirely of easily weatherable silicates, which can yield clay upon weathering. 

topography or land form 

Relief, slope, and physiographic position affect the soil because they control 

both the amount of percolating rainwater or floodwater and the quantity and 

rate of surface runoff. These factors therefore influence erosion, deposition, 

and groundwater level. The land form is in part responsible for the dryness or 

wetness of certain areas within a region that has essentially the same overall 

climate. If the topographic factor predominates, the so-called a-zonal soils 

result, e.g. hydromorphic soils of swamps or seepage areas, and halomorphic 

(saline) soils of poorly drained regions. 

biologic agents 

Both plants and animals have a profound influence on soil development. The de

composition of dead leaves and roots of trees, shrubs, and herbs provides 

organic colloids (humus) and humic acids, which exert their influence on the 

process of soil leaching, especially in the cool temperate climate (podzolizat-

ion). The action of burrowing animals (prairie dogs, marmots, worms, and 

termites) can mix the soil thoroughly and can prevent the formation of differ

entiated soil horizons by the vertical translocation of soil components. 

time 

In only slightly sloping areas of humid tropical regions, where high rainfall 

and high temperatures produce intensive weathering and leaching, the time 

factor is of predominant importance in the formation of soils. Soils under 

tropical forests are therefore usually chemically poor soils. In recent alluvial 

deposits the influence of climate and time is not yet noticeable and consequent

ly there is no soil profile development. Time, however, is a passive factor; it 

is only important if there is a parent material that can be changed by weat

hering and if water is available to keep weathering processes active. 
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Soils 

2.1.4 THE SOIL PROFILE 

The vertical section through the soil is called the soil profile. The pedolog-

ist, the agronomist, and the hydrologist all look upon it from a different 

point of view. As a result, the investigations that each will conduct into the 

profile will differ as well. 

the pedological soil profile 

The pedological soil profile can be subdivided into layers approximately 

parallel to the soil surface. The pedogenetic soil layers are called horizons. 

Not all distinct soil layers are horizons, because soil layers can also be geo-

genetic, e.g. water or wind deposits. The morphology of the soil expressed in 

the pedogenetic profile reflects the combined effect of the relative intens

ities of the soil-forming factors responsible for its development. 

The upper and most weathered part of the pedological soil profile, comprising 

both the A- and B-horizons, is called "solum". Its thickness varies from half a 

meter to several meters (Fig.1). 

the agrological soil profile 

The agrological soil profile coincides with the rootzone of crops, which, for 

field crops, is usually limited to the upper 1.20 meter. For this reason, soil 

surveys are also generally limited to this depth. The agrological soil profile 

consists of two main layers: the topsoil (sometimes called surface soil or 

plough layer) and the subsoil. The topsoil usually coincides with the pedolog

ical A-horizon. The subsoil, in its agronomic sense, is the part of the root 

zone below the plough layer. It should be noted that the term "subsoil" as used 

by drainage specialists usually refers to the soil strata below the drains. 

Irrigation and drainage engineers are interested in the water intake rate of 

the topsoil, whereas the agronomist is interested in its workability (ease of 

cultivation), structural stability (surface sealing or crusting hazards, 

erosion hazards), and particularly in its fertility. In contrast with the sub

soil, the agricultural qualities of the topsoil can be strongly influenced by 

soil management and weather conditions. For irrigation purposes, the water-

holding capacity in relation to the effective soil depth (see Sect. 2.4.2) has 

to be known, whilst for drainage it is the water-transmitting properties of the 

subsoil that are important. 
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Soils 

the hydrological soil profile 

The hydrological soil profile comprises the root zone of the agrological 

profile, plus the substrata down to an impervious layer. The water-transmitting 

properties of these substrata are of considerable importance to the drainage 

specialist. 

2.1.5 OUTLINE OF NORMAL SOIL INVESTIGATIONS 

For each soil layer, or for selected soil samples, investigations are carried 

out either in the field, in the laboratory, or both, their purpose being to 

obtain information on the following main soil characteristics: 

a. Physical 

Field or morphological investigations: 

colour, including mottling; texture (estimated); structure (shape, size and 

stability of aggregates); compactness; cementation; actual moisture conditions; 

consistence (wet: plasticity and stickiness; moist: friability; dry: hardness); 

concretions (carbonate, iron, manganese); visible salts; other special features, 

such as surface crusts, cracks, coatings, slicken sides, clay skins, degree of 

ripening, variability of the soil profile over relatively short distances, etc. 

Laboratory investigations: 

mechanical analysis (texture); 

bulk density and particle density; 

moisture retention curve, permeability, aggregate stability. 

b. Chemical 

Field investigations: 

free carbonates (effervescence with HCl), pH (field test with indicators). 

Laboratory investigations: 

plant-nutrient contents (N, P, K, Ca, Mg etc., trace-elements), 

pH, total soluble salt, and gypsum. 

c. Physico-chemical 

Laboratory investigations: 

cation exchange capacity, exchangeable cations, base saturation, potassium and 

phosphorus fixation. 
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d. Mineralogical 

Laboratory investigations: 

clay mineral identification, mineral nutrient reserve. 

e. Biological 

Field investigations: 

organic matter (nature and distribution), root distribution, macro-fauna and 

micro-organisms (bacteria, fungi, etc.). 

aerobic and anaerobic conditions. 

Laboratory investigations: 

organic matter content, C/N ratio. 

The following sections may provide some logic and order to this outline. 

2.1.6 RELATIONSHIPS BETWEEN BASIC SOIL CHARACTERISTICS, PHYSICAL SOIL 

PROPERTIES, AND AGRICULTURAL QUALITIES 

Since the basic soil characteristics result from the interactions of the soil 

forming factors, an experienced soil scientist can predict these characteristics 

once he knows the factors sufficiently well (Fig.2). We shall call these basic 

soil characteristics A-factors. They comprise: 

- soil texture, especially the clay content of the soil, 

- mineralogical composition of the clay fraction : ratio of alumino-silicates 

and sesquioxydes, swelling or non-swelling types of clay minerals, 

- the physico-chemical characteristics of the clay fraction : kind and quantity 

of adsorbed ions, 

- the organic matter : kind and quantity, 

- the free carbonate content of the topsoil. 

These A-factors, in turn, interact and find their expression in another set of 

physical soil properties in accordance with the processes operating in soils 

and the laws of behaviour of soil materials. When we call this second set 

(first derivatives) of physical soil properties B-factors, it is clear that a 

knowledgeable soil scientist can infer them to a greater or lesser extent from 

a known combination of A-factors, or even directly from data on the five soil 

forming factors. 

As the B-factors can be regarded as first deratives of the A-factors, one must 
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rank them as primary physical soil properties. The B-factors are (see Fig.2): 

- soil structure» which comprises: 

. aggregate formation (size, shape, distinctness), 

. porosity (total porosity and pore size distribution), 

. structural stability, 

. structural profile. 

- soil consistence under wet, moist,and dry conditions, 

- soil colour. 

The given main relationships can be schematized as follows. 

topsoil 

-workability 
-resistance to slaking 
-soil erodibility 
-water intake rate 
-waterholding capacity 

subsoil 

-effective soil depth 
-waterholding capacity 

internal drainage 

AGRICULTURAL QUALITIES (C) 

2S 

(B) (PRIMARY PHYSICAL 
SOIL PROPERTIES 

CONSISTENCE 

SOIL FORMING FACTORS 

temperature 
watertable 

BASIC SOIL CHARACTERISTICS (A) 

— climate 
-parent material 

— topography (hydrology) 
biological agents 
time 

soil texture (clay content) 
—mineralogical nature of clay fraction 
—chemical nature of clay fraction 

organic matter 
— free CaCO_ in topsoil 

Fig.2. Relationships between basic soil characteristics, physical soil 

properties and agricultural qualities. 

There is a close relationship between these three B-factors. For instance, a 

dark coloured or grayish soil with a coarse prismatic or platy structure is 

usually hard when dry and sticky when wet, and a red tropical soil with a 

granular or subangular-blocky structure is usually friable when dry and only 

43 



slightly sticky when wet. 

A third set of soil properties are the physical agricultural qualities of soils 

(C-factors), which can be regarded as properties derived from the B-factors, or 

as second derivatives of the A-factors. In analogy to the above, these proper

ties can be ranked as secondary soil properties. The C-factors are (see also 

Sect. 2.1.5): 

a. concerning the topsoil: 

. workability, 

. resistance to slaking (destruction of aggregates), 

. surface sealing or soil crusting, 

. soil erodibility, 

. water intake rate, 

. water-holding capacity. 

b. concerning the subsoil: 

. effective soil depth or root zone depth, 

. water-holding capacity, 

. internal drainage. 

These agricultural qualities can be measured on small plots in the field or on 

soil samples representing such individual sites. The broader knowledge of A-

and B-factors and how they are interrelated must be used, in combination with 

a soil survey, to ensure that the sampling areas selected are representative 

of the land. 

2.2 BASIC SOIL CHARACTERISTICS 

2.2.1 SOIL TEXTURE 

The mineral soil elements can be classified according to their size. The size 

distribution of the ultimate soil particles is referred to as "texture". It can 

be estimated in the field or determined in the laboratory. 

particle size limit 

There are various textural classifications, but the most commonly used for 

agronomic purposes is that of the U.S. Dept. of Agriculture. The main particle 

size limits are given in Table 1. 
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Table 1. Particle size limits. 

Soil 

SAND 

SILT 

CLAY 

Separate 

very coarse 

coarse 

medium 

fine 

very fine 

coarse 

fine 

Diameter 

2.00 - 0.050 

0.050- 0.002 

< 0.002 

Limits 

2.00 -

1.00 -

0.50 -

0.25 -

0.100-

0.050-

0.020-

(mm) 

1.00 

0.50 

0.25 

0.10 

0.050 

0.020 

0.002 

Material larger than 7.5 cm in diameter is usually called a stone. Material 

between 7.5 cm and 2 mm is termed gravel, while material smaller than 2 mm is 

referred to as fine earth. 

Coarser soil particles are separated by sieving. The U.S. Standard sieves are 

indicated by a number, which refers to the number of openings per inch (LAMBE, 

1951) as shown in Table 2. The French textural classification is given in 

Table 3. 

Table 3. French particle size 

limits. 

Table 2. Sizes of U.S. Standard 

sieves. 

Sieve 
No. 

10 

18 

20 

35 

60 

70 

140 

200 

300 

400 

Diameter (mm) 
of opening 

2.00 

1.00 

0.84 

0.50 

0.25 

0.20 

0.105 

0.074 

0.050 

0.037 

Soil Separate Diameter Limits (micron) 

SABLE 2000-50 

sable grossier 

sable fin 

LIMON (silt) 50-20 

limon grossier 

ou sable très fin 

1imon f ine 

ARGILE (clay) < 2 

2000-200 

200- 50 

50- 20 

20-

Material > 2 mm is called "elements grossiers" 

t extura l c lasses 

The r e l a t i ve proportion of sand, s i l t , and clay in a so i l determines i t s 

t extural c l a s s . The number of possible combinations i s obviously i n f i n i t e . 
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For practical purposes, however, certain arbitrary divisions are made, and a 

descriptive name is applied to all particle-size compositions within each 

arbitrary division. Fig.3 shows the textural classification currently used by 

the U.S.D.A. with the Dutch classification superimposed on it. 

dutch classification \0 

heavy clay 

l ight clay 

heavy loam 

l ight loam 

çjayey_s_qnd_ 
sand 

% ) O O 'O o 
°/o sand 

Aeolian deposits (low clay content) 

IHiiiil:l;ilJ|:j Fluvio.Marine deposits 

I'-'.-'.-'.'-M tropical Lacustrine deposits or old river terraces 
(low silt content) 

) * the Netherlands 

Fig.3. Textural classification. 

The textural variation in young alluvial areas in The Netherlands is also 

indicated in the figure. 

In soil survey work, the textural class is estimated in the field. The soil is 

rubbed between thumb and fingers and its "feel" is noted. The following soil 

textural classes can be distinguished: 

SAND 

SANDY LOAM 

LOAM 

SILT LOAM 
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gritty, loose, without cohesion whether moist or dry. 

very gritty, some cohesion because of colloidal material. 

characteristics of grittiness predominant, but particles 

stick. 

smooth and floury. 



Soils 

CLAY LOAM : slightly gritty, plastic, some tendency to shine if rubbed 

when moist or cut when dry. Dry lumps can be crushed with 

some difficulty. 

SILTY CLAY LOAM : smooth and floury with little grit, very plastic, noticeable 

shine if rubbed when moist or cut when dry. Dry lumps can be 

crushed between fingers, but with difficulty. 

CLAY : stiff, plastic, without grit, even when a small sample is 

bitten between the teeth; tendency to shine strongly when 

rubbed. Dry lumps have a polished surface when cut, cannot 

be crushed between fingers (SOIL SURVEY MANUAL, 1951). 

textural grouping 

The texture of the surface soil is a characteristic closely associated with the 

workability of the soil (ploughing, seedbed preparation). It also has a bearing 

on erodibility, the water intake rate, and the formation of soil crusts and 

soil cracks. The 15 or more recognized textural classes may be grouped into 7 

or even fewer groups for purposes of farm planning, soil conservation, etc. 

The following terms and groupings are commonly used: 

Textural term Alternative term 

1. very heavy very fine textured 

2. heavy fine ,, 

3. moderately heavy mod. fine „ 

4. medium medium „ 

5. moderately light mod.coarse „ 

6. light coarse „ 

7. very light very coarse „ 

Textural classes to be included 

heavy clay (more than 60% clay) 

clay, silty clay, sandy clay 

silty clay loam, clay loam, sandy 
clay loam 

silt loam, loam,very fine sandy loam 

fine sandy loam, sandy loam 

loamy fine sand, loamy sand 

sand, coarse sand 

Depending on the purposes of grouping and on the prevailing local conditions, 

a broader grouping of the textural classes may be desirable, e.g. (1+2), 3, 4, 

5, (6+7) or (1+2), (3+4+5), (6+7). 

light and heavy soils 

Sand, when dominant, yields a coarse textured soil which is called "sandy" or 

"light", since such a soil is easily worked. On the other hand a fine textured 
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soil is made up largely of silt and clay, with corresponding plasticity and 

stickiness, which implies that the soil is likely to be difficult to work or 

"heavy". Therefore, the use of the terms "light" and "heavy" refers to ease of 

working and not to soil weight. 

texture, soil permeability and water retention 

There is a strong relationship between permeability, water retention, and 

texture. The heavier the soil, the more restricted the permeability and the 

higher the water retention (Fig.4). This relation, however, is modified by such 

factors as the nature of the clay fraction, the coarseness of the sand fraction, 

and the soil structure. In addition, and especially in alluvial soils, the mode 

of formation (fluviatile or lacustrine) has a certain influence on soil permea

bility: lacustrine heavy clays may have a higher permeability than coarse sands 

due to a specific process of structure development after drainage (see Chap.32, 

Vol.IV). 
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Fig.4. Average physical values and textural relationships. 

2.2.2 MINERALOGICAL COMPOSITION 

For the present discussion it is useful to distinguish two main groups of 

minerals according to their size: the minerals of the silt and sand fraction 

and the minerals of the clay fraction. 
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the silt and sand fraction 

These two fractions have about the same mineralogical composition. 

The identification of these mineral components enables the origin of the soil, 

its stage of weathering, and its mineral reserve (plant nutrient) to be deter

mined. For this purpose the sand fraction is separated into two fractions, the 

so-called light fraction (specific gravity < 2.9) and the heavy fraction 

(specific gravity > 2.9). The light fraction consists mainly of unweatherable 

quartz (SiO„) and weatherable feldspars (Na, K, Ca alumino-silicates). Strongly 

weathered soils contain no, or very few, feldspars. 

The heavy fraction usually makes up 1 to 2 percent of the total sand fraction. 

The weatherable minerals are Fe, Mg, Ca-silicates (augite, hornblende muscovite, 

biotite), Fe-oxydes (ilmenite, magnetite), calcium carbonate (calcite), etc. 

In addition, various kinds of unweatherable minerals (zircon, tourmaline, etc.) 

occur which are useful for diagnostic purposes. 

The silt and sand fractions of most soils, therefore, consist of light coloured 

minerals, mainly quartz and some feldspars, and very few dark-coloured Fe- and 

Mg-minerals. 

the clay fraction 

The properties of this important fraction vary from one soil to another, depend

ing on the relative importance of kind and size of the various mainly inorganic 

components. In most soils the mineral components consist largely of crystalline 

hydrous alumino-silicates, but in strongly weathered reddish tropical soils the 

greater part of the clay fraction consists of crystalline and non-crystalline 

iron and aluminium oxydes and hydroxydes (sesquioxides). 

The general structural scheme (lattice) on the layered alumino-silicates is 

generated by a combination of two types of structural units or sheets: 

- sheets of silicon oxyde: one atom silicon is surrounded by four oxygens, 

- sheets of aluminium oxyde and hydroxyde: six oxygens or OH-groups surround 

a larger atom like aluminium. 

A combination of one silicate sheet and one aluminium sheet generates a 1:1 

type clay mineral (e.g. kaolinite, halloysite, etc.). When a second Si-sheet 

is added, a 2:) type clay mineral results. In this arrangement two Si-sheets 

sandwich a central Al-sheet. 
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The 2:1 type clay minerals can be divided into two main groups with corres

ponding differences in physical and physico-chemical properties: 

- clay minerals which expand on wetting: the smectite or montmorillonite group 

and the vermiculite group. These silicates contain Mg, Ca, and Fe, whilst 

water and certain organic molecules can enter between the unit layers, 

causing the lattice to expand, generating large swelling pressures. Convers

ely, when the water is withdrawn there is considerable shrinkage. 

- clay minerals of the non-expanding type. The main groups are: illite, micas, 

and chlorite. Here potassium bonds the sheets together. 

Clays containing minerals with elongate or fibrous shapes such as halloysite 

(1:1) and attapulgite (2:1), are more permeable than clays composed mainly of 

platy minerals. 

The smectites are usually associated with the most plastic and less permeable 

clays; illites are intermediate, while the kaolinites confer the least plastic 

properties and a higher permeability. 

Acid conditions leading to the removal of silica and bases combined with a 

good internal drainage favour the formation of kaolinite (e.g. in the highly 

weathered tropical soils). Enrichment with Ca, Mg, and Si due to lateral inflow, 

poor drainage, and a pronounced dry season are generally favourable for mont

morillonite formation. Conditions favouring the formation of the mica type clay 

minerals (illites) are less defined. Generally, the illites are intermediate 

weathering products derived from very similar minerals existing in the parent 

rock. In many parts of the world the clay minerals of "young" soils are almost 

identical with the clay minerals of the parent material and are not a reflect

ion of the external environment. 

2.2.3 PHYSICO-CHEMICAL CHARACTERISTICS OF CLAYS 

For practical purposes, the clay fraction can be considered to coincide with 

the mineral colloid fraction. Properties which are conferred upon a soil by the 

colloid component are shrinkage and swelling, flocculation and dispersion, 

plasticity and cohesion. 

Clays have pronounced physico-chemical properties because of the combined 

influence of two factors: the high specific surface and the electric charge on 

the basic silicate structure of clay minerals. The specific surface is the 
2 

surface area per unit weight, and it ranges from 15 m /g for the coarsest non-
2 expanding clays, to 800 m /g for the finest, expanding clays. The high specific 
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surface results from the small particle size and the platy or fibrous-elongate 

morphology of the minerals. The electric charge results from ion substitutions 
3+ 4+ 2+ 2+ 3+ 

in the crystal structure (e.g. Al for Si ; Mg , Fe for Al ), or by 

ionization of hydroxyl groups in water. Although some positive charges occur, 

especially on the edges of the crystals, the dominant charge associated with 

the flat surface of the crystal lattice is negative. 

Cation Exchange Capacity 

Clay particles are characterized by a so-called ionic double layer: the solid, 

negative charged clay particle is surrounded by a diffuse layer of positively 

charged cations (Ca , Mg , Na , K , NH, , H , Al ) in the liquid phase. 

The concentration of these cations near the clay particles is much higher than 

the concentration in the soil solution (Gouy-Chapman theory for the diffuse 

double layer). Moreover, these cations cannot be leached out so easily, al

though they can be replaced by other cations. Therefore, the cation exchange 

capacity of the soil particles acts as a kind of temporary storehouse for the 

bases that are either released from the primary minerals by weathering or added 

by fertilizers. Associated with the diffuse layer of adsorbed cations are a 

large number of water molecules. As the clay minerals weather and become more 

inert, the cation adsorption capacity declines, and the anion adsorption 

capacity (phosphates etc.) increases. 

The cation exchange capacity (CEC) of soils varies not only with the kind and 

percentage of clay, but also with the content of humus. Clay and humus together 

constitute the so-called adsorption complex of the soil. The CEC is expressed 

in milligram equivalent per 100 gram of soil (meq. or me/100 g). Its order of 

magnitude for humus and the most important clay minerals is given in Table 4. 

Table 4. Cation exchange capacity 

of some soil materials. 

Material 

humus 

vermiculite 

montmorillonite 

illite 

kaolinite 

quartz (silt size) 

CEC (me/100 g) 

200 

150 

100 

30 

10 

< 0.01 
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It is obvious from Table 4 that the exchange capacity of the organic colloids 

is much higher than that of the inorganic. 

proportion of the different exchangeable cations 

The chemical force with which the bases are held diminishes in the sequence of 

Ca > Mg > K > Na and therefore these ions tend to accumulate in the same order 
+2 

in a soil subjected to leaching. In most soils Ca will constitute about 80 
+2 

percent of the total exchangeable bases. In coastal areas Mg may dominate. In 

highly weathered tropical areas H and Al dominate. Some salt-affected soils 

in arid areas or soils flooded with seawater have a high amount of exchangeable 

Na . If these soils contain a low amount of soluble salts, the sodium ions cause 

dispersion of clays, and soils will become puddling and acquire a slow permeabi

lity. Ca-ions, on the other hand, cause flocculation of clay and therefore 

promote a good structure and a good permeability. 

If 100 gram of soil has a CEC of 20 meq and 12 meq exchangeable bases, the soil 

is said to have a base saturation of 60%. 

The pH indicates the relative amount of H and OH in solution and it also 

reflects the percentage of base saturation. The pH of the more or less leached 

soils in humid regions is lower than the pH in arid regions. If the percentage 

base saturation is 90 or 100, the pH of the soil is about 7, or higher if 

carbonates, especially those of sodium, are present. 

2.2.4 ORGANIC MATTER AND SOIL FAUNA 

kind and quantity 

When fresh organic matter is incorporated into the soil, part of it is rapidly 

decomposed by the action of micro-organisms. A slowly decomposable residue, 

called humus, remains, which consists of a mixture of brown or dark amorphous 

and colloidal substances. The term micro-organism, or microbes, is used in 

literature to include both micro flora (e.g. bacteria and fungi) and micros

copic animal life (e.g. protozoa and nematodes). The rate of decomposition and 

the kind and quantity of the end products formed depends on temperature, 

aeration, chemical soil conditions, and the type of micro-organisms. 

The amount of organic matter in mineral soils varies widely. Most soils have an 

organic matter content of 2-4 percent; a content of less than 1 percent (arid 
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regions) is considered low. 

The main sources of supply under fanning conditions are: 

- organic residues of crops: stubble and especially the root residues, 

- farm manure (animal excrements), 

- compost, 

- green manure (crops ploughed under when in an immature, succulent stage, 

especially legumes). 

importance of organic matter 

The influence of organic matter on the physical and chemical properties of 

soils is already great when present in small quantities. The beneficial function 

of organic matter may be summarized as follows. 

Physically, organic matter, more than any other single factor, promotes the 

formation and the stability of soil aggregates. The decomposition of fresh 

organic matter, in particular, produces microbial germs and mycelia of organisms, 

which are most effective in aggregating soils. Aggregation leads to increased 

porosity, which means increased aeration, infiltration and percolation of water, 

and a reduction in runoff and erosion hazards. Furthermore, the improved soil 

structure and the high water-adsorption capacity of humus increase the moisture 

retention capacity of the soil. In a chemical sense, the decomposition of 

organic matter yields N, P, and S, and promotes the extraction of plant 

nutrients from minerals through the formation of organic and inorganic acid. 

Moreover, there can be a considerable fixation of nitrogen from the air by non-

symbiotic bacteria, which obtain their energy from decomposing dead plant tis

sue, and by symbiotic bacteria, which get it from the cell sap of such legumes 

as alfalfa, clovers, peas, and beans. Finally, the humus component of organic 

matter significantly increases the CEC of the whole soil because the CEC of the 

humus component is two to thirty times the CEC of mineral colloids. For addit

ional details the reader is referred to the relevant chapters in RUSSELL (1954) 

and BEAR (1964). 

the soil macro-fauna 

Besides the various micro-organisms, the soil - especially if well supplied with 

fresh organic matter - contains a large number of animals, such as rodents, 

insectivora, insects, millipeds, mites, spiders and earthworms. Most of these 

animals use more or less undecomposed plant tissues (from litter and dead roots) 

as food. They thus serve to incorporate much organic matter into soils and to 
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initiate the decomposition processes that are continued by the micro-organisms. 

Futhermore, considerable quantities of soil are mixed, transported, and 

granulated, especially by worms, and the holes left by the various animals serve 

to increase the aeration and internal drainage of the soil. 

2.3 PHYSICAL PROPERTIES OF MINERAL SOILS 

The combined influence of inorganic and organic components, plus the prevailing 

chemical conditions in the soil (A-factors), determine soil porosity and 

structure (see Fig.2). The A-factors, in combination with the quantity of water 

present, determine soil consistence, while, together with the prevailing regime 

of soil aeration and temperature, they determine soil colour. 

2.3.1 SOIL POROSITY 

Here, only the total pore space will be considered; the pore size distribution 

will be discussed in Sect. 2.3.2. To calculate the pore space of soils, the 

particle density and the bulk density have to be known. 

particle density (specific gravity) 

The particle density is the mass per unit volume of soil particle. It is 
3 

usually expressed in grams per cm of soil, but one may find it expressed in 
3 

pounds per cubic foot (pcf). Note that 100 pfc corresponds with 1.6 g/cm . 

Instead of particle density, the term specific gravity (s.g.) is often used. 

It is normally defined as the ratio of the weight of a single soil particle to 

the weight of a volume of water equal to the volume of the particle. It is a 
3 

dimensionless quantity. Since one cm of water weighs one gram at normal 

temperature, the two terms have the same numerical value. The particle density 

is sometimes referred to as true density. 

The average specific gravity of some soil components is: organic matter 1.47; 

sand 2.66; clay 2.75. The specific gravity of mineral soils usually varies from 

2.6 to 2.9 - 2.65 being considered a fair average. 

bulk density 

The bulk density (volume weight or apparent density) is the dry weight of a 

unit volume of soil in its field condition, or in other words, it is the mass 
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of a dry soil per unit bulk volume, the latter being determined before drying. 

3 

It is expressed in grams per cm . It has the same numerical value as the appa

rent specific gravity, which is defined as the ratio of a unit bulk volume of 

soil to the weight of an equal volume of water. The bulk density of uncultivated 

soils usually varies between 1.0 and 1.6; compact layers may have a bulk 

density of 1.7 or 1.8. Generally, the finer the texture of the soil and the 

higher the organic matter content, the smaller the bulk density. 

Note: moi/éture content on weight basis x bulk density = moisture content on 

volume basis. 

The pore space of a soil is that portion of unit bulk volume which is occupied 

by air and/or water (volume of voids) . The volume of pore space depends largely 

on the arrangement of the solid particles. The porosity, n, is the volume 

percentage of the unit bulk volume not occupied by the solid particles, i.e. 

» . ,oo (1 - ""^density ). 
particle density 

Example: if the bulk density is 1.4 and the particle density 2.65, the porosity 

equals 100 (1 - -^-^ = 47%). 
Z. DJ 

Usually the porosity of mineral soils varies between 35% for compacted soils 

and 60% for loose topsoils. 

The specific volume of the solid phase is the volume occupied by one gram of 

solids, i.e. the reciprocal value of the particle density. An average value is 

1/2.65 - 0.38 cm3/gram. 

The specific volume of the soil is the bulk volume occupied by 1 gram of soil, 

i.e. the reciprocal value of the apparent density. (The latter is often called 

shortly the specific volume). 

The shrinkage of soils can be computed directly from the specific volume. For 
3 

example, a sediment which originally has a spécifie volume of 0.95 cm /gram and, 

after drainage, of 0.72, shrinks 23 percent, or in other words, a layer of 10 cm 

shrinks 7.7 cm after drainage. 

In soil engineering, the void ratio, e, is often used instead of the porosity. 

It is defined as the ratio of the volume of voids to the volume of solids, 

V V 
v v 

V 1 - V 
s v 
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Note that the denominator in the expression for void ratio, e, remains constant 

when the soil as a whole changes its volume. 

A porosity of 35% corresponds with a void ratio of e = 0.35/0.65 = 0.54. 

A porosity of 60% corresponds with a void ratio of 1.5. Peats and mucks may 

have void ratios as high as 4 or 5. 

The reduction in void ratio due to water leaving the soil pores is termed 

consolidation. The reduction in void ratio due to air being forced out of the 

soil by mechanical means is termed compaction. 

2.3.2 SOIL STRUCTURE 

The term "soil structure" refers to the 3-dimensional arrangement of primary 

soil particles (sand, silt, clay) and/or secondary soil particles- (micro-

aggregates) into a certain structural pattern (macro-aggregates or peds). The 

aggregates of textural elements are held together by colloids (mineral and 

organic) and separated from one another by cracks and large pores. 

In a soil without structure the primary soil grains would be arranged in a more 

or less random fashion, approximating a dense packing such as might occur in a 

mixture of spheres of different sizes. It would have no systematic pattern of 

planes of weakness along which it could be broken apart to form distinct peds. 

Structure is an important morphological characteristic of the soil. As such it 

is not a plant-growth factor in itself, but it influences almost all plant-

growth factors such as water retention, water movement, soil aeration, root 

penetration, micro-biological activities, resistance to soil erosion, etc. 

In a structured soil the size and shape of aggregates governs the pattern and 

spacing of cracks and macro-pores, including the total surface area of aggre

gates. Movement of water takes place principally through major cracks and large 

pores, and the water that is most readily available to plants is stored in the 

macro-pores between and within the aggregates. These are also the spaces which 

plant roots explore most intensively for water and nutrients. 

There are four main aspects of soil structure: 

- The visible macrostructure, based on field investigation and described in 

terms of shape, size of the aggregates, and the grade (distinctness of 

individual aggregates) of structure. 

- The spaces in between and within the macro- and micro-aggregates or the total 

pore space and the pore size distribution. 

- The structure stability, especially of the topsoil or plough layer. 

- The structure profile, or the kind, thickness, and sequence of the various 
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structural horizons or layers. 

macro structures 

Macro structures may be divided into: 

- Simple structures, coherent or non-coherent, in which natural cleavage 

planes are absent or indistinct (structureless): 

. single grain, common in loose sands and silts with low organic matter 

content (e.g. beach sands, recent volcanic ash), and 

. massive, common in sandy loams, loamy sands, silt loams, etc. 

The soil clings together because of small amounts of clay and organic 

matter, but shows no preferred and pre-existing lines of cleavage. 

- Aggregate structure in which natural cleavage planes are distinct. 

An individual aggregate is called a ped (in contrast to a "clod" caused by 

disturbance such as ploughing or digging, and a "fragment" caused by rupture 

of the soil mass across natural surfaces of weakness). 

There are four primary types of structure, which are based on the relative 

length of vertical/horizontal axes and the contour of the edges (Fig.5): 

- Platy: Horizontal dimensions greater than vertical dimensions. 

Horizontal cleavage plane dominate (medium class: 2-10 mm). 

- Prismatic: Vertically elongated aggregates in the shape of prisms. 

Prisms rounded at the top are designated columnar (medium class: 20-55 mm). 

- Blocky: About the same horizontal and vertical dimensions (medium class: 

10-20 mm). 

Angular blocky: faces flattened, edges sharp. 

Subangular blocky: mixed rounded and flattened faces, some rounded edges. 

- Granular: More or less rounded granules uniform in shape and size. 

The term "crumb" indicates a granular aggregation which is more porous and 

more irregular in size and shape (medium class: 2-5 mm). 

Further details and illustrations can be found in the SOIL SURVEY MANUAL (1951). 

In literature on soils one may come across such references as "weakly 

structured", "well-structured soil", "strongly developed soil structure", 

"good structure" or "bad structure", etc. The first three refer to the grade of 

structure development and indicate whether or not the aggregates are distinct 

and retain their size and shape upon disturbance of the soil. The last two 

refer to qualities relevant to crop production. Good structure means that there 

are many stable small aggregates which optimize water movement, storage, and 
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aeration, and increase the surface area of aggregates upon which exchange and 

uptake of nutrients takes place. For example, a weak, fine granular structure 

indicates a risk of the structure being destroyed by cultivation. A strong, 

coarse prismatic structure is agriculturally bad. A well-developed fine crumb 

structure, on the other hand, is a very favourable type for crops. 

<y 

Fig.5. Drawings illustrating some of the types of soil structure: 

A. prismatic, B. columnar, C. angular blocky, D. subangular blocky, 

E. platy, F. granular. (Soil Survey Manual, 1951). 

pore size distribution 

When the water-transmitting and water-holding properties of the soil are being 

considered, it is the pore size distribution rather than the total pore space 

that is important. 

There are two main genetic types of soil pores : firstly the inter-aggregate 

spaces, which are pores resulting from the aggregation of the soil particles, 

and secondly, the biopores resulting from plant growth (rootlets and root-hairs) 
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and soil fauna (worms, insects, etc.)- Accordingly, pores vary in quantity, 

size, shape, and continuity. 

With respect to the size and the function of the pores, the following distinct

ions can be made: 

Descriptive term Size Main function 

macro pores 100 microns aeration and drainage (gravity flow) 

meso pores 30-100 ,, water conduction (rapid capillary flow) 

micro pores 30-3 „ water retention (slow capillary flow) 

The macro pores are visible to the naked eye. Other names for them are aeration 

pores and non-capillary pores. 

The meso pores are visible at 10 x magnification. 

The micro pores are not visible, but their presence can be deduced from the 

faces of the aggregates. When these aggregates have a rough surface, there are 

many micro pores. 

Water is present not only in the pores but also on the surface of the soil 

particles (hygroscopic and film water). 

structural stability 

Aggregates vary greatly in the extent to which they can withstand the impact of 

raindrops, the flow of irrigation or runoff water, and water-logged conditions. 

Plant growth (seedling emergence and stand), aeration, runoff and erosion all 

depend greatly on the structural stability of the topsoil. Such stability is 

mainly determined by the organic matter content of the soil (quantity and kind), 

the silt and very fine sand content in relation to the clay content, the 
+2 + 

chemical components associated with the clay (Ca , Na ) and mineral cementing 

materials (iron-, aluminium-,silicium-oxydes and hydroxydes). 

A soil is likely to be structurally unstable when it has a low content of 

organic matter, a high content of silt and fine sand, and a moderately high clay 

content. Such soils are often greyish or yellowish in colour. The process by 

which a dry soil mass disintegrates upon wetting is called "slaking" or the 

soil is said to "run together". On drying, this results in the formation of a 

surface crust (surface sealing). If mechanical forces (raindrops, trampling by 

cattle, ploughing of wet soils), cause the soil aggregates to break down the 

term "puddled" is used. Rice fields are usually puddled on purpose; this 

destroys the macro pores and creates a dense, more or less impermeable layer, 

which prevents excessive losses of water. 
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the structural profile 

The structural profile refers to the kind, thickness and sequence of various 

soil structures. The water-holding and water-transmitting properties of a soil 

profile consisting of sand over clay or of clay over sand are quite different. 

The position of a dense layer (bulk density 1.6 to 1.8) within the soil is of 

particular importance in matters of water percolation, aeration, and root 

penetration. Such layers, or an abrupt change in texture and structure (pro

nounced stratification), largely determine the effective soil depth or root 

zone depth. 

2.3.3 SOIL CONSISTENCE 

Soil consistence refers to the manifestation of the physical forces of cohesion 

and adhesion within the soil at various moisture contents (dry, moist, wet), as 

evidenced by the behaviour of that soil toward mechanical stress or gravity. 

Soil consistence will decide the duration of the period suitable for ploughing, 

the required traction force, and whether it is easy or difficult to prepare a 

good seedbed. 

Indirectly, the consistence can provide an experienced field surveyor with a 

great deal of useful information on soil texture, structure, and permeability. 

The phenomena of soil consistence and friability, plasticity, and stickiness, as 

well as resistance to compression (suitability for foundation), and shear (side 

slope of cavity). The last two phenomena belong in the field of soil mechanics 

and will not be discussed here. 

Friability characterizes the ease of crumbling of moist soils. Descriptive 

terms are: loose, very friable, friable, firm, very firm, extremely firm. 

Dry soil consistence is described in terms of: loose, soft, slightly hard, hard, 

very hard, extremely hard. 

Plasticity refers to capacity of the wet soil, within a certain range of moist

ure contents, to change its form when subjected to outside forces and to retain 

this new form (capacity for moulding). Soils containing less than 15 to 20 

percent of clay are generally non-plastic. The engineering classification of 

soil is based on texture (coarse grained, fine grained) and plasticity. 

For this classification two consistence limits (Atterberg limits) are defined: 

the liquid limit and the plastic limit. 

The liquid limit is the minimum water content at which a soil-water mixture 
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changes from a viscous liquid to a plastic solid. It has about the same con

sistency as the saturated soil paste used for salinity investigations. The 

liquid limit is determined by placing a soil sample in a standard machine, 

separating the sample into two halves with a standard grooving tool. If the 

groove in the soil-water mixture closes under the impact of 25 standard blows, 

the mixture is at its liquid limit. 

The plastic limit is the lower water content boundary of the plastic range for 

a soil. It is arbitrarily defined in the laboratory as the smallest water 

content at which the soil can be rolled into a 3 mm diameter thread without 

crumbling. 

The plasticity index or plastic number (liquid limit minus plastic limit) 

defines the range of moisture contents at which the soil has the properties of 

a plastic solid. 

At a moisture content above the plastic limit the soil will puddle if handled 

or worked, which means that soils should be ploughed at a moisture content 

below the plastic limit (LAMBE, 1961). 

Stickiness refers to the degree of adhesion of the wet soil material to other 

objects. It is determined by noting its adherence to the skin when pressed 

between thumb and finger. 

Descriptive terms are: non-sticky, slightly sticky, sticky, and very sticky. 

Another aspect of soil consistence is soil compaction, which denotes a combin

ation of firm or hard consistence and close packing of particles, resulting in 

a low porosity. It is measured by the resistance to penetration of the moist 

soil. This is in contrast to cementation, which refers to a hard, brittle con

sistence which does not soften appreciably on prolonged moistening. 

Consistence and structure are closely related. Whilst soil structure is the 

result of the forces in the solid phase, consistence is an indirect measure of 

these forces. 

This implies that the structure can sometimes be inferred from the consistence 

and that the converse is also true. 

2.3.4 SOIL COLOUR 

Colour is the most obvious and most easily determined soil characteristic. When 

the colour of a soil is considered in conjunction with other observable features 

- structure, texture and consistence - a great deal can be inferreH as to the 

soil's physical and chemical conditions. 
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causes of soil colours 

Colour is dependent on the nature of the parent material from which the soil 

has been formed, on internal and external drainage, and on the prevailing soil 

temperatures. 

Colour is due primarily to coatings on the surface of mineral particles. In 

aerated soils the colours can be dark brown, almost black when humus particles 

predominate, or they can be yellow to red due to coatings of more or less 

hydrated iron compounds. In waterlogged soils grey-greenish colours occur, due 

to the reduction of ferric iron to ferrous iron. This condition is indicated by 

the term "gley". 

A horizon may be uniform in colour or it may be mottled (marked with spots). 

The term "gley mottling" refers to the occurrence of patches or red, yellow and 

other colours due to oxidation after a period of reduction, under a regime of a 

fluctuating water table (temporary waterlogged conditions). Another important 

diagnostic factor which may indicate a temporary waterlogged condition is the 

colour of the soil in the vicinity of the roots. When the channels of living 

roots are characterized by lighter colours than the surrounding soil mass (e.g. 

in a brown soil the roots are outlined in grey or green) and the channels of 

dead roots are outlined in rusty yellow and browns, this may be taken as the 

criterion of impeded aeration. 

Pronounced red and yellow colours are generally associated with humid tropical 

or sub-tropical soils, whereas in arid climates greyish-yellow colours prevail, 

indicating little chemical weathering and low organic matter content. 

colour description 

In soil survey reports the colours are described using the Munsell colour 

system, which is a colour designation system specifying the relative degrees of 

the three simple variables of colour: hue, value, and chroma. 

Hue is a quality that distinguishes one colour from another. Main hues are 

yellow (Y), red (R), green (G), blue (B), and purple (P). 

The detailed soil hues in the range red to yellow are: 10 R, 2.5 YR, 7.5 YR, 

10 YR, 2.5 Y and 5 Y. 

Value is a measure of the lightness or darkness of any colour, Value 1 being 

very dark and Value 8 very light. 
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Chroma is a measure of the strength or weakness of a colour, Chroma 8 being 

very strong and Chroma 1 very weak. 

The Munsell notation should always be accompanied by a verbal description of 

the colour, for example: 10 YR 6/4 (light yellowish brown). 

2.4 SOIL MOISTURE 

The soil-water relations can be divided into two main categories: 

- the water-transmitting properties of the soil 

- the water-retaining properties of the soil. 

2.4.1 WATER-TRANSMITTING PROPERTIES 

The rate of water movement is governed by gravity or capillary forces, or both, 

and by the soil permeability. 

soil permeability 

The term soil permeability is used in a general, quantitative sense and means 

the readiness with which a soil conducts or transmits water. To define soil 

permeability more precisely, a distinction is made between: 

- the surface intake rate, which determines the relation between water 

absorption and runoff, 

- the sub-surface percolation rate, which determines the internal soil profile 

drainage, and 

- the hydraulic conductivity, which is the proportionality factor in Darcy's 

law (see Chap.6). This soil characteristic is of particular importance to 

sub-surface drainage flow (Fig.6). 
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Fig.6. Three aspects of soil permeability. 
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The intake and percolation rates both refer to vertical permeabilities under 

unsaturated conditions. The two terms, however, are not synonymous. The intake 

(or infiltration rate) refers specifically to the entry of water into the soil 

surface (i.e. transmission plus storage), whereas percolation rate refers to 

the water movement through the soil and may be defined as the quantity of water 

passing through a unit area of cross section per unit time at a given depth in 

the soil mass. 

internal drainage of the rootzone 

The term internal drainage refers to that property of the rootzone that permits 

excess water to flow through it in a downward direction. Poor internal drainage 

is revealed when infiltrating water becomes stagnant in the rootzone, e.g. on a 

poorly pervious layer. Whether such a layer will generate a so-called perched 

water table, i.e. a water table forming the boundary of a saturated zone below 

which an unsaturated soil layer is found, depends not only on the percolation 

rate of this layer, but also on the rate at which surface water infiltrates, 

and on the soil storage capacity. 

2.4.2 TOTAL READILY AVAILABLE MOISTURE 

The capacity of a soil to retain moisture that is readily available for plant 

growth is an important factor in land use planning. This applies not only where 

there is adequate rainfall, but also in irrigation projects, where irrigation 

water has to be applied at the right time and in the right quantity. 

Available Moisture (AM) is the moisture-holding capacity of a given undisturbed 

soil sample between field capacity (upper limit) and wilting point (lower limit) 

expressed in volume percentage. It is a physical characteristic of a given soil 

layer. 

The wilting point, also called permanent wilting point, is the moisture content 

at which most plant roots are no longer capable of taking up water from the 

soil, and the plants suffer irreversible wilting. Experience has shown that the 

moisture tension at wilting often equals about - 15 atm. Hence the fifteen at

mosphere percentage, which means the percentage of water contained in a soil 

that has been saturated and subsequently equilibrated with an applied pressure 

of 15 atm in a pressure membrane apparatus, is often used in preference to the 

wilting point. This measurement is much easier to apply and is more reproducible 

than when wilting point is determined by a series of experiments on live plants. 

The field capacity is the percentage of water remaining in a soil two or three 
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days after having been saturated and when free drainage has practically ceased. 

Experience has shown that for many deep, homogeneous and freely draining loams 

the moisture tension at field capacity equals about - 1/3 atm. Hence the moist

ure content of a soil sample equilibrated at 1/3 atm pressure is commonly used 

instead of the field capacity. 

There is often a good relationship between soil texture and AM-values, particu

larly when the soils have the same clay mineralogy, adsorbed ions, structure, 

etc. (see Fig.4). 

Total Available Moisture (TAM) is the sum of the AM-values for each layer of the 

actual or potential rooting depth of the soil profile, i.e. the effective soil 

depth. 

The term effective soil depth refers to the depth of soil which plant roots can 

readily penetrate in search of water and plant nutrients. The character of any 

layer limiting the effective depth will also affect the internal drainage of the 

soil. Limiting layers are: compact or distinctly indurated layers, bed rock, 

gravel, coarse sand or any abrupt and pronounced discontinuity within the 

profile. 

Not all the total available water (AM x effective root depth) may be considered 

readily available. A rule of thumb is that the TRAM-value, Total Readily 

Available Moisture, is about two-thirds of the TAM-value. As an example: when 

the effective soil depth = 1.20 m and AM = 10%, then TAM = 12 cm and TRAM = 

8 cm. 

In sandy soils the available water is generally so low as to be a major problem. 

2.5 SOIL AIR 

Plant roots and most soil micro-organisms utilize oxygen (0-) from the soil air, 

and give off or respire carbon dioxide (CO.). A continuous supply of oxygen is 

needed for this respiration process. An insufficient supply will limit plant 

growth, particularly in medium to fine textured soils in a humid climate and in 

irrigated soils. Improving the soil aeration is one of the main objectives of 

drainage. 
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2.5.1 COMPOSITION OF SOIL AIR 

The pore space of a soil - about 40-50 percent by volume - is occupied by water 

and gases, A small proportion of the gases is dissolved in the soil water and 

the rest constitutes the soil air. 

When comparing soil air and atmospheric air, the nitrogen content of both is 

about the same (79 percent), the oxygen content of soil air is lower (atmos

phere 20.97%) and its content of carbon dioxide and water vapor is higher (CO. 

atmosphere: 0.03%). 

The CO.-content of soil air is usually between 0.2 - 0.5%, but this may increase 

to over 1%, and may even become as high as 15%. There is a general inverse 

relation between 0. and CO. contents: when 0. decreases, CO. increases. With 

some notable exceptions, the sum of the soil air's CO. and 0. is very near that 

of the atmospheric air. 

In places where gas interchanges are prevented, as happens under waterlogged 

conditions or where anaerobic biological activities predominate, such products 

as methane (CH,) and hydrogen sulfide (H„S) may accumulate. 

The composition of soil air shows a marked seasonal variation. It represents a 

dynamic equilibrium between two competing processes: the production of CO. 

(respiration of roots and microbes) and its removal. 

2.5.2 VOLUME OF SOIL AIR 

There is an inverse relationship between soil-air and soil-water. An excessive 

amount of water implies a shortage of soil air. 

Of special importance is the air content of the soil one or two days after 

heavy rainfall or irrigation, when most of the gravity water has been removed. 

The air-filled pore space under these conditions is often referred to as 

aeration porosity, as aeration capacity, or as non-capillary porosity. It can 

be defined in terms of soil water tension, pore size diameter, or volume 

percentage. 

As à rule of thumb, it can be said that a soil is well aerated if it has an 

aeration porosity of 10% on a volume basis. 

2.5.3 RATE OF OXYGEN SUPPLY 

Two distinctive mechanisms are involved in the interchange of gases between the 

soil and the atmosphere: diffusion and mass flow (convection). Diffusion is the 

most important means by which the soil air is renewed. In this process the 
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individual gases move in response to their own partial pressure differences or 

gradients. Due to the respiration processes of roots and microbes, the partial 

pressure of oxygen is reduced below that of the atmosphere, resulting in a 

movement of atmospheric oxygen, whilst the partial pressure of the CO. rises 

above its normal atmospheric content, resulting in an outward movement of C0„. 

Diffusion must take place through air-filled pores, since air cannot diffuse 

readily through a water layer. The rate of diffusion is determined by the total 

volume, and especially by the continuity, of the air-filled pores. The sizes of 

the pores have little effect on the rate of diffusion, whereas they are of 

major importance for the water-transmitting properties of the soil. Experience 

has shown that a compacted surface soil layer or a soil crust has a strongly 

negative influence on the aeration of the soil, especially under wet conditions 

and high temperatures. 

Mass flow results when the flow of gases into and out of the soil is a conse

quence of the gradients in the total pressure between the soil air and the at

mosphere. Pressure differences of this type arise mainly from differences in 

temperature and barometric pressure. Compared with diffusion, the mass flow is 

a minor factor in soil aeration. For mass flow the size of pores is decisive, 

the rate of mass flow being proportional to a power of the pore size. 

2.5.4 PLANT REQUIREMENTS 

A prerequisite for vigorous plant growth is an ample supply of oxygen in the 

rootzone. A plant's aeration requirements, however, and its tolerance for poor 

aeration conditions, vary considerably. Its stage of growth can also be signi

ficant. There is a lack of information on the exact aeration requirements of 

different plants and of quantitative data specifying the aeration status of 

soils. Practical experience has established only the relative need for aeration. 

Plants with high oxygen needs are tomatoes, potatoes, sugarbeets, peas, and 

barley. 

Poor aeration conditions impede a plant's uptake of water (physiological 

drought) and nutrients, and curtails its growth of roots. 

2.5.5 AERATION CONDITION AND SOIL PROCESSES 

In many ways soil aeration also exerts an indirect influence on plant growth 

through the effect it has on the soil's biological processes and chemical 

conditions. 
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Nitrogen fixation by aerobic microbes is of great importance in soil and is 

strongly influenced by aeration. The lack of sufficient air prevents the 

oxydation of nitrogen and sulfur into forms that plants can readily utilize. 

The amounts of soluble iron and manganese are as strongly influenced by the 

oxygen concentration of the soil air, as they are by the pH of the soil. When 

anaerobic processes are periodically replaced by aerobic reactions, iron and 

manganese may accumulate in the soil in the form of concretion. Under anaerobic 

condition« both inorganic and organic toxic substances may develop. 

In general, a high CO. content increases the solubility of phosphorus and 

calcium carbonate. The latter is of importance in the reclamation of calcareous 

sodic soils. 

2.5.6 SOIL AERATION AND DRAINAGE 

The principal objective of subsurface drainage is to promote favourable soil-

water-air relations, and in this a distinction should be made between crop-

drainage and soil-drainage. 

The purpose of crop-drainage is to promote an aerated rootzone during the 

growing season of the crop. 

During the time that there are no crops on the land, the so-called soil-drainage 

is required. Soil-drainage has two aims: 

- to maintain the soil's structure, temperature and nitrogen supply in a state 

favourable to future plant growth, 

- to maintain soil trafficability and workability (ploughing, seedbed prepar

ation) . 

2.6 SOIL TEMPERATURE 

Along with water, air, and nutrients, another important growth factor for 

plants is the temperature of the soil. Microbiological activity, seed germin

ation, and root growth are all greatly affected by the soil temperature. 

2.6.1 SOIL TEMPERATURE AND PLANT GROWTH 

The process of germination depends on the temperature of the soil rather than 

that of the air. The temperature favourable to seed germination varies with 

the species of plants. The required minimum daily soil temperature in the top 

5 cm is about 10 C for alfalfa, 16 C for corn, and 22 C for cotton. 
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The subsoil temperatures are particularly important for root growth in early 

spring. Soils with well-drained subsoils warm up more quickly and to a greater 

depth than do soils with a higher water content, hence the importance of good 

drainage in early spring in temperate or mediterranean climates. 

Microbiological activity is very restricted below a temperature of 10 C. Above 

10 C the activity increases greatly, with a corresponding increase in the 

availability of nitrogen, phosphorus, and sulfur, brought about by the decom

position of fresh organic matter. 

2.6.2 SOIL TEMPERATÜRE AND DRAINAGE 

Wet soils have a higher heat capacity (thermal capacity or specific heat) than 

do dry ones. 

The specific heat of any substance is defined as the number of calories of heat 

required to raise the temperature of one gram of that substance by 1 C. 

The specific heat of water is 1.00 cal/g. The specific heat of a dry mineral 

soil is usually about 0.20 cal/g. To compare the heat capacity of dry and wet 
3 o 

soils, it is preferable to use the volumetric heat capacity (cal/cm ). One cm 

of dry soil with a pore space of 50% has a heat capacity of 0.5 x 265 x 0.2 = 
3 

0.26 cal/cm . Such a soil, when all its pores are filled with water, would have 
3 

a heat capacity of 0.26 + (0.5 x 1.0) = 0.76 cal/cm . If only half the pore 

space were filled with water, the heat capacity would be: 0.26 + (0.25 x 1.0) = 
3 

0.51 cal/cm . Furthermore, if excess water does not percolate through the soil, 

most of it will be removed by evaporation, which has a pronounced cooling effect. 

The temperatures of poorly drained soils are 4 to 8 lower than those of 

comparable well-drained soils. 

Besides the specific heat of the soil, the heat conduction should also be taken 

into account, but this does not alter the general conclusion that badly drained 

soils are cold soils. 

2.7 SOIL FERTILITY AND PRODUCTIVITY 

2.7.1 DEFINITIONS 

The term "fertility" is used in various senses. It may refer to: 

a. The inherent capacity of the soil to supply nutrients to plants in adequate 

amounts and in suitable proportions. Other terms used in this sense are 
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"chemical fertility" and "nutrient status". The nutrient-supplying capacity of 

the soil can be divided into 

(i) the actual fertility, being the nutrient supply per unit of time, otherwise 

called the short-term nutrient-supplying capacity, and 

(ii) the potential fertility, which is a function of the total reserves of plant 

nutrients in the soil (weatherable minerals , organic matter, exchangeable 

bases) and/or the soil's response to the use of fertilizers. 

b. The ability of the soil to yield crops. In this sense fertility is a function 

of both chemical and physical soil properties (soil-water and soil-air relation

ships) . 

Crop yields, however, depend not only on soil conditions, but also on the pre

vailing climatic conditions and on farm practices as regards soil, water and 

crop management (use of fertilizers, control of erosion, weeds, pests, drainage, 

irrigation, variety used, etc.). These aspects are covered by the term "product

ive capacity" of the soil, which refers to the yields of crops adapted to that 

particular soil and climate under a given set of management practices. 

In land classification the term "soil productivity" is used. This term means the 

productive capacity, expressed in terms of produce. 

Under certain conditions a soil can have a high productive capacity but a rather 

low productivity. Ultimately, it is only the soil productivity that counts. It 

is measured in terms of output (yields) in relation to inputs (water, 

fertilizer, insecticides, machines, etc.) for a specific kind of soil under a 

defined system of management. 

2.7.2 THE SUPPLY OF NUTRIENTS 

The major elements absorbed by plant roots from the soil are nitrogen (N), 

phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and certain trace 

elements, i.e. elements which are needed in minute quantities, such as iron 

(Fe), manganese (Mn), copper (Cu), zinc (Zn), boron (B), molybdenum (Mo), 

cobalt (Co). 

The elements may occur in the soil in three main forms: in the minerals 

(temporarily unavailable), in the exchangeable form, and in the bulk of the 

solution. 

Nitrogen is fixed from the atmosphere through bacterial action (nitrogen 

fixation) or is released from the organic matter in the soil after decompos-
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ition (nitrification). Phosphorus is derived from decomposition of organic 

matter and weathering of certain minerals. The other elements are primarily 

supplied by the weathering of inorganic solid phase. N, P and K are commonly 

supplied to the soil as commercial fertilizers and/or as farm manure. 
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PURPOSE AND SCOPE 

Brief account of the problems of salty soils, their origin, occurrence, and 

reclamation. The drainage of salty soils is discussed in detail in Chapters 9 

and 11 (Vol.11). 
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Salty soils 

3.1 ORIGIN AND OCCURRENCE 

All soils, even those in humid areas, contain some soluble salts. These are 

usually calcium salts and their concentration is often no more than 0.4 g per 

litre soil moisture. The salt content of soils in arid zones, though usually 

higher than in humid areas, can still be considered low when compared with 

actual, salty, soils. Salty soils show high contents of various kinds of salts 

and/or a high percentage of exchangeable sodium. Heavily salinized soils may 

even show efflorescences or complete salt-crusts, formed by such salts as 

gypsum (CaSO,), common salt (NaCl), soda (Na^CO,), or more complex salts. 

Some salty soils came into being because the parent material was itself salty. 

Others became salinized by being flooded with sea water, by wind-borne salt 

spray or dust, by irrigation with water that contained salt or that was con

taminated by saline industrial waste waters. The majority of salty soils, 

however, have developed as a result of the upward capillary flow of water 

exceeding its downward movement. 

A considerable capillary transport of groundwater to the surface is only to be 

expected when water tables are high for prolonged periods of time. Such a 

situation is often found in irrigated areas which have inadequate drainage. High 

phreatic levels also occur in regions where the groundwater reservoir is fed 

from natural sources, which means that salinization is caused by the evaporation 

of water that fell on another place. Hence, salty soils are mostly found in or 

near depressions and valleys in arid or semi-arid regions (Fig.1). 

elevation 
m 
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vp Fig.]. Relation between depth of groundwater 
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The extent of capillary salinization and the depth at which salts accumulate 

are governed by the rate of capillary rise and the salinity of the groundwater, 

counteracted by the leaching intensity (by rain or irrigation water). The rate 

of water transport to the soil surface depends on the depth of the groundwater 

table, on the potential gradient between groundwater and soil surface, and on 

the capillary conductivity of the soil in relation to the moisture content 
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(Chap.5). The reduction of the salt content in the soil brought about by 

irrigation water or rain depends on the quantity and quality of water perco

lating through the soil, on the physical characteristics of the soil,and on its 

moisture content. 

3.2 SALT TYPES AND THEIR DISTRIBUTION 

Salty soils vary considerably in their salt content, their types of salts, 

their structure, and their reclamability. 

Dominant anions are chlorides, sulphates, and carbonates, sometimes nitrates. 

Sodium salts occur most frequently, but calcium and magnesium compounds are 

common too, while mixtures of various salts and complex minerals are not 

exceptional. Fig.2 shows a typical pattern of the various soluble components 

found in a saline sodic soils. 

meq/100 g soil 
26.1—• 

14.0 

Ca" 

CATIONS 

Fig.2. Distribution of various soluble salts in the upper 2 m of a saline 

sodic soil. Analysis performed in 1:5 extract. (Field guide of the 

Excursion of the Symposium on Sodic Soils (not published) 1964). 

As mentioned before, the non-saline soil solution usually contains mainly 

calcium salts. A relation exists between the cations in the soil solution and 

those bound, in an exchangeable form, to the clay particles. In normal soils 

calcium generally forms 80% or more of the exchangeable cations. Magnesium, 

potassium and sodium make up the major part of the remaining exchangeable 

cations, sodium remaining below 5% (often even below 1%) of the total cations. 
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The soil solution in saline soils is not only much more concentrated, but the 

kinds of salts are different from those in non-saline soils. That means that 

the cations adsorbed at the surfaces of the clay particles also show another 

composition. The percentage of exchangeable calcium is lower and the values of 

potassium, magnesium and, in particular, sodium are higher. 

Characteristics of salty soils is the non-uniform salt distribution. Within 

short distances the salt content may vary greatly, owing to slight differences 

in level, soil composition, permeability, plant growth, etc. (Fig.3). The vege

tation on salty soils often shows a strikingly patchy growth. The wide variation 

in salinity, both horizontally and vertically, greatly hampers adequate sampl

ing. 
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16 - 19 
Fig.3. Differences between salt figures over 

short distances. 

3.3 EFFECTS OF SALINITY ON CROPS AND SOILS 

Salt affect crops through specific toxic ions, though the toxic effect is often 

less significant than that of the increased osmotic pressure of the soil 

solution, which results in a reduction of the plants' capacity to withdraw 

water from the soil. There may be an indirect adverse effect on crops caused 

by the unfavourable structure of salty soils. The characteristics of clay soils 

(shrinkage, swelling, pore space distribution, total pore space, structural 

stability) are influenced substantially by the strength of attraction between 
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the clay particles. This attraction depends largely upon the exchangeable 

cation composition. Divalent and trivalent cations (Ca, Mg; Al) are more strong

ly attracted to clay particles than are monovalent cations (Na, K) and allow 

these particles to condense into stable larger aggregates, which can result in 

better structured agricultural soils. A low salt concentration, coupled with a 

predominance of sodium among the exchangeable cations, causes deterioration of 

the structure of soils that contain significant amounts of clay. A high salt 

concentration in the soil solution compresses the layer of adsorbed cations and 

hence physical qualities of the soil are good. These effects can be predicted 

from the Gouy-Chapman Diffuse Double Layer Theory for exchangeable cations. This 

theory describes the thickness of the mantle of bound water in which the 

adsorbed exchangeable ions are distributed around the clay particles. After the 

leaching of the excess of salts, the clay particles of a sodium soil disperse; 

fine particles may be washed down to the subsoil where they form an impervious 

layer; the swelling on wetting becomes more pronounced; permeability for air and 

water is greatly reduced; crust formation is favoured; the soils are sticky 

when wet and hard when dry; they become unsuitable for cultivation and are 

hardly fit for plant growth. In soils containing sodium carbonate, organic 

matter may go into solution, colouring the surface of the soil black upon eva

poration of the soil moisture. Many soils with high exchangeable magnesium 

values show bad structures too. 

3.4 CLASSIFICATION 

Many local names are used to identify salty soils and their characteristics: 

Reh, Usar (India), Sabbagh (Iraq), Tir (Morocco), Brak (S.Africa) and Szik 

(Hungary). The term white and black alkali have been widely used in the USA. 

Internationally known and much used are the Russian names Solonchak and Solonetz. 

White alkali and Solonchak refer to soils containing an excess of soluble salts, 

usually visibly accumulated at the ground surface. Black alkali and Solonetz 

soils contain an excess of exchangeable sodium in the absence of considerable 

amounts of soluble salts. The Russian classification is, in part, based on soil 

profile development. Thus, as a result of some leaching, by rainfall, a Solonetz 

shows a compact, prismatic or columnar, clay-enriched subsoil layer (B-horizon). 

Probably the most practical classification is the one used by the US Salinity 

Laboratory (RICHARDS, ed., 1954). This classification is based on two charac-
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teristics: the salinity of the soil (i.e. the amount or concentration of water-

soluble salts in the soil) and the exchangeable sodium-percentage. The soil 

salinity is the predominating factor for plant growth, whereas the exchangeable 

sodium level determines the possible decline of structure. 

As a parameter for the soil salinity the electrical conductivity of the 

saturation extract (EC ) is used, expressed in mmhos, mho being the reciprocal 

value of ohm. The saturation extract is the solution extracted from a satur

ated, disturbed soil paste which is a glistening mixture of soil and water 

generally just sliding freely from, a spatula. It has a water content of about 

the liquid limit. To calculate the exchangeable sodium percentage (ESP), the 

amount of exchangeable sodium (ES) and the cation-exchange capacity (CEC) have 

to be determined: 

ESP 
100 x ES 

CEC 

The ESP can also be estimated from the amounts (Ca + Mg ), Na and K found 

in the saturation extract (Fig.4). 

Fig.4. Nomogram for determining the SAR value 

of a saturation extract and for 

estimating the corresponding ESP value 

of soil at equilibrium with the extract. 

(According to Richards, ed., 1954). 

Based on EC and ESP values, the classification is as follows: 
e 

saline soils 



(a) EC higher than 4 mmhos/cm at 25 C 
e 

(b) ESP lower than 15 

(c) pH generally below 8.5 

Such quantities of soluble salts adversely affect the majority of crops. White 

salt crusts may be found on the surface of these soils. The chief anions are 
CI and SO. and to a lesser extent HCO. and N0_. Insoluble carbonates and 

4 3 3 

sulphates may be present. Na , as a rule, comprises less than 50% of the soluble 

cations. 

saline-sodic soils 

(a) EC higher than 4 mmhos/cm at 25 C 
e 

(b) ESP higer than 15 

(c) pH seldom higher than 8.5 

Crop growth on these soils is seriously impeded. Their structural condition is 

usually fair, but may deteriorate considerably upon leaching. The soil may then 

become strongly alkaline; soil particles will disperse; the permeability will 

diminish markedly, and its suitability for tillage will reduce. 

non-saline sodic soils 

(a) EC lower than 4 mmhos/cm at 25 C 

(b) ESP higher than 15 

(c) pH usually between 8.5 and 10, but lime-free soils pH-values as low as 6 

may occur. 

In general, the important anions are Gl , SO and HCO, but carbonates too are 

often present. Na is the main cation in the soil solution, Ca and Mg being 

largely precipitated. The structure of non-saline sodic soils is usually very 

bad. 

discussion 

The above classification has the advantage that it is simple and is based on 

characteristic quantities. However, it does not completely cover the wide 

variety in field conditions (no classification could!) and should thus be 

handled judiciously. For this reason, the choice and use of the parameters EC 

and ESP will be briefly discussed. 

Relationships between EC -values in the root zone and crop growth do exist 
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(Table 1), but these relations are not strict because the salt tolerance of 

crops is also dependent on weather conditions, moisture regime of the soil 

(irrigation), the kind of salts present, and the extent to which certain salts 

predominate. For a proper use of the data obtained, depth and time of sampling 

should always be noted in view of the variability of salinity with depth and 

time. 

Table 1. Relation between salt content in the root zone and 

plant growth (medium textured soils) 

Crop response EC Salt Content 
(% on a dry 
matter basis) 

Salinity effects negligible 

Yields of very sensitive crops may be restricted 
(e.g. beans and most fruit crops) 

Yields of many crops restricted 

Only tolerant crops yield satisfactorily (in lower 8-16 
range cotton, rape, sugar beet, barley, most grasses, 
and some clovers; in higher range some salt-resistant 
grasses) 

The ESP value, which is often used in calculating the amount of gypsum required 

for the reclamation of salty soils, should be handled carefully. The critical 

value of ESP = 1 5 does not apply to all soils. Soils high in organic matter may 

have a far better structure than would be expected from their ESP-values. On 

the other hand, some soils with a poor Solonetz-like structure show ESP-values 

far below 15. Moreover, the ratios of exchangeable K to exchangeable Na and of 

exchangeable Mg to exchangeable Na may influence the effect of the exchangeable 

sodium on soil properties. 

The thickness of the diffuse (double) layer of exchangeable cations depends on 

its composition and the salt concentration of the soil moisture. Exchangeable 

Ca-ions reduce the dimensions of the layer whilst Na-ions increase them. More

over, the thickness decreases with increasing concentration of the soil solution. 

This layers of exchangeable cations usually produce favourable physical proper

ties whereas, from an agricultural point of view, thick layers provoke an unfa

vourable behaviour of clay soils. For this reason, saline-sodic soils with a 

concentrated soil solution do not show specific structural problems (the fine 

particles of the soil being kept coagulated by the high concentration of elect-
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rolytes). After most of the soluble salts are leached, however, the structure 

of the soil can deteriorate. 

3.5 RECLAMATION 

The general principle of reclaiming saline soils comprise: 

a. the prevention of further salinization, 

b. the leaching of salts, 

c. the replacement of exchangeable sodium by exchangeable calcium. 

Preventing further salinization may require the prevention of flooding, but 

most times it is a matter of reducing the capillary rise of soil moisture. A 

lowering of the groundwater table is usually the solution. This process generally 

requires the construction of a drainage system. Groundwater tables are often 

lowered to a depth of 1.5 - 2 m below ground surface. The depth required on such 

factors as climate (a lesser depth is admissible in humid regions), the kind of 

soil (capillary rise in sand differs from that in clay soils), the quality of 

groundwater and irrigation water (the better their quality, the higher the 

groundwater table may be), and the irrigation practices. 

In arid zones the leaching of the salts requires irrigation; in semi-arid areas 

precipitation will sometimes be sufficient to leach the soil, provided that the 

groundwater table is lowered to an adequate depth; in humid regions rainfall 

usually frees the soil of salt within a reasonable lapse of time. 

Leaching is seldom simply a matter of replacing the saline soil solution by 

percolating fresh water through the soil. The water moving downwards will mix 

with the soil moisture. The thinner the layer of water required for complete 

mixing, the higher the leaching efficiency. This efficiency depends on the 

moisture content of the soil, the rate of leaching, the pore size of distribut

ion, the spatial arrangement of various pore sizes, and the vertical distribut

ion of the salt through the profile. 

During leaching the equilibrium between adsorbed ions and ions in the free soil 

solution is disturbed and exchanges take place. Ro replace exchangeable Na-ions 

by Ca-ions, enough Ca-ions must be present in the soil moisture, and leaching 

is required to wash down the product of the exchange process. The natural con

centration of Ca-ions present in the soil solution of calcareous soils is often 

too low to provide a rapid exchange. Large applications of organic matter, 

designed to increase the solubility of the lime (production of CO.), are some-

84 



Salty soils 

times successful when used in combination with irrigation. Another technique is 

to transform the lime in the soil into a more soluble Ca-salt by applying H_SO, 

or S. The latter will be oxidized by micro-biological action and will then re

act with the lime in the soil. 

A common practice is to apply a fairly soluble Ca-salt, usually gypsum, direct

ly to the soil. Some salty soils already contain gypsum and here leaching alone 

may suffice. 

The water used for leaching saline soils should have a low salt content and 

a favourable Na/Ca ratio. 

reclamation of saline soils 

The reclamation of saline soils is largely a matter of leaching excess soluble 

salts from the root zone. Such leaching, however, will serve no useful purpose 

if measures are not taken to prevent resalinization after reclamation, i.e. to 

eliminate the cause of salinization or, at least, to reduce it. This may be 

done by lowering the groundwater table to a depth deemed necessary and feasible 

under the local conditions of groundwater, soils, topography and climate. 

Great quantities of water (as much as 100 to 150 cm) are often needed for 

leaching. The leaching itself will create few adverse side-effects since, as 

observed above, the structure of the soil will nog be affected seriously and 

permeability does not decrease markedly during leaching. Soluble plant nut

rients - particularly nitrates - are lost from the soil along with the excess 

salts during leaching and sometimes measures have to be taken to restore soil 

fertility after leaching. 

It may be profitable in the first instance to leach only the extent that salt-

tolerant crops can be grown, and to continue leaching during and after the 

first and following crops. 

It may be safely be said that a combination of deep drainage and adequate 

irrigation will be sufficient for the reclamation of most saline soils. 

reclamation of saline-sodic soils 

Reclamation of these soils is more complicated because special measures have to 

be taken during leaching to prevent a decline of structure. In an unreclaimed 

state the physical appearance of these soils closely resembles that of saline 

soils, but as soon as the bulk of the salt has been leached, the detrimental 

effect of the high ESP becomes evident through a deterioration of structure. 
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For saline-sodic soils, too, the prevention of further salinization by lowering 

groundwater tables is a prerequisite for successful reclamation. 

Leaching with irrigation water containing calcium may prevent a decline of 

structure. Leaching with water of a gradually decreasing salt content, if 

available, may also help to prevent or reduce collapse of structure. On saline-

sodic soils which already have an unfavourable structure before reclamation, 

rice is often a useful initial crop. Sometimes, the very first step in reclam

ation is the construction of fish ponds; in this stage some salt may be removed 

by diffusion. 

The gypsum used for restoring soil structure or preventing its decline may be 

either dissolved in irrigation water or spread over the land. There is no ad

vantage to be gained in psreading more gypsum than can be dissolved in the 

applied sheet of irrigation water. It is often wise to give an initial dressing 

that is lower than required amount. It may be that this application increases 

the permeability to such an extent that natural processes will begin the re

placement of exchangeable Na-ions by Ca-ions. 

The gypsum requirement can be determined by treating a soil sample with a 

saturated gypsum solution and measuring the number of Ca-ions which have been 

used for replacement of other exchangeable cations (except Mg). A rough 

approach to the amount of gypsum required is given by a formula of the type 

ESP - ESPf 

x = 2 _ _ L . CEC. y 
z 100 Jz 

where 

x = the amount of gypsum required per ha for restoring structure in a layer 
z 

z cm thick 

ESP = actual exchangeable-sodium-percentage 

ESP, = permissible final exchangeable-sodium-percentage 

CEC = cation-exchange-capacity in meq per 100 g of dry soil 

y = the amount of gypsum required per ha to replace 1 meq of Na per 100 g of 

dry soil in a layer z cm thick and of specified bulk density. 

For a soil with a bulk density of 1.4 the theoretical value of y is 1200 kg of 

gypsum for a 10 cm layer. In practice more gypsum will be needed because of the 

non-uniform distribution of the amendment, because part of the CaSO, will dis

place other cations, and because some gypsum may be washed to the subsoil. 
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On the other hand, the supply of Ca-ions by the soil itself has not been 

included in the calculation. 

When amendments other than gypsum are applied, Table 2 (RICHARDS, ed., 1954) 

may be used for converting amounts of gypsum to quantities of other chemicals. 

Table 2. Tons of structure-improving amendments equivalent to one ton 

of gypsum (CaSO .2 H20). 

Sulphur 0.19 

Sulphuric acid 0.61 

Iron sulphate (FeSO . 7 H-O) 1.71 

Aluminium sulphate (Al. (SO,).. 18 H.0) 1.37 

Limestone (CaCO,) 0.62 

reclamation of non-saline sodic soils 

The only measure required with these soils is an improvement of their structure, 

but this is often hard to achieve. Large quantities of gypsum or other suitable 

amendments may be needed. 

Infiltration of the amendments into the soil is slow due to a poor permeability, 

and the downward movement of clay particles creates dense and impermeable sub

soil horizons. Sometimes deep tillage combined with subsoiling may improve the 

structure since it loosens impervious strata. Deep ploughing will bring subsoil 

containing lime and/or gypsum to the top. This may, however, unfavourably 

affect crop yields for the first year or two. 

preventing resalinization 

It must be kept in mind that, after having been reclaimed, salty soils will be 

threatened with resalinization through salts moving into the root zone by up

ward capillary transport. Low groundwater tables, made possible by deep drain

age systems, will keep the capillary rise within limits, but some extra irri

gation will be required to wash down the salts brought up between applications 

of water. The higher the groundwater table for a given soil, the more leaching 

will be needed. When plenty of irrigation water is available for leaching, even 
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comparatively high groundwater tables may permit an acceptable salt-equilibrium. 

For the permanent use of land endangered by salinization, leaching intensity 

and depth of groundwater have to be in harmony. 
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PURPOSE AND SCOPE 

The relation between plant growth, root development and soil moisture 

conditions are described in general terms, and, in somewhat more detail, 

the effects of high water tables and drainage on soil conditions and crop 

response are discussed. 
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Plant growth in relation to drainage 

4.1 DRAINAGE AND AGRICULTURE 

Drainage of agricultural land is the natural or artificial removal of excess 

water from in or on the soil. Water is 'in excess' when the amount present 

adversely affects the production of crops by reducing the soil volume acces

sible to roots. 

Excessive soil moisture also prevents the carbondioxide formed by plant roots 

and other organisms from being exchanged with oxygen from the atmosphere, a 

process known as aeration. Without aeration the root development and uptake 

capacity for water and nutrients of most plants is reduced. The effect of drain

age on soil aeration and consequent root development and plant ecology will be 

discussed in Sect.2. Drainage also affects physical soil conditions (Sect.3), 

cultivation practices (Sect.4), nutrient supply (Sect.5), soil salinity or alka

linity (Sect.6) and diseases or pests (Sect.7). In Sect.8 the reactions of 

various groups of crops (grassland, arable crops, and fruit trees) to the depth 

of the groundwater table will be reviewed. 

Drainage will often result in new areas being brought under cultivation or in 

the agricultural pattern of an area being changed because conditions have 

become favourable for a greater or different range of crops. When waterlogged 

or saline land is reclaimed by drainage, the usual types of monoculture (e.g. 

extensively exploited grass- or hayland, or, in tropical monsoon areas, a cont

inuous cultivation of rice) will often make way for a wider variety of crops. 

Most arable crops, e.g. cereals, root crops, fibre crops, and fruit trees, 

require well-drained soils. Deeply aerated crop lands need regular supplements 

of organic matter and nitrogen fertilizer. Here, the cultivation of leguminous 

plants will be helpful. Since leguminous plants may also be valuable as high 

protein fodder, their introduction into the crop rotation may stimulate live

stock farming, leading to a type of mixed farming. 

Surface drainage in erosive areas is often accomplished by such methods as gras

sed waterways or strip cropping with dense-growing cover crops. These methods, 

too, will move arable (row crop) farming into the direction of mixed farming. 

Even fish ponds may be part of such farms. 

If hydrological, topographical, and soil conditions prevent the drainage of 

areas with a shallow water table, these areas should be used for crops that can 

benefit from such conditions. This will mean either grassland (livestock) or 

93 



vegetable farming, and in tropical regions the cultivation of rice. (If the 

surface drainage is sufficient, other crops such as sugar cane can alternate 

with rice). 

To conserve organic soils and to preserve them from shrinkage, water tables are 

preferably maintained high. On many organic soils, therefore, cultivation is 

limited to fodder crops, rice, vegetables, or other crops suited to high water-

level conditions. 

In the drainage of excess water, a distinction can be made between the drainage 

of: 

- the soil surface 

- the root zone 

- the groundwater. 

In the absence of shallow groundwater tables, drainage problems on the soil 

surface or in the root zone will be due on the one hand to high precipitation 

or irrigation intensities, or on the other to unfavourable soil structures that 

cause the water to infiltrate or percolate too slowly. Such problems can be 

solved either by installing surface drainage or by improving the soil conditions 

through good soil management. Where high groundwater tables exist, drainage can 

be tackled by evacuating the groundwater through a subsurface drainage system. 

Drainage and soil conditions often influence one another. For example, a lower

ing of the groundwater table may result in a better structure of the topsoil, 

an increased infiltration rate and porosity, and consequently a reduced surface 

drainage problem. 

4.2 PLANT AND SOIL-WATER RELATIONS 

4.2.1 WATER AND AIR IN THE SOIL 

Roots require oxygen for respiration and other metabolic activities; they 

absorb water and dissolved nutrients from the soil, and produce carbondioxide, 

which has to be exchanged with oxygen from the atmosphere. This aeration 

process, which takes place by diffusion and mass flow, requires open pore space 

in the soil. If roots are to develop well, water plus nutrients and air must be 

available simultaneously. In the root zone, the interstices between soil 
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particles (the pore space) comprise 40 to 60% of the total soil volume. The sub

terranean plant parts - roots, stolons etc. - and micro-flora and soil fauna 

grow and develop in these interstices. If the pore space is mainly occupied with 

water for an appreciable length of time, the soil is said to be waterlogged. 

Waterlogging is an undesirable condition for most crops, since it causes a 

deficiency of oxygen. Both soil texture and structure are a means of describing 

the size of pores (see Chap.2). Capillary and non-capillary pores are distin

guished. The capillary pores, which are small, are important for the storage of 

water for the plant. The non-capillary pores, which are large and readily 

emptied, function under adequate drainage conditions as channels for the ex

change of gases. 

With regard to soil moisture content, two important conditions are distinguished: 

field capacity and permanent wilting point (Chap.2). The amount of water in the 

soil between field capacity and permanent wilting point indicates the availab

ility of soil moisture for plant growth. Field capacity is considered the upper 

limit of available soil moisture. It is the amount of water which, under good 

drainage, is retained against the force of gravity. At field capacity, the cap

illary pores are filled with water and the non-capillary pores are filled with 

air. In most soils aeration is sufficient at this point, i.e. the air-filled 

pore space is sufficiently large for the exchange of gases. In some heavy soils, 

however, although the pore space may be 60% or more, almost all pores are of 

capillary dimensions. Such pores remain filled with water and cannot be readily 

drained. In this case the soil is essentially waterlogged at field capacity 

(Fig.1). Sandy soils, on the other hand, often have too little capillary poros

ity. Consequently they do not hold much water against gravity and have a low 

moisture availability for the plant. Well-distributed rainfall or frequent 

irrigations will then be necessary to satisfy the water requirements of the 

crop. 

The wilting point is the lower limit of available soil moisture. At this point 

soil moisture is depleted to such a degree that plants dry out and fail to 

recover when placed in a dark, humid atmosphere: the plant has wilted. 
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A) An unfavourable soil. Roots confined to 

shallow layer because of poor aeration in 

deeper layer. 

non capillary pore space 

B) A favourable soil. Deep aeration permits 

a more uniform distribution of roots. 

6 8 10 
depth in feet 

Fig.1. Distribution of rootlets (DAUBENMIRE, 1953). 

4.2.2. ADAPTATION OF PLANTS TO SOIL MOISTURE CONDITIONS 

Plants are differently adapted to the water availability in their environment. 

Natural vegetation reacts sharply to different soil moisture regimes as shown 

in Fig.2 (BARON, 1963). 

reed grass 
(gtyceria maxima) 

nettle 
(urtica dioica) 

hairy wil low herb 
(epitabium hirsutum) 

Fig.2. Cross-section showing soil elevation 

and plant growth in the Itchen 

valley (Hampshire, U . K . ) . 

(% indicates water content of top-

soil) 
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Accordingly, various ecologie classes of plants are distinguished, e.g. hydro

phytes, xerophytes and mesophytes, denoting plants of wet, dry and moist 

habitats, respectively. The relation of these groups to a soil's moisture 

content has been demonstrated by WHITE (1956) (Fig.3). 

soil moisture 
vol °/o 

50 

40 

30 

20 

.10 

\ b 

\ c 

^ d 
Ql 

\ e \J 

hydrophytes a-b-c 

mesophytes c-d 

xerophytes c-d-e-f-g 

(e-f dormant stage) 

Fig.3. 

Relation of growth of hydrophytes, 

mesophytes and xerophytes to moisture 

conditions in a loam soil. 

Hydrophytes include aquatic plants (growing in water) and swamp and bog plants 

(inhabiting soils saturated with water). These plants develop peculiar internal 

structures to facilitate the aeration of their roots. Aquatics occur under con

ditions a-b (in Jig.3); bog plants under b-c. Hydrophytes (e.g. rice) grow under 

anaerobic soil conditions. During germination they first develop shoots which 

elongate rapidly and soon pierce through the water surface into the air. During 

the growth of the shoot, internal air channels (lacunae) develop, making possible 

the passage of air from shoot tip to base as soon as the shoot has reached the 

air. From that moment on the root starts to grow, simultaneously developing air-

filled intercellular spaces through which oxygen is transported. Hydrophytes 

often have a shallow root system, or with some species, no root system at all. 

Roothairs are generally not formed. On the other hand in wet habitats some 

aquatic plants (e.g. low-land rice) may have a maximum development since mechan

ical impedance to root growth in the liquid mud is virtually nil. 

Xerophytes are plants of relatively dry habitats. By morphological or'physio

logical means these plants escape or endure recurrent drought. Xerophytes often 

develop an extended, but shallow root system, since in dry regions moisture 

97 



usually penetrates only into the superficial soil layers. 

To the group of mesophytes belong those plant species that cannot inhabit water 

or wet soil, nor can they survive in habitats where water is significantly 

depleted (DAUBENMIRE, 1959). The majority of crop plants belong to this group. 

They generally have a moderately deep root system. Mesophytes and xerophytes 

occur under conditions indicated by the points c to d in Fig.3. Mesophytes die 

at moisture contents below point d and xerophytes become semi-dormant or 

dormant. In arid regions one finds not only xerophytes but also some specially 

adapted mesophytes: the phreatophytes and ephemerals. Phreatophytes are able to 

develop deep root systems, with which they tap the phreatic water at greater 

depths than most other plants! 

Ephemerals, in contrast with phreatophytes, have a rather shallow and diminutive 

root system. Their chief physiological adaptation is their ability to complete 

their life cycle during the brief rainy season. These plants set seed before the 

soil dries out. They tolerate atmospheric drought, but not soil drought. 

At the onset of germination, seeds absorb large quantities of water. This 

initiates the further development of the young plant. Unlike hydrophytes, the 

development of mesophytes and xerophytes almost invariably begins with the root 

system. In most circumstances water in the immediate environment of the seed is 

soon exhausted and the development of the roots enables a larger soil volume to 

be explored for water. If, during their development, the roots meet a waterlog

ged soil with reduced aeration, their growth will be suppressed. DAUBENMIRE 

(1959) describes the root development under reduced conditions as follows: 

- Roots are shorter and root systems occupy less space and become shallow and 

sometimes root branches extend upward into the atmosphere. 

- Roots may be less numerous, root branching less complex, and roothair form

ation is usually suppressed. 

- Sometimes development of adventitious roots from the base of the stem is 

stimulated. 

- The respiration of the roots changes from aerobic to anaerobic with a conse

quent accumulation of toxic by-products and a reduced release of energy from 

the same amount of carbonhydrates. 

- The rate of absorption of water and nutrients and the rate of transpiration 

are reduced. 

98 



Plant growth in relation to drainage 

As a consequence of these adverse soil conditions other plant parts are affect

ed as wel : 

- Shoot leaf areas are reduced and leaves are discolored. 

- Reproductive processes are delayed and repressed, flowers or young fruit may 

drop prematurely. 

Good aeration and moisture conditions throughout the greater part of the soil 

profile stimulate growth and development of roots in all directions. The result

ing extensive, deep root system explores a large soil volume for water and 

nutrients. This is enhanced by the intensive contact of roothairs, which are 

formed more profusely under the stimulus of an adequate external supply of 

oxygen (ROGERS and HEAD, 1970). In well-drained soils, the deep root system may 

even advantageously withdraw water from the capillary fringe of the groundwater. 

Above the groundwater table two zones can be distinguished: a nearly saturated 

zone and a zone with moisture content near field capacity into which ground

water rises by capillary force. The latter zone is called the capillary fringe. 

The height to which this capillary fringe extends depends on the depth of the 

groundwater table and the texture and structure of the soil. In the capillary 

fringe both aeration and water supply are favourable and the water requirements 

of the plant may be partly or totally fulfilled by this source. In some parts 

of the world the growth of crops is wholly based upon this type of water 

provision. 

Plants that develop a shallow root system because of waterlogging during the 

initial growth phases may suffer from water shortage at later periods of 

drought, although the groundwater table may not be very deep. Thus paradox

ically the prevalence of excess moisture in the soil during the early part of 

the growing season may seriously intensify the adverse effect of drought occur

ring later in the season. The depth to which the roots of a number of field 

crops penetrate in a well-drained soil with an adequate moisture supply is 

presented in Table 1. This table gives average values only. Deviations from 

these values are often found, due to differences in soil types and crop 

varieties. The root volume is not evenly distributed over the ultimate depth 

attained but decreases with depth. For a great number of crops, especially 

annuals, about 70% of the root volume is found in the first 30 to 60 cm below 

soil surface. 
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Table 1. Average depth of root penetration of crops under optimum soil 

moisture conditions. 

Crops 

Bulb crops, onions, lettuce 

Pasture grasses, cabbage, spinach, beans 
strawberries, potatoes, carrots, egg plants 

Capsicum s p e c , squash 

Coconut, oilpalm, datepalm 

Cotton, lima beans 

Maize, flax, small grains, sugar beet, 
melons 

Alfalfa, sorghum, Sudan grass, steppe 
grasses, sugar cane, deciduous orchards, 
citrus orchard 

Depth 

feet 

1 

2 

2 

5 

5 

- 2 

2 

- 3 

- 4 

4 

- 6 

- 7 

cm 

30 - 60 

60 

60 - 90 

60 - 120 

120 

150 - 180 

150 - 210 

4.3 DRAINAGE AND PHYSICAL SOIL CONDITIONS 

Physical soil conditions influenced by drainage are structure, aeration, 

organic matter, and temperature, which will be discussed in turn in this 

section. 

4.3.1 SOIL STRUCTURE 

Good structure (aggregation and arrangement of soil particles) means favourable 

conditions for simultaneous aeration and storage of soil moisture, and also that 

mechanical impedance to root growth is reduced and stable traction for farm 

implements is provided. Drainage affects soil structure through its influence on 

the groundwater level. In soils with a groundwater table at 40 to 60 cm below 

the soil surface HOOGHOUDT (1952) found a deterioration of structure leading to 

a more compact and sticky topsoil than was found in soils with deeper ground

water. In surface layers of poorly drained soils, therefore, many large clods 

are found (HOOGHOUDT, 1952; NICHOLSON and FIRTH, 1958), whereas with well-

drained soils small crumbs predominate. Drainage may also increase the pore 

space, thus promoting cracking and aeration of the soil (WESSELING and VAN WIJK, 

1957). Figure 4 shows the influence of groundwater depth on soil-water-air 

ratios (VAN HOORN, 1958). In Van Hoorn's experiments the percentage of large 

pores decreased with a shallow water table and the hydraulic conductivity of 

the 50-90 cm layer decreased (during winter) from 2.5 to 0.35 metres per day. 
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Fig.4. Influence of groundwater depth on water and air content and pore 

distribution. 

It appears that maintaining the soil-water level at a greater depth exerts a 

beneficial influence on structure and on structurally determined soil proper

ties. 

4.3.2 SOIL AERATION 

The volume of air in the soil varies inversely with the water content of the 

soil and is very low in waterlogged or flooded soils. When a soil is perma

nently flooded oxygen disappears within a few days. In a well-drained soil, as 

opposed to one with a shallow water table, air not only penetrates into deeper 

soil layers, but the volume of air in the surface layers is much greater (see 

Fig.4). WILLIAMSON et al. (1969) found that low millet yields from tanks with 

shallow water tables were primarily attributable to the low oxygen level. The 

diffusion rate of oxygen in a soil with deeper groundwater tables was found to 

be greater and more favourable for plant growth. 

4.3.3 SOIL ORGANIC MATTER 

Organic matter is important for soil structure as well as for the supply of 

nutrients. During the decomposition of organic matter, important substances 

for the build-up of soil aggregates are formed, while at the same time plant 

nutrients are released. Great losses of organic matter will have a bad influ

ence on soil structure which will impede internal drainage; the soil will 

become compacted, which has an adverse influence on root penetration. Organic 

matter must then be supplied either in the form of stable manure, compost or 
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green manure (including leguminous crops in the rotation). This is especially 

required in modern farming systems, which return less and less organic matter 

to the soil, while, because of the greater working depth of mechanical plough

ing, the available organic matter is mixed with subsurface soil which is prac

tically devoid of humus. 

In organic soils (peat and muck) drainage may lead to subsidence of the land 

surface. The subsidence is caused by shrinkage due to irreversible drying, 

oxidation, and compaction. Subsidence may often be accelerated by the customary 

burning and wind erosion during dry spells. 

4.3.4 SOIL TEMPERATURE 

The outflow of water and inflow of air brought about by drainage will result in 

a lowering of the specific heat (Chap.2) of the soil. This means that the soil 

will warm up sooner, but also that it will lose its warmth sooner. Water re

quires five times more heat to raise its temperature than dry soil does. Conse

quently, waterlogged soil, with approximately 50% moisture, requires about 2j 

times more heat to warm up than a dry soil does. In addition, the cooling effect 

of the greater evaporation from a wet soil delays a temperature rise. Both 

effects cause a delay of growth in spring. In general it can be stated that 

when the soil is drained the soil surface climate is favourably changed, which 

will promote early planting in areas with cold winters. 

In soils with high water tables, freezing (which implies expansion of the water 

volume) may cause root damage and heaving of crops that cover the soil during 

winter (e.g. alfalfa, clover,grass, or winter cereals). Heaving and other 

damage by frost can be reduced by proper drainage of the soil surface layers. 

Sometimes, wet soils have favourable temperature effects, for example, in hot 

climates or in climates with an occasional frost during the growing season. In 

hot climates a wet soil may have a lower, more suitable, temperature than a dry 

soil. Since, however, irrigated fields in hot and arid climates require deep 

drainage to prevent salinization, the optimum soil moisture content has to be 

realized by good irrigation practices rather than by restricted drainage. 

Concerning late frost, HARRIS et al. (1962) report a 50% stand reduction, due 

to a frost in June, of maize, potatoes, and peppermint on fields with a ground

water table at 40 inches (100 cm) below the soil surface, whereas almost no 

damage was observed in fields where the water table was 16 inches (40 cm) deep. 
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In the latter case the soil was wetter, and could give up heat to the surround

ing air in greater quantities and at a faster rate than a drier soil. Thus, 

with regard to temperature effects, it can be said that differences in ground

water table depths may be favourable or unfavourable, according to circums

tances. 

4.4 DRAINAGE AMD CULTIVATION PRACTICES 

This discussion of cultivation practices will be restricted to tillage and 

weed control. 

4.4.1 TILLAGE 

With adequate drainage the moisture content of the surface soil layer will, on 

the average, not rise above field capacity. This is important because there is 

a rather narrow range of soil moisture contents suitable for tillage operations 

(Chap.2). The optimum moisture content is below field capacity. Care should 

therefore be taken to avoid tillage of the soil soon after rainfall or irrigat

ion. Working the soil at higher moisture contents will, in many clayey soils, 

cause breakdown of aggregates, dispersion of soil particles and, to some extent, 

puddling of the soil (McGEORGE, 1937). In extreme cases the almost complete 

destruction of aggregates will result in a compacted soil i.e. a soil devoid of 

pore space. Such soils are extremely hard when dry. It will take years to build 

up new aggregates and give the soil a favourable structure again. 

As a result of compaction (plough-sole, tractor-sole or traffic layer) and 

crust formation, both the infiltration rate and hydraulic conductivity are low. 

This impedes internal drainage, and subsurface drainage systems will not be 

able to function properly. Subsurface treatment of the soil will then be neces

sary to restore the internal drainage conditions. Favourable tillage conditions 

are often met immediately after harvest. By that time evaporation from the 

surface soil and transpiration through the plant have brought the moisture 

content of the root zone to far below field capacity. Waiting times after a wet 

winter from the beginning of a dry period in spring to the moment the soil is 

tillable have been estimated for The Netherlands by WIND (1963), assuming a 

daily evaporation of 1-2 mm and groundwater table depths varying from 20 to 160 

cm below the soil surface. With deep water tables, the waiting time was only 
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1 or 2 days. With a water table at 20 cm, the waiting time for a clay soil was 

25 days when the evaporation was ] mm, and 7 days when the evaporation was 2 mm. 

For a silty loam the waiting times were 69 and 20 days respectively. If it is 

possible to grow a cover crop in the winter or off-season, preferably a legum

inous crop like clover, tillage can start earlier because of the drying effect 

of this crop. When such a crop is wholly or partly used as green manure, it will 

at the same time improve the soil structure. The nutrient status of the soil 

will be improved accordingly. 

To derive the maximum benefit from drainage, the soil should receive an adeq

uately level tillage to avoid differences in relief. 

4.4.2 WEED CONTROL 

A large proportion of tillage operations is devoted to the control of weed 

growth. Weed growth is most abundant and troublesome with high soil moisture 

contents. Good drainage therefore reduces both the need for tillage and the 

hazard of soil structure deterioration. Going from wet soils with high ground

water tables to drier soils (water level 100 cm below the soil surface in sands, 

or 200 cm in clays), the kinds of weeds will change from hydrophytes - marsh 

vegetation like Scirpus (bull rush), Typha (cattail), Spartina (cordgrass), 

Carex (sedges) - to various Cyperaceae intermixed with a number of grasses. 

With the soil water still deeper more grasses appear, which may ultimately be 

suppressed by various broadleaved plants. With very deep water tables in arid 

regions, weeds with xerophytic or phreatophytic characteristics, or both, will 

survive. 

Most crops are mesophytic, showing their best growth and development on soils 

with moderate moisture contents. The weeds associated with these crops are pre

dominantly broadleaved plants in well-drained soils and some grass species in 

poorly drained soils. Broadleaved weeds are more easily eradicated - whether 

by hand, implements or weedicides - than most grasses are. A careful tending of 

the crop, and the application of the rotations that are possible on well-drained 

soils also contribute to the effective control of weed growth. To illustrate 

the competition between alfalfa and weeds may be mentioned. Alfalfa will suffer 

from high groundwater tables, especially when the growth of grasses is stimu

lated by these wet conditions. On the other hand, with adequate drainage, not 

only will grasses disappear, but the vigorous growth of the alfalfa will control 

growth of broadleaved weeds like Cirsium arvense (Canada thistle). Flood-
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fallowing (FOLLET-SMITH and ROBINSON, 1936) as practised in Guiana on sugar 

cane land, seems to be rather exceptional in this connection and may serve to 

show that under certain conditions a different approach is possible in the im

provement of soil tilth and the control of weeds. In Guiana, at the end of the 

cropping cycle,of sugar cane, the structure of the soil is rather poor and 

there are a lot of weeds. The land is then flooded to a depth of 1 foot for 

6 months. During this time thrash decomposes and anaerobic reactions occur. 

Meanwhile heavy growth of water weeds suffocates the canefield weeds. When the 

fields are drained oxidation occurs. The result is a marked improvement in 

tilth and the eradication of the cane field weeds. 

4.5 DRAINAGE AND NUTRIENT SUPPLY 

Various processes activated by bacteria, fungi, or other micro and macro orga

nisms depend on good aeration and drainage. Nitrogen fixation and nitrification 

by micro organisms may be mentioned as two of the principal aerobic processes 

exerting an important influence on plant growth and development. The deeper the 

roots can penetrate, the more nutrients there are available for absorption. The 

advantage of drainage and a consequent deep root zone is even more pronounced 

when nutrients have been displaced to the deeper layers. That the uptake of 

nutrients (N, P, K, Ca and Mg) depends on the depth of the groundwater table is 

illustrated in Fig.5 for two citrus varieties grown under field conditions in 

the UAR (MINESSY et al., 1971). 

Good drainage will also increase the microbiological decomposition of organic 

matter, as a result of which plant nutrients like nitrogen and phosphate are 

released and become readily available. This process may be either favourable 

(when organic matter is amply present) or unfavourable when loss of organic 

matter means deterioration of soil structure. 

Good drainage prevents the production of harmful reduced substances that might 

form under anaerobiosis. For example, it will prevent high concentrations of 

dissolved manganese to which alfalfa is sensitive. Harmful products may also 

occur when rice is a regular crop in the rotation. The continuous flooding of 

rice fields causes a reduction of the soil and an accumulation of toxic prod

ucts such as H„S. An occasional drainage of the fields will result in a re-

oxidation of the reduced substances. 
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Fig.5. The effect of the depth of water table on the uptake of some plant 

nutrients by newly produced leaves per year in Washington navel orange 

(A) and Balady mandarin (B) (avs., 1965 and 1966). 

With respect to the influence of depth to groundwater on nitrogen availability, 

VAN HOORN (1958) found that with high water tables the colour of plants was 

often yellowish, indicative of a shortage of nitrogen. It is interesting that 

the leguminous pulse crops show a different reaction. Because of symbiosis of 

pulse crops with Rhizobium radicicola there is an autotrophic nitrogen supply, 

which appears to reduce the influence of high groundwater levels. Fig.6 shows 

the influence of depth of the groundwater table on the amount of nitrogen supp

lied by the soil to cereals (VAN HOORN, 1958). 
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When the groundwater level is at 150 cm, the nitrogen supplied by the soil 

appears to be 150 kg N per ha. When the groundwater level is at 40 cm, less 

than 60 kg N per ha is supplied. Thus, with groundwater at 40 cm, 100 kg N per 

ha has to be applied in the form of nitrogen fertilizer to obtain a yield comp

arable with the maximum yield obtained with groundwater at 150 cm. 

HARRIS et al. (1962) report that for crops grown on a muck soil with ground

water at 40 cm, yields were only 63% of those obtained when groundwater was at 

100 cm. With an application of nitrogen fertilizer, the yield could be increased 

by an average of 36%, which made it the same as that obtained with groundwater 

at 100 cm. This indicates that a shallow groundwater table interferes with the 

nitrogen supply. SHALHEVET and ZWERMAN (1962) also describe an experiment on the 

relations between drainage and nitrogen supply (Table 2). 

Table 2. Yields of maize (kg/ha) in relation to 

drainage conditions and nitrogen fertilizer 

(SHALHEVET and ZWERMAN, 1962). 

Fertilizer Drainage conditions 

Good Intermediate Poor 

N03 

NH. 
4 

2800 

3320 

2843 

2036 

1895 

931 

1190 

591 

249 

With good drainage conditions only those fertilizers containing ammonia were 

effective; this may be due to the fact that ammonia, in contrast with nitrate, 

is first adsorbed to the soil and then only gradually released. With poor drain

age, yields on the whole were lower; nitrate fertilizer, however, produced a 

remarkable effect (not achieved by ammonia, in contrast with its performance 

under good drainage conditions). For intermediate drainage conditions the effect 

of nitrate fertilizer was approximately equal to that of the ammonia fertilizer. 

Also of interest with regard to the relations between yield, nitrogen supply, 

source of nitrogen, and groundwater table depth are the experiments described by 

HOOGERKAMP and WOLDRINGH (1965) with sugar beet on heavy river clay soil 

(Table 3). 
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Table 3. Yields of sugar beet in relation to groundwater table 

depth and nitrogen fertilizers (HOOGERKAMP and WOLDRINGH, 1965). 

Groundwater table depth in cm 

fertilizer 
140 kg/N/ha 

yield of roots 
kg/100 m2' 

yield of leaves 

40 

NO~+NH? 
3 4 

329 

260 

4 

167 

188 

65 

NO'+NHt 
3 4 

354 

269 

4 

220 

167 

95 

N0~+NH* 
3 4 

353 

247 

NH"!" 
4 

262 

197 

140 

NO'+NH* 
3 4 

358 

251 

4 

331 

244 
kg/100 m2 

yield of sugar 
kg/100 ni 

sugar % 

57.5 

17.47 

28.2 

16.88 

63.6 

17.96 

39.1 

17.84 

65.8 

18.63 

47.9 

18.33 

66.0 

18.46 

59.0 

17.89 

Table 4 presents the relative sugar yields obtained with the two types of 

fertilizer at different groundwater table depths. 

Table 4. Relative yields of sugar with different 

groundwater tables (HOOGERKAMP and 

WOLDRINGH, 1965). 

groundwater table depth 40 65 95 140 

relative yield with N0.+NH, 89.6 93.4 99.1 100 3 4 

relative yield with NH. 53.1 61.1 73.1 90.7 

With both types of fertilizer the best results were obtained with the deepest 

groundwater table. Generally, the effect of the nitrate fertilizer was better. 

With this type of fertilizer the yield obtained when the groundwater table depth 

was at 40 cm was virtually the same as that obtained with the ammonia fertilizer 

when groundwater was at a depth of 140 cm. WILLIAMSON and WILLEY (1969) found 

with tall fescue grass that the beneficial effect of nitrate fertilizer lasted 

for only a few weeks. Denitrification and leaching of nitrate soon followed 

when water tables were high. 

The better results obtained with nitrate fertilizer at shallow water table 

depths may be attributable to the favourable effect of nitrates on aeration. 
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It appears that for each cm the water table is lowered, about 1 kg N/ha becomes 

available for plant production. The fact that, under certain cropping systems, 

nutrient losses (N, etc.) are sometimes observed in tile drainage effluents, 

would seem to contradict the theory of a gain in nutrients, e.g. N by a lower

ing of the groundwater table through drainage. It is, however, understandable 

that under good aeration conditions in well-drained soils, where nitrification 

is promoted, easily soluble nitrates are carried away by the water that percol

ates through the soil to the drainpipes. The higher the amount of flowing water, 

the greater the losses. BOLTON et al. (1970) found that greater nutrient losses 

from continuous fertilized maize, for example, as against losses from blue 

grass sod, were associated with total annual, average effluent flows of 155.7 

and 64.5 mm for these respective treatments. The annual gain in N should there

fore be seen as the balance between N becoming available under good drainage 

conditions and that lost through drainpipes. 

4.6 DRAINAGE AND SALINITY 

Soil salinity refers to the presence of high concentrations of soluble salts in 

the soil moisture of the root zone. These concentrations of soluble salts, 

through their high osmotic pressures, affect plant growth by restricting the 

uptake of water by the roots. All plants are subject 'to this influence, but 

sensitivity to high osmotic-pressures varies widely among plant species. Salin

ity can also affect plant growth because the high concentration of salts in the 

soil solution interferes with a balanced absorption of essential nutritional 

ions by the plant. 

Halophytes, which are plants adapted to saline conditions, may be used as indi

cators of the salinity level of the soil. Representative of this group are: 

Atriplex hastata, Atriplex vesicaria, Salicornia spp., Salsola spp., Chenopodium 

album and Portulaca oleracea. 

High concentrations of sodium (alkalinity) will also affect soil physical con

ditions, by the dispersion of clay particles (Chap.3). The result is a deter

ioration of soil structure. This reduces the infiltration and percolation 

capacity of the soil so that the movement of water into and through the soil, 

as well as the diffusion and exchange of gases, will be impeded. The loss of 

soil structure also results in a crust formation and compaction of the soil, 

which will obstruct the emergence of young seedlings and the development of roots. 
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The main effects of salinity on plant growth and crop production are: 

- slow and insufficient germination of seeds, a patchy stand of the crop, 

- physiologic drought, wilting, and desiccation of plants, 

- stunted growth, small leaves, short stems and branches, 

- bluish green leaf colour, 

- retarded flowering, fewer flowers, sterility, and smaller seeds, 

- growth of salt-tolerant or halophilous weed plants, 

- as a result of all these unfavourable factors, low yields of seeds and other 

plant parts. 

The term "salt tolerance" indicates the degree of salinity a plant can with

stand without being appreciably affected in its growth or development. The salt 

tolerance of plants can be conveniently related to the electrical conductivity 

of the saturation extract (EC in mmho) of the soil in the root zone of the 
e 

plants. In field experiments with some principal crops BERNSTEIN (1964) determ

ined the salinity levels causing yield reductions of 10%, 25% and 50%. 

It appeared that most field crops (e.g. wheat, oats, rice,and rye) have a salt 

tolerance of EC 4-8 mmho. Some field crops (barley, sugar beet, cotton), veget

ables (garden beets, kale, spinach, asparagus), and fruit crops (date palm, mul

berry, olive, pomegranate, jujube) have a higher salt tolerance of EC 8-16 mmho. 

Some grasses such as Sporobolus, Fucinellia, Cynodon dactylon (Bermuda grasses), 

Chloris gayana (Rhodes grass) and Agropyron elongatum (tall wheatgrass) also 

have a high salt tolerance (EC 8-16 mmho). Field beans are salt-sensitive, 
e 

having a salt tolerance of EC 2-4 mmho. 

For comparison, rice showed a reduction in yield of 10%, 25% and 50% at an 

EC of 5, 6 and 8 respectively, whereas the same yield reductions for barley 

were found at higher EC values of 12, 16 and 18 respectively. 

If the land is liable to become saline or alkaline, adequate drainage will 

remove or reduce these dangers (Chap.4), thus ensuring a better crop production. 

If the land is already saline or alkaline it can be reclaimed with a good com

bination of drainage and irrigation. If the land is alkaline, chemical amend

ments, e.g. gypsum, may be applied. Often the introduction of a reclamation crop 

will accelerate the process of reclamation. For example, lowland rice is often 

used during reclamation in sub-tropical and tropical climates. The flooded 

condition of the fields promotes a continuous leaching of salt from the soil, 

and also a dilution of the salt solution in the soil water. Moreover the fact 
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that rice seedlings may be grown in nurseries, under less saline conditions, 

make it possible to grow rice during the early phase of reclamation. Grasses 

(Bermuda grass or tall wheatgrass) and barley may be chosen as reclamation 

crops in climates less favourable for rice production. 

4.7 DRAINAGE AND DISEASES OR PESTS 

Drainage, through its influence on soil conditions and plant growth, may either 

favourably or unfavourably influence the incidence of diseases and pests. A few 

examples will serve to illustrate this statement. A high groundwater table may 

have a favourable effect on potato production, but this advantage may largely be 

offset by blight (Phytophthora infestans). Blight occurs more frequently when 

groundwater tables are high since high water levels are required for the dis

persion and germination of spores (GRABLE, 1966). Also, because the cork develop

ment of the tuber is reduced at low oxygen concentrations, high groundwater 

tables favour the infection of potato tubers by Bacillus atrosepticus. On the 

other hand, Actinomyces scabies or potato scab (scabies) can be checked with a 

restricted oxygen supply. An abundant nitrogen supply encourages the multi

plication of the green peach louse (Myzus persicae), the vector of potato virus 

diseases. As nitrogen is in more plentiful supply when groundwater tables are 

deep, (Sect.5) drainage may thus exert an indirect influence on the occurrence 

of virus diseases. Mildew infections of winter wheat are positively related to 

high water tables, and are suppressed by improved drainage. However, the im

proved nitrogen supply resulting from a deeper groundwater level may promote 

the incidence of rust diseases in a similar way as for virus diseases in 

potatoes. This is also the case with tobacco. With a higher nitrogen supply 

the more succulent soft leaves are susceptible to diseases like Phytophthora 

infestans, Peronospora tabacina and virus diseases. A high supply of nitrogen 

also has an unfavourable effect on the quality of tobacco leaves. With cotton, 

wet conditions lead to excessive vegetative growth, retarded maturation, open

ing of the bolls, and boll-weevil damage; boll rot also increases. If, however, 

these wet conditions are reduced, the increased availability of nitrogen will 

promote the incidence of vascular wilt (Fusarium oxysporum var, vasinfectum). 

Collar rot or trunk cancer in apple trees, and white root diseases (Fomes lig-

nosus) in Hevea rubber trees occur under bad drainage conditions. For bananas, 

good drainage is an absolute must for the production of high quality fruit, 
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while waterlogging or flooding may enhance the occurrence of Panama disease 

(Fusarium oxysporum f.cubense). On the other hand, it has been found that flood 

fallowing for a year or more is necessary to "reclaim" soils infested by the 

fungus. 

Growing flooded rice on organic soils kills certain fungous diseases and 

certain nematodes that are harmful to vegetable crops. In such a case wet 

conditions are favourable. 

4.8 GROUNDWATER LEVEL AND CROP PRODUCTION 

By keeping the groundwater table at a more or less fixed depth, information can 

be obtained as to the effect that drainage to such a depth has on crop product

ion. In practice, however, the groundwater level is generally not constant but 

fluctuating, even in fields with an adequate drainage system. There may be a 

number of days when the groundwater table is higher than the average. These 

excessive soil water levels, even though of a relatively short duration, may 

exert an influence on production, depending on the growth phase of the plant 

when they take place. Annual crops are especially sensitive during germination 

and in the reproductive phase. In the dormant phase, many plants (e.g. deciduous 

trees or meadow grasses) are generally not adversely affected by too much water 

or too little air. 

In a number of field experiments on drain spacing and depth conducted in the 

Northeast polder (Netherlands), the fluctuation of water levels was recorded 

over a period of 10 years. SIEBEN (1965) found a relation between yield reduct

ion of wheat and frequency of high groundwater tables. He introduced the SEW-

value (sum exceedance value in winter), which is obtained by summing all daily 

values (in cm) by which the groundwater levels (midway between drains) exceed 

a reference level in winter (1 November to 1 March). For example, if the refer

ence level is 30 cm below the soil surface and the water table on three succes

sive days shows levels of 25, 10 and 5 cm below the soil surface, then the con

tribution to the SEW-value is (30-25) + (30-10) + (30-5) = 5 + 20 + 25 = 50 cm. 

Sieben found that the SEW-value - as a parameter for the groundwater regime in 

the upper layer of the soil - showed, above a certain minimum, negative relat

ions with crop yields. It was relatively unimportant which reference level, 
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within certain limits, was chosen. Thus., above a certain minimum SEW-value, 

yields reduced. Hence, it is concluded that even during a rather inactive phase 

of growth as found with wheat in winter, excessive water may exert a bad influ

ence on plant production. 

BERTRAM (1931) in an experiment with barley, found that a one-time rise in the 

water table from 80 cm to 10 cm below soil surface during the reproductive phase 

reduced the yield to 20%. 

Applying, on the other hand, SES values (sum exceedance Value in spring) below 

a certain maximum, positive relations with crop yields were found, i.e. soils 

with higher groundwater tables, within certain limits, are favourable for crop 

production. The explanation is that during dry spells crops growing on soils 

with deep groundwater tables will suffer more from drought than crops on soils 

with less deep water tables, especially when the plants are in an active phase. 

In general it may be said that the seriousness of the effect of fluctuations in 

the groundwater table will depend on whether plants are in an active phase (e.g. 

the reproductive phase) or in a less active or latent phase (during winter). In 

an active phase both an optimal aeration and moisture content are important. 

In the following the effect of the depth of the groundwater level on the 

production of different crops, viz. grassland, arable crops and fruit trees, 

will be discussed. 

4.8.1 GRASSLAND 

Interesting in this connection are the results of experiments conducted on 

heavy river-clay soils in The Netherlands. (HOOGERKAMP and WOLDRING, 1965, 

1967). Their purpose was to study the influence of the depth of the groundwater 

level on the grass yield of old grassland. It was found that groundwater levels 

at 25, 40, 65, 95 and 140 cm below the soil surface affect grass production in 

various ways. In periods with excess precipitation over évapotranspiration, the 

highest yields were found on the most intensively drained plots; in dry periods 

the reverse was true. This is in general agreement with findings reported else

where (VAN 't WOUDT, 1957). In The Netherlands the highest average yields of 

grassland are found when groundwater table depths are between 60 and 80 cm for 

fine-textured soils and between 40-60 cm for sandy soils. 

Many pasture grass species, having ordinarily a superficial root system, require 

or tolerate a higher groundwater table than most arable crops. Some other grass 
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species, however, have a much deeper-penetrating root system and grow better on 

drier soils with deeper water tables. In the experiments described by HOOGER-

KAMP and WOLDRING (1965, 1967) the species Alopecurus pratensis was stimulated 

by lowering the water table, whilst Agrostis stolonifera was stimulated by 

raising it. In an experiment on sandy soils, the percentage of the grass species 

Festuca pratensis and Phleum pratensis was much higher with groundwater levels 

at 30 and 50 cm than at deeper levels. 

For the grass Lolium perenne, the reverse was true. The clover Trifolium repens 

was most abundant with intermediate groundwater depths of 70 and 90 cm; other 

clover species appeared spontaneously when the water table was deeper. Very 

shallow water tables favour undesirable plants such as rushes, sedges, unpalat

able grasses, which tend to become dominant under these wet conditions (HUDSON, 

et al., 1962). 

In general it is found that with adequate drainage the production of grass 

starts earlier in spring and proceeds longer in autumn. The protein content of 

grass and hay is often higher with deeper groundwater tables. This may be due 

partly to the gradually increasing influence of the clovers and partly to an 

increased nitrogen supply by the soil as the depth of the groundwater level in

creases. 

Earthworms are important for the soil structure and good drainage promotes their 

presence. EDMUND (1963) found 15 earthworms per square foot in undrained grass

land against 60 in well-drained land with better soil structure. 

When pastures with shallow groundwater tables are grazed, the structure of the 

soil surface deteriorates (HUDSON et al., 1962). Plants are trampled and will 

often be killed because of root damage, plant displacement, or burial in mud. 

The result is that other less palatable and less valuable, but more resistant, 

grass species will become dominant. Livestock, too, will suffer from the wet 

conditions resulting from shallow groundwater tables. HUDSON, et al. (1962) 

mention the occurrence of footrot, chills, and internal parasites with cattle, 

and losses of lambs by chills when pastures are wet. 

Grass and clover plants can withstand long periods of inundation fairly well 

when they are dormant or during the early stages of growth (MCKENZIE 1951, 

RHOADES 1967). Some grass species appeared to be tolerant to more than 20 days 

of inundation. Clovers are, with a few exceptions, less tolerant to inundation 
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(MCKENZIE 1951, HOVELAND and WEBSTER 1965). 

4.8.2 ARABLE CROPS 

Important arable crops like cereal crops (maize, wheat, rice, barley, rye, oats, 

sorghum), root and tuber crops (cassave, sugar beet, sweet potatoes), bulb crops 

(onions, tulips), fibre crops (cotton, flax, jute, kenaf), pulse crops (peas 

and beans) and sugar cane often have different drainage requirements. A common 

characteristic of these crops, except for irrigated lowland rice, is that for 

optimum root development they require a well-drained friable soil in which both 

water plus nutrients and air exchange are adequate. The optimum depth of the 

groundwater table, however, depends on the depth of the root system, on soil 

characteristics, and on climate, and consequently will differ according to plant 

species and the growth phase of the plant. When two or more crops are grown in 

rotation on the same field, the depth and spacing of a drainage system.should 

offer a compromise between the different requirements of the crops. 

Flooding or waterlogging of arable crops will usually be detrimental, although 

some varieties of sugar cane and leguminous crops may tolerate such conditions. 

In Florida sugar cane is grown on organic soils where the groundwater table is 

purposely kept high in order to keep oxidation, subsidence, and wind erosion to 

a minimum. HUMBERT (1968) mentions that sugar cane can survive long periods of 

inundation if the tops of the plants are above water and the water is moving. 

Injury to cane by waterlogging will, however, occur when the air temperature is 

very high. This type of damage is often referred to as scalding. 

Leguminous crops - clovers, pulse crops - perform well with intermediate ground

water depths of about 50 cm. Alfalfa may adapt to shallow non-fluctuating wa,ter 

tables, but on the other hand, if subjected to dry conditions from the start, 

may ultimately penetrate to depths or more than 2 meters and behave like a 

phreatophyte. Plants such as grasses and clovers, grown for their vegetative 

parts (leaves and stems), and vegetables like kale, lettuce and potatoes, pro

duce favourably with shallow water tables of 30-50 cm (VAN 't WOUDT and HAGAN, 

1957). 

A long-term groundwater level experiment with a number of arable crops was 

conducted by VAN HOORN (1958) in Nieuw Beerta (The Netherlands) on a clay soil 

(48% < 2y, 20% from 2-16y). Groundwater levels were maintained during summer at 

115 



40, 60, 90, 120 and 150 cm below the soil surface. The results are presented in 

Table 5. 

Table 5. Yields of various crops with groundwater levels from 40-150 cm. 

The maximum yield is taken as 100% (VAN H00RN, 1958). 
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The percentages in Table 5 indicate that with the exception of potatoes the 

best yield of all crops was obtained with the deepest groundwater table. 

The yield of peas with watertable depths of 90 and 120 cm and the yield of 

careway with a water table depth of 120 cm were the same as those with a water 

table depth of 150 cm below the soil surface. The yields of the other crops were 

a few percent lower when groundwater depths were at 90 and 120 cm. Potatoes 

showed the highest yields in plots with a groundwater depth of 60 cm. Over the 

whole range of water table depths, however, the variation of potato yields was 

only 10 percent or less. Throughout their development potatoes require a cont

inuous and plentiful supply of water in the root zone. With the intermediate 

rooting depth of the potatoes, an intermediate depth of the groundwater table 

will guarantee this regular water supply from the capillary fringe. In a great 

number of farm fields located on river ridge soils, FERRARI (1952) found the 

highest yields with intermediate water table depths of 50-75 cm. 

HARRIS, et al. (1962) described the relations between yield and groundwater 

depth obtained from experiments on a muck soil. Some results are presented in 
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Table 6. 

Table 6. Relative yields of crops at different groundwater 

table depths (HARRIS et al., 1962). 

Crop 

Potatoes 

Maize 

Peppermint 

Onions 

Sweet corn 

Carrots 

Average 

*4 
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12 

9 

13 

11 
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46 

71 

48 

63 

61 

59 

63% 

Relative yield in % at 
groundwater 

14 inches 
60 cm 

94 
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91 

109 

100 

93 

98% 

depth of: 

32 inches 
80 cm 

97 
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100 

113 

92 

96 

100% 

40 inches 
100 cm 

100 

100 

100 

100 

100 

100 

100% 

Yield at 100% 
level per acre 

327 bu 

126 bu 

32 lb. oil 

3335 lb 

5.1 tons 

2.7 tons 

In these experiments the yields of potatoes and carrots were highest with the 

deepest water table of 100 cm below soil surface. The yields of maize and onions 

were best when groundwater was at 80 cm. With groundwater at 60 cm the yield of 

onions was still more than that at 3 00 cm. The yields of maize and sweet corn 

were the same at 60 cm as at 100 cm water table depth. In North Carolina (USA) 

DISETER and VAN SCHILFGAARDE (1958) found that yields of maize did not esential-

ly differ when drain depths were 2, 3 or 4 ft with a spacing of 160 ft (50 m). 

These yields, however, were about 34 bu/acre (2,000 kg/ha) higher than those 

from poorly drained land with a drain spacing of 310 ft (100 m ) . In a three-

year experiment with maize, SCHWAB et al. (1966) found an average yield of 

about 2,500 kg/ha in fields without drainage and more than 4,000 kg/ha in fields 

with a drainage system that consisted of a surface drainage system or of a tile 

drainage system (depth 3 ft and spacing 40 ft). The effect of applied nitrogen 

fertilizer was considerably higher with drainage. With 112 kg N/ha the yield in 

the undrained plots increased by 500 kg/ha and attained a level of 3,000 kg/ha. 

With the same amount of fertilizer the yield on drained plots increased by 

2,000 kg/ha and attained a level of 6,000 kg/ha. In this particular field the 

effect of nitrogen fertilizer did not eliminate the adverse influence of bad 

drainage conditions as in the cases mentioned in Sect.5. 
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4.8.3 FRUIT TREES 

The relatively inflexible root systems of trees with active roots developing 

only at relatively great depths appear to be easily affected by high ground

water tables. Walnut trees, for instance, prefer a water table depth of 8 to 10 

feet (VAN 't WOUDT and HAGAN, 1957). A tree's susceptibility to poor drainage, 

however, depends on its age and the season. In summer, for instance, the roots 

of apple trees will suffer greater damage from poor drainage than in winter when 

the trees are leafless and inactive. PENMAN (1938) observed citrus trees to 

remain healthy for the first 8 or 10 years of their life with a water table 

within 4 feet of the soil surface. Beyond that age they require a deeper water 

table. This is illustrated in Fig.7 and 8 for citrus varieties (MINESSY et al., 

1971). 

gms/ 3 eu feet 
7i-

gms/3 cu feet 
7 

150 200 
distance in cm 

60 90 
soil depth in cm 

Fig.7. Quantity of roots as a function of water table depth and distance 

from tree (A) and depth (B) for Washington navel orange. 

Extension and depth of roots increase with deeper groundwater tables. Yields of 

fruits are only obtained from trees growing on soils with a water table deeper 

than 1 m. The highest yield (41 kg fruit per tree) is obtained on soils with the 

lowest water table. The same was found for plum trees (VISSER, 1947). In 

orchards, palm groves, and rubber estates, cover crops may function to lower the 

water table during times of excessive water. 
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relative yield 

100 

50 75 100 125 150 175 
depth water table in cm 

Fig.8. The effect of the depth of water table 

on the relative yield of Washington 

navel orange and Balady mandarin. 

Coconut palms,date palms, and oil palms have rather coarse and shallow root 

systems, devoid of root hairs. When growing under anaerobic conditions they 

develop air cavities in the roots, which may facilitate survival under tempor

arily anaerobic conditions. 

Coconuts often flourish in places where there is underground water within the 

root's range, the roots "touching" the water. Coconuts are growing in coastal 

regions where the influence of the tides causes temporary waterlogging. If, 

however, the soil becomes permanently waterlogged, the leaves become sickly and 

yellow. In Malaya the oil palm yields more than 1.5 tons of oil per acre on the 

relatively rich alluvial clays (70% < 2y) of the western coastal plains (GRAY, 

1963). The shallow rooting oil palm is well suited to the high water tables 

prevailing in these areas. This is also true for tropical fruit trees like 

Zalacca edulis (also a palm) and Garcinia mangostana (mangosteen), which can 

stand excessive water in the soil without a decrease in yield (TERRA, 1948). 

Planted on soils high in organic matter, crops like oil palm, coconut, and, to 

some extent, rubber and fruit trees may suffer severe damage when such soils are 

drained and subsidence occurs. The shrinkage of the soil may cause the rootmats 

to appear more than 2 or 3 feet above the soil surface. The trees may then fall 

down and their stems may be seen growing in all directions. 
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PURPOSE AND SCOPE 

The forces acting on water in an unsaturated soil are discussed. Retention and 

movement of soil water are described by equations based on the potential con

cept. 
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Physios of soil moisture 

5.1 THE PRESENCE OF WATER IN THE SOIL 

Water can be present in the soil as a solid (ice), a liquid, or a vapour. In 

this chapter we will mainly be concerned with the liquid phase. Liquid water 

serves within the soil as a leaching agent, a solvent, a reactant, as a medium 

for chemical reactions, and as a plasticizing agent. Soil water always contains 

many dissolved substances. Even in soils considered to be non-saline, the total 

electrolyte concentration of soil water varies between 1 and 20 meq/liter, and 

it may vary considerably within the soil profile as a result of evaporation and 

leaching. Those properties of soil water that result from its chemical compos

ition will not be considered further in this chapter. 

The physical behaviour of soil water depends to a considerable extent on the 

soil properties. Soil, which is a porous medium, exhibits a large surface acces-
2 

sible to water. This solid surface ranges from about 1000 cm /g for coarse sands 
2 

to over 1,000,000 cm /g for clay soils. Soil particles are generally hydrophil-

lic, i.e. water tends to adhere to the solid surfaces. In soils that are not 

fully saturated, soil water also shares a large interfacial area with the gas 

phase. These two types of interfacial interactions, i.e. at the solid-liquid and 

the liquid-air interface, determine the retention of water by the soil and the 

movement of water through the soil. 

The total pore space of a soil can be filled with air, water, or both. The last-

mentioned situation is the most desirable for soils on which agriculture is 

practised. The air-filled porosity, then, is the fraction of the bulk volume 

occupied by air. The water-filled porosity, or fraction of the bulk volume 

occupied by water, is often called the soil water ratio (soil water content on a 

volume basis). Soil water content is more commonly expressed as the "dry weight 

soil moisture fraction", i.e. the ratio of the mass of water to the mass of dry 

soil. Hence, the soil water ratio multiplied by the ratio of water density over 

bulk density is equal to the dry weight soil moisture fraction. 

5.2 THE RETENTION OF WATER BY THE SOIL 

5.2.1 FIELD CAPACITY AND WILTING POINT 

From the fact that water will continue to enter the soil, it cannot be concluded 
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that the pore space is not filled and that it is possible to store more water 

in the soil: when a certain maximum amount of water is stored the remainder will 

drain away. This has led to the concept of field capacity. The amount of water 

stored in the soil at field capacity is that amount of water which a soil will 

hold against gravitational forces. 

This water content is not a unique value that normally occurs in the soil. Soil 

is a dynamic system of water removal by drainage, evaporation, and absorption 

by plant roots, and the addition of water by rain, dew, irrigation,or by capil

lary rise from a groundwater table. When there is a shallow water table but no 

strong upward movement of water in the soil resulting from evaporation at the 

soil surface, an equilibrium situation will be reached between upward movement 

as a result of capillary rise and downward movement because of the gravitational 

pull. This led to a second definition of field capacity as the amount of water 

near the soil surface when in equilibrium with a groundwater table at a depth of 

1 m. This is not necessarily the same amount of water that a well-drained soil 

will hold against gravitational forces. 

In the latter case field capacity refers to a range of water contents where the 

rate of water removal from the soil, following irrigation or heavy rain, begins 

to reduce. Movement of water downward in the soil does not cease when the field 

capacity has been reached but continues for a long time at a reduced rate. 

Field capacity has been used to indicate the upper limit of water available to 

plant growth, assuming that the amount in excess of field capacity drains away 

too quickly to be of any use. This is somewhat misleading, however, because all 

water that is not held tightly in the soil is available for plant growth as long 

as it is in contact with the roots. 

The permanent wilting point, the lower limit of available water in the soil, is 

the water content of the soil at which the leaves of plants growing in it show 

wilting and fail to recover when placed overnight in a near saturated atmos

phere. Like the field capacity, this is a range of water contents. It is inter

esting to note that at permanent wilting point the air within the soil pores in 

equilibrium with the soil water has a relative humidity of 98.8%. 

The amount of water in a soil is in itself no effective indication of its 

availability; a better indicator is the force with which the water is kept by 

the soil. 
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5.2.2 THE MECHANISMS OF RETENTION OF WATER BY SOIL 

Several mechanisms are active in the adsorption of water by soil particles. 

Those resulting from the electrostatic charge of soil particles and the 

presence of adsorbed counterions only act over a short range. They cause a 

strong binding of a very thin film but are of little consequence at those 

higher water contents we are considering. 

That those larger amounts of water can be retained in soil results from the 

presence of air-water interfaces similarly as exist in blotting paper or 

sponges. Surface tension acting at the air-water interface provide the mechanism 

of water retention. 

Surface tension is caused by the mutual attraction of water molecules (cohesion). 

Within a waterbody, the mutual attraction of water molecules is the same in all 

directions; hence the net attraction is zero. At an air-water interface, how

ever, there remains a net force pulling the molecules inwards into the bulk of 

the water. This force results in a surface tension (o") which acts to reduce the 

air-water interface. 

The energy required to enlarge an air-water interface(against the surface 

tension) by 1 cm is 72 erg at 25 C. Thus a equals 72 erg/cm or 72 dyne/cm. 

Water molecules in contact with solid surfaces are attracted (this is called 

adhesion). Surface tension also plays a role when water adheres to solid sur

faces. The adhesion of liquids to solids can be described by the amount of 

mechanical work required to separate them when they are pulled apart at right 

angles from one another. This work of adhesion (W) is related to the liquid-

solid contact angle (a) by the equation 

W = a(] + cos a) (1) 

where a is the surface tension. Those surfaces which have an angle of contact 

with water of 0 (e.g. clean glass, quartz) have a work of adhesion of 2 a 
2 

erg/cm . Water adheres to those surfaces as strongly as it does to itself, 

since the work of cohesion is also 2 a(two new air-water interfaces are created). 

Thus water wets the walls of a glass capillary tube (see Fig.1), and the water 

adhering to the walls pulls the body of the liquid up to a height h. This 

phenomenon is called capillary rise. 
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The force tending to pull the liquid up in a capillary with radius r is 

2irrocos a and the force tending to pull the liquid down, caused by the weight 

of the water column above the free water surface is irr2hp g in which g is the 
w 

acceleration due to gravity and p the density of water. At equilibrium with 
w 

a zero contact angle we obtain: 
2a 

p gh = — K w B r (2) 

The difference between the hydrostatic pressure in the tube on a level with the 

free water surface (P2) and the hydrostatic pressure immediately below the 

interface (P.) is equal to p gh. 
i w 

Hence, 

„ „ 20 P -P = — 
2 1 r 

(3) 

Z Ü2 

Fig.1. Capillary rise of water table into 

a tube. 

The hydrostatic pressure above the interface differs only by a very small 

amount (p gh, where p is the density of air) from that in the free water 

surface, P~, so that Eq.3 describes the lowering of the hydrostatic pressure 

across the curved air-water meniscus. The amount of pressure lowering is common

ly referred to as suction. The retention of water between soil particles can be 

thought of as a capillary phenomenon in which the soil particles are usually 

assumed to exhibit a contact angle a = 0. 

The lowering of the hydrostatic pressure apparently increases with a decrease 

in diameter of the pore (Eq.3). In other words, water is more tightly held in 

narrow pores than in wide ones. 

Physical quantities and their dimensions are given in Table ]. The units are 

presented in the cm-gram-sec (c.g.s.) and the meter-kilogram-sec (m.k.s.) 

systems. The former is used more frequently but the latter is recommended by 

the International Society of Physics and leads to more practical numerical 

values. 
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Table 1. Physical units. 

Symbol Physical 
quantity 

Dimensions c.g.s. units m.k.s. units 

Some 

length 

mass 

time 

area 

volume 

specific 
volume 

density 

velocity 

acceleration 

force 

specific 
force 

work 

energy 

L 

M 

T 

L2 

L3 

LV' 

ML"3 

LT"' 

LT"2 

M L T~2 

LT-2 

M L V 2 

MLV2 

specific ener- T 2-2 
gy (potential) 

pressure 

additional units: 

M L"1!"2 

centimeter 

gram (g) 

sec 
2 

cm 
3 

cm 
3, 

cm /g 

, 3 
g/cm 

cm/sec 
, 2 

cm/sec 

dyne = g. 

( 

cm/j 

cm) 

2 
sec 

meter 

kilogram (kg) 

sec 
2 

m 
3 

m 
m /kg 

kg/m 

m/sec 
, 2 m/sec 

newton = 
kg.m/sec 

cm/sec 

erg = dyne. 

erg 

erg/g 

dyne/cm 

.cm joule = newton.m 

joule 

joule/kg 

2 
newton/ra 

g = acceleration of earth's gravitational field = 980 cm/sec 

0 = surface energy or surface tension equals potential energy per unit 

surface area of liquid MT (for water o = 72.7 dyne.cm at 10 C) 
2 

n = viscosity = tangential force on 1 cm of liquid exerted by a gradient of 

velocity in normal direction of 1 cm/sec per cm (units poise = lg.cm 

sec ; n of water at 20 C is about 0.01 poise = 1 centipoise) 

1 

R = gas constant = 

300°K or 27°C. 

7 9 
.317 x 10 erg/degree/mole; RT = 25 x 10 erg/mole, at 

5.2.3 RETENTION CURVES 

The forces of retention mentioned so far, i.e. the adsorption forces and the 

adhesion-cohesion forces resulting in concave air-water interfaces, are taken 

together as matric forces, because both types arise from the presence of the 

soil matrix. The existence of matric forces can be demonstrated by means of a 

tensiometer (Fig.2). 
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Fig.2. Tensiometer. 

A tensiometer is a piezometer adapted for the measurement of negative pres

sures (suctions). Water inside the porous cup of the tensiometer attains equili

brium with the water in the surrounding soil. The matric suction, S , is thus 
m 

given by the position of the water level in the open end of the manometer. For 

convenience, a Bourdon manometer or a mercury manometer may be connected to the 

open end of the tensiometer. 

The matric suction is a function of soil water content. This can clearly be 

seen from Eq.3 as applied to soil-water retention, since this relationship 

implies that the greater the lowering in hydrostatic pressure, the smaller the 

radius of the water-filled pores will be. Or, in other words, the greater the 

applied suction, the lower the resulting water content will be. 

This directly indicates the two main ways in which the interdependence of water 

content and suction can be determined: 

- by applying suction to a porous plate on which moist soil is placed, 

- by applying excess pressure to moist soil on a semipermeable membrane through 

which water, but not soil particles, can pass. 

Details about the determination of the retention curves, i.e. the graphical re

presentation of the function relating matric suction to soil water content, are 

given in Chap.23, Vol.111. If the suction is expressed in cm water and plotted 

on a logarithmic scale against the volumetric water content, the water retent

ion curve is called pF curve. 

Soil water retention curves are used to indicate the amount of water that can 

be retained by the soil and that is available for plant growth. This amount of 

water was defined earlier as the difference in water content at field capacity 

and at the permanent wilting point. For convenience, field capacity is then 

usually defined as the amount of water retained by the soil against a suction 

of 100 cm, and permanent wilting point as the amount of water retained against 

a suction of 15 atmospheres. 
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Although it is realized that these definitions are somewhat arbitrary in terms 

of the actual amount of available moisture, they still provide us with a suit

able criterion for comparing the water-holding characteristics of different 

soils. In this way the water retention curve (pF curve) becomes a valuable tool 

in irrigation. Water retention curves are also used in determining the amount 

of water that is released or taken up by the soil when the water table drops or 

rises. This is of importance in the design of drainage systems (Chap.8, Vol.11). 

5.3 FORCES AND POTENTIALS 

5.3.1 THE CONCEPT OF POTENTIAL 

BUCKINGHAM (1907) introduced the idea that the flow of water through the soil 

could be compared to the flow of heat through a metal bar or the flow of elec

tricity through a wire. The driving force comparable to the temperature differ

ence or the electrical potential was visualized as the difference in attraction 

for water (retention) between two portions of the soil which are not equally 

moist. 

This may be easy enough when there is only one force acting on the water. It 

would then immediately be obvious whether the water was flowing and, if so, in 

what direction. However, besides the matric forces there are two types of 

forces acting on the soil water. These are: osmotic forces(caused by dissolved 

solutes) and body forces (inertial forces and gravitational force). 

When it is desired to know differences in retention in order to obtain the 

direction of flow or to establish whether an equilibrium situation exists, it 

is necessary to obtain the vector sum of all forces acting on the water. This 

means that it is necessary to calculate the magnitude of the residual force and 

its direction, which in turn requires that the magnitude and direction of each 

force acting on the water are known. The equilibrium condition, of course, is 

that the residual force is zero, i.e. the vector sum of all component forces 

equals zero. It is, however, far more convenient to assign a corresponding 

potential to each force field. 

The potential of water is defined as the work required to transfer a unit 

quantity of water from a standard reference state, where the potential is taken 

zero, to the situation where the potential has the defined value. 
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Without going into great detail, potential can be understood to give an indi

cation of the energy status and hence the availability of soil water. The lower 

the potential, the lower is the availability of the water. 

The unit quantity in the definition of potential may be unit mass, unit volume, 

or unit weight. In all cases only the differences in potential are significant 

and not the absolute value of the energy, even assuming this can be defined. 

Potentials are scalars, not vectors (i.e. they have magnitude only and no 

direction) and thus the equilibrium condition is reduced to the requirement that 

the algebraic sum of these component potentials is constant. This sum of the 

component potentials is called the total potential. The driving force for the 

movement of water is then simply the gradient of total potential. 

Potentials can be expressed in terms of energy per unit mass' <J> (i.e. in the 

c.g.s. system erg/g). It is often more useful to express potentials as energy 

per unit volume <J>', which term can directly be reduced to a pressure term (i.e. 
3 2 

erg/cm or dyne/cm ). 

The conversion between the energy per unit mass and energy per unit volume term 

makes use of the specific volume (volume per unit mass, V) or density (mass per 

unit volume, p) of water (<)>' - p<f>). 

Finally, potentials can also be expressed on a weight basis, h : if the potent-

quals <f> 

<l>/g cm. 

3 
ial equals <f> erg/g (or p(J> ergs/cm ), then on a weight basis it is equal to 

The dimensions of the latter are obtained as follows (see Table 1): 

I "1/ -2i L2T~2 

| erg g /cm sec | = — - — = L 
LT * 

Units and conversion factors for water potential are listed in Table 2. 

In the c.g.s. system the factor pg for water is close to J0O0, with slight 

variations due to differences in temperature or salt content (Chap.6, Vol.1). 

The potential expressed on a mass basis and on a volume basis (<)>' = pgh in 
2 

dynes/cm ) have therefore the same numerical values. It is the convention to 

assign to free and pure liquid water a potential value of 0. Since soil water 

132 



-4 
1 * 10 

1 

1 x 102 

1.01 x 10 2 

0.98 x 10~' 

1 x 10"6 

1 x 1 0 - 2 

1 

1.01 

0 .98 x lo" -3 

0 .99 x 10 

0 .99 x i o " 2 

0.99 

1 

0 .97 x i o " 3 

1 .02 x 

1.02 x 

1.02 x 

1.03 x 

1 

10" 3 

101 

10 J 

.o3 

Physics of soil moisture 

i s l e s s a v a i l a b l e , i . e . i t has a r e s t r i c t e d energy s t a t u s as compared wi th t he 

r e f e r ence pure l i q u i d wa t e r , t he v a l u e of i t s p o t e n t i a l i s n e g a t i v e . 

Table 2 . Conversion of energy u n i t s . 

specific energy units pressure units 

Erg/gram joule/kg bar atmosphere cm of water 

1 x 106 

1.01 x 106 

0.98 x 103 

Note: 1 joule = 10 erg 

1 gram.cal = 4.186 joule 

1 cm mercury (Hg) = 13.6 cm H.0 
2 1 atmosphere = 14.7 lbs/inch (psi) 

1 bar = 10 dynes/cm 

Total potential, <J>, is thus defined as the work necessary to move a unit 

quantity of water (e.g. 1 gram) from a chosen standard system with free and pure 

liquid water to the point under consideration in the soil: 

<J> = Ek(- /Fk ds) (4) 

where the summation is performed over all component potentials resulting from 

forces F, , expressed as force per gram mass, and ds is the displacement in the 

force field (with reference to a chosen standard location). The arrows indicate 

that these quantities are vectors. The following component potentials are 

considered in the next section: 

- gravitational potential, <j) 

- matric potential, <b 
r Tm 

- osmotic potential, <j> 

Under conditions where additional force fields are imposed on the soil, other 

component potentials should be included in the total potential. For example, 

soil in a pressure membrane apparatus is subjected to an additional external 

pressure (Chap.23, Vol.111), which would lead to a so-called external pressure 
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potential. Likewise soil in a centrifuge would experience an external pressure 

potential resulting from the centrifugal force field. 

5.3.2 COMPONENT AND TOTAL SOIL WATER POTENTIALS 

the gravitational potential 

The gravitational potential is defined by: 

Z l + ->-
<f> » - ƒ gdz (5) 

g z o 

The integration is performed from the reference position z to the point under 

consideration zi, where z is distance above the reference level. How does the 

gravitational potential depend on location in the profile? We take a column of 

an "ideal" soil, in which water is not subjected to osmotic forces. The water 

in the column is in equilibrium with a free water table. No evaporation occurs; 

hence the water in the soil is in a state of equilibrium. We now move an infini

tesimal mass of water dM from z to a point z + dz, where dz is an infinitesimal 

distance. The work done by the applied force against the retaining forces in 

removing water from the substance at z is $ dM. The work done by the applied 

force as water unites with the soil at the new level z + dz where the potential 
3c|> 3<(> 

is A + _l£ dz amounts to - (* + _l£) dM. 
rg dz g 3z' 

Hence the net work done by the applied force is 
3<|> Wj 5s- dz dM (6) 

dz 

Moving the maas of water from z to z + dz involves working against gravity: 

W2 = gdM dz (7) 

At equilibrium 

W - 0 - Wi + W2 

which leads to 

3<(> 
- g & d z dM = gdM dz = 0 (8) 

or 
3<t> 

(9> 
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Integration of Eq.9 gives 

*g = gz + B (10) 

where B is the integration constant, which we may evaluate as follows: 

at the water table z = 0 and <j> = 0 by choice of our reference level; insert

ing these values in Eq.10 gives B = 0. 

Hence we have 

<)>g - gz (11) 

which states that the gravitational potential is proportional to the height 

above the reference level where <)> = 0 , which in this example was chosen at the 

water table. 

Expressing the gravitational potential per unit weight (h ), it is found that 

h = z; per unit volume (pressure potential <))') it gives <j>' = Pgz. 

the matric potential 

The matric potential is formally defined as 

xi 
* = - ƒ ?dx" (12) 
m x m 

Since the matric forces are not known quantitatively, their total effect is 
2 

derived from the value of the matric suction, S in dyne/cm or h in cm water 
m m 

column, which can be measured experimentally. The matric potential is then ob

tained by multiplying S with - V = — (the specific volume) or h with - g 

(the acceleration due to gravity). 

Hence 

* - - - S = - g h (13) 
Tm p m 6 m 

Above the groundwater table soil water is "under suction", i.e. the matric 

forces have the effect of a negative hydrostatic pressure. 

Below the water table the hydrostatic pressure in positive. The corresponding 

pressure potential <ji is then equal to: 

<t> = - (j)1 = gh 
P P P P 

2 
where <)>' is the hydrostatic pressure in dyne/cm and h is the hydrostatic 

pressure in cm water column. 
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the osmotic potential 

The osmotic potential is formally defined as: 

Xl 

<j> = - ƒ F dx (14) 
Y 0 X o 

o 

Dissolved solutes in the water cause an osmotic pressure, II, which has the 

effect of a negative hydrostatic pressure. Like the value of the matric potent

ial, the value of the osmotic potential is obtained from the product of the 

corresponding pressure and the reciprocal of the density: 

<f>o = - i n (erg/g) (15) 

It can also be calculated directly from the concentration and the dissociation 

constant: 

<(>0 = - PgRTdCQ (erg/g) (16) 

where 

RT is the product of the universal gasconstant and the absolute temperature 

(25 x 10 erg/mole at about 25°C), 

d is the factor by which the number of dissolved particles is increased by 

dissociation, 

C is concentration in mole/g of water, 
o 

For example, if the concentration of the dissolved sa ts in the soil water 
-2 

present in the root zone equals 10 molar and the salt is mainly NaCl, its 

osmotic potential can be calculated by means of Eq.16, as follows: 

<1> = - (25 x 109 x 2 x Iff5) = - 5 x 105 erg/g. 

Differences in osmotic potential only play a role in causing movement of water 

when there is an effective barrier for salt movement between the two locations 

at which the difference <(> was observed. Otherwise, the concentration of salts 
o 

will become the same throughout the profiles by the process of diffusion, and 

the difference in <|> will no longer exist. Barriers for the movement of salts 

are formed by the surface of roots, while a densely compacted clay layer may 

also serve as a somewhat imperfect semi-permeable membrane (i.e. a membrane 

permeable to water but not to salt). 
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the total potential and hydraulic potential 

The total potential is obtained by combining the relevant component potentials: 

g rm To r(external) (17) 

Equilibrium, which is defined as the situation where mass transfer of water in 

the liquid phase is absent, is obtained when the value of the total potential 

is constant. Usually, sufficient condition is that the sum of the component 

potentials; $ being ignored, is constant. The equilibrium condition states 

then that in the absence of external force fields, i.e. in the absence of an 

external gas pressure, different from atmospheric pressure, 

9. = <p + <p = constant Th rg Tm 

or, for saturated conditions 

(18) 

$ = p + <j> = constant 

where <j>, is called the hydraulic potential. 

In Fig.3 this condition is applied to a vertical soil column in equilibrium 

with a water table. No water movement occurs in the column. The groundwater 

table is taken as the reference level for the gravitational potential. 

4>n = 3* 

w a t 
t a b 

soil 

er ~ 

ft 
piezometer tensiometer 

p - p v p 

Fig.3. Equilibrium soil water condition 9, 

Two piezometers (one at the water table) indicate values of the hydrostatic 

pressure and two tensiometers values of the matric suction. Since the matric 

potential is zero at the water table, it is found that the matric potential 

balances the gravitational potential throughout the profile. Apparently in the 

137 



equilibrium situation a plot of <(>, as a function of position in the profile (z) 

is a straight line through the origin. 

<J>. (z) functions can also be determined for non-equilibrium situations from soil 

water suction data obtained with tensiometers installed at different depths in 

the profile. For example, a tensiometer located at a depth of 50 cm showed a 

suction of 60 cm water; another at a depth of 75 cm showed a suction of 40 cm. 

Will water move upwards or downwards in the profile? If we take the position of 

the lower tensiometer as reference level for the gravitational potential we find 

that its value for the tensiometer at 50 cm depth, expressed on a weight basis, 

equals 25 cm; hence the hydraulic potential for that tensiometer, also on a 

weight basis, equals 25 - 60 = -35 cm. 

For the lower tensiometer, the hydraulic potential equals 0 - 40 = -40 cm. The 

direction of flow is towards the position with the lowest water potential and 

is therefore downwards. 

A different situation is depicted in Fig.4. Tensiometer readings were obtained 

at several depths in the profile. It was found that below a depth of 15 cm, the 

tensiometers indicated the same value of 100 cm suction (field capacity) while 

at a shallower depth the soil was drying under the influence of evaporation. 

The lowest tensiometer was again taken as reference level of the gravitational 

potential. Note that the value of the hydraulic potential calculated according 

to Eq.18 is not the same throughout the profile. Above a depth of 15 cm the 

direction of water movement is upwards, and below 15 cm water tends to move 

downwards. Whether water actually moves downwards depends on the conductivity 

of the unsaturated soil for water movement (see Sect.4 and Fig.11). 

negative 
potentials 

20. 

10 

400 300 200 100 

positive 
potentials Fig.4. Soil water potential profiles with 

part of the soil at field capacity. 
100 200 

cm 
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In Fig.5 a number of possible hydraulic potential profiles is shown. Experiment

ally determined 4v(z) curves, as for example the curve in Fig.4, can be broken 

up into sections with shapes similar to those in Fig.5. From the shape and 

curvature of the rj>, (z) curve it is possible to determine the direction of flow 

(since water moves from a position of high hydraulic potential to a position of 

low hydraulic potential) and to assess likely changes in water content. These 

are also indicated in Fig.5. Obviously it is necessary to install more than two 

tensiometers in the soil to detect a curvature in the fj>, profiles. The position 

of the <tv(z) curve with respect to the zero mark on the x-axis is immaterial 

and depends only on the reference level for the gravitational potential. Posit

ive values of rj> do not necessarily indicate saturated flow as can be seen in 

Fig.6. The slope of the curve indicates the direction of flow. 

appearance of 
(t>h curve ( positive 
values increasing 
towards the r ight) 

direction of f l ow 
f upwards 
0 equil ibrium 
1 downwards 

O 

moisture content 
—« increasing 
O stationary 

••— decreasing 

O 
O 
O 

Fig.5. Direction of flow and change in soil 

water content for various r)> profiles. 

.8 . 6 -4 0 2 4 6 8 
water potentials (m) h , (m)< 

Fig.6. Soil moisture potential profiles with 

positive values of hydraulic potential 
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5.4 TRANSPORT OF WATER IN THE SOIL 

5.4.1 TRANSPORT EQUATIONS BASED ON THE POTENTIAL CONCEPT 

The concept of potentials is well suited for the analysis of flow of water in 

soils, since all flow is a consequence of potential gradients. Hence we can 

write as one general flow equation: 

dp<j> 

v = - k-r-5- (19) 
as 

where (dimensions in the c.g.s. system): 

v = flow velocity (cm/sec) 

k = conductivity coefficient (dimensions will be determined below). 

dp4>h . . 3 
— - j — = hydraulic potential gradient (dyne/cm ) in which the hydraulic 

3 2 
potential p<f>, = <J>' is expressed in erg/cm or dyne/cm (the hydraulic 
pressure). 

The minus sign in Eq.19 indicates that the flow is in the direction of 

decreasing potential. 

3 
The units of k can be found from the dimensions of dp4> /ds (dyne/cm ) and 

v(cm/sec) as cm /dyne.sec or cm sec/g. The flow of water, through saturated 

soils, v, is generally described by Darcy's law: 

v = - Ki (20) 

where i is the hydraulic gradient, and K is the constant hydraulic conductivity 

(see Chap.6, Vol.1). The hydraulic gradient is the loss of hydraulic head, h, 

(i.e. the hydraulic potential expressed on a weight basis, hence it has 

the dimensions of a length) over a unit length of flow path, s, (i = dh/ds). 

The hydraulic gradient is therefore a dimensionless unity, so that v and K have 

the same dimensions (cm/sec). 

Comparing Eqs.19 and 20, one finds that K = pgk - 1000 k. 

Equations 19 and 20 can also be used for the analysis of flow through unsaturat

ed soil when it is understood that k, now called the capillary conductivity with 

symbol k , then depends not only on the pore geometry of the soil but also on 
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the water content. It should also be realized that <(>' in saturated flow systems 

refers to the positive hydrostatic pressure, and in unsaturated flow systems to 

the negative hydraulic pressure with its two components, i.e. those due to 

matric forces and gravity. 

The general flow equation for unsaturated flow 

k 1 — w dx (21) 

expresses the relationship between the three variables, v, k , and <j>' ; for its 
w n 

solution two additional equations incorporating the same variables are required. 

The first additional equation is obtained from the principle of conservation of 

matter. This equation is called the equation of continuity. Let us consider a 

small cube of soil with length of sides Ax, Ay, and Az (see Fig.7). 

Fig.7. Model for the derivation of the 

continuity equation. 

A mass of water, M., flowing into the cube in the x-direction, through face 

AyAz at side A is given by 

3M. 

JT ' p VxA y Az (22) 

where v is the flux of water in the x-direction. A mass M flowing out at side x u ° 
B is given by 

8M 3pv 

3t - ( p vx + IT Ax)Ay Az (23) 

The net flux leaving or accumulating is the difference between Eqs.22 and 23. 

The net change in flux of water moving through the volume of soil in all direct

ions is then given by: 
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3M 3 p V x 3 p v v 3 p V z 

f - - hbT+ -s?+ ir)Ax *yAz <2*> 
M, the mass of water in the volume Ax Ay Az is given by the product of the bulk 

density B, the mass fraction of water in the soil, 9, and the volume of the 

cube: 

M - B9 Ax Ay Az (25) 

If Eq.25 is differentiated and combined with Eq.24 we get: 

. . . 3pv 3pv 3pv 

IF - - <TÏT • V • TT> (2«) 

If the densities B and p are constant, Eq.26 can be simplified and written for 

flow in the x-direction only as: 

B3i-3ï--îi (27) 
p3t 3t 3x u / ; 

where B9/p is equal to the volumetric water constant, w. 

The second additional relationship that is required for the solution of Eq.21 

is found in the water retention curve. Sometimes the graphical representation of 

the water retention curve can be expressed by simple expressions like 

w = a + b<(>' , or w « a(d>' ) which are sufficiently accurate over a limited 
m m 

range. These expressions are usually not satisfactory when hysteresis effects 

are considerable. 

Equations 21 and 27 can be combined to yield for flow in the x-direction 

<&> ' i <kw^x-> (28> 
X 

or with d>' • - S + pgz: 
h m 

,3w. 3 . , 3Sm , , „ 3z. .„.. 
(•*—) » -5— (- k —r- + k pg •*—) (29) 
3t' 3x w 3x w ° 3x' 

x 

For horizontal flow, vertical flow upward, and vertical flow downward, the value 

of 3z/3x is 0, 1,-1, respectively. In vertical flow the influence of the gravi

tational force is often rather small in comparison with that of the matric 

forces, in which case the last term of Eq.29 may be neglected. This equation can 

further be simplified by the introduction of the soil water diffusivity, D , 
w 
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also a function of water content, w, defined as: 

D = - k 2|E 
w w dw 

Eq.29 then becomes: 

( £ > - / (D £ > (30) 
dt dx w dx 

x 

Let us illustrate some of the principles of transport of water through soils 

with the following example: In a root zone in a sandy soil a tensiometer measured 

a suction of 800 cm H.0. The concentration of dissolved salts, mainly NaCl, in 
1 -2 

the water present in the root zone was 10 molar. The groundwater table was at 
100 cm below the root zone. The concentration of the dissolved salts in the 

-2 
groundwater was 5x10 molar. If we take the groundwater table as reference level 

for the gravitational potential, we find for the component potentials in, resp

ectively, the root zone and at the groundwater table the following values: 

Potential (erg/g) 

<j> (osmotic potential) 

<j> (gravitational potential) + 1 x 10 

(j> (matric potential 

The total potential in the groundwater' (- 25 x 10 erg/g) is lower than in the 

root zone (- 5 x 10 erg/g). Nevertheless, water will move from the groundwater 

table upwards into the root zone because the hydraulic potential is lower in the 

root zone than in the groundwater (- 7 x 10 and 0 erg/g respectively). If we 

assume an average value of the unsaturated conductivity, k , for the soil layer 
-10 3W -2 

between root zone and groundwater table, equal to 10 cm sec/g (= 10 cm/day), 

we find that this hydraulic potential gradient can maintain, according to Eq.21, 

an upward flow of: 

v - - k £££ = + — 1 * '° = 7 x 10"7 cm/sec = 0.07 cm/day 
w Az 102 

5.4.2 INFILTRATION 

The solution of Eq.30 is well known from heat problems for the situation in 

which a constant value of the diffusivity, not depending on the water content, 

can be assumed. Unfortunately, however, D for soil water flow depends greatly 
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on w. Nevertheless, Eq.30 can be solved for certain boundary conditions. 

For example, BRUCE and KLUTE (1956) solved Eq.30 for horizontal infiltration of 

water into a column of soil, if the water content at the inflow boundary remain

ed constant. The boundary conditions are: 

t = 0 

t > 0 

x > 0 

x = 0 
(31) 

where w i s the i n i t i a l water content and w the water content a t the inflow n o 
boundary. These boundary conditions can be sa t i s f ied in an experimental set-up 

shows in F ig .8 . 

segments 

I2_çm 
-wetting front 

-porous plate 
—water reservoir suction 

2cm 

water 
Fig.8. Experimental set-up for horizontal 

infiltration. 

Equation 30 can now be solved under the additional condition that a plane of 

constant water content advances proportionally to the square root of the infilt

ration time. That this last condition is satisfied can easily be verified by 

plotting the advance of the wetting front (a plane of constant water content) as 

a function of the square root of infiltration time. Usually this plot is a 

straight line unless the soil exhibits considerable swelling when wetted. 

The solution of Eq.30 under the conditions of Eq.31 is: 

D ( w > = - 2 t " ï ï w " X d w (32) 

where t is the total time of infiltration. 

The information necessary for the solution of Eq.32 can be obtained from the 
dx 

plot of w(x) at the end of infiltration (Fig.9), since -3— is the slope of the 
dw 
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curve relating x with w, and ƒ xdw can be determined, for each value of w, from 

the shaded area below that particular value of w (see Fig.9), k can then be 
w 

determined according to Eq.29 from the value D for each value of w and the 
w 

slope of the water retention curve (dw/dS ) at the same value of w. Resulting 
m ° 

curves for k and D as functions of w are given in Fig.10. 

-_tga 

Fig.9. Water content distribution at end of 

infiltration test with set-up of Fig. 
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Fig.10. Experimental values of k and D as 
w 

functions of w obtained from the w(x) 

function of Fig.9. Columbia silt loam 

(cf. Davidson et al., 1963). 

The unsaturated conductivity coefficient can also be expressed as a function of 

S through the water retention curve. Examples for soils of different textures m 

are given in Fig.11. From the figure it appears that coarse textured material 

has a greater capillary conductivity that the finer textured soils at a low 
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value of the suction, while at a greater suction (lower water potential) the 

situation is reversed. 

kn capillary conductivity (cm/hour) 
5 4 3 - 2 - 1 0 1 

10 10 10" 10 10 10 10 

2 0 0 -

h m Ccm H20) 

Fig.11. Relation between capillary conductivity 

k, and matric suction h . 
h m 

The practical implication is that redistribution of water in the profile, after 

infiltration has stopped, is considerably faster in fine textured soils than in 

coarse sands. The wetting front penetrates readily into a sandy soil as long as 

there is water infiltrating into the soil, but soon after infiltration ceases 

the movement of the wetting front will stop. This is shown in Fig.12. The expe

rimental results of.Fig.12 were obtained with gentle flooding of the surface 

with a head of water not exceeding 1 cm. 

water content (vol°/o) 
0 8 16 24 32 40 48 0 8 16 24 32 

TIT 

35 
depth (cm ) 

-end of infi ltration 
• — 1 hr after end of infiltration 

24 hrs after end of infiltration 

Fig.12. Infiltration and redistribution of soil 

water in a clay loam and sandy soil. 
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Often soil water profiles, for both vertical and horizontal flow, have sharp 

increases in water content near the infiltration boundary x = 0. As a result of 

the experimental procedure the water content in the saturated zone near the 

surface is higher than in the transmission zone, which is the zone of near cons

tant water content lower in the profile. The value of the water content in this 

transmission zone decreases as the rate of water entering the soil decreases, 

and it is highest in the case of flood infiltration. This can be seen in Fig.13, 

where water content profiles are shown after 8 cm of water has infiltrated into 

a clay loam soil by three different methods of wetting: gentle flooding, and 

raining with two intensities, 1 cm/hr and 0.1 cm/hr. The rate of flow in the 

rain treatments is approximately equal to the capillary conductivity at the water 

content of the constant (transmission) region. 

0 

10 

2 0 

3 0 

4 0 

5 0 

60 

70 

: 

8 
1 

,'-' 

/ 

16 
I 

water content (vol °/o) 
24 32 40 48 56 

' i ' ! V ' 
rainfall flooding 

i i 1 

0.1 cm/hr ! / 
! 1cm/hr / 
i i / 

i ~~' 
1 / 

/ 

depth (cm) 

Fig.13. Infiltration into a clay loam with 

three different wetting methods. 

Infiltration into stratified soil, i.e. when discontinuities in the conductivity 

function occur with depth in the profile, still largely escape our attempts at 

mathematical expression. An example of measured water content and suction 

profiles is presented in Fig.14. It clearly shows discontinuities in water cont

ent at the boundary between coarse and fine soil whereas the suction profiles 

are continuous functions across the boundary. 

Empirically derived relations for the evaluation of infiltration are found in 

Chapter 15 (Vol.11). 
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Fig.14. Water content and suction profiles at 

different stages of infiltration into 

stratified soil (c.f. Hanks and Bowers, 

1962). 

5.4.3 CAPILLARY RISE 

The height to which water will rise from the groundwater table can be predicted 

for the situation in which water is in equilibrium with the groundwater and no 

movement occurs as a result of uptake by roots or evaporation. By analogy with 

the rise of water in glass capillaries, one obtains for h, the rise of water 

from the groundtable, for a contact angle of a • 0 (see Sect.2.2): 

h = 
2a 
rpg 

(32) 

in which r is now the effective pore radius of the soil. 

The value of r cannot be determined independently so that r is usually evaluated 

from the measurement of h, the observed capillary rise. However, in many soils, 

and certainly in clay soils, the maximum h value is not always realized because 

of low conductivity characteristics in the soil. This could result in misleading 

values of r. Sometimes it is possible to assume a stationary flow, v, upwards 

from the groundwater table as a result of (near) constant removal of water by 

evaporation and/or uptake by plant roots. This implies that ôw/6t = 0 at every 

location, z > 0 in the profile (z = 0 at the level of the groundwater table). 

It also implies that 3v/9z = 0 for t 3 0. 

Eq.21 can be written in terms of the matric and gravity potential gradient, 

both expressed on a weight basis: 

dh 
v = kh(^-l) (33) 

where t is the capillary conductivity as function of h (as, for example, given 

in Fig.11). 
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Integration of Eq.33 leads to: 
h K 
rm n ,, z = ' -. — dh k, + v m 

Physios of soil moisture 

(34) 

This integral can be solved when k, is known (Fig.11), or when this relation 

can be described by an empirical expression. GARDNER (1958) has proposed 

K 
( h m ) " + b 

(35) 

where a, b, and n are constants which would have to be determined experimentally. 

The solution of Eq.34 is presented in Fig.15 for a coarse textured soil for 

several flow velocities. From the figure it can be seen that a velocity of 

] mm/day can be maintained to a root zone about 90 cm above the groundwater 

table when the pF in the root zone is greater than about 2.5. 

V =0 mm/day 
•1 • 

Fig.15. Potential profiles calculated for a 

4 coarse textured soil (m=4) under 

influence of capillary rise. 

When the soil surface dries out, the capillary conductivity at the surface ap

proaches a small constant value (i.e. the conductivity of the soil for water 

vapour). It appears then from Eq.33 that the evaporation rate, v, would approach 

a constant value. This value varies approximately with z , where z is the 

depth of the groundwater table. However, it has been found that the evaporation 

rate goes through a maximum rather than approaching a constant value, with- an 

increase in evaporative demand of the atmosphere. In Fig.16 the observed steady 

state evaporation is shown as a function of evaporative demand of the atmosphere 

for a fine sandy loam with two different depths of the groundwater table (HADAS 

and HILLEL, 1968). 
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Vz (mm/day) 

2 0 r 

10 

10 20 30 
evaporation demand ( mm/day) 

Fig.16. Relation of measured steady state eva

poration rate to potential evaporativity 

J for a fine sandy loam with water table 

at two depths. 

It is obvious that the evaporation rate passes through a maximum value, which 

is higher for the shallow water table. The subsequent decrease in evaporation 

rate could not be due to salt accumulation, but might result from the occurrence 

of two layers in the profile with a large potential gradient between them, 

resulting from the drying process (HADAS and HILLEL, loc.cit.).. 
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PURPOSE AND SCOPE 

The fundamental physical laws governing the flow of groundwater, the basic hy

draulic flow equations, and the underlying assumptions and approximate solutions 

as used in applied groundwater hydrology are discussed and illustrated by some 

examples. 
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6.1 GROUNDWATER AND WATER TABLE DEFINED 

The term groundwater refers to the body of water in the soil, all the pores of 

which are saturated with water. The locus of points in the groundwater body where 

the pressure is equal to the atmospheric pressure defines the phreatic surface, 

also called free water surface or groundwater table (Fig.1). It is found as the 

water level in an open bore hole that penetrates the saturated zone. Pressure is 

usually expressed as relative pressure p with reference to atmospheric pressure 

p t . At the groundwater table, by definition p » p . 

soil 
moisture 

capillary 
water 

ground 
water 

S ^ W * ^ aground ^^M^^/Z/^WM 

unsaturated zone > P=<Patm 

nearly saturated 
-M 

saturated zone 

water table 
P'Patm 

XXXXXXXXXXX!vJmP?r.v!ou? „layer 

Fig.]. Scheme of the occurrence of water 

in the subsurface. 

The mass of groundwater actually extends slightly above the groundwater table 

owing to capillary action, but the water is held there at less than atmospheric 

pressure. The zone in which capillary water fills nearly all pores of the soil 

is called the capillary fringe. Although occurring above the groundwater table, 

the water in the capillary fringe is sometimes included in the groundwater mass. 

The capillary water occurring above the capillary fringe belongs, together with 

the pendular water, to the unsaturated zone or zone of aeration in which the soil 

pores are filled partially with water and partially with air. 

6.2 PHYSICAL PROPERTIES, BASIC LAWS 

In drainage studies we are not only interested in the depth at which the ground

water table is found and the changes that occur in this depth; we are particu

larly concerned with the movement of the groundwater and its flow rate. This 

movement is governed by several well-known principles of hydrodynamics which, in 

fact, are nothing more than a reformulation of the corresponding principles of 

mechanics. 

From a physical viewpoint, a complete system of hydrodynamics requires the form-
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ulation of: the equation of continuity, the equation of state of the ground

water, and the dynamic equations of movement of the groundwater. 

Since we are dealing with groundwater as a fluid, some of its physical propert

ies and the basic laws related to its movement will be presented, after which the 

above-mentioned equations will be formulated. 

6.2.1 MASS DENSITY OF WATER 

The density of a material is defined as the mass per unit volume. The mass dens

ity may vary with pressure, temperature, and concentration of dissolved solids. 

For water, the mass density will be denoted by p. Its value is approximately 

1000 kg/m3 and, in the considerations that follow, it will be assumed a constant. 

6.2.2 VISCOSITY OF WATER 

In a state of laminar flow, i.e. a flow in which the path lines of water partic

les are parallel, a layer of fluid sliding over another exerts a frictional drag 

upon it, and this force is reciprocated. The faster-moving layer tends to drag 

the slower along with it; the slower tends to hold back the faster. This friction 

is called viscosity. The overall effect of the thin water layers, each of which 

is moving at a different speed from its neighbours, is observed as a velocity 

gradient in the direction y at right angles to the line of movement. At any given 

point where the velocity gradient is dv/dy, the viscous shear stress, F/A, in the 

plane at right angles to the direction of y is 

F/A = T] dv/dy (1) 

where n is the dynamic viscosity of the fluid. For water, the dynamic viscosity 

is approximately 10 kg/m s. 

The kinematic viscosity V is defined by the relation 

v = n/p (2) 

For water, the kinematic viscosity is approximately 10 m / s . 

The variation of viscosity and mass density of water with temperature is given 

in Table 1. 
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Table 1. Variation of mass density and viscosity of water with temperature. 

Temperature 

°c 

0 

5 

10 

15 

20 

25 

30 

40 

Mass densi 

kg/m3 

999.87 

999.99 

999.73 

999.13 

998.23 

997.07 

995.67 

992.24 

ty Dynamic viscosity 

kg/ 

1.79 

1.52 

1.31 

1.14 

1.01 

0.89 

0.80 

0.65 

X 

X 

X 

X 

X 

X 

X 

X 

'm s 

10~3 

10"3 

10"3 

10~3, 

10~3 

io"3 

10~3 

io~3 

Kinematic viscosity 

m: 

1.79 

J.52 

1.31 

1.14 

1.007 

0.897 

0.804 

0.661 

7s 

x 10~6 

x 10~6 

x I0~6 

x 10~6 

x 10~6 

x I0~6 

x IO-6 

x 10~6 

6.2.3 SPECIFIC WEIGHT 

The specific weight of water, y , is obtained by multiplying its mass density by 

the acceleration of gravity, g(= 9.81 m/s ) 

Y = Pg (3) 

For water, the specific weight is approximately 9810 kg m s 

6.2.4 LAW OF CONSERVATION OF ENERGY 

A fundamental law in hydrodynamics is the law of conservation of energy, which 

states that no energy can be created or destroyed in a closed system. 

Assume a fluid particle moving during time At from point 1 to point 2 along a 

stream line of the fluid in the tube depicted in Fig.2. This fluid particle has 

the following three types of interchangeable energy per unit of vol-nie 

1/2pv = kinetic energy per unit of volume 

pgz = potential energy per unit of volume 

p = pressure energy per unit of volume 

If, for the moment, it is further assumed that the flow tube of Fig.2 is not 

obstructed by solid material, there is no loss of energy due to friction. Since 

there is no gain of energy either, we may write 

(l/2pv2 + pgz + p) = (l/2pv2 + pgz + p) = constant (4) 
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This equation is only valid when a fluid particle is moving along a stream line 

under steady flow conditions, when the energy losses are negligible, and when 

the mass density of the fluid, p, is a constant. 

Equation k is known as Bernoulli's equation, which in its general form is writ

ten 

1/2PV2 + pgz + p = constant (5) 

Since, in nature, velocities of groundwater flow (v) are usually low, the kinetic 

energy in Eq.5 may be neglected without any appreciable error. Hence, Eq.5 

reduces to 

pgz + p = constant (6) 

Since laminar flow was assumed (i.e. the stream lines are straight and parallel), 

the sum of the potential and pressure energies in the plane perpendicular to the 

direction of flow is constant. In other words: pgz + p = constant for all points 

of the cross section. 

In Eq.6 the energy is expressed per unit of volume. Expressing the energy per 

unit of weight, i.e. dividing by pg, we convert the energy equation (6) into one 

of potential 

—*- + z = constant = h (7) 
Pg 

where 

—*- = the pressure head, z = the elevation head, and h = the hydraulic head. 
Pg 

The tube in Fig.2, in fact, is filled with sand, and a fluid particle travelling 

along a stream line has to overcome a resistance. In doing so, it loses energy, 

which is accounted for by a head loss Ah. For the example shown in Fig.2, 

Bernoulli's equation then reads 
p, p , 
— + z = -2- + z + AhT (8) 
Pg 1 Pg 2 L 

* L - ( P * + V - ( P Î + V (9) 
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Fig.2. Pressure distri

bution and head 

loss in flow 

through a sand 

column. 

The head loss may therefore be defined as the loss of potential and pressure 

energy per unit of weight when the fluid is moving from section 1 to section 2, 

the energy head being lost by frictional resistance. 

6.2.5 POTENTIAL OF GROUNDWATER 

The potential head or hydraulic head of groundwater at a certain point A is the 

elevation to which the water would rise in an open tube whose bottom end coin

cides with the point in question, the elevation being measured from an arbitrar

ily chosen plane of reference (Fig.3). It is made up of two items, namely press

ure head, p/pg, and elevation head, z. 

In the study of groundwater flow problems, it is common practice to express the 

potential and pressure energies on a unit weight basis (Chap.5, Vol.1), i.e. in 

length of water column, h. Hence 

- £ + z 
Pg 

(10) 

where 

z = the elevation of the point under consideration above some plane of reference 

p = the pressure of the groundwater at that point relative to some reference 

pressure 

and the other symbols as defined earlier. 
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^ S WZ/X^X/ASW/AX Fig.3. Potential, or hydraulic head, h at a point A 

located at a height z above a reference level. 

_P_ 

P9 

point A 

reference v 
level 

Pressure is usually expressed as relative pressure, p, with reference to atmos
pheric pressure, p . Thus in this context, p equals zero pressure, 

atm atm r 

Mean sea level is sometimes used as reference level for height. But since for our 

purpose only relative values are used, the height component of the potential head 

is generally taken relative to an arbitrary level, for instance an impervious 

layer. 

6.2.6 LAW OF CONSERVATION OF MASS 

A second fundamental law in hydrodynamics is the law of conservation of mass, 

which states that in a closed system the fluid mass can be neither created nor 

destroyed. 

A space element, dx dy dz, in which the fluid and the flow medium are both incom

pressible, will conserve its mass over a time dt. Therefore the fluid must enter 

the space element at the same rate (volume per unit time) as it leaves the ele

ment. The rate at which a volume is transferred across a section equals the prod

uct of the velocity component perpendicular to the section and the area of the 

section. If we assume a linear velocity distribution over the elementary distan

ces dx, dy, and dz, we may write the average velocity components perpendicular to 
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the lateral faces of the space element as indicated in Fig.4. 

f vz+ —^dz 
o z 

Fig.4. 

Velocity distribution in 

space element of fluid. 

The difference of volume transferred per time dt in the x-direction equals 

3v 
(v + x — dx) dy dz dt - v dy dz dt ( in 

3v 
x 

3x 
dx dy dz dt (12) 

Analogous expressions can be derived for the differences of volume transferred 

per time dt in the y- and z-directions 

and 

3v 

3y 

3v 

dy dx dz dt (13) 

TT— dz dx dy dt 
3z J 

(14) 

According to the law of conservation of mass, the total difference of volume 

transferred in and out of the space element must equal zero. Hence 

3v 3v 3v 
x y z 

TT dx dy dz dt + •*—*- dy dx dz dt + •* dz dx dy dt = 0 
dx dy 3z 

For time-independent flow this equation reduces to 

(15) 
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3v 9v 3v 

VT + J^ + JT-0 (16) 

which is the general form of the so-called continuity equation. 

In fluid mechanics, it is common practice to select a coordinate system whose x-

direction coincides with the direction of the flow vector at the point under con

sideration. In other words, the x-direction is parallel to the tangent of the 

path line at the considered point. Consequently v = v, v = 0 , and v = 0 . Since 

under these circumstances there is a transfer of volume in the x-direction only, 

the difference of volume transferred in this direction per time dt must equal 

zero. Hence 

dv 
(vx + ̂ *- dx) dy dz dt - (vx> dy dz dt - 0 (17) 

V x + dx d A - v x d A 

( v d A ) x+dx " ( v d A ) x = d Q ( 1 8 ) 

Thus, the rate of flow dQ is a constant through two elementary cross-sections at 

infinitely short distance from each other. In fact, we considered an elementary 

part of a stream tube bounded by streamlines lying on the dx dy and dx dz planes. 

Equation 18 is valid for an elementary cross-sectional area of flow: dA » dy dz. 

If we now consider a finite area of flow, A, we may write the continuity equation 

Q = ƒ v.dA = vA (19) 
A 

where v is the average velocity component perpendicular to the cross-sectional 

area of flow under consideration. 
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6.3 DARCY'S LAW 

6.3.1 GENERAL FORMULATION 

The fundamental law describing the movement of groundwater through a soil was 

given by Darcy in 1856. The experiments that Darcy performed were of the type 

shown in Fig.2. 

Darcy observed that the amount of water flowing through the sand sample in unit 

time (or in other words the rate of flow or the discharge) was proportional to 

the difference Ah between the fluid heads at the inlet and outlet faces of the 

sample (head loss h - h = Ah), and inversely proportional to the length of the 
l 2 

sand sample (the flow path). This proportionality can be expressed mathematically 

as follows 

Q = K ̂  A (20) 

where 

Q « the rate of flow through the sample (L3T *) 

Ah = the head loss (L) 

L • the length of the sample (L) 

A = the cross-sectional area of the tube (L ) 

K = a proportionality constant, depending of the nature of the sand and the 

fluid (water), (LT_1) 

The quantity Q/A represents the discharge or flow rate per unit of cross-section

al area and is called apparent velocity, sometimes also called effective flow 

velocity or specific discharge. It is denoted by the symbol v. Hence 

v - Q/A (21) 

which is the continuity equation, see Eq.19. 

The term Ah/L represents the loss of head per unit length of flow path and is 

called gradient of hydraulic head. Denoting this hydraulic gradient by i and 

substituting it into Eq.20 yields what is known as Darcy's law or law of linear 

resistance in analogy with Ohm's law in electricity 

v - - Ki (22) 
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Darcy's law states that the apparent velocity is directly proportional to the 

derivative of the hydraulic head in the direction of flow. The negative sign in

dicates that the flow is in the direction of decreasing head. 

The dimension of v is (LT ' ) , while i is dimensionless. Hence, the dimension of K 

is that of velocity (LT ' ) . 

The proportionality constant K is known as the coefficient of permeability or, 

preferably, hydraulic conductivity. 

It should be noted that the flow velocity in the individual pores of the soil 

greatly exceeds the apparent velocity, which, in fact, is a hypothetical velocity 

that the water would have if flowing through the given flow column quite unob

structed by solid particles. 

The actual velocity of the water particles, v , follows from 

vfl = Q/nA = v/n (23) 

where 

n • the porosity of the soil (dimensionless). Since n is always smaller than 1, 

it can readily be seen that the actual velocity of the water is always greater 

than the apparent velocity. 

Darcy's law is valid for laminar flow, and since we are dealing with unconsolida

ted alluvial sediments through which groundwater is moving at a low speed, lamin

ar flow conditions prevail; consequently, Darcy's equation may be applied without 

any appreciable error. 

As noted above, Darcy's law has a certain analogy with other physical laws, e.g. 

Ohm's law in electricity: i = V/r, where i is the current (ampères), V is the 

Voltage (volts), and r is the resistance (ohms). If we compare both laws it can 

be seen that 1/K is comparable with r in Ohm's law and, in fact, the inverse of 

the hydraulic conductivity represents a resistance. In other words, the smaller 

the value of K, the larger the value of 1/K and the larger the resistance of the 

flow, and vice versa. 

The analogy of Darcy's law with laws describing other physical phenomena has im

portant consequences because it enables solutions of groundwater flow problems to 

be found from similar problems in other branches of physics. Further, flow of 

groundwater can be simulated by other kinds of flow, a fact used in the study of 

models, e.g. electrical models, or conductive sheet analogues, see Chap.7. 
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Numerical example 

Seepage under a road bed is intercepted by a ditch, as shown in Fig.5. The hydrau

lic conductivity of the pervious layer is 0.4 m/day. According to Eq.22 for a 

unit cross-sectional area 

v = 0.4 4 ' 5 ~ 5
3 , 2 = 0.02 m/day 

Assuming a cross-sectional area A = 3 m per metre length of ditch and a ditch 

length of 400 m, the quantity of water seeping into the ditch is 

Q - vA - 0.02 x 3 x 400 = 24 m3/day 

rood 

Fig.5. 

Interception of seepage under 

a road bed. 

6.3.2 THE PROPORTIONALITY CONSTANT K IN DARCY'S LAW 

The proportionality constant K in Darcy's law, v = - Ki, represents the apparent 

flow velocity at unit hydraulic gradient. It is usually referred to as hydraulic 

conductivity or coefficient of permeability and depends on the properties of both 

fluid (groundwater) and porous medium (soil). 

The flow of groundwater through the pores of the soil may be compared with the 

flow of a fluid through a narrow, circular tube of uniform radius R. For laminar 

flow of the fluid through the tube, the discharge can be expressed by the follow

ing formula, which is known as the Hagen-Poiseuille equation and was published in 

1842 

TO*pg Ah 
8n L (24) 

where 

Q - the rate of fluid flow (L3T_1) 

R = the radius of the tube (L) 

r) = the dynamic viscosity of the fluid ML *T ') 
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Ah = the head loss between the two points (L) 

L = the length of the tube between the two points (L) 

g = acceleration due to gravity (LT ) 

p = mass density of the fluid ML ). 

Since the cross-sectional area of a circular flow tube, A equals irR2 or l/4Trd2, 

where d is the diameter of the tube, Eq.24 may be written as 

dl PU * ! l A (25) 
4 32 n L *• ; 

Since, according to Eq.21, v » Q/A, Eq.25 can be written as 

V , Q = Ü P&. (26) 
v A 32 n K ' 

Laboratory and field experience shows that there is a close analogy between lamin

ar flow in tubes and flow of water through soils. Comparing Eqs.22 and 26, it 

follows that 

K - — £& (27) 
*• 32 n u / ; 

where d represents the mean diameter of the soil pores, being a parameter charac

teristic of the mean particle size. 

Introducing a dimensionless constant depending on such physical properties as 

porosity, distribution and variation of the soil pores, particle shape, and 

packing, Eq.27 can be written as 

K » cd
2 2S. „ K' ££ (28) 

where K' depends on the nature of the soil alone (and not on the properties of 

the fluid). 

It was proposed by the Soil Science Society of America in 1952 that K' be termed 

intrinsic permeability, or simply permeability, whilst K (the proportionality 

constant in Darcy's law) be termed hydraulic conductivity. In practice, hydrolo-

gists will usually be dealing with the Darcy K, but both terms, permeability and 

hydraulic conductivity, are used interchangeably. 

The methods used to determine the hydraulic conductivity and to evaluate its use 

in drainage studies are given in Chap.24, Vol.111. 
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6.3.3 INFLUENCE OF TEMPERATURE 

As shown in Table 1 (Section 2.2) both the mass density and the viscosity of 

water are influenced by its temperature. In practice, the temperature dependency 

of the mass density is ignored, its value being taken as a constant, 1000 kg/m 

However, as is obvious from this table, it is not always possible to ignore the 

influence of temperature on viscosity. 

The hydraulic conductivity K at temperature x C can be obtained from K measured 

at y C by using the equation 

n o 
K = K -*- (29) 

o o n ' 
x y o 

x 

For example, if the hydraulic conductivity of a soil sample measured in the labo

ratory at 25 is found to be 2 m/day, whilst the groundwater temperature is 10 C, 

then 

20° . v 1.01 x 10"3 . , ,, 
K = K = 2 x = 1.5 m/day. 

10° 25° ^ o 1.31 x io"3 

6.3.4 FRESH-WATER HEAD OF SALTY GROUNDWATER 

The potential, or hydraulic, head of groundwater was defined in Section 2.5, see 

also Fig.3. Hydraulic heads are measured in the field by means of a piezometer 

installed to the depth at which the water pressure is to be observed. Several 

techniques have been developed for the installation of piezometers and for the 

measurement of hydraulic heads and these will be discussed in Chap.20, Vol.111. 

If measurements are taken in piezometers installed in a deep layer containing 

groundwater of different salt contents, i.e. the salt content varies laterally 

from very low to very high (from fresh water to saline water), the hydraulic 

heads measured in the salt water should, as a rule, be converted into fresh-water 

heads. 

Expressing the fresh-water head, h_, as (see Fig.6) 

f Pfg 

and the salt-water head, h , as 
s 

h = z + - E -
s P.g 
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where pf and p are the mass densities of fresh water and salt water, respective

ly, we obtain, after elemination of p/g 

hf * 

h p s s 
(30) 

If the reference level coincides with the bottom end of the piezometer, or in 

other words if z = 0, the comparative fresh-water head can be expressed as 

h r±-r£-
s Pc Ps* P f 

(31) 

For example, if the hydraulic head is measured in salt water as being 30 m above 

the reference level which is assumed to coincide with the bottom end of the pie

zometer, and the mass density of the groundwater is found to be 1025 kg/m3, then 

the length of a column of fresh water of the same weight is 

h - ™ 1221 hf - 3 0 Tööö 30.75 m 

f èfêrehœ jève j: : 

Fig.6. Hydraulic heads in fresh and salt 

water bodies. 

6.4 SOME APPLICATIONS OF DARCY'S LAW 

6.4.1 THE FALLING HEAD PERMEAMETER 

Figure 7 shows the principle of a falling head permeameter. The head that causes 

the water to flow vertically downward through the sample decreases with time. 

According to Darcy 

h(t ) - h(t ) 
Q(t) = K 1—~, 2- A 
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where Q(t) is the rate of flow through the sample as a function of time t, and 

h(t ) and h(t ) the hydraulic heads as function of time measured in respect to 
l 2 

the constant outflow water level. 

h(t-|) 

.reference 
level 

h(t9) I 

Fig.7. Falling head permeameter. 

The rate of flow Q(t) is equal to the rate of lowering of the head dh/dt in the 

measuring tube, multiplied by the cross-sectional area. When the cross-sectional 

area of sample and measuring tube are equal, the following expression is obtained 

dh _ h(t) __ K—J-

where the negative sign indicates that the head decreases with increasing time. 

Integration between the limits t and t , during which h changes from h(t ) to 
1 2 l 

h(t ) gives 
2 

ƒ 2 - ah . j 2 K dt 

h(t ) h t L 

1 1 

In h(t ) + In h(t ) = f (t - t ) 
2 1 L 2 1 

from which it follows that 

In 
M^) 

t - t h(t ) 
2 1 2 

(32) 

For example, if the length of the sample L = 10 cm, t - t = 1 5 minutes, h(t ) = 
2 1 1 

45 cm and h(t ) = 35 cm, we find 
2 

K = — In | | > j j 0.26 = 0.17 cm/min = 24.5 m/day. 
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6.4.2 FLOW THROUGH STRATIFIED SOILS 

So far, soils have been considered homogeneous and isotropic. Isotropy with resp

ect to hydraulic conductivity means that the hydraulic conductivity of the soil 

at a certain point has the same value for any direction of flow. Soils in situ, 

however, are rarely homogeneous and instead are made up of layers with different 

hydraulic conductivity. 

Consider Fig.8 where water flows in a horizontal direction through three layers 

that have a different hydraulic conductivity K , K , and K , and a different 
1 2 3 

thickness D , D , and D . 
1 2 3 

Horizontal flow through layered 

soil. 

If we assume that there will be no flow across the boundaries between the indivi

dual layers, then the hydraulic gradient i = (h - h )/L = Ah/L applies to the 
1 2 

flow through each layer. 

The flow rate per unit width of each layer (q , q and q ) can be expressed by 
1 2 3 

q = K D i 
1 1 1 

q = K D i 
2 2 2 

q = K D i 
3 3 3 

and the total flow is 

q + q + q = q = ( K D + K D + K D ) i = Z(KD)i 
1 2 3 1 1 2 2 3 3 

(33) 

We may also write for the total flow through the three layers 
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q = K(D + D + D )i = KDi 
1 2 3 

(34) 

where K is the average hydraulic conductivity. 

Equating the right hand sides of Eqs.33 and 34 yields the following expression 

f o r K 

K D + K D + K D _ . . 
V = 1 1 2 2 3 3 „ M K D ; 

D + D + D 
1 2 3 

K = D 
(35) 

where £(KD) is the transmissivity of the layered soil through which the water is 

moving horizontally. 

Figure 9 shows a situation where water is flowing vertically downward through a 

soil profile made up of layers that have different thicknesses and different hy

draulic conductivities. 

Fig.9. Vertical downward flow through 

layered soil. 

The flow per unit cross-sectional area, i.e. the velocity of flow v = Ki, will be 

the same for each layer, assuming that the soil is saturated and no water can es

cape laterally. Hence 

v = K 
h - h 
_1 2 

D 
1 

h - h 
2 ~ 

2 

h - h 
v = K 

v - i - h - h 
K 1 2 

1 

v =*• = h - h 
K 2 2 3 

V - i = h - h 
K 3 i, 

3 

Since (h - h ) + ( h - h ) + ( h - h ) = h - h = Ah, adding these equations 
1 2 2 3 3 < t l i t 
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Ah Ah 
c + c + c 

1 2 3 

(36) 

where c , c , and c are the respective hydraulic resistances of the three layers 
1 2 3 

through which the flow passes vertically. The dimension of c is (T), for which 

usually days are used (D in m, K in m/day), see Chap.13, Vol.11. Its reciprocal 

value, 1/c = K/D is, in analogy with KD for horizontal flow, sometimes called 

transmissivity for vertical flow. 

As an example, let us assume a situation as indicated in Fig.10, i.e. an upper 

clay layer in which the water table is assumed to remain stable (for instance by 

drainage or evaporation). The saturated thickness of this clay layer D = 9 m; 

its hydraulic conductivity K =1.0 m/day. 

Below this layer a clay bed is found; it is 1 m thick and its hydraulic conducti

vity K =0.05 m/day. This second clay bed lies on a sand layer that contains 
2 

groundwater whose hydraulic head lies above the water table in the upper clay 

layer (Ah = 0.05 m). This head difference causes a vertical upward flow from the 

sand layer through the covering clay beds. According to Eq.36 the rate of this 

upward flow is 

0.05 : 0 .05 
9/1 + 1/0.05 9 + 2 0 

0.05 
29 

0.0017 m/day 

Fig.10. 

Vertical upward flow through two clay 

beds with different hydraulic conductivi

ties and different thicknesses. 
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6.5 BASIC EQUATIONS OF GROUNDWATER FLOW 

In the previous sections we have briefly discussed the most elementary type of 

flow, namely linear flow, which we used to establish Darcy's law. 

From a physical viewpoint, all fluid systems necessarily extend in three dimens

ions and their analysis then becomes much more complicated. In many groundwater 

flow problems, however, the flow is substantially the same in parallel planes and 

may then be treated as having a two-dimensional character. By this we mean that 

the velocity distribution vector in the fluid system varies only with two of the 

rectangular coordinates, and is independent of the third. For example, when land 

is drained by long and parallel open ditches or pipe drains, the flow pattern is 

the same in every vertical plane normal to the drains. Another case of two-dimen

sional flow is the flow to a pumped well that fully penetrates an aquifer. In 

this type of flow, the fluid motion is also independent of the vertical coordin

ate z. The often-used term "radial flow" means a two-dimensional flow symmetrical 

about an axis of symmetry. 

For the solution of two- or three-dimensional flow problems, Darcy's law must be 

combined with the continuity equation discussed in Section 2.6. The resulting 

basic flow equation is a partial differential equation, called the Laplace equat

ion. 

6.5.1 THE LAPLACE EQUATION FOR STEADY FLOW 

If we regard water as an incompressible fluid, the continuity equation for time-

independent flow, as we have seen in Section 2.6, reads 

dv 9v 3v 

ax oy dz 

According to Darcy's law, and assuming a homogeneous and isotropic soil (hence 

K = K = K = K where K is a constant), we may write 

v » - K TT— , v = - K fr— and v = - K •*— 
x ox y oy z dz 

where v , v , and v are the velocity components in a rectangular coordinate 

system. 

Substituting in the above continuity equation yields 
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3(-K||) 3(-KJ|) | 3(-KJ|) o 

3x 3y 3z 

Ü Ü • 5ÏÜ • if* - 0 (37) 
3x2 3y2 3z2 

This is the Laplace equation for three-dimensional flow. 

For two-dimensional flow it reduces to 

^ + — = 0 (38) 
3x2 3y2 

Laplace's equation is also written as 

V2h = 0 (39) 

where the symbol Vicalled "del", is used to denote the differential operator 

3 + !_+ L. 
lx" 3y 3z 

and V2, called "del squared", is used for 

32
 t 3

2
 t 3

2 

3x2 3y2 3z2 

which is called the Laplacean operator. 

The above equations of flow and continuity are valid for a variety of saturated 

flows. Whenever a particular flow problem is investigated, its solution is 

uniquely determined only if it is known what happens at the boundaries of the 

flow region. Hence, for the solution of a particular flow problem, these so-call

ed boundary conditions should be properly defined. They may include statements on 

the hydraulic head or the inflow and outflow conditions at the boundary, or that 

a boundary is a streamline etc. For further details on boundary conditions, see 

Section 7. 

Finally it should be noted that, in drainage flow, complications arise from the 

fact that the flow region is usually bounded by the phreatic surface, whose shape 
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is unknown. Simplifying assumptions have therefore been introduced, which lead to 

approximate solutions. The accuracy of such solutions is usually good enough for 

practical purposes. 

For the solution of problems of nonsteady flow, the boundary conditions should be 

specified at all times, and the state of flow should be given at the time t = 0 

at every point of the flow region.«These specifications are called initial cond

itions. 

6.5.2 THE DUPUIT-FORCHHEIMER ASSUMPTIONS 

As was noted in the previous sections, in some studies of groundwater movement, 

including those of drainage flow, the water table is considered a free water sur

face. A free water surface is a surface in contact with and in equilibrium with 

the atmosphere. It is therefore a streamline along which the pressure is atmosph

eric. 

Free-surface flow problems are difficult to solve because of the non-linear boun

dary conditions. An analysis of such problems based solely on the Darcy and 

Laplace equations leads to solutions of a rather complex form. A mathematically 

exact solution, however, is not always a desirable goal, when one considers the 

approximate nature of the differential equations themselves, the boundary condit

ions, and the assumptions of homogeneity, isotropy, and recharge from rainfall or 

irrigation water. This is the reason why scientists developed approximate methods 

of solution derived from hydraulics, which require less powerful mathematical 

tools. 

By analogy with the flow in open channels, a hydraulic flow is defined as a main

ly one-dimensional free-surface flow. It has the form of a stream-tube, whose 

transversal dimensions are much smaller than its length. The cross-section of the 

tube may vary only gradually with the distance along the main flow, so that trans

versal flow components may be neglected. Hence the streamlines are almost parallel 

to each other and the equipotential surfaces are almost planes perpendicular to 

the main flow, thus also almost parallel. 

This method of solution was first developed by Dupuit in 1863 in the study of 

steady flow to wells and ditches (Fig.11). Dupuit assumed that 

- for small inclinations of the free surface of a flow system, the streamlines 

can be taken as horizontal everywhere in a vertical section, and 

- the velocity of flow is proportional to the slope of the free water table, but 

is independent of the flow depth. 
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\ \sy / /X\ \ \WA\ \ \^ / /^ \ \WA\ k •• V " " "k hV^W/'ASN Fig.11. Steady flow in an uncon-

fined aquifer, illustrat

ing Dupuit's assumptions. 

These assumptions imply a reduction of the dimensions of the flow (the two-

dimensional flow becomes one of one dimension), and the flow velocity at the 

phreatic surface is proportional to the tangent of the hydraulic gradient instead 

of the sine (to dh/dx instead of dh/ds). 

On the basis of these assumptions, Forchheimer (1886) developed a general equat

ion for the free surface by applying the equation of continuity to the water in a 

vertical column in a flow region, bounded above by the phreatic surface and below 

by an impervious layer, the height of the fluid column being h, see Fig.12. 

phreatic surface 

' impervious 
base 

Fig.12. Approximate horizontal flow in space 

element of fluid as an assumption for 

deriving Forchheimer's linearized con

tinuity equation. 

Taking the surface of the impervious bed to be horizontal, i.e. coinciding with 

the plane through the horizontal coordinates x and y, the horizontal components 

of the flow velocity are given by 

3h and 
3h 
3y 

If q is the flow in the x-direction per unit width in the y-direction, then the 

flow entering through the left face of the column is the product of the area h dy 

and the velocity v 
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qx dy = - K (h -ĝ ) dy 
x 

Moving from the left to the right face of the column, the flow is changing at a 

rate 3q /3x. When leaving the right-hand face of the column, q dy has changed to 

X 
q , dy. i.e. to (q + •*— dx)dy. 4x + dx J x 3x J 

The difference between outflow and inflow per unit time in the x-direction is 

9q r. ~, 
(q

x + dx " q x ) d y = ̂ rdx dy = " K ?! (h -5ïï)dx dy 

Similarly the change in flow in the y-direction is 

A dx dy = - K |- (h |i)dx dy 

Assuming steady flow, the condition of continuity requires that the sum of the 

changes add up to zero. Hence 

-4!x-<h!x-> + !7<h!>] dxdy = ° <*°> 

and 

! x - < h £ > + ! y - ( h ? 7 ) = 0 (41) 

££• * — = 0 (42) 
3x2 3y2 

which is Forchheimer's equation. 

The Dupuit approximations have many advantages. To mention only a few: 

- the mathematical difficulties encountered in solving many flow problems are 

reduced considerably, 

- the three-dimensional water and impervious boundaries are replaced by fictitious 

vertical boundaries which may curve only in the horizontal plane, 

- there are no boundaries with accretion from above or below, i.e. no water is 

added from above (rainfall, irrigation, recharge, etc.) or from below (inflow 
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of groundwater, artesian water), 

- there is only one dependent variable, h, the elevation of the free water sur

face, 

- the non-linear boundary conditions at the free surface vanish, so that the pro

blem becomes linear, 

- the principle of superposition can be applied, which enables the shape of the 

water table and the velocity at any point of the flow system to be determined. 

See also BEAR et al. (1968). 

6.5.3 NONSTEADY FLOW 

When nonsteady flow conditions pertain, a state sometimes called transient flow, 

the sum of the changes of flow in the x- and y-direction must equal the change 

in the quantity of water stored in the column considered. This change in storage 

is reflected either in a drop or a rise of the phreatic surface when water is 

either released or taken up by the soil. 

Quantitatively the change in storage is given by 

AS - yAh (43) 

where 

AS = change in water stored per unit surface area over the time considered, 

y = the effective porosity of the soil, 

Ah = change in groundwater level over the time considered (L). 

The effective porosity is thus defined as the fraction of the soil that releases 

or takes up water per unit change of water table height. 

The principle of continuity requires that Eq.40 be now written as 

- K [ f e»ë> • !?»§>] dxdy = -u||dxdy (44) 

3x2 3y2 K 3 t 

Equation 44 may also be written as 
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,2 '3x' 3y2
 v3y' _ 3x2 

3h 
V 3ÏÏ (46) 

If h is large compared with the changes in h, we may consider h a constant with 

the mean value D, and neglect the second order terms 

(•5—) and (15—) , and we thus obtain 

32h _,_ 32h v 3h 

3x2 
3y2 KD 3t 

(47) 

This equation is identical with that for two-dimensional heat conduction or that 

for two-dimensional flow of a compressible fluid through a porous medium. 

6.5.4 REPLENISHMENT 

It has been assumed so far that no accretion occurs, i.e. that the free surface 

receives no water from precipitation or irrigation. If there is accretion, for 

example by a constant rainfall at a rate R, the principle of continuity requires 

for steady flow (see Eq.44) 

• * [ l ï < h ? l > + ! y < h ? t î ] 1xdy = Rdxdy (48) 

32h2
 + 9 V 

3x2 3y2 

2R 
K 

(49) 

where R is the rate of recharge (LT * ) . 

For nonsteady flow we have 

or, by a procedure similar to that used in the derivation of Eq.47 

,32h . 32hN 3h 
KD (—- + — - ) = y fr - R 

^ 2 ^ 2 ot 

3x 3y 

(50) 

It should be noted that the solutions to Eq.47 can be derived for quite arbitrary 

boundary and initial conditions for h. But the Dupuit assumptions underlying the 

original equation (44) are questionable and, in special cases, may lead to consi-
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derable errors in the results obtained. Therefore other methods, free from these 

assumptions, have been developed to solve two-dimensional groundwater flow pro

blems. These methods are based on the technique of complex variables, see Section 

6.3. 

6.5.5 FLOW IN AN UNCONFINED LAYER BETWEEN TWO WATER BODIES 

In this and the following sections some applications of the steady-state formula 

derived above will be presented. 

Figure 11 shows the groundwater flow through a strip of land bounded by two water 

courses whose levels are at a height y and y above the impervious base. The 
1 2 

groundwater table in the flow region is a free surface. If we take a rectangular 

coordinate system, the xz plane represents the plane of flow. It is assumed that 

the free surface is not recharged from rainfall or irrigation. 

Forchheimer's equation (Eq.42) for one-dimensional flow reduces to 

3x2 

Integration gives 

(51) 

where A and B are integration constants. 

With the boundary conditions 

for x = 0 h - y 
l 

and x - L h » y 
2 

we obtain 

2 2 
y - y 

A = -2-T: and B - y2 

L 1 

Substituting the values of A and B into Eq.51 yields 

2 2 
y - y 

h2 - - ^ - f — L x + y2 (52) 
*-> î 

which shows that the groundwater table has a parabolic shape. 

As to the discharge per unit width through a vertical cross-section, the solution 
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is derived from the Darcy equation 

n - - IO, d h 

which after integration and substitution of the boundary conditions yields 

2 2 

y - y 
q - l

2h * K (53) 

As an example, let us assume that L « 25 m, y » 6 m , y = 5 m and K = 0.2 m/day. 
1 2 

The discharge per unit width of water body is 

q - 0.2 3|j ~ 33 - 0.044 m3/day 

If the water body is 400 m long, then the total discharge is 

Q - 400 x 0.044 - 17.6 m3/day 

The head h at a distance x - 15 m is 

h2 - 2 5 3 5
3 6 15 + 36 - 29.4 m2 

h - 5.4 m 

It is noted that, due to the Dupuit assumptions, the thus computed position of 

the water table lies a little below the actual water table, in particular near 

the outflow. 

6.5.6 STEADY FLOW TO PARALLEL DITCHES WITH A UNIFORM RECHARGE ON THE SOIL 

SURFACE 

As another example of the application of the Dupuit assumptions, let us assume a 

homogeneous and isotropic soil, bounded below by an impervious layer and drained 

by a series of parallel ditches that penetrate the soil layer to the impervious 

base. The soil surface is recharged uniformly by rainfall at a rate R. The water 

levels in the ditches are at a height y , and the groundwater head is h. The 

ditches are a distance L apart, see Fig.13. 

The problem is to find an expression for the height of the groundwater table mid

way between the ditches, H. Assume that the hydraulic gradient at any point is 
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equal to the slope of the water table above that point (Dupuit-Forchheimer ass

umption). It can be seen from the figure that the assumption of horizontal flow 

is incorrect near the ditches, where the flow paths are curved. Where the slope 

of the groundwater table is relatively flat, the Dupuit-Forchheimer assumptions 

are nearly valid and only minor errors in the calculations will result. 

!« L >i 

Fig.13. Flow to parallel ditches, which penetrate 

an unconfined aquifer to the impervious base. 

The water table is in equilibrium with the 

recharge from rainfall. The water level in 

the ditches is at equal height. 

The solution of the problem can be found by taking a rectangular coordinate sys

tem whose origin lies on the impervious base below the centre of one of the dit

ches. From Fig.13 it can be seen that a vertical plane drawn midway between the 

ditches represents a division plane. All the water inflowing from the right of 

this plane flows into the right ditch and, similarly, all water entering to the 

left flows to the left ditch. 

Let us consider the flow through a vertical plane at a distance x from the left 

ditch. All the water entering the soil to the right of this plane must pass 

through it on its way to the ditch. If R is the recharge per unit area of the 

soil surface per unit time, then the flow per unit time through the considered 

plane is 

qx - R (L/2 - x) 

Obviously, under the present assumptions we may also apply Darcy's law to the 
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flow through the plane, thus obtaining a second expression for q . For the hy

draulic gradient we may write dh/dx, and at the plane the cross-sectional area of 

flow is equal to h. Hence 

„u dh 
q = Kh -T— 
x dx 

Since the flow in the two cases must be equal, we may equate the right side of 

the two equations. Hence 

Kh ̂  = R(L/2 - x) (54) 
dx 

Multiplying both sides of this equation by dx gives 

Kh dh = R(L/2 - x)dx 

Kh dh - (RL/2)dx - Rx dx 

which is an ordinary differential equation and can be integrated. The limits of 

integration are 

for x = 0 h = y 

x = 1/2L h - H 

so that we may write 

K ; h _ H h dh - R / X = 1 / 2 L (1/2L - x)dx 
h-yQ x=0 

Substituting these limits yields 

1/2K(H2 - y2) - R(1/2L)2 - 1/2R(1/2L)2 = 1/2R(1/2L)2 

4K(H2 - y2) 
L2 = ^ - 2 - (55) 

which may be written as 

4K(H + y ) (H - y ) 
L R 
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The head difference H - y = Ah, or H = y + Ah which, on substitution, yields 

4K(2y + Ah)Ah 
.2 2 

8Ky Ah ,„., z 

R 
(56) 

This formula is often used in solving drainage problems. It should be noted that 

in the drainage formulas elsewhere in this book the symbol h is used instead of 

Ah to denote the head difference. 

6.5.7 STEADY FLOW TOWARDS A WELL 

As a last example the flow towards a fully penetrating well will be analyzed 

(Fig.14). A homogeneous and isotropic aquifer is assumed, bounded below by a 

horizontal impervious layer and fully penetrated by a well. While being pumped, 

such a well receives water over the full thickness of the saturated aquifer since 

the length of the well screen is equal to the saturated thickness of the aquifer. 

initial water table 

Mmpervious: 

(L 
I TO 

mwC^â!l'ww'' 

T h 
Fig.14. Horizontal radial flow towards a 

pumped well that fully penetrates 

an unconfined aquifer. No recharge 

from rainfall. 

The initial groundwater table is horizontal, but attains a curved shape after 

pumping is started. Water is then flowing horizontally from all directions to

wards the well (radial flow). 

It is further assumed that there is no recharge, and that the groundwater flow 

towards the well is in a steady state, i.e. the hydraulic heads along the peri

meter of any circle concentric with the well are constant (radial symmetry). 
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The flow through any cylinder at a distance r from the centre of the well can be 

found by applying Darcy's law and assuming that the hydraulic gradient at this 

cylinder is equal to the slope of the groundwater table at the circle of this cy

linder, dh/dr (Dupuit-Forchheimer assumption). Substituting this gradient, and 

the cross-sectional area of flow A • 2Trrh into the Darcy equation, yields 

Q - 2irrhK ̂  (57) 

where Q - the well discharge for steady radial flow to the well (L3T x ) , and K -

the hydraulic conductivity of the aquifer material (LT 1). 

On integration, we obtain 

h2 = ̂ g In r + C (58) 

Integration between the limits h - h at r = r and h « H at r = r yields 

w w e ' 
h " H n r = r o 

ƒ h ' - ^ l n / ' r 
h»h r=r 

w w 

H2 - h2 - - £ In I Ê 
y IR r w 

and a f t e r rearranging 

TTK(H2 - h 2 ) 

Q - ln(r> I <59> 
e w 

which is Dupuit's formula. 

A specific solution of this equation can be obtained by substituting a pair of 

values of h and r as observed in two observation wells at different distances 

from the centre of the well: for r = r , h = h and for r » r , h « h . 
1 1 2 2 

The equation then reads 

h2 - h2 

* * ™ ln(r h ) (60) 

2 1 

If the drop in water table is small compared with the saturated thickness of the 

aquifer D then, by approximation, we may write h + h = 2D and the equation 
2 1 
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becomes 

21TKD 
ln ( r lx ) 

2 1 
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(61) 

It is obvious that this equation fails to describe accurately the drawdown curve 

near the well where the strong curvature of the water table contradicts the 

Dupuit-Forchheimer assumptions. For practical purposes and not too short distances 

from the well, the formula can be used without appreciable errors (see Chap.25, 

Vol.111). 

6.6 SOME ASPECTS OF TWO-DIMENSIONAL FLOW 

6.6.1 DISCONTINUOUS HYDRAULIC CONDUCTIVITY 

In Section 4.2 it has been noted that soils are, in general, not homogeneous and 

isotropic, but are instead made up of different layers, having different hydrau

lic conductivities. 

Let us assume a horizontal surface separating two regions of different hydraulic 

conductivities K and K , see Fig.15. The directions normal and tangential to the 

common boundary of the two flow regions are denoted by n and t respectively. The 

components of the flow velocity in these directions are denoted by v and v. 
ni ti 

in the upper region with hydraulic conductivity K , and by v and v in the 
l n2 t2 

lower region with hydraulic conductivity K . 

Fig.15. Refraction at the boundary of 

two homogeneous isotropic layers 

with hydraulic conductivities K 

and K respectively (K < K ). 
2 l 2 

Along the boundary the pressure, and hence the hydraulic head h, must necessarily 

have the same value on either side. The principle of continuity requires that all 

water leaving the upper region must enter the lower region. This condition im-
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plies that the components of the flow velocity vector normal to the common boun

dary must be the same on either side 

v = v (62) 
ni n2 

Applying Darcy's law to the components along the boundary, v and v , we obtain 
tl t2 

IT 3h , „ 3h 
v

tl " " Kl 3t" and v t 2
 = - K2 3F 

Since the hydraulic head h is the same on both sides of the boundary, and t is 

the coordinate along it, 3h/3t has the same value on both sides. Hence 

v,. /Ki - v.. /K2 (63) 
tl t2 

If ai and a2 represent the angles of the respective velocity vectors with the 

direction normal to the boundary, then it follows from Eqs.62 and 63 that 

Ki tan <Xi 

KT - tS"5T (64) 

From this result it follows that there is an abrupt change in direction of the 

flow velocity vector along the boundary of two regions with different hydraulic 

conductivity. It also shows that if K2 » Ki, then tan a2 is very large compared 

with tan Oj. Such a situation is found where a clay layer (Ki) covers a sand 

layer (K2). In the clay layer the flow is almost vertical and yet in the sand 

layer it is nearly horizontal. This provides a justification for the assumptions 

generally made that in a semi-confined aquifer the groundwater flow in the sand 

can be regarded as horizontal, and in the covering clay layer as vertical. 

6.6.2 POTENTIAL AND STREAM FUNCTIONS 

Darcy's law for steady two-dimensional flow in a homogeneous soil states that 

v - - K |£ and v - - K |i (65) 
x 3x y 3y 
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where v and v are the components of the flow velocity vector in the coordinate 

directions of x and y. 

In this equation the hydraulic head h is a scalar quantity, i.e. at any point it 

can be expressed and defined solely by a number, in contrast to a vectorial 

quantity, which requires in addition a direction. 

We have assumed that the soil is homogeneous - hence K is a constant - and that 

the water has a constant density and viscosity. Introducing a vector derivable 

from the scalar quantity 0, namely gradient 0 or grad $, we can now express 

Darcy's law (Eq.20) in the following vectorial form 

V = - grad $ (66) 

where 

$ = Kh = K(z + p/pg) (67) 

In this equation $ is called the velocity potential and has the dimension 

(L2T ' ) . Its derivatives with respect to the coordinates x and y constitute the 

components in the x- and y-direction of a vector, the flow velocity vector. As 

will be shown below, the velocity potential may be combined with a stream function 

Y. 

As a direct consequence of its definition, the velocity potential $ is a single-

valued function in every point of the x, y-plane. Hence it is possible to draw 

lines of constant $ in this plane (Fig.16). Such lines are called equipotential 

lines and are usually drawn at equal intervals, so that 

$ - $ = $ - $ = = A $ (68) 
1 2 2 3 

In the case of nonsteady flow, lines drawn perpendicular to the equipotential 

lines are called streamlines and are indicated by the symbol f. Streamlines give 

the instantaneous flow pattern and should be distinguished from so-called path 

lines, which show the lines along which fluid particles move in steady flow. 

It can be demonstrated that a streamline, which is a directed line and in gene

ral curved, is at any point tangent to the velocity vector at that point or to 

- grad $. The components of this velocity vector, v and v , may be expressed as 
x y 

v = - -T— and v = - TT— (69) 
x dx y dy 
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- grad $ 

Fig.16. 

Orthogonal network of equipotential lines 

and streamlines. 

The tangent along any line 0 = constant has a slope (-7*-) . The value of this 
dx' $-C slope may be found by taking the total differential of $ = constant 

d$ 
3$ . 3$ j 
TN— dx + TT— dy 
3x dy ' 

Mi' 
3$/3x 
3$/3y. (70) 

Let us now assume a flow rate dq in the stream tube bounded by two adjacent 

streamlines a and b of Fig.16. The principle of continuity requires that this 

volume per unit of time passes through the sections A-B and B-C, which are chosen 

in such a way that only the first has contributions due to v and the second 

only to v . As a first approximation, neglecting the contributions (3v /3x)dx dy 

and (3v /3y)dy dx as second-order terms, continuity requires that 

dq v dx = v dy 
y x 

v dx 
y 

v dy 
x ' C71) 
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For two-dimensional flow the equation of continuity (Eq.16) reduces to 

3v 3v 

IT + if = ° (72) 

from which it follows that Eq.71 is derived from a total differential. 

A second function of great importance in the theory of groundwater flow is the 

stream function f. The flow velocity vector must satisfy the equation of contin

uity (Eq.72). Hence the vector components v and v can be derived from a 

function f by 

v - - TT- and v • + -s— (73) 

x 3y y ax 

When these expressions are substituted into Eq.71 we obtain 

g d x + g d y - d ï =0 

Hence 

t (x ,y ) = constant (74) 

t(x,y) is called the stream function, and the lines of constant f streamlines. 

Thus the streamlines may be considered in the same way as the equipotential 

lines. Equation 71 may now be written as 

(£) - ^ (75) 
d x f vx 

Comparing this equation with Eq.70, the orthogonality of streamlines and equi

potential lines is proved, since from mathematics we know that two lines are 

orthogonal if the product of their slopes equals - 1, 

v v 
_i x - -JL = - i 
V V 

x y 

Analogous to the hydraulic head h, the velocity potential 4 satisfies the Laplace 

equation (Eq.39). Henc« 
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V2$ = i-1 + £_i = o (76) 
3x2 3y2 

A comparison of Eqs.76 and 73 and elimination of v and v leads to the relation-
x y 

ships 

3$ 3f , 3$ W ,,_,. 
TT" = 'T- and T~ = ~ T~ (77) 
3x 3y 3y 3x 

which are the Cauchy-Rieman (or d'Alembert-Euler) conditions. 

Like equipotential lines, streamlines are drawn at equal intervals. By choosing 

A$ and Aï equal, and small enough, the system of streamlines and potential lines 

form elementary, curvilinear squares. This net of squares is called a flow net, 

Fig.16. For specified boundary conditions, the technique of sketching flow nets 

is often used as an approximate method to solve two-dimensional groundwater flow 

problems. 

It should be noted that the velocity potential $ and stream function ¥ are each 

sufficient to describe a groundwater flow problem completely. For both functions 

the basic differential equation is the Laplace equation. The components of the 

flow velocity can easily be obtained either from 0 or from f, by differentiation 

with respect to one of the coordinates. Since $ is directly related to the head 

h, which is measured in the field, a formulation of the flow problem in terms of 

0 is to be preferred. 

6.6.3 EXACT METHODS OF SOLUTION 

As noted earlier, problems of free-surface flow are difficult to solve exactly 

because of the non-linear boundary conditions. Approximate methods of solution, 

based on the Dupuit-Forchheimer assumptions, have therefore been developed. In 

practice the results obtained with these methods are sufficiently accurate to be 

applied to drainage flow problems. 

An exact solution of two-dimensional groundwater flow problems can be obtained 

by applying the so-called complex variable method and by formulating the problem 

in terms of velocity potential $ and stream function ï as outlined above. 

A complex variable is a quantity of the form z = x + iy, where x and y are real 

numbers and i denotes the imaginary unit / - 1 . If the Cauchy-Rieman conditions 

are satisfied, then the linear combination of the functions $ and 4* 
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to = $ + i¥ (78) 

is a function of the complex variable z = x + iy. 

Any analytic function to = f(z) corresponds to two real functions: 0 = $(x,y) and 

? = f(x,y), which both satisfy Laplace's equation and therefore may be considered 

potential functions corresponding to a groundwater flow in homogeneous and iso

tropic soil. 

A flow problem can now be solved by finding a solution either for the potential, 

or for the stream function. Since both functions satisfy the same type of diffe

rential equation, the methods to be applied will be basically the same. A problem 

has been solved as soon as one of the functions is known. If this function is the 

potential for a two-dimensional flow problem, we have an expression for $(x,y). 

According to the first part of Eq.77, this expression has to be differentiated 

with respect to x to find Sf/Sy. Integration of the latter gives an expression 

for fCx.y). 

It is obvious that the same result will be obtained by differentiating 0(x,y) 

with respect to y and integrating the result with respect to x. Thus the Cauchy-

Rieman equations are used to find f($) when QÇÏ) is given, and inversely. 

A pair of functions like $ and f, which both satisfy Laplace's equation, are cal

led conjugate functions. These functions are such that indeed the curves $(x,y) = 

constant and VCx.y) « constant form a system of orthogonal trajectories. 

It is beyond the scope of this chapter to describe the details of this complex 

variable technique. It should, however, be regarded as one of the most powerful 

tools in solving two-dimensional groundwater flow problems in an exact manner. 

The method facilitates the solution of flow problems for regions bounded by 

fixed potential lines and streamlines. 

6.6.4 SOME OTHER APPROXIMATE METHODS OF SOLUTION 

Finally two other approximate methods of solution should be mentioned. 

. The relaxation method. 

This method is a numerical method for the solution of Laplace's equation in two 

dimensions, and is based on the replacement of the differential quotients by 

finite difference expressions. Calculations are made by hand, though an electronic 

computer can be used. The flow region is divided into a grid or square net, as 

shown in Fig.17. Starting with the known values of the hydraulic head along the 

boundaries of the flow region, numerical values are arbitrarily assigned to the 

head at each grid point. According to the expression 
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h 'J- (h +h +h + h ) (79) 

the head at the grid point with subscript 0 must be the mean value of the values 

in the four surrounding grid points with subscripts 1 to 4. Equation 79 should 

be satisfied for all grid points. This can be done by adjusting the values empi

rically, retaining of course the given values along the boundaries. 

The condition expressed by Eq.79 for each grid point is satisfied in consecutive 

steps. After assumed values of h have been assigned to each grid point, the 

error at each point is determined, using 

4h -(h + h + h + h ) 
O 1 2 3 1» 

(80) 

Then the point is taken where the absolute value of the error is largest and the 

value of h at that point is reduced by one fourth of the error value. Next the 

new value of the error at the surrounding points should be calculated. This pro

cedure is repeated until the remaining errors are sufficiently small (Fig.18). 

hi 

Fig.17. Mesh points for relax

ation method. 

5 0 0 

1000 

9 0 0 
812 
7 8 9 
7 7 8 
776 
775 

5 8 0 
515 
494 
4 8 9 
4 8 8 
487 

1000 

870 
840 
819 
814 
813 
812 

6 5 0 
589 
578 
576 
575 
575 

Fig.18. Example of relaxation method. 

It will be clear that the smaller the size of the grid the better and more reli

able are the results. The percentage error of the relaxation process as compared 

with an exact analysis of the same problem can be made as small as desired. It 

will be understood that, when working by hand, the calculations are laborious. 
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. The method of squares. 

Instead of computing the values of 0 or II at certain points of the flow region, 

or trying to find a potential or stream function, the equipotential lines and 

streamlines can be drawn by trial and error, making use of the property that they 

are perpendicular to each other. As noted earlier, these lines form elementary 

squares when the intervals between consecutive potential lines and streamlines 

are chosen equal in magnitude (At - Af). 

Starting from the boundary conditions, a first approximate system of potential 

lines or streamlines is drawn, whatever suits best in view of the data available. 

If, for example, the potential lines are drawn first, then the streamlines are 

drawn perpendicular to the potential lines. The thus obtained flow net is then 

adjusted in consecutive stages until streamlines and potential lines are every

where orthogonal and form elementary squares, and the flow net complies with the 

boundary conditions. After the flow net has been adjusted, the total discharge 

(per unit thickness) flowing through the system under consideration can be cal

culated from 

Q - I* - $ I - (81) 
l 2 n 

where 1$ - 0 I/n is the potential drop over each square, n is the number of 
1 2 

squares in a stream lane, and m is the number of stream lanes. 

6.7 BOUNDARY CONDITIONS 

From theory it is known that such partial differential equations as Laplace's 

equation have infinite numbers of solutions. The question arises as to how one 

may choose, among these infinities of solutions, which to apply to any particular 

problem. As already mentioned in Section 5.1, whenever a particular flow problem 

is investigated, its solution is uniquely determined only if it is known in detail 

what happens at the boundaries of the flow region. Boundary conditions in ground

water flow problems describe the detailed physical conditions that are to be im

posed at the boundaries of the flow region. These boundaries are not necessarily 

impervious layers or walls confining the groundwater to a given region. Rather, 

they are geometrical surfaces at all points of which either the flow velocity of 

the groundwater, or the velocity potential, or a given function of both, may be 

considered as known. Some characteristic boundary conditions will now briefly be 

discussed. 
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6.7.1 IMPERVIOUS BOUNDARIES 

Impervious layers are to be regarded as representing streamlines, because there 

is no flow across them. The flow velocity component normal to such boundaries 

vanishes. Hence we have Y = constant and dt/ds = 0. 

In practice a layer is considered impervious if its hydraulic conductivity is 

very small compared with the hydraulic conductivity of adjacent layers. 

6.7.2 PLANES OF SYMMETRY 

Planes of symmetry are shown in section in Fig.19 by lines such as A-B (vertical

ly through the drain axis) and C-D (parallel to A-B, but midway between the 

drains). Because of the symmetry of the system, the pattern of equipotentials and 

streamlines on one side of such a "boundary" is the mirror image of that on the 

other side. Hence any flow velocity component immediately adjacent to the bound

ary which is perpendicular to that boundary must be matched by a component in the 

opposite direction immediately on the opposite side of the boundary. The net flow 

across the boundary must therefore be zero and the plane of symmetry is, like an 

impervious layer, a streamline of the system. 

Fig.19. Boundary conditions for steady 

flow to drainage ditches. 

6.7.3 FREE WATER SURFACE 

The free water surface is defined as the surface where the pressure equals the 

atmospheric pressure. It is assumed that the free water surface limits the flow 

region", i.e. no flow occurs above this surface. This is untrue for most instances 

of flow through soils, but the assumption is useful in analyzing the flow through 

media having very small capillary fringes or wherever the flow region is very 

large compared with the capillary fringe. 

For a free water surface the pressure component of the head, p/pg, is zero; hence 
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the total head is equal to the elevation component: h = z. ;: 

If there is no percolation of water towards the free water surface, the flow 

velocity component normal to that surface is zero and the free water surface then 

represents a streamline. 

In the case of percolation, however, the intensity of vertical recharge R determ

ines the value of the streamlines. In Fig.20 the rainfall intensity is R and 

there is a flow towards the ditch. The streamlines have a value Rx, where x is 

the distance from the ditch. The free water surface is neither an equipotential 

line nor a streamline, and the streamlines have their starting point at regular 

distances from each other. 

I I \ R t I I f 

Fig.20. Boundary conditions free water 

surface. 

6.7.4 BOUNDARIES WITH WATER AT REST OR SLOWLY MOVING WATER 

Such boundaries are found along the walls of ditches and reservoirs and where, 

for instance, upward groundwater flow meets downward percolating water. 

The hydrostatic pressure along the wall of the ditch, i.e. the pressure acting 

on the wall due to a certain height of water standing above it, is given by 

p - Pg(z0 - z) (82) 

where z - the height of the point considered (Fig.21). 

!iW^\\\W%»*\ 

Fig.21. Boundary conditions water at 

rest or slowly moving. 
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It then follows that 

z - -E- + z (83) 
o pg *•"' 

Now the right-hand member represents the potential or hydraulic head and thus 

the potential at each point along the ditch 

water level in the ditch. In Fig.21 we have 

the potential at each point along the ditch is equal to the height z of the 

Point Elevation (z) Pressure (p/pg) Sum (z ) 

A z z - z z 
i o i o 

B z z - z z 
2 O 2 O 

6.7.5 SEEPAGE SURFACE 

At points in the soil above the groundwater table the pressure is negative, while 

at points below the groundwater table is it generally positive. An exception 

occurs if the groundwater table intersects the surface of the soil, as shown in 

Fig.22. In this case a surface of seepage occurs, defined as the boundary of the 

soil mass where water leaves the soil, and then continues its flow in a thin film 

along the outer boundary of the soil. Surfaces of seepage also occur on the down

stream face of dams through which water is seeping. 

w/jmmmyjm&//^mw////#«m 

seepage 
surface 

Fig.22. Boundary conditions for surface 

of seepage. 

Along a seepage surface the pressure head p • 0 (atmospheric pressure). Hence 

the hydraulic head at any point on the seepage surface is equal to the elevation 

head at that point, or h - z. 

A seepage surface is not a streamline for the groundwater movement because in 

the interior of the soil mass there may be a non-zero component of the flow velo

city vector perpendicular to the boundary. 
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PURPOSE AND SCOPE 

The analogy between the flow of groundwater and that of electricity enables 

solutions for groundwater flow problems to be obtained from electrical models. 

The analogy is discussed and an example is given of the application of the con

ductive sheet type of electrical model to groundwater flow problems with simple 

boundary conditions. 
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Conductive sheet analogues 

7.1 ANALOGUES 

The flow of groundwater is governed by Darcy's law and by the law of conservation 

of mass. Together, these two laws lead to differential equations like the Laplace 

equation for steady flow (Chap.6, Vol.1) and the "heat flow" equation for trans

ient flow. 

For steady-state conditions (to which our considerations will be limited), the 

basic Laplace equation reads 

V2h = 0 (1) 

with 

V2
h = SU! + ÜÜ + Ü Ü (2) 

3x2 3y2 3z2 

where h • hydraulic head (m), V2 is the Laplace operator, and x, y, z are carte

sian coordinates (m). The solution of such equations depends on the boundary con

ditions of the problem. Analytical solutions are available for simple boundary 

conditions, but for more complicated conditions solutions are either unknown or 

they become very complex. 

Solutions may then be found through 

a. approximations 

b. numerical methods 

c. analogue model studies. 

a) Approximate solutions are based on simplifying assumptions (e.g. the Dupuit-

Forchheimer assumptions). Their accuracy is often good enough for practical pur

poses. 

b) Numerical solutions can be highly accurate but as the calculations are lengthy, 

they often require the use of an electronic computer. 

c) Analogue solutions show varying accuracy. The most simple ones are about 10% 

in error, but with slightly more sophistication, the error level may be reduced 

to 1%. Even uncertainties of 10% are often acceptable in practice because the 

parameters employed (transmissivity KD, hydraulic resistance c, effective porosity 

y, etc.) usually have errors of this order of magnitude, while an error level of 

1% is more than accurate enough for most engineering purposes. 
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Two systems are said to be analogous if there is a one-to-one correspondence 

between each element in the two systems, as well as between the excitation and 

response functions of these elements and the systems as a whole (KARPLUS, 1958). 

Analogues are very instructive and they have the advantage that the engineer 

keeps in close touch with his problem. During the investigation he remains able 

to introduce variations and improvements in his design as soon as they seem ap

propriate. 

Analogues are based on the similarities between laws which apply to different 

physical systems. The following group of processes obey similar laws 

- flow of fluids through porous media, 

- laminar flow of fluids (e.g. between parallel plates), 

- flow of heat through a conductor, 

- deflection of a stretched membrane by the action of a load, and 

- flow of electricity through a conductor. 

In each of these fields problems can be studied by constructing a model. This 

model may belong to the same field (e.g. on a smaller scale), but it may also 

belong to one of the other groups. Thus, a groundwater flow problem may be stud

ied on a reduced scale (e.g. in a sand tank), but it may also be transformed into 

a heat flow or an electrical analogue. Electricity has several advantages: it is 

clean, easy to handle, and it can be conveniently and accurately measured. 

7.2 ANALOGY BETWEEN THE FLOW OF GROUNDWATER AND THAT OF ELECTRICITY 

7.2.1 FLOW OF GROUNDWATER 

The one-dimensional steady flow of groundwater through a porous medium with rec

tangular cross-section is described by Darcy's law 

Q - K ^ BD (3) 

where 

Q • discharge (m3 day 1) 

K = hydraulic conductivity (m day ) 

Ah = difference in hydraulic head (m) 

B, D = width and thickness of the cross-section (m) 

L = distance along the average direction of flow (m) 
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The quantity Q/BD, the discharge per unit cross-sectional area, is called speci

fic discharge and denoted by v. If we write Ah/L = - Vh, Eq.3 takes the form 

KVh (4) 

The minus sign in this equation merely indicates that the direction of flow is 

opposite to the direction in which h increases. For two or three dimensional flow 

in isotropic media, Eq.4 remains valid, if we define the operator V (nabla or del) 

as taking derivatives with respect to the coordinates x, y, and z, and adding the 

results 

V = 3 + 3 + 3 

dx ïïy 7z 

To solve problems of groundwater flow Darcy's law alone is not enough. At a point 

in a three-dimensional space the specific discharge, which is a vectorial quanti

ty, can be described by its three components, v , v , and v (Fig.1). Darcy's law 
x y z 

gives only three relations between four unknown quantities : the three vector com

ponents and the head. A fourth relation may be obtained by recalling that the 

flow has to satisfy the fundamental physical principle of conservation of mass, 

which states that in a closed system no groundwater can be generated or destroyed. 

Fig.I. Specific discharge vector v, 

and its three components v , 

v and v . 
y z 

Assuming that the density of water p is constant, this principle can be expressed 

mathematically by the equation of continuity 

3v 3v 3v 

3x 3y = 0 (5) 
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The combination of Eqs.4 and 5 leads to the Laplace equation 

3x2 3y2 3z2 

which is often written in its abbreviated form as 

(6) 

V2h - 0 (7) 

The operator V (nabla squared, or del squared) is called Laplace's operator. It 

denotes the operation of taking the second derivatives with respect to the coor

dinates x, y, and z, and adding the results 

_» + ,,.2 +
 3 z 2 3x2 3y2 

If the flow problem to be solved is a two-dimensional one, the term in z of Eq.6 

vanishes. 

7.2.2 FLOW OF ELECTRICITY 

The one-dimensional flow of electricity through a conducting rod (Fig.2) is des

cribed by Ohm's law 

AU = RI (8) 

where 

Au • potential difference (volts) 

R = resistance of the rod (ohms) 

I • current (amperes) 

© = F ^ 
0 

Fig.2. Resistance of a rod. 

A rod with a rectangular cross-section has a resistance 

R -ii-
R 0 BD 

(9) 

where 
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a = specific conductivity (ohms 1m 1) 

L, B, D - length, width and thickness of rod (m) 

Combining Eqs.8 and 9 leads to the equation for the (one-dimensional) longitud

inal flow 

I - a ̂  BD (10) 

J - - aVU (11) 

where 

J » I/BD is current density (amp m 2) 

VU - - (AU/L) is potential gradient (volts m 1) 

The minus sign in Eq.11 again indicates that the direction of flow is opposite to 

the direction in which U increases. 

For two- or three-dimensional flow Eq.1 ! remains valid. In the case of three-di
mensional flow the current density J is a vectorial quantity which, analogous to 
the specific discharge in groundwater flow, can be described by its three compo
nents J , J , and J . 

x y z 

Continuity requires that 

3J 3J 3J 

-a2 + - 5 1 + IT * ° O2* 

3x 3y 3z 

The combination of Eqs.11 and 12 leads to the Laplace equation 

3fü + 8fu + 3fu _ Q (]3) 

3x2 3y2 3z2 

which in its abbreviated form is written as 

V2U = 0 (14) 

where V2 is the Laplace operator, see Section 7.2.1. 
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In the case of two-dimensional flow Eq.13 reduces to 

32U . 32U 
+ =-z. = o 

2 S„2 
(15) 

Sx* 3y: 

7.2.3 THE ANALOGY 

Table 1 presents the analogous elements of groundwater flow and the flow of 

electricity. 

Table 1. Corresponding elements of groundwater flow and that of 

electricity. 

Groundwater Electricity 

Hydraulic head difference Ah(ra) 

Hydraulic conductivity K(m day l) 

Flow rate Q(m3 day 1) 

Specific discharge v(m day ') 

Darcy's law v = - KVh 

Laplace equation V h = 0 

Potential difference AU(volts) 

Specific conductivity O(ohms 'm ') 

Current I(ampèrés) 

Current density J(amp m 2) 

Ohms law J = - aVU 

Laplace equation V2U = 0 

7.3 TWO-DIMENSIONAL MODELS USING TELEDELTOS PAPER 

Analogues may be discrete or continuous with respect to space variables. If an 

area under investigation is defined only at specific points of the analogue, the 

analogue is said to be discrete. If every point of the area is represented in the 

analogue, the analogue is continuous. Time, of course, is a continuous variable 

in both types. 

The usual types of electrical models employed in studying problems of steady 

groundwater flow are listed in Table 2. 

We shall confine our discussion to conductive sheet analogues. 

Sheet conductors are very useful in the study of two-dimensional groundwater flow 

problems. The most commonly used conductive sheet is the Teledeltos paper, which 

is commercially available as electro-sensitive recording paper; it is easy to 

handle and relatively cheap. This paper is formed by adding carbon black, a con-
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ductive material, to paper in the pulp-beating stage of the paper-manufacturing 

process. 

Table 2. Types of electrical models 

Type Number of 

dimensions 

Continuity Error 

Sheet analogues 2 

Electrolytic tank 2 or 3 

Resistance network 2 or 3 

yes 10% 

yes 2 - 5 % 

no 1% 

The conductive paper is then coated on one side with a lacquer which acts as an 

electrical insulator and on the other side with a layer of aluminium paint 

(Fig.3). As a result of the manufacturing process the paper is not quite homoge

neous, while the conductivity varies slightly in different directions (anisotro-

py). The resistance of any sheet is likely to show a 10 per cent variation and 

the resistance measured in the length direction of a roll is about 10 per cent 

lower than that across the roll. Nevertheless the paper is well suited for obtain

ing a first approximation in theoretical studies and for solving practical pro

blems. 

Fig.3. Teledeltos paper 

1 = semi-conductive aluminium sheet 

2 = conductive graphite paper 

3 = lacquer coating. 

In a sheet conductor, D is constant, so we may write Eq.9 as 

R - J L 1 - R i 
R " OD B " s B 

(16) 

If L = B, R = R ; therefore R represents the resistance of a square, irrespect

ive of its dimensions (Fig.4). It is a constant, characteristic of the material 

employed. Because 

(17) 

209 



any arbitrary two-dimensional model with a resistance R is equivalent to a rec

tangular model having an L/B ratio equal to R/R (Fig.5). 

© 

W////////>/////777m 

w/////Mi/////nm 

0 

© 

WM/////////I////////////////U, 

vm///w/////////////w//mA^ 

conducting 
electrodes 

© 

Fig.4. Two squares of a sheet conduct

or offer the same resistance to 

an electrical current. 

100 % streamline 

0 °/a equipotential 

0 °/o streamline 

-—100 % 
equipotential 

0 % -
equipotential $ 

•100 °/o 
B Rj equipotential 

0 % streamline 

Fig.5. Transformation of an arbitrary region (A) into 

an equivalent rectangle (B). 

This result is analogous to the transformations carried out in conformai mapping, 

in which an arbitrary two-dimensional region is mathematically transformed into 

an equivalent rectangle. 
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In an electrical model, the electrons automatically solve the problem for the 

given boundary conditions. 

A two-dimensional groundwater flow in a rectangular region is described by 

n - If A h R 
q - K — B 

where q is the two-dimensional discharge (m2/day ' ) . 

Now, for given boundary conditions, L/B can be found from the electrical model. 

Thus 

KAh = R 

« " R s 

or , because R • AU/I (Eq .8 ) , we may wr i t e 

R I R 

ÎCÂh = ~ÄÜ = s2" ( 1 9 ) 

As both quotients are dimensionless, no scale factors enter into the considerat-
*) 

ions . The electrical model can therefore be constructed to any convenient 

scale; R can be measured and R is known. 
s 

Thus of three quantities, q, K, and Ah, each can be found if the other two are 

known. 

7.4 STREAMLINES, EQUIPOTENTIAL LINES; BOUNDARY CONDITIONS 

For two-dimensional flow in isotropic media, streamlines and equipotentials 

intersect at right angles: they are orthogonal. In a two-dimensional groundwater 

problem, the streamlines can be numbered, for instance from 0 for the first to 

1.00 for the last. It is more convenient, however, to use percentages and to 

number the streamlines from 0 - 100 per cent. 

The percentage f thus obtained is a dimensionless number. It is related to the 

For 3-dimensional cases, the use of a scale factor is necessary. 
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stream function Y of potential theory 

T* = w
 ¥ x 100 % (20) 

¥ max v ' 

Likewise, the equipotentials can be numbered from 0 - 1 0 0 per cent, taking 0% 

for the lowest potential and 100% for the highest. The percentage thus obtained 

is a dimensionless number. It is related to the potential function $ = Kh 

* $ Kh h î> = I x 100 % = £2 x loo % = 5 x 100 % (21) 
<P max Kh h 

max max 

Therefore, streamlines are defined by ¥ = constant, and equipotentials by $ 

constant. 

For ¥ as well as for $ the Laplace equation applies 

V2¥* = 0 and V2<!>* = 0 (22) 

Along the boundaries, either $ or ? is defined in many cases, except along free 

groundwater surfaces and seepage surfaces which develop automatically in uncon-

fined aquifers under the influence of gravity. 

Whereas boundaries with given $ or f are easily simulated in electrical models 

(cf. Section 7.5.1), free surfaces are not, because there is no direct electrical 

equivalent for gravity. 

The location of seepage surfaces is known beforehand, except for their upper li

mit, where they merge into a free surface. Of the latter, their location is en

tirely unknown and therefore the transition point and the free surface itself 

have to be found as a part of the solution of the flow problem. 

In the saturated zone of the soil the hydraulic head h is defined by 

h = z + p/pg 

Along the free surfaces and seepage surfaces p = 0 and h = z. If the range for z 

is taken the same as for h (from 0 to h ), the height may be expressed as a 
max" & * 

percentage of the total difference in head. The percentage z thus obtained is a 

dimensionless number. It is related to the actual height z 

x 100 % (23) 
h 
max 
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With h = z and $ = z x 100 %, it follows that 
h max 

<J> = z (24) 

which is valid along free surfaces and seepage surfaces. 

Sometimes the free surface is a streamline (e.g. in the case of steady unconfined 

flow between two ditches with different levels), but in other cases it is neither 

a streamline nor an equipotential (e.g. with rainfall between ditches). 

Seepage surfaces are neither streamlines nor equipotential lines. 

Table 3 gives a summary of the boundary conditions usually encountered. 

Table 3. Boundary conditions for steady groundwater flow problems. 

Kind of boundary Stream function Potential function 

Streamline ¥ = constant 

Impervious boundary ¥ = constant 

Line of symmetry *F - constant 
x 

Equipotential - $ = constant 

Free groundwater surface sometimes V = constant $ = z 

Seepage surface - $ = z 

7.5 SIMULATION OF BOUNDARY CONDITIONS IN ELECTRICAL MODELS 

Streamline boundaries are simulated by cutting off the conductive sheet at the 

desired locations with a pair of scissors or a razor blade (Fig.6). 

Equipotential boundaries are created by putting conductive electrodes at the 

desired locations. Metal foil or wire pasted to the conductive sheet can be used 

for the construction of electrodes. A convenient method is to apply silver paint 

along the boundaries. In selecting the electrode material, care must be taken to 

ensure that the resistance of the electrode itself is negligible compared with 

the resistance of the conductive sheet. With the aid of a suitable voltage source 

(e.g. a simple dry cell), the electrodes are held at the required potential. 

Recharge from an equipotential surface (e.g. ponded water can be simulated in 
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the same way by feeding the electrode, corresponding with the equipotential sur

face line of the model. 

T 
_}water 

rsoi l surface 

«{) <J) <J> <^-ti le drain 
1 lines of ' 
Isymmetryl 
1̂  I J 

impervious layer. 

© 

VZZZZZZZZZZlr*—electrode 

êlectrode 

-0 Fig.6. 

! Simulation of a groundwater flow 

problem with simple boundary con-

! ditions (ponded water case). 

Recharge, evenly distributed along a surface (e.g. recharge from rainfall) is 

simulated by feeding the model at its upper side with a large number of equal 

currents at equal intervals. A convenient method is to feed the model from a high 

tension source (e.g. 100 volts) through a number of resistors. The resistors 

should have a resistance which is high compared to the resistance of the model. 

In this way each of the resistors will convey an approximately equal current, 

thus simulating an evenly distributed recharge (Fig.7). 

©100 V 

10x1 M H 

4 0 
Fig.7. Simulation of evenly distri

buted recharge (e.g. caused 

by rainfall). 

Free water surfaces cannot be obtained directly. In soils such surfaces form 

under the influence of gravity, to which electrons are not subjected. In nature 
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free surfaces are governed by the relation 

In electrical models its equivalent is 

(25) 

where 

x 100 % 

and Ç is the relative height (expressed as percentage) in the model. 

In the model we represent 
x 

Ç = 0% by a horizontal level corresponding with h = 0 in nature, 

t " 100% by a horizontal level corresponding with h = h in nature. 
r B max 

If no recharge occurs at the water table, its surface is a streamline. By trial 

and error the upper boundary of the model is reshaped until the required condition 

is fulfilled. This is done by removing parts of the conductive sheet until the 

"potentials" $ correspond with the "elevation" Ç (Fig.8). 

+20 v 

par t removed to 
reach stage IT-i 

scale. 0,6 volt r 1 m m 

Fig.8. Location of a free water 

surface. I is initial model, 

e II and III are intermediate 

stages, IV is final solution 

If recharge occurs along the free water table (e.g. by rainfall) we can start 

with a model as shown in Fig.7. The free water surface is determined by the 

trial-and-error method of making successive incisions with a pair of scissors 

between the small electrodes, each time as far as the free water surface at that 

particular stage (Fig.9). 

Seepage surface likewise obey condition (25). Their position is known beforehand, 

except for their upper limit, where they merge into a free water surface. 
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Water is flowing out along such surfaces so they are neither streamlines nor 

equipotentials. 

Condition (25) is simulated by a large number of contacts along the expected 

seepage surface, each contact being held at the appropriate potential. A series 

of resistors (with a resistance considerably lower than the resistance of the 

model) can be used as a potential divider for this purpose. The contacts are most 

conveniently made by applying a strip of silver paint along the expected seepage 

surface and cutting this strip into separate units (Fig.10). 

Fig.9. Location of a free groundwater 

surface formed by evenly distri

buted recharge. 

v . " " i — " ^ 
d 

X 

.'Jv 

; '2V 

r.1 v 

seepage surfacê  

model scale. 1 volt= 6,5 mm -© 

Fig.10. Seepage through a dam. 

Location of free ground

water surface and seep

age surface. 

7.6 MEASURING IN THE MODEL 

7.6.1 MEASUREMENT OF DISCHARGE 

For this purpose the total resistance of the model, R, must be measured with a 

Wheatstone bridge and R , K, and Ah must be known. From Eq.19, we know that the 

total resistance, R, determines the ratio q/KAh of the original groundwater flow. 

7.6.2 MEASUREMENT OF EQUIPOTENTIAL LINES 

Equipotential lines in the interior of the model are found by using a potential 

analyzer (a combination of a dry cell, a potentiometer, and a galvanometer) and 
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a ballpoint as probe. In this way the equipotentials can be drawn directly on the 

conductive sheet. After the dry cell is connected to the electrodes of the model, 

the potentiometer is adjusted to the voltage corresponding with the equipotential 

line to be plotted, say the 60% line. The probe is then moved over the paper in 

such a way that the deflection of the galvanometer remains zero. The 60% equipo

tential line ($ = 60) is found as the locus of all points where the galvanometer 

reading is zero (Fig.11). 

Fig.11. Location of equipotentials. 

7.6.3 MEASUREMENT OF STREAMLINES, INVERTED MODEL 

Streamlines cannot be measured directly because electrons 'can neither be marked 

nor coloured . But since Eq.22 states that the stream function and the equipo

tential function obey the same laws, we can apply the concept of duality and con

struct an inverted model, interchanging Y and $ along the boundaries. The equipo

tential lines of the inverted model correspond with the streamlines of the origi

nal model (Fig.12). 

Fig.12. Location of streamlines by plotting the 

equipotentials in an inverted model. 

fy inverted model 

1) In electrolytic models, where the current is transported by ions, coloured ions 

are sometimes used for generating streamlines. 
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Table 4 gives a summary of the changes caused by the inversion and of the bound

ary conditions to be simulated in the inverted model. 

Table 4. Conditions in inverted models. 

Original model 

Streamline 

Impervious boundary 

Line of symmetry 

Equipotential 

Free groundwater surface 

Seepage surface 

Inverted model 

equipotential 

equipotential 

equipotential 

streamline 

same surface 

same surface 

stream 

-
-
-

In inver 

function 

T « constant 

ï"-c" 

V - - Ç -

ted model 

potential function 

* - constant 
A * 

9 = constant 
9 = constant 

-
sometimes * = 

constant 

-

In simple cases the inversion is easy, but with more complicated boundary con

ditions, variable resistors are employed, which are adjusted until the required 

condition (¥* » Ç*) is fulfilled. 

7.7. EXAMPLE: DETERMINING THE FREE WATER SURFACE IN A DAM 

Figure 13A shows a cross-section of a dam whose faces have an inclination of 45 

degrees. The base of the dam is chosen as a datum plane. The exact form of the 

free water surface BF and the length of the seepage surface FG are unknown and 

will be determined in the model. 

3,5 v 

mpermeSoTeTayèT^^^^^ 

20 m 

Fig.l3A. Dam faces having an inclin

ation of 45 degrees. 
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The boundaries of the model can be simulated as follows (Fig.l3B). 

The base of the dam is a streamline, so that the boundary AG can be simulated by 

cutting the paper to shape. The inflow face is an equipotential line and the 

boundary AB is represented by a silver paint electrode. The electrode has a width 

of a few millimeters; the right-hand side of the electrode AB in Fig,13B is the 

boundary of the model. The boundary corresponding with the free water surface is 

unknown. It is assumed that BE is the first stage of the free surface. Since the 

free surface is a streamline, the boundary BE can be simulated by cutting the 

paper to shape. Along the outflow face, the electrical potential has to corres

pond with the height above the datum plane. At the outflow face, a continuous 

electrode of silver paint along the boundary EG is split up into 11 separate 

strips. For practical reasons, the width of a strip of electrode equals the dis

tance between two strips. A slight error is introduced by representing a continu

ous seepage surface as a discontinuous series of electrodes in the model. 

The procedure to be followed in constructing the model ABEG to scale 1 : 100 is 

as follows: 

- take a piece of Teledeltos paper; 

- apply silver paint along the boundary AB; long electrodes of silver paint 

should be provided with a strip of aluminium foil to improve their conductivity, 

so cut a strip of aluminium foil, 15 cm long and 0.5 cm wide; 

- fix the strip of aluminium foil to the silver paint before the paint is dry; 

- fold over the free end of the aluminium strip to make it sufficiently strong 

for a clip to be attached; 

- apply silver paint along boundary EG; 

- divide electrode EG into 11 separate strips; 

- fix thin wires to these strips using silver paint; 

- attach the model to a piece of cardboard using adhesive tape; 

- attach a potential divider consisting of 10 resistors of 10 ohms each along EG 

on the cardboard ; 

- connect the thin wires from the strips along EG to the potential divider; 

- with a ballpoint draw lines on the model parallel to AG (dotted lines in Fig. 

13B), dividing the distance between BE and AG into 10 equal parts. These lines 

can be numbered as the 10%, 20% 90% lines for Ç ; 

- allow the model to dry for several hours. 

The resistance of the potential divider is much less than the resistance of the 
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model, so that the current in the divider exceeds the current in the model, and 

the variation of the potential along EG remains closely linear. 

As the potential along the free surface should vary linearly with its vertical 

height above AG, the potential at the intersection of the free surface and, for 

instance, the 90% height line (Ç = 90) should be 90% of the voltage difference 

(e.g. 3.5 Volt). The intersection of the free surface with the 100% height line 

is already known. 

To determine the free surface: 

- connect the electrode AB and the terminals of the potential divider to the con

tacts of the potential source in the potential analyzer; 

- adjust the desired voltage difference; 

- set potentiometer of the potential analyzer at 90%; 

- move the measuring probe over the paper from left to right along the 90% height 

line till the meter reading is zero and mark this point; 

- follow the same procedure for the 80% height line, and so on. 

In this way points are being found for the first approximation of the free 

water surface; 

- draw a line through the located points; 

- remove part of the paper at the upper side of this line and repeat the measur

ing process. 

The electric current will traverse the whole of the conducting model. By cutting 

off the paper, the physical boundaries of the model are changed and the whole 

process has to be repeated. After this has been done three of four times (Fig. 

13C), the final stage is reached and the free water surface in the dam and the 

length of the seepage surface are determined. 

35 v 
100 °/a + 'l 0 % 

Fig.l3C. Final solution of the free 

surface. 
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PRINCIPAL SYMBOLS USED IN VOLUME I 

SYMBOL DESCRIPTION DIMENSION 

A 

B 

CEC 

c 

D 

D 
w 

d 

EC 
e 

ES 

ESP 

e 

F 
Fk 

g 

H 

h 

I 

i 

J 

K 

K' 

KD 

k 

\ 
k 
w 

L 

M 

mho 

mmho 

cross-sectional area; horizontal surface area 

width; 

bulk density 

cation exchange capacity (in meq/100 g soil) 

hydraulic resistance to vertical flow 

thickness; saturated thickness of water bearing layer 

soil water diffusivity 

diameter 

electrical conductivity of saturation extract 

exchangeable sodium (in meq/100 g soil) 

exchangeable sodium percentage 

void ratio 

force 

specific force 

acceleration due to gravity 

height of water table midway between two drains 

hydraulic head or potential head (• p/pg + z) 

(energy per unit weight) 

elevation head (= z) 

matric head 

hydrostatic head 

electrical current 

hydraulic gradient; imaginary unit (i2 = - 1) 

current density 

hydraulic conductivity 

intrinsic permeability 

transmissivity for horizontal flow 

conductivity coefficient 

capillary conductivity 

capillary conductivity coefficient 

length; drain spacing 

mass 

reciprocal ohm 

milli-mho (- mho x 10~3) 

L' 

L 

ML"3 

T 

L 

L2T~l 

L 

ohm 'cm ! 

dimensionless 

dimensionless 

MLT~2 

LT~2 

LT~2 

L 

L 

L 

L 

L 

amp 

dimensionless 

amp L 2 

LT-1 

L2 

L2T_1 

M_1L3T 

LT~l 

M~lL3T 

L 

M 

ohm ' 

ohm ' 
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SYMBOL DESCRIPTION DIMENSION 

r 

r 
e 

r 
w 

SAR 

t 

U 

V 
V 

s 
V 

v 
V 

W 

w 

x, y, 

y 

z 

porosity 

hydrostatic pressure 

relative hydrostatic pressure 

(p = 0 at atmospheric pressure) 

discharge; rate of fluid flow 

discharge per unit length; 

discharge per unit horizontal surface area 

radius ; 

recharge to groundwater per unit horizontal 

surface area; 

electrical resistance 

radius; radial distance 

radius of influence of well 

radius of well 

sodium adsorption ratio 

time 

electrical potential 

specific volume (= 1/p) 

volume of solids 

volume of voids 

effective flow velocity (= Q/A) 

work of energy 

volumetric water content 

Cartesian coordinates 

height of water level in channel, ditch or drain 

elevation head 

elevation head expressed in percentage of z 

dimensionless 

ML_1T~2 

ML_1T~2 

L3T_1 

L2T_1 

LT-1 

L 

LT_1 

ohm 

L 

L 

L 

dimensionless 

T 

volt 

M_ 1L3 

LT ' 

ML2T~2 

dimensionless 

L 

L 

L 

dimensionless 

contact angle between fluid and surface 

specific weight 

dynamic viscosity 

mass fraction of water in the soil 

effective porosity or drainable pore-space 

kinematic viscosity (= n/p) 

osmotic pressure 

mass density of air 

dimensionless 

ML~2T~2 

ML-1!"1 

dimensionless 

dimensionless 

L2T~l 

ML-1T~2 

ML~3 
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SYMBOL 

Pw 

K 

DESCRIPTION 

mass density of water 

specific conductivity; 

surface tension 

potential function (= Kh) 

potential function expressed in percentage of $ 

potential of water or specific energy 

(energy per unit mass) 

gravitational potential 

matric potential 

osmotic potential 

hydrostatic potential 

hydraulic potential (=<J> + <t> or <)> +4") 
g m Tg p 

pressure potential of water 

(energy per unit volume) 

matric pressure (suction) 

hydraulic pressure 

hydrostatic pressure 

stream function 

stream function expressed in percentage of ¥ 
r max 

complex potential function (= $ + if) 

Symbols 

DIMENSION 

ML~3 

ohm"1 L_1 

MT~2 

L2T_I 

dimensionless 

L2T~2 

L 2 T" 2 

L'T 

ML_1 

ML 

ML~ : 

ML" 1 

L2T" 

'T" 

'T" 
"1 

dimens 

L2T' "1 

"2 

'2 

lionl ess 

A 

3 

V 

V2 

small increment of 

partial differential of 

differential operator 

Laplacean operator 
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S U B J E C T I N D E X 

Adhesion of water 

capillary rise 

Adsorption complex of the soil 

Adsorption of water 
Aeration see also Diffusion, 

Gases, Porosity, Soil aeration 

Aeration 

Aeration pores 

Aeration porosity 

Aggregate structure 

Aggregation 
influence of drainage 
influence of organic matter 

Agrological soil profile 

Air see Soil air 

Alkalinity of soil 

effects on structure 

Alumino-silicates 

Alluvial fans 

AM see Available moisture 

Amendments 

structure improving 

Angular blocky structure 

Anion adsorption capacity 

Apparent density 

Apparent velocity 

Aquatic plants 

Aquifers 
classification 

Arable crops see also Crops 
Arable crops 

influence of drainage 
oxygen needs 

Artesian water 

Atmospheric air 
composition 

Atterberg limits 

Available moisture see also 

2.3.3 
5.2.2 

2.2.3 

5.2.2 

2.5 

2.3.2 

2.5.1 

2.3.2 

4.3.1 
2.2.4 

2.1.4 

3.4 
4.6 

2.2.2 

1.3.2 

3.5 

2.3.2 

2.2.3 

2.3.1 

6.3.1 

4.2.2 

Soil moisture 

Available moisture 

Backswamps 

2.4.2; 4.2.1 

1.3.1 

Bacteria 
nitrogen fixation 
respiration 

Bahada 

Base flow 

Base level 

Base saturation 

Basins 

Beach formations 

Bernoulli's energy equation 

Biological investigations of 
soil 

Biopores 

Black alkali 

Blocky structure 

Bog plants 

Bottom-set beds 

Boulder clay 

2.2.4 
2.7.2 
2.5.1 

1.3.2 

1.3 

1.3 

2.2.3 

1.3.1 

1.4 

6.2.5 

2.1.5 

2.3.2 

3.4 

2.3.2 

4.2.2 

1.3.3 

1.6 

Boundaries see also Streamlines 

Boundaries 

1 

4 
2 

1, 

2, 

2, 

.2 

.8. 

.5. 

.2 

.5. 

.3. 

,2 
,4 

,1 

3 

free water surface 
impervious 
planes of symmetry 
seepage face 
simulation at the model 
with slowly moving water 

Boundary conditions of the flow 
region 6.5.1; 6.7; 

electrical model 
simulation in inverted 

models 
simulation in models 

Brackish transition layer 

Braided rivers 

Brak 

6.7. 
6.7. 
6.7. 
6.7. 
7.7 
6.7. 

7.1 
7.4 

7.6. 
7.5 

1.3. 

1.3. 

3.4 

.3 

.1 

.2 

.5 

,4 

.3 

,3 

,1 
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Brown soils 

Bulb crops see Arable crops 

Bulk density 

Capillary conductivity 

Capillary flow 
function of pores 

Capillary fringe 
definition 

Capillary pores 

Capillary rise 

water adhesion 

Capillary water 

Carbon dioxide 2.5.1; 
Cation exchange capacity 

salty soils 

Cauchy-Rieman conditions 

CEC see Cation exchange capacity 

Cementation 

Cereal crops see Arable crops 

Changes in water storage 

Chemical fertility of soil 

Chemical investigations of soil 

Chroma 

Classification 
salty soils 
soil colour 
soil structure 
soil texture 
water-bearing layers 

Clay 
particle size limits 
physico-chemical character

istics 
soil composition 
textural classes 

Clay fraction 

Clay loam 
textural classes 

Clay minerals 
cation exchange capacity 

2.3.4 

2.3.1 

5.4.3 

2.3.2 

4.2.2 
6.1 

4.2.1 

5.4.3 
5.2.2 

6.1 

2.5.3 

2.2.3 
3.4 

6.6.2 

2.3.3 

6.5.3 

2.7.1 

2.1.5 

2.3.4 

3.4 
2.3.4 
2.3.2 
2.2.1 
1.2 

2.2.1 

2.2.3 
2.2.2 
2.2.1 

2.2.2 

2.2.1 

2.2.2 
2.2.3 

Clay soils 
cation composition 3.3 
salt concentration 3.3 

Cliffs 1.5 

Climatic conditions 
crop yields 2.7.1 
introduction of reclamation 

crops 4.6 

Clods 2.3.2 

Coastal plains 1 .4 

Coefficient of conductivity 5.4.2 

Coherent structures 
soil 2.3.2 

Cohesion 
soil 2.3.3 
water molecules 5.2.2 

Colloids see Organic colloids 

Colour 
soil 2.3.4 

Compaction of soil 
unfavourable results 

Complex variable 

Conductive sheet analogues 

Conductivity coefficient see 
Hydraulic conductivity, 
Specific conductivity 

Conductivity coefficient 

Conductivity of soil 

Confined aquifer 

Confined water 

Consequent streams 

Conservation of energy 
law 

Consistence limits 

Consistence of soil 

2 
4 

6 

7 

also 

5 

3 

1 , 

1, 

1, 

6. 

2, 

2. 

.3. 

.4. 

.6. 

.4. 

.4 

.2 

.2 

.4 

.2. 

.3. 

.3. 

.3 
,1 

,3 

.2 

5 

.3 

,3 

Content of water see Field 
capacity, Retention 

Continental shelf 1.4 

Continuity 

equation 5.4.1; 6.2.6; 7.2.1 

Convection of soil air 2.5.3 

Conversion factors for water 
potential 5.3.1 
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Subject index 

Crop drainage 2.5.6 

Crop production 
effects of salinity 4.6 
groundwater level 4.8 

Crops see also Plant development 

Crops 

Crumb 

drainage 
oxygen needs 
root penetration 
salt tolerance 
soil moisture conditions 

D 

soil structure 

Crust 
formation 
soil aeration 

Cuesta landscapes 

Cultivation practices 
influence of drainage 

Current density 

d'Alembert-Euler conditions 

Dams 
determination of the free 

water surface 

4.8 
2.5.4; 4.2.1 

4.2.2 
4.6 
4.2.2 

2.3.2 

4.6 
2.5.3 

1.4 

4.4 

6.3; 

Darcy K 

Darcy's law 
applications 
hydraulic 

conductivity 2.4.1; 
proportionality constant K 

Decomposition 
soil organic matter 

Deep ploughing 

non-saline sodic soils 

Deflation 

Deltas 

Density of soil particles 

Density of water 5.2.2; 

temperature influence 

Depth of root penetration 4.2.2 

Deposits see also Sediment 

Deposits 
in coastal plains 1.4 
in deltas 1.3.3 
in lacustrine plains 1.5 
in river plains 1.3.1 
loess 1 .7 

Desert loess 1 .7 

Desert regions 1.7 

Diffuse layer 2.3.3 

Diffusion of soil air 2.5.3 

Discharge 
Darcy ' s law 6.3.1' 
of rivers 1 .3 
of wells 6.5.7 
to ditches 6.5.6 
to drains 6.5.1 
through cross sections 6.5.2 

Discontinuous hydraulic 
conductivity 6.6.1 

Diseases of plants 
/ . 

6, 

7. 

6, 

1, 
6. 

6, 
6, 

2, 

3. 

1 , 

1. 

2. 

6. 
6. 

> £. . 

.6. 

.7 

.3. 

.2. 

.4 

.3 

.3. 

.2. 

.5 

,7 

.3. 

,3. 

,2. 
,3. 

, Z. 

.2 

,2 

.1 

.2 

,4 

3 

1 

1 
3 

influence of drainage 

Dissolution of limestone 

Dissolved salts 
concentration 5.3.2; 
osmotic potential 

Drainable pore space 

Drainage 
arable crops 
cultivation practices 
definition 
fruit trees 
grassland 
physical soil conditions 
plant diseases 
yields 

Drainage flow 

Dry weight soil moisture 
fraction 

Dune ridges 

Dupuit-Forchheimer assumptions 

Dynamic viscosity of water 

4.7 

1.8 

5.4. 
5.3. 

6.5. 

4.8. 
4.4 
4.1 
4.8. 
4.8. 
4.3 
4.7 
4.5 

6.5. 

5.1 

1.4 

6.5. 

6.2. 

,1 
,2 

,3 

,2 

,3 
,1 

.1 

2 

2 

Effective flow velocity 6.3.1 

Electrical conductivity of soil 3.4 
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Electrical models 
measurements 7.6 

Field capacity see also Soil, 
moisture 

siiuuiäLiun ui Duum 
conditions 

two-dimensional 
types 

Electricity flow 

Elevation head 

Energy units 

Ephemerals 

Equation of 
continuity 5.4. 

Equipotential lines 
electrical model 
flow net 
measurement at the 

inly 

6.2.4; 

,1; 6.2.6; 

model 
simulation in models 

Erosion 
coastal plains 
glacial plains 
streams 

Evaporation rate 

Excess water 

Excessive soil moisture 

Exchangeable bases 

Exchangeable calcium 
salty soils 

Exchangeable cations 
salty soils 
thickness 
tropical soils 

Exchangeable sodium percentage 
replacement 
salty soils 

7.5 
7.3.3 
7.3.1 

7.2.2 

6.2.5 

5.3.1 

4.2.2 

7.2.1 

6.6.2 
7.4 
6.6.2 
7.6.2 
7.5.1 

1.4 
1.6 
1.3 

5.4.3 

4.1 

4.1 

2.2.3 

3.2 

3.2 
3.4 
2.2.3 

3.5 
3.4 

Field capacity 2.4.2; 
definition 

Field investigations 

Film water 

Firm soils 

Flood plain 

Flow equations 
general 
groundwater 

Flow net 

Flow of electricity 

Flow rate see Discharge 

Flow velocity 
effective 

Flowering 
retardation by soil 

salinity 

Fluvioglacial deposits 

Forces see Potentials 

Forchheimer equation 

Fore-set beds 

Fossil coastal features 

Fractures 

Fragments 

Free-surface flow 
solution 

Free water surface 
determination 
inverted model 
model 
simulation in models 

5.2.1 
5.2.3 

2.1.5 

2.3.2 

2.3.3 

1.3.1 

5.4.1 
6.5 

6.6.2 

7.2.2 

5.4.1 
6.3.1 

4.6 

1.6 

6.5.2 

1.3.3 

1.5 

1.9 

2.3.2 

6.5.2 
6.5.1 

6.7.3 
7.7 
7.6.3 
7.4 
7.5.2 

Falling head permeameter 

Fan see Alluvial fans 

Faults 

Fertility of soil 
definition 
supply of nutrients 

Fertilizers 
application by drainage 
nitrogen supply 

6.4.1 

1.9 

Free water table see Ground
water table 

Fresh-water head 

Friability of soil 

Friction see Viscosity 
2.7.1 
2.7.2 

4.5 
2.7.2 

± 1. J.\— ^ ±\J II tJ t t » iiJ\,UlJil.J 

Frost 
effects on soil 

Frozen soils 

Fruit trees 
influence of drainage 

6.3.4 

2.3.3 

4.3.4 

1.6 

4.8.3 
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Subject index 

Fully penetrating well 

Fungous diseases see Diseases 

6.5.7 

Galvanometer 
measurement 

lines 

Gases 
interchange 
soil 

Glacial lakes 

Glacial loess 

Glacial plains 

Glacial till 

Glaciers 

Gley 

of 

Gouy-Chapman Diffuse 
Layer Theory 

Graben 

equipotent: 

Double 
2. 

1 

.2 

Lai 

.6; 

.3; 

7.6.2 

2.5.3 
2.5.1 

1.6 
]-7 
1.6 

1.6 

1.6 

2.3.4 

3.3 

1.9 

Gradient see also Hydraulic 
gradient, Potential grad: 
Velocity gradient 

Gradient 
hydraulic head 
streams 

Grain structure 

Granular structure 

Grassland 
influence of drainage 

Gravitational potential of 

Gravity see Specific gravi! 

Grey soils 

Groundwater 
basic laws 
definition 
physical properties 
potential 
temperature influence 

viscosity 

Lent, 

water 

ty 

on 

Groundwater conditions 
alluvial fans 
areas affected by dissol

ution 
coastal plains 

6, 
1, 

2, 

2, 

4. 

5. 

2, 

6, 
6, 
6. 
6, 

6. 

1, 

1, 
1, 

.3, 

.3 

.3. 

.3. 

.8. 

.3. 

.3. 

.2 

.1 
,2 
.2. 

.3. 

.3. 

.8 

.4 

.1 

.2 

,2 

,1 

,2 

,4 

.4 

,3 

,2 

deltas 
flood plains 
glacial plains 
lacustrine plains 
loess plains 
valleys 

1.3.3 
1.3.1 
1.6 
1.5 
1.7 
1.3.1 

Groundwater flow 6.2; 6.3.1; 7.2.1 
analogy to electricity 7.2.3 
basic equations 6.5 
Darcy's law 6.3; 7.2.1 
electrical models 7.3 
linear 6.4.2 
through stratified soils 6.4.2 
two-dimensional 6.6; 7.2.1 

Groundwater hydraulics 6 

Groundwater level 1.3.1 

Groundwater mound 1.3.1 

Groundwater surface 6.7.3 
simulation at the model 

Groundwater table 
definition 

Groundwatertable depth 
in relation to crop 

production 
in relation to temperature 

effects 4.3.4 
in relation to yields 4.5 

Gypsum 
application in saline soils 3.5 
requirements 3.5 

6.7. 
7.4 

6.1 

4.8 

Habitat of plants 

Hagen-Poisseuille equation 

Heat capacity of soils 

influence of drainage 

Heavy fraction 

Heavy soils 

Horst 

Hue 
Humus see also Soil organic 

matter 

Humus 
cation exchange capacity 
organic matter 

4.2.2 

6.3.2 

2.6.2 

2.2.2 

2.2.1 

1.9 

2.3.4 

2.2.3 
2.2.4 
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Hydraulic 
conductivity 2.4.1; 6.3; 

discontinuous 
isotropy 
temperature influence 

Hydraulic flow 

Hydraulic gradient 

Hydraulic head 
definition 
flow through stratified 

soils 
measurement 
seepage surface 

Hydraulic potential 
gradient 

Hydraulic resistance 

Hydraulics 
groundwater 

Hydrodynamics 
basic laws 
conservation of energy 
conservation of mass 
Darcy's law 

Hydrogeology 

in relation to drainage 

Hydrological soil profile 

Hydrophytes 
Hydrostatic pressure 

groundwater 

Hygroscopic water 

Ice 
erosion 

Illite 
cation exchange capacity 

Impervious boundaries 
inverted model 
model 
simulation in models 

Impervious layers see Aquifers 

Improving amendments 
saline soils 

Infiltration 
reduction by soil salinity 

7.2.1 
6.6.1 
6.4.2 
6.3.3 

6.5.2 

6.4.2 

6.2 
6.2.5 
6.2.6 
6.3 

1.1 

2.1.4 

4.2.2 

5.2.2 
6.2.4 

2.3.2 

1.6 

2.2.3 

6.7.1 
7.6.3 
7.4 
7.5 

3.5 

5.4.2 
4.6 

Infiltration rate 2.4.1 

Influent seepage see also 
Seepage surface 

Influent seepage 1.3.1 

Initial conditions of the flow 

6.3.1 

6.2.4 

6.4.2 
6.3.4 
6.7.5 

5.3.2 
5.4.1 

region 

Intake rate 

Intercalation 
impervious 

Interglacial period 

Internal drainage 
restauration 
rootzone 

by tillage 

6.5.1 

2.4.1 

1.7 

1.6 

4.4.1 
2.4.1 

Intrinsic permeability 6.3.2 

Inverted models see also 
Electrical models 

Inverted models 
measurement of stream

lines 7.6.3 

Investigations of soil 2.1.5 

Ionic double layer 2.2.3 

Iron in tropical soils 2.2.2 

Isotropic soils 
hydraulic conductivity 6.4.2 

Kaolinite 

cation exchange capacity 2.2.3 

Karst topography 1.8 

Kinematic viscosity of water 6.2.2 

Laboratory investigations 

Lacustrine clays 

Lacustrine plains 

Lagoons 

Lake plains 

Lakes 
classification 
floors 
sediments 

2.1.5 

2.2.1 

1.5 

1.4 

1.5 

1.5 
1.5 
1.5 

Laminar flow 6.3.1 
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Subject index 

Land form 
factor of soil formation 
glacial 

Land-ice sheets 

Laplacean operator 6, 

Laplace's equation 6. 
analogy to electricity 
relaxation method of 

solution 

Lattice see Structural units 

Laws 
conservation of energy 
conservation of mass 
Darcy 
linear resistance 

.5. 

,5. 

6. 

• i; 

.1; 

3; 

2 
1 

1 

7. 

7, 
7, 

6, 

6, 
6. 
7. 
6, 

.1. 

.6 

.6 

.2. 

.2 

.1 

.6. 

.2. 

.2. 

.2. 

.3. 

.3 

.1 

4 

5 
6 
1 
1 

Layers see Aquifers 

Leaching of salts 
in arid regions 
reclamation problems 

Leaky aquifer 

Leguminous crops 
influence of drainage 

Levee 
coastal plains 
deltas 
flood plain 

Light fraction 

Light soils 

Limestone 
dissolution 
kar st 
loess plains 

Limon see Silt 

Linear flow of groundwater 
through stratified soils 

Linear resistance 
law 

Liquid limit 

Loam 
textural classes 

Local base level 
lakes 

Loess 
deposits 
desert 
glacial 

1.5 
3.5 

1.2 

A.8.2 

1.4 
1.3.3 
1.3.1 

2.2.2 

2.2.1 

1.8 
1.8 
1.7 

6.4.2 

6.3.1 

2.3.3 

2.2.1 

1.3 

1.7 
1.7 
1.6 

plains 1.7 

Loess-like deposits 1.7 

Macro-aggregates 2.3.2 

Macrofauna in soil 2.2.4 

Macropores 2.3.2 

Macrostructures 2.3.2 

Maize 
nutrient losses 4.5 

yields 4.8.2 

Manure see Fertilizers 

Mass density see Density 

Mass flow of soil air 2.5.3 

Massive structure 2.3.2 

Matric potential of water 5.3.2 

Matric suction 5.2.3 

Meandering rivers 1.3.1 

Meanders 1.3.1 

Meltwater 

glacial 1.6 

Mesophytes 4.2.2 

Mesopores 2.3.2 

Micro-aggregates 2.3.2 

Microorganisms see also Bacteria 

Microorganisms in soil 2.2.4 

Micropores 2.3.2 

Mineral soils 
physical characteristics 2.3 
porosity 2.3.1 

Mineralogical composition of 
soil 2.2.2 

Mineralogical investigations of 

soil 2.1.5 

Models see Electrical models 

Moisture see Soil moisture 

Moisture content 2.3.3 

Montmorillonite 
cation exchange capacity 2.2.3 
clay fraction 2.2.2 

Moraines 1.6 
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Mottling 

Moulding 
capacity of the soil 

Movement of water see Hydro
dynamics, Transport 

Munsell colour system 

Negative pressure 
measurement 

Nitrates 
effects on aeration 

Nitrification see also Nitrogen 
fixation 

Nitrification 

Nitrogen fertilizer 
crop yields 

Nitrogen fixation 
influence of aeration 
influence of drainage 
supply of nutrients 

Non-capillary pores 

Non-saline sodic soils 
reclamation 

Nonsteady flow 

Nutrient losses 

Nutrient status 
improving by tillage 
soil 

Nutrient supply 
influence of drainage 

Organic residues 

Organic soils 

Off-shore sediments 

Ohm's law 

One-dimensional flow 
electricity 
groundwater 

Operator (Laplace) 

2.3.4 

2.3.3 

2.3.4 

5.2.3 

4.5 

Parent material 
soil 

2.7.2 Partially penetrating well 

Particle density see also 
4.5 Soil particles 

Particle density 

2.2.4 

1.4 

6.3.1; 7.2.2 

7.2.2 
6.5.2; 7.2.1 

6.5.1; 7.2.1 

Organic colloids 
cation exchange capacity 2.2.3 

Organic matter see Soil organic 
matter 

drainage 

Osmotic potential 

Out-wash deposits 

Ox-bow lakes 

Oxygen 
diffusion 

of water 

plant requirements 
soil air 

4.3.3 

5.3.2 

1.6 

1.3.1 

2.5.3 
2.5.4 
2.5.1 

1.3 

5 

2.3.1 
2.5.5 
4.5 
2.7.2 

2.3.2 

3.4 
3.5 

6.5.3 

4.5 

4.4.1 
2.7.1 

2.7.2 
4.5 

Particle size limits 
american 
french 

Pasture grasses 
influence of drainage 

Path lines 

Peak discharge 

Peak flow 
braided rivers 

Pedological soil profile 

Peds 

Perched water table 

2.2. 
2.2. 

4.8. 

6.6. 

1.3 

1.3. 

2.1. 

2.3. 

2.4. 

,1 
.1 

,1 

,2 

,1 

,4 

,2 

,1 

Percolating water 
dissolution of limestone 1.8 

Percolation see Recharge 

Percolation capacity 
reduction by soil alkali

nity 4.6 

Percolation rate 2.4.1 

Periglacial climatic condi
tions 1.6; 1.7 

Permafrost 1 .6 

Permanent wilting point see 
Wilting point 
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Subjeot index 

Permeability see also Hydraulic 
conductivity 

Permeability 
clay 
definition 
loess deposits 
soil 2.2.1; 

Permeameter 

Pervious layers see Aquifers 

Pests see Diseases 

PH 
saline soils 
soils 

Phreatic aquifer 

Phreatic surface see Groundwater 
table 

Phreatic water 

Phreatophytes 

Physical agricultural qualities 
of soil 

definitions 

Physical investigations of soil 

Physical soil properties 
definitions 
influence of drainage 

Physical units 

Physics of soil moisture 

Physiological drought 

Piedmont plain 

Piezometer 

2.2.3 
6.3.2 
1.7 
2.4.1 

6.4.1 

3.4 
2.2.3 

Piezometric head 
groundwater 

Plant aeration requirements 

Plant growth requirements 
reclamation 
salty soils 
soil temperature 

Plant development 
effects of salinity 
reduced conditions 
salt content 
soil-water relations 

Plastic limit 

Plastic number 

5.2.3; 

6.2.4; 

1.2 

1.2 

4.2.2 

2.1.6 

2.1.5 

2.1.6 
4.3 

5.2.2 

5 

2.5.4 

1.3.2 

6.3.4 

1.2 
6.3.4 

2.5.4 

2.5.4 
3.5 
3.4 
2.6.1 

4.6 
4.2.2 
3.4 
4.2.1 

2.3.3 

2.3.3 

Plasticity index 2.3.3 

Plasticity of soil 2.3.3 

Platy structure 2.3.2 

Playas 1.5 

Pleistocene 1.3.1 

Ploughing 
in relation to texture 2.2.1 
influence of soil consist-

ence 
soil aeration 

Polders 

Pore size diameter 

Pore size distribution 

Pore space see also Capillary 
pores 

Pore space 
influence of 

drainage 4.2.1 

Porosity see also Particle 
density 

Porosity 
aeration 

2.3. 
2.5. 

4.8 

2.5. 

2.3. 

2.3. 

; 4.3. 

2.3. 
2.5. 

3 
6 

2 

,2 

1 

1 

1 
1 

Potential analyzer 

Potential fertility of soil 

Potential function 6.6.3; 6.6.2; 

Potential gradient 
electricity 

Potential lines 
method of squares 

Potential of groundwater 
measurement 

Potential of water flow 
analysis of water flow 
definition 

Potentiometer 
measurement of equi-

potential lines 

Pressure head 6.2.4; 

Pressure units 

Primary soil particles 

Prismatic structure 

Productive capacity of soil 

7.6.2 

2.7.1 

7.4 

7.2.2 

6.6.4 

6.2.4 
6.3.4 

5.4.1 
5.3.1 

7.6.2 

6.2.5 

5.3.1 

2.3.2 

2.3.2 

2.7.1 
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6.5.7 

6.5.6 

Profile 
soil 
streams 
structural 

Proportionality constant K 

Proportionality factor see 
Darcy's law, Hydraulic conduct
ivity 

Quartz 2.2.2 
cation exchange capacity 2.2.3 

Quaternary loess deposits 1.7 

Radial flow see Two-dimensional 
groundwater flow 

Radial symmetry 

Rainfall 
recharge from 

Recharge by rainfall 
simulation in models 

Reclamation 
by drainage 
saline soils 

Reclamation crops 

Red soils 

Reh 

Relaxation method 
solution of Laplace's 

equation 

Resalinization 
prevention 

Residues 

organic 

Resistance to penetration 

Resting water 
boundaries 

Retention of water see also 
Field capacity 

Retention of water 2.2.1; 
curves 
mechanisms 

River beds see also Braided 
2.1.4 
1.3 

2.3.2 

6.3.2 

rivers, Meander 
Streams 

River beds 

River ridge 

River terrace 

ing rivers, 

1.3.1 

1.3.1 

1.3 

Root crops 
influence of drainage 4.8.2 

Root development 
in relation to soil colour 2.3.4 
reduced conditions 4.2.2 
soil-water relations 4.2.1 
supply of nutrients 2.7.2 

Rootzone 
drainage 4. 
internal drainage 2. 
salt content 3. 
soil colour 2. 
total available moisture 2. 
total readily available 

moisture 2.4.2 
total water potential 5.4.1 

6.5.6 
7.5.2 

4.6 
3.5 

4.6 

2.3.4 

3.4 

6.6.4 

3.5 

2.2.4 

2.3.3 

6.7.4 

5.2 
5.2.3 
5.2.2 

Runoff see Base flow, Ground
water flow, Surface runoff 

Sabbagh 

Saline soils 
reclamation 

Saline-sodic soils 
reclamation 

Salinity of soil 
effects on crops 3.3; 
influence of drainage 
plant growth 

Salinization 
origin 
prevention 

Salt tolerance of crops and 
plants 3.4; 

Salts in soil 
occurrence 
osmotic potential 
types 

Salt-water head 

3.4 

3.4 
3.5 

3.4 
3.5 

4.6 
4.6 
3.4 

3.1 
3.5 

4.6 

3.1 
5.3.2 
3.2 

6.3.4 
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Subject index 

Salty soils 
classification 
origin 

Salty groundwater 

Sand 
particle size limits 
soil composition 
textural classes 

Sand bars 
coastal plains 
lacustrine plains 

Sand fraction 

Sandy loam 
textural classes 

Saturated soils 

3.4 
3.1 
6.3.4 

2.2.1 
2.2.2 
2.2.1 

Sieves 
U.S. standard 

Silicates 
clay fraction 

Silt 
particle size limits 
soil composition 
textural classes 

2.2.1 

2.2.2 

2.2.1 
2.2.2 
2.2.1 

1.4 
1.5 

2.2.2 

2.2.1 

flow of water 

Saturation 

Saturation extract 
salt tolerance of plants 

Sea level 

Secondary soil particles 

Sediment 
alluvial fans 
braided rivers 
coastal plains 
lacustrine plains 
meandering rivers 
stratification 
streams 

5 

6 

3 
4. 

1 

2 

1 
1 
1 
1 
1 
1 
1 

.4. 

.1 

.4 

.6 

.3 

.3. 

.3. 

.3. 

.4 

.5 

.3. 

.3 

.3 

1 

2 

2 
1 

1 

Sedimentation in deltas 

Seepage surface see also Free 
water surface 

Seepage surface 
inverted models 
model 
simulation in models 

Semi-confined aquifer 

Semi-confined water 

Semi-pervious layers see Aquifers 

SES see Sum exceedance value 

SEW see Sum exceedance value 

Sheet conductors 

groundwater flow studies 

Sheet floods 

Sheets see Structural units 

1.3.3 

6.7.5 
7.6.3 
7.4 
7.5.2 

1.2 

1.2 

7.3.2 

1.3.2 

Silt fraction 

Silt loam 
textural classes 

Silty clay loam 

textural classes 

Simple structures 

Slaking 
Slowly moving water 

boundaries 

Soil 

air 
colour 
compaction 
composition 
consistence 
determination 
development 
engineering classification 
factors A, B, C 
factors of formation 
fertility 
moisture 
permeability 
plant growth 
plasticity 
porosity 
salinity 
structure 
temperature 
texture 
water retention 

Soil drainage 

Soil aeration 
influence of 

drainage 
plant requirements 
pore space 
soil processes 

Soil air see also Oxygen 

Soil air 
composition 
volume 

2.2.2 

2.2.1 

2.2.1 

2.3.2 

2.3.2 

6.7.4 

2.5 
2.3.4 

.3.3 

.2.2 

.3.3 

.1.1 
,1.3 
.3.3 
.1.6 
,1.3 
.7 

2.4 
2.4.1 
2.1.2 
2.3.3 
2.3.1 
3.4 
2.3.2 
2.6 
2.2.1 
5.2 

2.5.6 

2,5 

2.5.6; 4.3.2 
2.5.4 
4.2.1 
2.5.5 

2.5 
2.5.1 
2.5.2 
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Soil 

Soil 

Soil 

Soil 

Soil 

Soil 

Soil 

characteristics 
definitions 

drainage 

fauna 

fertility 
definition 

investigations 

moisture 
adaptation of plants 
by tillage 
physics 

organic matter 
influence of drainage 
in relation to soil colour 

2.2 
2.1.6 

2.5.6 

2.2.4 

2.7 
2.7.1 

2.1.5 

2.4 
4.2.2 
4.4.1 
5 

2.2.4 
4.3.3 
2.3.4 

in relation to structural 
stability 

Soil particles 
adsorption of water 
aggregation 
arrangement 2.3.2; 
size 

Soil porosity 

Soil productivity 

Soil profile 

Soil solution 
cation concentration 
saline soils 

Soil structure 

Soil temperature 
influence of drainage 2.6.2; 
plant growth 

Soil texture 

Soil water content 
matric suction 

Soil water ratio 

Soil water relations 
plant development 

Soil water retention 
potentials 
retention curves 

Solonchak 

Solonetz 

Sorting sediments 

2.3.2 

5.2.2 
4.3.1 
4.3.1 
2.2.1 

2.3.1 

2.7.1 

2.1.4 

2.2.3 
3.2 

2.3.2 

2.6 
4.3.4 
2.6.1 

2.2.1 

5.1 
5.2.3 

5.1 

4.2 

Specific conductivity see also 
Hydraulic conductivity 

Specific conductivity 7.1 

analogy to groundwater flow 7.2.3 

Specific gravity 2.3.1 

Specific heat of soil 2.6.2 

Specific volume of soil 2.3.1 

Specific weight of water 6.2.3 

Spits 1.5 

Squares 
solution of groundwater 

flow 6.6.4 

Stability of the soil structure 2.3.2 

Standards for sieves 2.2.1 
Steady flow see also Two-

dimensional groundwater flow 
Steady flow 

Forchheimer equation 
in an unconfined layer 
Laplace equation 6.5; 7.1; 
to parallel ditches 
towards a well 
two-dimensional 6.6; 

Stickiness 

Sticky soils 

Storage of water 
changes 

Stratification 
deposits 

Stratified soils 
infiltration into 
water flow 

Stream floods 

Stream function 

Stream losses 

Stream-formed plains 

6.5.2 
6.5.5 
7.2 
6.5.6 
6.5.7 
7.2.1 

2.3.3 

2.3.3 

6.5.3 

1.3 

5.4.2 
6.4.2 

1.3.2 

6.6.2 

1.3.1 

1.3 

Specific discharge 6.3.1; 
measurement at the model 

5.2.2 
5.3 
5.2.3 

3.4 

3.4 

1.3 

7.2.1 
7.6.1 

Streamlines see also 
Equipotential lines 

Streamlines 
definition 
electrical model 
flow net 
measurement at the 
method of squares 
simulation in model 

model 

.s 

6.6. 
7.4 
6.6. 
7.6. 
6.6. 
7.5. 

.2 

.2 

.3 
,4 
.1 
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Streams see also River 

Streams 
alluvial fans 
energy 
erosion 
profile 
sedimentation 
valleys 

Structural profile 

Structural stability 

Structural units 
types 

Structure see also Macro-
structures, Simple structures 

Structure of soil 
classification 
influence of drainage 
saline soils 

Structureless soils see Simple 
structures 

Subsoil 
effective soil depth 
internal drainage 2.1.6; 

Subsoiling 
non-saline sodic soils 

Sub-surface drainage 
soil aeration 

Suction 

measurement 

Sugarbeet see Arable crops 

Sum exceedance value 

Surface see also Seepage surface 
Surface drainage 

maize 

Surface intake rate 

Surface runoff see also Peak 

1 
1 
1 
1 
1 
1 

2 

2 

.3.2 

.2 

.3 

.3 

.3 

.3.1 

.3.2 

.3.2 

Swamp plants 

Swamps 
coastal plains 
flood plains 

Szik 

TAM see Total available 

Tectonic valleys 

Subject index 

4.2.2 

1.4 
1.3.1 

3.4 

moisture 

1.9 

2.2.2 

2.3.2 
2.3.2 
4.3.1 
3.5. 

2.1.6 
2.4.1 

3.5 

2.4.1 
2.5.6 

5.2.2 
5.2.3 

4.8 

4.1 
4.8.2 

2.4.1 

discharge 

Surface runoff 
glacial plains 

Surface sealing 

Surface soil 
textural grouping 

Surface tension 
water retention 

1, 

2, 

2, 

5. 

.6 

.3.2 

.2.1 

.2.2 

Teledeltos paper 7 

Temperature see also Soil 
temperature 

Temperature 
in the soil 2.6; 4 
influence on soil aeration 2, 
influence on water vis

cosity 6. 

Temporary waterlogged conditions 2, 

Tensiometer 5. 

Terraces 
coastal plains 1, 
lacustrine plains 1. 
rivers 

3.2 

.3.4 
,5.3 

.3.3 

,3.4 

,2.3 

4 
5 
,3 

2.1 

2.1 

2.1 

6.2 

3.3 

4 

1 

Textural classes 2 

Textural classification 2 

Texture of soil 2 

Thermal capacity of the soil 2, 

Tidal movement 1, 

Tidal rivers 1 , 

Till see Glacial till 

Tillage see also Weed control 

Tillage 

influence of drainage 4. 

Tir 3. 

Topography see Land form 

Top-set beds 1.3.3 
Topsoil 

structural stability 
water intake rate 
workability 

Total average moisture 

Total potential of water 

4.1 

4 

2.3.2 
2.1.6; 2.4.1 
2.1.6; 2.2.1 

2.4.2 

5.3.2 
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Total readily available 
moisture 2.4.2 

Trace elements 
absorption by plant roots 2. 

Trafficability of soil 2. 

TRAM see Total readily available 
moisture 

Transient flow see Nonsteady flow 

Transition layer 1. 

Transmission zone see Infiltration 

7.2 

5.6 

3.3 

Transport capacity 
streams 1.3 

Transport of water see also 
Capillary rise, Infiltration 

Transport of water 5. 
equations 5, 

Tropical soils 2, 
clay fraction 2, 

,4 
,4.1 

,3.4 
,2.2 

Two-dimensional electricity flow 7.2.2 

Two-dimensional groundwater 
flow 6.6; 7 

analogy to electricity 
basic equations 
electrical models 
exact methods of solution 
method of squares 
potential functions 
relaxation method 
stream function 

Ultimate base level see Base level 

Unconfined aquifers 1.2 

groundwater flow in 6.5.5 

Undulating landscape 1.6 

Units 
energy 5.3.1 
physical 5.2.2 
pressure 5.3.1 
water potential 5.3.1 

Unsaturated conductivity coef
ficient 5.4.2 

Usar 3.4 

Valleys 1.3.1 

Value 

soil colour 

Varves 

Velocity gradient of water 
Velocity head see also Apparent 

velocity 

Velocity head 

Velocity potential 

Vermiculite 
cation exchange capacity 
clay fraction 

Virus diseases see Diseases 

Viscosity of water 

temperature influence 

Void ratio of soil 2. 

Volcanic lakes 1 . 

Volume of soil air 2. 

Volume weight of soil 2. 

.3.4 

.6 

.2.2 

.2.5 

.6.2 

.2.3 

.2.2 

.2.2 

.3.3 

.3.1 

5 

5.2 

3.1 

7.2.1 
7.2.2 

6.5 
7.3 
6.6.3 
6.6.4 
6.6.2 
6.6.4 
6.6.2 

Wati er see also Groundwater 

Water 
infiltration 
potentials 
presence in the soil 
retention 
transport 

5.4. 
5.3 
5.1 
5.2 
5.4 

2 

Water absorption see Intake rate 

Water-bearing layers see 
Aquifers 

Water conduction 

function of pores 2.3.2 

Water flow 5.3.1 

Water infiltration 5.4.2 

Water intake rate 2.4.1 

Water potentials 5.3 

Water-retaining properties 
of soil 2.4.2 

Water retention see also 
Retention 
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Subjeat index 

Water retention 2.2.1; 
function of pores 

Watertable see Groundwater table 

Water transmitting properties 
in relation to pore size 
soil 

Water transport 

Water vapor in the soil. 

Waterlogging see also Temporary 
waterlogged aonditions 

Waterlogging 

soil colour 

Watertable aquifer 

Weathertable minerals 

Weed control see also Tillage 

Weed control 
influence of drainage 

Well 
discharge 
fully penetrating 
partially penetrating 
steady flow to 

5.2 
2.3.2 

2.5.3 

2.4.1 

5.4 

2.5.1 

Wet soils 
plasticity 

Wheatstone bridge 
measurement of discharge 

White alkali 

Wilting point 2.4.2; 

Workability of the soil 
soil-drainage 

4.3.4 
2.3.3 

7.6.1 

3.4 

5.2.1 

2.2.1 
2.5.6 

ge 

6.5.2; 

4.2.1 
2.3.4 

1.2 

2.2.2 

4.4.2 

6.5.7 
6.5.7 
6.5 
6.5.7 

Xerophytes 

Yellow soils 

Yields 
arable crops 
drainage influence 
fruit trees 
grassland 
groundwater level 
soil salinity 
subsoiling 

4.2.2 

2.3.4 

4.8.2 
4.5 
4.8.3 
4.8.1 
4.8 
3.4 
3.5 
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