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PREFACE

This book is the second of four Volumes containing the edited lecture notes of the
International Course on Land Drainage, which is organized annually in Wageningen,
The Netherlands. In the Course an effort is made to cover, as completely as possible
and within a period of three months, the basic principles of land drainage and their
application. As mentioned in the Introduction to Volume I, the authors — all specialists
in their particular fields — do not profess to have treated their subject matter exhaust-
ively; within the limited time available, it is impossible for them to discuss all details
of their subjects.

This second Volume presents the basic principles of land drainage by gravity and
wells. It also deals with salt balances, leaching requirements, effects of irrigation on
drainage, field drainage criteria, and mathematical models for different types of
groundwater flow and for watershed runoff. The book can be used independently of
the other Volumes although, to avoid repetition, reference is often made to their
chapters. Yolume I, issued in August 1972, treats basic elements, physical laws
governing groundwater flow, and concepts of the piant-soil-water system in which the
processes of land drainage take place. The forthcoming Volumes III and TV will
discuss the various surveys and investigations required to determine the parameters of
the plant-soil-water system which are to be introduced into the drainage design
computations; and will also treat the design and dimensioning of drainage systems,
some of the main engineering features, and aspects of operation and maintenance.
The reasons why the lecture notes of the Course are being published have been ex-
plained in the Preface and Introduction in Volume T. It was mentioned in that Preface
that, after the original Editorial Committee under the chairmanship of Mr. P. J.
Dieleman had broken up, a Working Group was formed to finish the job. This group
consisting of members of the Institute’s staff, has made no substantial changes in the



work programme and the principles laid down by the Editorial Committee for the
publication of these lecture notes. The members of the Working Group who con-
tributed to the editing of Volume II were:

Mr. J. Kessler, Chairman, Chief Editor

Mr. N. A. de Ridder, Editor

Mr, M. G. Bos, Editor

Mr. R. H. Messemaeckers van de Graaff, Editor

Mr. T. Beekman, Production

Mr. J. Stransky, Subject index

Mrs. M. F. L. Wiersma-Roche, Translator

To our deep regret Mr. Kessler died suddenly in August 1972. Before his death, he
had been able to complete most of the editorial work not only for Volume I but also
for Volume II. His last contribution to the work was the preparation of a complete
new draft of Chapter 11: Field Drainage Criteria. Mr. J. W, van Hoorn, Mr. J. H.
Boumans and Mr. C. L. van Someren made editorial changes in this chapter.

Mr. Kessler’s task as chairman of the Working Group has been taken over by Mr.
N. A. de Ridder. I have full confidence that under his capable guidance the job of
issuing the last two Volumes will be completed satisfactorily,

Wageningen, April 1973 Ch. A. P. Takes
Acting Director {1971-'72)
International Institute for
Land Reclamation and Improvement
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Flow into drains

8.1 INTRODUCTION

Until recently, all cver the world, the only common practice of controlling the
water table was by a system of open ditches. In modern agriculture many of these

systems have been, or are now being, replaced by pipe drains (Chap.27, Vol.IV),

In any system of drains ome may distinguish between {Fig.l):

- field drains or field laterals, usually parallel drains whose function is to
control the groundwater depth;

— ccllector drains, whose function is to collect water from the field drains and
to transport it to the main drains;

- main drains, whose functien is to tramsport the water out of the area.

—_—
A L
—_—
main drain
collector drain
field drain or lateral Fig.l. Drain functions.

There is not always a sharp distinction between the functions of the drains. For !
instance all field and collector drains also have a transport function, and all '

the collector and main drains also control the groundwater depth to some extent.

The discussion in this chapter will be restricted to parallel field drains. Fi-
gure 2 shows a cross—-section of the laterals in Fig.l. The water table is usually
curved, its elevation being highest midway between the drains. The factors which

influence the height of the water table are:

precipitation and other sources of recharge

evaporation and other sources of discharge

soil properties
- depth and spacing of the drains
- cross-sectional area of the drains

- water level in the drains



RS AR rASraws  Fig.2. (Cross-section of laterals showing a
water table

5\\\¥y/f/,¢—~—————ﬁ‘ug\\g///,. curved water table under influence of
pipe drains rainfall.

In this chapter the zbove factors are intertrelated by drainage equations, based
on two assumptions, viz.:

- two-dimensional flow, 1.e. the flow is identical in any cross-section perpendi-
cular to the drains;

- a uniform distribution of the recharge, steady or non-steady, over the area be-
tween the drains.

Most of the equations discussed in this chapter are morecver based on the Dupuit-
Forchheimer assumptions (Chap.6, Vol.I). Conseqguently they have to be considered
as approximate solutions only. Such approximate sclutions, however, are generally
accepted as having such a high degree of accuracy that their application in prac-
tice is completely justified.

A distinction is made between steady state and non-steady state drainage formu-
las. The steady state formulas (Sect.8.2) are derived under the assumption that
the recharge intensity equals the drazin discharge rate and comsequently that the
water table remains in position., The non-steady state drainage equations (Sect.
8.3) consider the fluctuations of the water table with time under influence of a

non-steady recharge,

8,2 STEADY STATE DRAINAGE EQUATIONS

8.2.1 BORIZONTAL FLOW TO DITCHES REACHING AN IMPERVIOUS FLOOR

It is recalled from Chap.é, Vol.I that under the assumptions of one—-dimensional
horizontal flow, implying parallel and horizontal streamlines, the flow to verti-
cally walled ditches reaching an impervious floor (Fig.3a) can be described by

the so-called Donnan equation {DONNAN, 1946)



Flow into drains
R=gq-= ﬁEﬁEif_Eil (e8]
where
R = recharge rate per unit surface area {m/day)
q = drain discharge rate per unit surface area (m/day)
K = hydraulic conductivity of the soil {m/day}
H = height above the impervious floor of the groundwater table midway between two
drains {m)
D = height above the impervious floor of the water level in the drains = thick-
ness of agquifer below drain level (m)
L = drain spacing (m)
which has also been derived by HOOGHOUDT (1936).

Equation ] may be rewritten as

- LK{H+D) {H-D)
q ““;};“""

(23

Setting (Fig.3a) h = H~D and H+D = 2D+h, where h is the watertable height above
drain level at midpoint, i.e. the hydraulic head for subsurface flow intc drains

(m), Eq. 2 then changes into

q = 8K (D+ih)h (3)

1.2

The factor D+ih in Eq.3 can be considered to represent the average thickness of
the soil layer through which the flow takes place (agquifer), symbolised by D, In-
troducing D inte Eq.3 yields

8KDh ()

where KD = transmissivity of the aquifer (m?/day),

Equation 3 can be written as follows

_ BKDh + 4ER®
L2

q (5

Setting D = 0 gives



_ 4kh?
L2

q (6}
Equation 6 apparently represents the horizentazl flow above drain level. This
equation is known as the Rothe equation. It seems to have been derived as early
as 1879 by Colding in Denmark.

1f D is large compared with h, the second term in the numerator cf the right hand

side of Eg.5 can be neglected against the first term, giving

q = Ko 3
L2
Equation 7 and the first term of Eq.5 apparently represent the horizontal flew

below drain level.

The above considerations permit the conception of a two-layered soil with inter-
face at drain level. Accordingly Eq.5 may be rewritten as

8K, Dh + AKah2

q (8)

12
where

K
a

%

hydraulic conductivity of the layer abeve drain level {(m/day)

hydraulic coanductivity of the layer below drain level (m/day)

8.2,2 PRINCIPLES OF THE HOOGHOUDT EQUATION

If the ditches do not reach the impervious floor, the flow lines will not be pa-
rallel and horizontal but will converge towards the drain (radial flow). In this
region the fleow system cannot be simplified to a flow field with parallel and
horizontal streamlines without intrcducing large errors,

The radial flow causes a lengthening of the flow lines. This lengthening causes
a more than proporticmal less of hydraulic head since the flow velocity in the
vicinity of the drains is larger than elsevwhere in the flow region. Consequently,
the elevation of the water table will be higher when the vertically walled dit-

ches are replaced by pipe drains, the drain level remaining the same.

HOOGHOUDT (1940) derived a flow equation for the flow as presented in Fig.3b, in
which the flow region is divided intec a part with horizontal flow and a part with
radial flow.

1f the horizontal flow above draln level is neglected, the flow equation for a
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uniferm soil reads

=4k
h % Py (9)
and
- 2
F, = _—”‘(ngfz_) + % In 2+ £(D,L) (10}
r V2
o
where
r, = radius of the drains
f(D,L) = a function of D and L, generally small compared with the other terms in

Eq.10; it can therefore usually be ignored (LABYE, 1960).

a
:
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Fig.3. The concept of the equivalent depth to transform a combination of hori-

zontal and radial flew into an equivalent horizontal flow,



The first term of the right hand member of Eq.10 pertains to horizontal fleow, the

second and the third term to radial flow.

Instead of working with Eqs.9 and 10, HOOGHOUDT considered it more practical to
have a formula similar to the equations given in the previous section. To account
for the extra resistance caused by the radial flow, he introduced a reduction of
the depth D to a smaller equivalent depth d. By sc doing, the flow pattern is re-
placed by a model with horizontal flow only (Fig.3c). If we consider only the flow

below drain level, Eq.7 is reduced to

- &b 11
L2

where d < D. This equation must be made equivalent to Eq.9. Solving the latter

equation for q and equating the result with Eq.l! results in the equation for the

equivalent depth
d = 5 (12)

The factor d is like FH a function of L, D and r_, as may be seen from Fqs.]0 and
12. Values of d for r, = 0.] m and various values of L and D are presented in
Table 1. For other drain diameters Fig.14 can be used, which/will be explzined in

Sect.8.2.9.

In order to take radial flew into account the d-value can be introduced into all
equations of Sect.8.2.1, When introduced in Eq.8 it yields

8K, dh + mcah2

q (13)

LZ

Equation 13 is called the Hooghcudt equatiom.

Discussion

In Eq.10 the first term in the right hand member pertains to the horizontal flow
tregion. Comparison with Eq.7 proves that the horizontal flow is taken over a dis-
tance L-DVZ instead of L, and that the radial flow consequently is taken over a
distance of IDV2 to both sides of the drains.

If we neglect £(D,L} in Eq.10 and set



Fh =
and
F =
T
Eq.10 may
FH

Consequently Eq.9 changes into

h =

=F

a
< F

(L-DvZ)?

8DL

1
T 1n

D

T Vi
Q

be written as

h

h

+ F
r

S.L_ =
+ % F

r

Flow into drains

(14)

(15)

{16}

Thus the total hydraulic head is the sum of the hydraulic heads hh and hr requir-

ed for horizontal and radial flow respectively.

Table 1. Values for the equivalent depth d of Hooghoudt (r0
in m)
L=+ S5m 7.5 10 15 20 25 30 15 40 45 50
D
0.5 m 0.47 0,48 0.49 0.49 0,49 0.50 0.50
0.75 0.60 0.65 0.6% Q.71 0.73 0.74 0.75 0.75 0.75 0.76 0.76
1.00 0,67 0.75 0.80 0.86 0.89 0.91 0.3 0.94 0.8 0.96 0,96
1.25 0.70 0.82 ©.8% 1.60 1,05 1.0% 1.12 1.13 1.1% 1.1i% 1.15
1.50 D.88 ©.97 1.11 1.19 1.25 1.28 1.31 1,34 1.3% 1.36
1.75 0,91 1.02 1.20 1.30 1.39 1.45 1.4% 1.52 1.55 1.57
2,00 1.08 1.28 1,41 1.5 1.57 1.62 1.66 1.70 1.72
2,25 1,13 1.34 1.50 1.69 1.69 1.76 1.81 1.84 1.86
2.50 1.38 1,57 1.89 1.79% 1.87 1.% 1,99 2.02
2,75 1.42 1.63 1.76 1.88 1.98 2,05 2.12 2.18
3.00 1.45 1.67 1.83 1.¢7 2.08 2.16 2,23 2,29
3.25 1.48 1.71 1.88 2.04 2.l16 2.26 2.35 2.42
3.50 1.50 1.75 1.93 2,11 2.24 2.353 2.45 2.54
3.75 1.52 1.78 1.97 2.17 2.31 2.44 2.54 2.64
4.00 1.81 2,02 2.22 2,37 2.5% 2.62 2,71
4,50 1.85 2.08 2.3} 2,50 2,63 2,75 2.87
5.00 1.88 2,15 2.38 2.58 2,75 2.8% 3.02
5,50 2.20 2,43 2.65 2.84 3.00 3.15
6.00 2.48 2,70 2,92 3.09 3.26
7.00 2,54 2,81 3.03 3.24 3.43
8.00 2.57 2.85 3.13 3.35 13,56
9.00 2.85 3.18 3.43 3.66
1C.00 | 3.23 3.48 3.74
o g.71 0.83 1,14 1,53 1.89 .24 2.58 2.91 3.24 3,5 3,88

=0.1m, D and L



Table 1. {cont.)

L— 50 75 80 85 90 100 150 200 250

D

0.5 0,50

1 0.96 0.7 0.97 0.97 0,98 0.98 0.9 0.99 0.99
2 1,72 1.80 1.82 1.82 1.83 1.85 1.00 1.92 1.94
3 2.2% 2.49 2.52 2.54 2.56 2.60 2,72 2.70 2.83
4 2,71 3.04 3.08 3.12 3,16 3.24 3.46 3.58 3.86
5 3,02 3.42 3.55 3.6l 3.67 3.78 4.12 4.31 4.43
& 3.23 3.85 3.93 4.00 4.08 4.23 4.70 4,97 5.15
7 3.43 4.14 4,23 4.33 4.42 4.62 5.22 35.57 5.8l
8 3.56 4.38 4.49 4,61 4,72 4.95 5.68 6.13 6.43
g 3.66 4,57 4.70 4.82 4.95 5.23 6.09 6.63 7.00
10 3.74 4.74 4.89 5.04 5.18 5.47 6.45 7.0%9 7.53
12.5 5.02 5.20 5.38 5.56 5.92 V.20 8.06 8.68
15 5.20 5.40 5.60 5.80 6.25 7.77 8.84 9.64
17.5 5.30 5.53 5.76 5,99 &.44 B8.20 9.47 10.4
20 5.62 5.87 6.12 6.60 8.54 9.97 11.1
25 5.74 5.96 6.20 6.79 8.99 10.7 12,1
30 9.27 11.3 12.9
35 9.44 11.6 13,4
40 11.8 13.8
45 12.0 13.8
50 12.1 14.3
60 14.6

8

3.88 5.38 5.76 6.00 6.26 6.82 9.55 12.2 14.7
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As can be seen from Table 1, the value of d Increases with D until D = L. For
larger values of D the equivalent depth d remaing approximately constant. Appa-

rently the flow pattern is then not affected by the depth of the impermeable

layer (Fig.4).

Fig.4.

Flow pattern in case of a deep uniform soil.

8,2.3 APPLICATION OF THE HOOGHOUDT EQUATION

The Hooghoudt equatiom is commonly used to calculate the drain spacing L, if the
factors g, h, K, D and r_ are known. The formula can also be used to calculate
the soil comstants K and D, if q, h, L and T, are known (Chap.26, Veol.III),

Since the drain spacing L depends on the equivalent depth d, which in turn is a
function of L, the formula cannot be given explicitly in L. Its use therefore as
a drain-spacing formula involves a trial and error procedure. The trial and error
method can be avoided by making use of nomographs examples of which are given in

Figs.b and 7.

Example |

For the drainage of an irrigated area drain pipes with a radius of 0.1 m will he
used. They will be placed at a depth of 1.8 m below the soil surface. A relative-
ly impermeable soil layer was found at a depth of 6.8 m below the soil surface.
From augerhole tests the hydraulic conductivity above this layer was estimated at
0.8 m/day (Fig.5).

Suppose that ap irrigation is applied approximately once in 20 days. The average
irrigation losses, which recharge the already high groundwater table, amount to
40 mm per 20 days so that the average discharge of the drainage system amounts to

2 mm/day.



L
9:0.002m sdoy 2rp=0.2'm

K=0.8m/day

imperviou Fig.5. Drainage conditions in Example I.
What drain spacing must be applied when an average water-table depth of 1.20 m
below the soil surface is to be maintained?

From the above information we have

r =0.1n

o
g = 0.002 m/day

K, =K = 0.8 m/day
D =5m

h =0.6m

Substitution of the above values into Eq.13 gives

sxbdh2 + &Kahz 8 X 0.8 % 0,6 xd+4x0.8x0.62

2 _

L= q 0.002
12 = 15204 + 576

Trial 1

Take L = 80 m and read from Table 1: d = 3.55 m.
L% = 1920 d + 576 = 1920 % 3.55 + 576 = 7392 m®.
This is not in agreement with L? = 80° = 6400 m®.

Therefore L = 80 m is apparently too small.

Trial 2

Take L = 87 m and read from Table 1: d = 3.63 m,
12 = 1920 4 + 576 = 1920 % 3.63 + 576 = 7546 m®.
This is sufficiently close to L7 = 87% = 7569 m®.
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Conclusion: The drain spacing required to satisfy the above conditions 1sg
L =87 m

Note:
In the equation L% = 1920 d + 576, the term 576, representing the flow above
drain level is comparatively small.

Neglecting it one obtains

L= V1920 d = /1920 * 3.58 = 83 m.

Example 2

To illustrate the use of nomographs of Figs.6 and 7 consider again the previous

example.,
Fig.6. t ; ¢
Nomograph for the determination
. . e L x
of drainspacing if & < 100, a
h 100
(BOUMANS, 1963). a
b
h 02 150
04
IquJ 06 200
i
discharge g
300
L
h
100 400
500
BOO
200 700
BOO
agg
300 1000
400
500 1500
600
700 2000
800
S00
1000
3000
hornogeneous soil
|2 BKdh + 4Kh? 4000
q
5000
H000
7000
8000
S000
10000

13
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homogeneaus sall E o Nomograph for the determinatiom of
2_ BKdh+4Kn° s . .. L
e drainspacing if ¢ > 100 (BOUMANS,
& 1963).
D 3 h 0.6
Calculate =~ = == = 8.3 and — = = 1.9
h 0.6 mr mx 0,1

Fix the intersection point of the corresponding curve in the left hand part of

Fig.7. Calculate % = 00682 = 400, Fix this peint on the right hand scale and con-

nect 1t with the above intersection point by a straight line, Read at the inter-

section of the straight line and the middle scale that L. 140, Calculate finally

h
L=140 h = 140 x 0.6 = 84 m,
The same graphs may be used for open ditches by setting u = T, where u is the

wet perimeter of the drain (Sect.8.2.7).

8.2.4 PRINCIPLES OF THE KIRKHAM EQUATION

KIRKHAM (1958} gives an analytical solution for a problem similar to Hooghoudt's,

viz, two-dimensional flow, a regularly distributed rainfall over the area, and

14
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drains not reaching an impervious floor. If the flow above the drains is ignored,

Kirkham's solution can be writtenm in a form similar to Eq.9
- L
h X F (i7

and

b 5 (ces T ~ <08 n7) (coth I {18)

L | ZnWro 20D
- 1)
° n=1

Frj
b
1
ETp
—
—
=]
A
3
+
4

Values of FK are given in Table 2. Tt is found that the Fr values of Kirkham are

very close to the F, values of Hooghoudt, so that becth the Hooghoudt and the

1
Kirkham equations give almost identical results (WESSELING, 1964).

Table 2. Values of Fy according to Toksoz and Kirkham.

L/ID — 100 50 25 12,5 6.25 3,125 1.5625 0.78125

Dfar

8192 - - - - - - - 2.654
4096 - - - - - - 2,65 2.43
2048 - - - - - 2.66 2,43 2,21
1024 - - - - 2.84 2,45 2.21 1.9%
512 - - - 1.40 2.63 2,23 1.99 1.76
256 - - 4.76 3.19 2,40 2.01 1.76 1.54
128 - 7.64 4,53 .96 2,19 1.78 1.54 1,32
64 13.67 7.43 4,31 2.74 1.9 1.57 1.32 1.10
32 13.47 7.21 4.09 2.52 1.74 1.35 1.10 0.88
16 13.27 6.99 3.86 2,30 1.52 1.13 O0.B8 0.66
8 13.02 6.76 3.64 2.08 1.30 0.90 0.66 0.44
4 12,79 6.54 3,42 1.86 1.08 0.68 0.44 -

2 12.57 6,32 3.20 1.63 0.85 0.46 - -

1 12,33 6,08 2.95 1.40 0.62 - - -~
0.5 12.05 5.77 5.65 1.11 - - - -
0.25 11,25 5.29 2.20 - - - - -




In the solutlion represented by Eq.17 the flow in the upper region has been ne-
glected {Ffig.8). In a later paper KIRKHAM (1960) reported that, if vertical
flow is assumed in this region, the hydraulic head should be multiplied by
(1—q/K)_l. Since this term relates to the flow in the layer above drain level,

the general equation for a two-layer problem is (WESSELING, 1964)

1
——l-q/Ka FK {19)

oI

where Ka is the hydraulic conductivity above drain level and Kb below that drazin
level. The boundary between the two layers must, as in the Hooghoudt solution,

coincide with the drain level (Fig.8).

Fig.8.

Two-dimensional flow pattern according te the

Kirkham (1958} irkham (1960]  analytical solutions of KIRKHAM (1958, 1960).

8.2.5 APPLICATION OF THE KIRKHAM EQUATION

A graphical solution of Kirkham’s equation is presented in Fig.9 (modified after
TOKSOZ and KIBRKHAM, 1961). An application of the graphical solution will be given

below.

Example 3

The data of Example 1 (Sect.8.2.3) will be used. We have

r, = 0.10m D=5m
g = 0.002 m/day h=06m
Ka = Kb = 0.8 m/day

Take on the vertical zxis of Fig.9 the value

n 5% 06,08 o0
5

.8, _
3 (—E" E;) og =48

(0.002 0.8

Go from this point in herizontal direction till the line marked D/(Zro) =
5/{2 x Q.1) = 25, which is found by interpolaticn between the lines marked i6 aund

32, Go from this point vertically downwards and read on the axis L/D = 17.
With D = 5m, L =5 % 17 = 85 m.
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h &-‘Lb)
5(3 Ka
1000 e T T T
800F _
600[ % ]
<00 £
= L, h (‘&_"_b) 3
F DR D\ T Ky 1
200F ;
100F 3
F 4 3
80F Vi e
oof y /4 E
aof A;;VX .
71 f
10f g
8l % / =
al // ]
o -
oo/ // / ]
2%“‘3‘& 3 Fig.g-
;;/%%p // E .
Z// z 4 Nomograph for the determinat-
, ]
1B IIKJ/H/\IJ'H bt d s coniod ctada il ion of drainspacing (modified
1 ? 4 6 810 20 40 60 8010

/D after TOKSOZ and KTRKHAM, 1961),

8.2.6 PRINCIFLES AND APPLICATION OF THE DAGAN EQUATION

Analogous to the method of Hooghoudt, DAGAN (1964) thought the flow to be compos-
ed of a radial flow in the area between the drain and a distance {Dv? away from
the drain, and an intermediate, though mainly horizontal, flow in the area be-
tween the {D¥2 plane and the midplane between the drains.

The Dagan equation, in a form similar to the Hooghoudt and Kirkham equations,

reads

_ qL
h'SEF (20)



The expression for FD is

L
G - 8} 2n

(=)
=

mr

where B = 7 1n(2cesh _BS -2) (22)

|

T
In Fig.10 the term B has been presented as a function of —59 . Nete that B-values

are negative. With the aid of this figure the application of Dagan's equation is

easy.
_45

| m
-42‘_'k{" : -1 i
_38 ! . ol ]

~30

L26— R N

- S T S .

7

el | T Fig.l0.

10 i Nomograph for the determination of B in the
0.02 004 006 008 Q10 .

Tro/0  Dagan equation (DAGAN, 1964),

Example 4

The data of Example 1 (Sect.8.2.3) will be applied. We have

ro =0.10m D=5m
q = 0.002 m/day h=0.6m
= 0.8 m/day
r 0 1
Read from Fig.l0 with T° = 3.14 X == = 0.06 that 8 = - 2.1.

Substitution of B into Eq.2! gives

1L -
Fp =30 B3

b 55 " +2.1).

1,L
%%
Substitution of Fy into Eq.20 yields

= gL 4L L
b= % g *2D
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Inserting the given infermation and rearranging yields
L2+ 21 L - 9600 = 0

and

- 21+ JRET T & 9600 21 * 197
3 " T2 n

Since L » 0, we find L = 88 m.

8.2.7 PRINCIPLES OF THE ERNST EQUATION

The Ernst equation is applicable to two-layered soils. It offers an improvement
onr the former formulas insofar as the interface between the two layers can be
either above or below drain level. It is especially useful when the upper layer

has a considerably lower hydraulic conductivity than the lower layer.

Like the Hooghoudt equation, the Ernst equation is found as the sum of the hy-
draulic heads required for the variocus flow compenents in which the flow towards
the drains may be schematically divided.

In analogy with Chm's law, we may write for groundwater flow
g =nhf/w orh =gqw

where g is the flow rate, h is the hydraulic head and w is the resistance. Thus,
if we divide the flow towards the drains into vertical, horizontal and radizl flow,

the total hydraulic head may be given by

= + + = +
h hv h hr qu qlw

h * qur

h
where the subscripts v, h, and r refer to vertical, horizontal and radial flow.
Note that horizomtal and radial flow equal gL, i.e. the drzin discharge per unit
length of drain, whereas vertical flow equals g, the drain discharge rate per
unit surface area.

Writing out the various resistance terms, we can read Ernst's equation as (ERNST,

1956, 1962)

h=q——v- _—_ _Lln__r (23)
h T



h = total hydraulic head or water~table height above drain level at mid-
peint (m}

q = drain discharge rate per unit surface area (m/day)

L = drain spacing (m)

Kr = hydraulic conductivity in the layer with radial flew (m/day)

KV = hydraulic conductivity for vertical flow (m/day)

Dv = thickness of layer over which vertical flow is considered (m)

Dr = thickness of layer in which radial flow is considered (m)

E(KD}h = transmissivity of the soil layers through which herizontal flow is con-
sidered (m?/day)
u = wet perimeter of the drain {(m}

a = geometry factor for radial flow depending on the flow coenditions.

The values for Dv’ E(KD)h, Dr’ a, and u are to be determined in accordance with
the so0il profile and the relative position and size of the drains. The appropri-
ate values are derived from the folleowing data which characterize the specific

drainage conditions, namely:

D; = average thickness below the water table of the upper layer with perme-

ability Ky
D; = thickness of the lower layer with permeability K.
o = thickness below drain level of the layer in which the drains are located
= water-table height above drain level at midpoint
y = water depth in the drain; for a pipe drain y = 0.

The values for Dv’ E(KD)h, Dr, a, and u are now considered in some detail, with

the help of Figs, 1lla to d.

- Vertical flow takes place in the layer between the maximum water table midway
between the drains and the drain bottom. Usually the thickness cof the layer for
vertical flow can be taken as Dv = y+h for ditches, and Dv = h for pipe drains.
In fact this should be }(y+h) and }h respectively, but usually this factor is of

little importance.

- Herizontal flow occurs over the whole thickness of the aquifer, thus Z(KD)h =
KyD; + KyDs. If the depth to the impervious laver increases, the value of KDz in-
creases tco, making Z(KD)h tending to infinity and the horizental resistance to
zero. In order te prevent this, the tatal thickness of the layers below the

drains DO or DO+ D is restricted to iL when the impermeable layer is deeper than

iL below drain level.

20



Flow into drains
- Radial flow is taken into acccunt cnly in the layer below drain level, thus

Dr = DO, with the condition that for radial flow the same restriction should be

applied for Do as for horizentzl flow, viz, D0 < iL.

¥

i

K2 v\ horizontal

|
1
|
B
|
|
|
\

K1
T B W 1B USSR AR, BRI ERLL LRI

Fig.1lla Fig.11b
Geometry of two—dimensional Gecmetry of the Ernst equation
flow towards drains accor- for a homogeneous soil.

ding to ERNST (1962},

Fig.lle Fig.11d

Geometry of the Erumst Geometry of the Ernst equaticm
equation for a two-layered for a two-layered soil with
soil with the drain in the the drain in the upper layer.

lower layer.

- With respect to the wvalue of a the following cases can be considered:

Homogeneous soils

In a homogeneous soil (Dz = 0, Fig.11lb), take a = 1, Further Dv = y+h, Z(KD)h =
¥iDy, Kr = K; and Dr = Do‘ 50 that Eg.23 becomes
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2
y+n L L) (24)

h=qK1+q8K1D1+q7TK1 u

In homogeneous soils the vertical resistance is usually negligibly small, More-
over, as in most practical cases h<<Do, Dy is usually reduced to Do, neglecting
the horizontal flow through the layers above drain level.

If the depth from drazin bottom to impermeable layer, Do’ is larger than {L, the
flow is thought not to reach beyond this depth. Since the drain spacing is not
known beforehand this condition has to be checked afterwards. Actually, the cal-
culations will lead to the same results when D is between IL and L. Bevond

these limits, however, too small spacings are calculated.

Layered soils

If the drains are situated in the lower layer of a two-layered soil (Fig.llc) and
K; < Kz, the vertical resistance in the second layer can be neglected against
that in the first ome.

From Fig.l!c it can be seen that the thickness of the layer over which vertical
flow must be considered equals Dv = 2D;.

For the horizontal flow compomnent we have in this case E(KD)h = K;Dq+ K;Dz. Since
Ki < Kz and Dy < Dz, the first term is usually neglected and E(KD)h = KDy,
Radizl flow is taken into account over the layer Dr = Do.
For both the horizental and the radial flow component, again the restriction is
made that the thickness Do may not exceed }L. The equation to be used then be-

comes

2D, 2 L D0

! K4 *d 8K2Ds ta T2 In u (25}

h =
If the drain is entirely in the upper layer of a two-layered soil (Fig.!1d), the

following conditions must be discerned with respect to the gecmetry factor a:

I Ko > 20 K

The gecmetry facter a = 4 and Eq.23 becomes

4D
o

g ¥ - L L
h=a Y e gmr Dy Y By (26)
I1 0.1K; <« K2 € 20 Ky

The geometry factor a has to be determined from the nomograph given in

Fig.12, and to be introduced in Eq.23
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III 0.1K; > K3
The geometry factor a = |,
The lower layer can be considered impervious and the case reduces to that
cf a homogeneous soil underlain by an impervicus boundary, so that Eq.24 is

applicable.

— In the above equations the wet perimeter u of the drain occurs.

For ditches this factor is calculated as
u=b + 2yVsd+ 1 (27

where
b
y = water depth in the ditch

]

bottom width of the ditch

s = side slope of the ditch: horizontal/vertical.

For pipe drains, laid in trenches and sometimes surrounded by enveloping mater-
ials of good permeability, it is more difficult te determine an exact value for

u. Under ncrmal conditions u is determined from
u=b+ 2x 2ro 28

where
b = the width of the trench and

r = the radius of the drain.

If filter material is used, it is advisable to replace 2r0 by the height of
the filter.

8.2.8 APPLICATION OF THE ERNST EQUATION

Drain spacings may be calculated directly or determined with the aid of the nomeo-
graphs given in Figs.12 and 13 (VAN BEERS, 1965). The computation is carried out

in steps to facilitate the right choice of the equations.

Step 1
Check the soil profile.

If the soil is homogeneous or if the depth of the layer in which the drain will

23



be situated is mere than (L, apply Eq.24. If less, go to step 2 and 3.

S5tep 2
Calculate the term h_ = q D _/K .
v v' v
Since this term is independent of L, it can be calculated directly and subtracted

from h to vield Eq.29%

v B(KD) K I (29)

In most cases hv is very small and may be ignered.

Step 3

Determine the geometry factor a.

If X; > 20 K, set a = 4 and apply Eq.26.

If 0.1KR; < Kp < 20 Ky, determine a from Fig.12 and apply Egq.27.

If Xz < 0.IK, set a = |, consider the soil homogenasous and apply Eq-24.
a a
100 TET— 0 /0,=32 100
a9 bl ™ K o =0
i, 1 I 40
;n Lo ac
20 ] 20
15 ~ K 15
) — s . 2 g m
a S
s
8 r
g ] T I
= — ] 1 5
-t — 4
4
et
N ] = L, 3
25 il ol bt | "] il
- L - -
N L1 Lt=t=T7] AT | L4 .
—
175 L] sl —— -
v 472 Lt
15 ] - il "ol r ] 15
> |4 oot =
Py L1 Lot
128 = ] . = ’ 125
Wr=
// // ’//I'/ r ﬂ1lnn'8l !
L5 ] -t u=wetted perimeter
) L1025 1
Ka /Ky
o . 3 4 % £ 7 251 2 3 4 5 6 7 891 20 30 40

Fig.12, Nomograph for the determination of the geometry factor a for radial re-

sistance in the Ernst equation (VAN BEERS, 1965).
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The application of the Erxnst equation as a drain spacing formula will be illust-
rated by three examples: for a homegeneous soil (DO<£L), for a two-layered goil

with interface below drain level (Do<}L) and for a deep seoil (D0>iL).

Example 5

The data of Example 1 (Sect.8.2.3) will be used. In additien to a trench width of

0,25 m, we have (see Fig.l1b)

r =0.1m D =5m

o o

q = 0.002 m/day h =0.6m
Ky = 0.8 m/day

Since the soil is homogeneous, Eq.24 and Fig,13 are applicable., Thus we have,
taking u = 0,25 + 4 x 0,1 = 0,65 m,

2 D 2
) 4L L, P _ o021 00021, 5
b=0.6=ggn; " 97k ™o "EX0.8%5.35 7x0.8 "0.65
and
L. -0.8¢% /U k4 s §xT.00 X300 _=-0.8¢%6.05

2 x §.03 6.06

Since L » 0 it follows that L = 87.5 m.

The nomogram of Fig.13 is used as follows:

Connect the point IKD = K1(DO+ ih) = 0.8 x 5.30 = 4.2 m*/day on the left hand
axis with the point g = 00682 = 300 on the right hand axis by a straight line.

Intersecting with the curve for

aD
= 1. 1p L = _t 1n N
Ve T T  Twx0.8 "0.65

= 0.8

cne reads in a vertical direction on the axis that L = 88 m.

Example 6

A soil consists of two distinct lavers. For the upper layer K; = 0.2 m/day and
for the lower layer Kz = 2 m/day. The interface of the two layers is at a depth
of 0.50 m below the bottom of the drain ditch (Fig.11d4). The thickness of the
lower layer toc an impermeable laver D; = 3 m. The ditch has a bottom width of

50 cm, side slope 1:l and the water depth y = 30 cm. The hydraulic head is set at

26



h = 1.20 m at a steady state discharge of ¢ = 10 mm/day.

From the above information (see Fig.l1ld)

h =1.2m D0 =0,5+0.3=0,8mn

q = 0.01 m/day D1=0.8+%X].2=].4m

K; = 0.2 m/day Dz = 3.0m

K; = 2.0 m/day u =0.5+2x0.3/2=1.35n
¥y =0.3m

Step 1

Assume Do<}L so that Eg.23 should be used.

Flow into drains

Step 2
%y h+y 1.2 + 0.3
hv=qk:=q R =O.01T=0.0?5m
h' = h—hv =1.2 - 0.075 = 1,125 m.
Step 3
Since Kz/K1 = 10 determine z from Fig.l2.
Go from the point Ko/K, = 10 at the lower axis vertically upward toc the line for
Dz/Do = 3.0/0.8 = 3.8 (interpclate between 2 and 4) and read on the vertical axis
a =4,

LKD), = KaDy+ KzDp = 0.2 X 1.4 + 2 % 3.0 = 6.3 m?/day

al 4D
r _ | o _ 1 4 x 0.8 _
LT B Tm Iy Trwoz v T3 - 137 days/m
Thus:
2 ab 2
. - qL gL r__0.0l1
h 1.125 m SchD)h+—“Kr In — = g5 55 *+0.01 x 1.37 L
or
0.2 L% + 13.7 L - 1125 =0
and
- 13.7 +V13.77 4+ 4 x 0.2 x 1125 - 13.7 + 33
L = = =48 m

2 x 0,2 0.4

This value can also be found from Fig.!3.
Since DO = 0.8 m the conditien DO< L is fulfilled.
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Example 7

The data are as in Example 6, except that Do = 10 m,

Step 1

Since it is likely that D0 will be more than }L, the solution for a homogeneous
s0il, as given by Eq.24, will be applied. This means that the second layer, what-—
ever its permeability or thickness, has nc influence on the flow to the drains.
The assumption that DO> iL must be checked afterwards.

Following Example 6, Step 2, the vertical hydraulic head hv = 0.075 m and

h' = 1.125 m.

Solving now Eq.24 for a = 1, ¥3b; = 0.2 x 10,6 = 2.1 n®/day, D0 = 10 m and

u = 1,35 m, results in

0 2 0.01 10
SR SN A N A o

from which the drain spacing is calculated: L = 24 m.

Since DO(z 10 m) is indeed more than i{L (= 6 m) the assumption D0> L was correct
and the example could be treated as a homogeneous soil,

As Dc’ intreduced in the computation, is less than {L (= 12 m) the sclutiom ob-
tained will also be carrect.

This can be checked by taking D0 = 6 m. Solving Eq.24 now results in

1.25 m = —201 g2

g x 1.3 T Lln

.2 1.35

0.01 6
x 0
from which once again a drain spacing of 24 m is calculated,

8.2.9 GENERALIZED NOMOGRAPHS

For a homogeneous soil, with D < }L and without regard to head losses due to

vertical and horizontal flow above drain level Eq.24 reads

The correspending Hooghoudt equation writes as

p o= 22
~ BKD

Equating the above expression for h yields, after rearrangement

_ D
i 1 + & In D Go
L u
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This expression for the equivalent depth d is presented graphically in Fig,l4.
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Fig.l4.

Nomograph for the determination of the

4080 hocj2oo
10 20 30 50 80150 L equivalent depth d (VAN BEERS, unpublished).

The nomograph of Fig.14 has the advantage that d can be determined for all values
of r, or u, whereas in Table 1, d is given for a fixed value of r only. An ex-
ample of the use of the nomograph is given in Fig.l14, When D/u = 15, D = 10 m and
L=40m, d=3.7 m

VAN BEERS (in press) expressed the drain spacing for a homogeneous soil with

negligible flow above drain level and D < IL as
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L=L-¢C (31)

o

where

LO = /8KDh/q

C =D ln 2
u

When the expression for Lo is compared with the Hooghoudt equatiom, it is rea-
dily seen that LD represents the drain spacing for horizontal flow. For the ra-
dial resistance a subtraction C is applied. This is in contrast to the Heeg-

houdt solution where a reduction of D te d is used to account for radial flow.

Fig.l15.

i '5 e -;;_' Nomegraph for the calculat-

ion of the subtraction C in

the generalized equation

6 8 10 20 40 60 BO100D
b L = LO- C (VAN BEERS, unpu-

blished).
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To calculate the subtraction C, the nomograph of Fig.l5 may be used. This no-—
mograph has the advantage of also being applicable to solve the non-steady
state Glover—-Dumm eguation.

To compute C, take the relevant value of D on the horizontal lower axis. From
this point go vertically upward to the value of u and read D In(P/u) on the

vertical axis.

8.3 NON-STEADY STATE DRAINAGE EQUATIONS

8.3.1 INTRODUCTION

In aveas with periodic irrigations or high intensity rainfall, the assuvmption of
a steady recharge is no longer justified. Under these conditions non-steady
state solutions of the flow problem must be applied. Non-steady state solutions
are indispensable when actual, non-steady water table elevations and

drain discharges, as obtained from field data, must be evaluated (Chap.26, Vol.

III).

It is recalled from Chap.b6 (Vel.I) that the differential equation for non-steady
state flow, as derived on the basis of the Dupuit-Ferchheimer assumption, can be
written as

2
D 3°h 3h

—udhg (322)

K 2 at

dx
or, when the recharge rate R equals zero

KD — = 1 =~ {32b)

where

KD = transmissivity of the aquifer (m?/day)

R = recharge rate per unit surface area (m/day)

h = hydraulic head as a function of x and t {(m)

% = horizontal distance from a reference peint, e.g. ditch {(m)
t = time (days)

B = drainable pore space (dimensionless, m/m)
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§.3.2 PRINCIPLES OF THE GLOVER-DUMM EQUATION

DUMM {1954) used a solution for Eg.32b found by Glover who assumed an initial ho-
rizontal groundwater table at a certain height above the drain level. The soluti-
on describes the lowering of the groundwater table - which does not remain hori-
zontal - as a function of time, place, drain spacing and soil properties.

The initial horizontal water table is thought to have been the result of an in-
stantaneous rise caused by rainfall or irrigation, which instantaneously recharged
the groundwater, Later DUMM (1960) assumed that the initial water table is not
completely flat but has the shape of a fourth degree parabola, which resulted in

a slightly different formula.

Figure 16 depicts the condition before and just after an instantaneous rise of a
horizontal groundwater table. The initial and boundary conditions for which Eq.

32b pmst be solved are:

t =4, h = Ri/u = ho’ 0 < x <L (initial horizontal groundwater table)

t >0, h =0, x =0, x = L {water in drains remains at zero
level = drain level)

where

Ri = instantaneous recharge per unit surface area (m)

h0 = height above drain level of the initial horizental water table.

72
— i
drainlevel ____ P _____
o Fig.!&.
N Boundary conditions for the Glover-Dumm equatien
I PR T VIOUS SRR AT
ke L ] with ipitial horizontal water table,
> —

The solution of Eq.32b for these conditions may be found in CARSLAW and JAEGER
(1959)

4h @

a2
h{x,t) = —Fg b %'e OO E%E (33)
n=1,-3,5,
where
'ITZKD . -1
= {reaction factor, day *) (34)
1L
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For the height of the water table midway between the drains at any time t,

h, = h(iL,t), cne may substitute x = j{L into Eg.33 yielding

]

h r
n=1,~-3,53,

1 -nfar

; e (35)
Apparently the value of each term of Eg.35 decreases with increasing n. If

wt > 0.2 the second and next term will be comparatively small and may be meglect-
ed. Equation 35 then reduces to

ot

b= 4y o™ 7 h O
m [»]

(363

Under the assumption cof an initial water table having the shape of a fourth de-

gree parabola, Eq.36 changes into {(DUMM, 1960)

_ -0t
h, = 1.16 h e 3N
The only difference between Eq.36 and Eq.37 is a change of the shape factor

% = 1,27 in 1.16.

Substituting Eq.34 into Eq.37 and solving for L yields

i 178
L=mni~% [1n1.16 =2 (38)

which is called the Glover—-Dumm equation,

As the Glover-Dumm equation does not take inte account a radial resistance of
flow towards drains net rveaching an impermeable layer, the thickness of the aqui-
fer D is coften replaced by the d-value of Hooghoudt te zccount for the convergen~
cy of the flow in the viecinity of the drains. This substitution is justified
since the flow paths for steady and non-steady flow may be considered at least

similar, although not exactly identiecal.

Thus Eq.34 becomes

2 —_
i & S P (39)

pL?

and Eq.38 changes into
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e | |

L=m<5 |lnt.15 = (40)
;TR

This may be celled the modified Glover-Dumm equation.

8.3.3 APPLICATION OF THE GLOVER-DUMM EQUATION

The Glover-Dumm equation is particularly used to caleulate the drain spacing

in irrigated areas. It reguires the determination of the soil properties

K, D, and p, the geometry of the drains and a drainage criterion. Compared with
steady state formulas the Glover-Dumm equaticn requires a water table drawdown
criterion in a certain time (hO/ht), instead of a water table elevation-discharge
criterion (Chap.!l, Vol.II). Moreover, the drainable pore space UL, is only re-

quired in non-steady state drain spacing formulas.

The calculation of the drain spacing L from Eq.40 requires 2 trizl and error pro-
cedure, because due to the introduction of the egquivalent depth d = f£{L,D,u) the
quantity L cannot be given explicitly. With the help of Fig.!5, the trial and

error procedure may be avoided.

Example 8
Water is applied in an irrigated area every 10 days. The field applicaticn losses

which percolate te the groundwater are 25 mm each irrigation and are regarded

as an instantaneous recharge, Ri = 0.025 m. With an effective porosity p = 0.05
the recharge causes an instantanecus rise of the water table, Ah = Ri/u =
0.025/0.05 = 0.5 m,

The maximum permissible height of the water table is set at ! m below the soil
surface. The drain level is chosen at 1.8 m below the scil surface. We then have
hO =1.8~-1.0=0.8 m.

The water level must be lowered by Ah = 0.5 m in the next 10 days or else with
the next jirrigation, it will rise to above 1.0 m below ground surface. Therefore
we have h]O = hO - Ah = 0.8 - 0.5 = 0.3 m., If the depth to an impervious layer
is found at 9,5 m below the soil surface, if K = Im/day, and if the radius of

the pipe drains is 10 ecm, calculate the drain spacing.

From the zbove information we have
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K = 1.0 mn/day t = 10 days
b = 7./ mn r=0.1lm
<
= 0.05
= 0.8 m
o
hlD =0.3m

Substituting the above data into Eq.40, gives

5 -4
_ l1oxd x 10 1.16 x 0.8
L"T[ 0.05 } [m 9.3 } m

or

L=41.8/Vdm

1st trial: 7, = 80 m.

Read from Fig.l4, with L LY A 25 and D = 7.7 m, that d = 4.4 m,
u mr T X 0.1

o
Substitution gives: 41.8 v4.4 = 88 m.

This is more than 80 m and L should be estimated at more than 88 m,

2Znd trial: L = 100 m.
Read from Fig.l4 that d = 4.8 m. Thus: 41.8 v4.8 = 92 m. This is less than

100 m and L should be estimated less than 92 m.

3rd trial: L = 90 m.
Read from Fig.l14 that d = 4.7 m. Thus: 41.8 ¥4.7 = 90 m, and since the estimate

was 90 m this is the correct drain spacing.

The solution with the nomograph of Fig.!5 proceeds as follows:
Calculate (Eg.38)
1

1 -
I H
_ KDt
o H{TT} [ln 1.16 ho/hj

1 -1
1.0 x 7.7 x 10(* 1.16 x 0.8|
ﬂ[——————jijig———;] X[}n ———-TTTE———l 1lée m

|
i

it

Determine C = D 1In g from Fig.!5 by taking on the lowar axis the peint D = 7.7 m,
Go from there vertically upward to intersect the curve for u = LE 0.3 m. Read
on the vertical axis that C = 25 m.

Compute L = LO- C=116 + 25 = 91 m.
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§.3.4 DISCUSSION OF THE GLOVER-DUMM EQUATION

Time averaged hydraulic head

For various reasons, @.g. to account for the average horizontal flow above drain
level or to apply steady state equaticns, it may be required to compute a time
averaged hydraulic head, h, between h0 and ht or between ht1 and ht2 during tail
recession.

One could during tail recession take the arithmetic mean %(ht2+ htl) but then h

will be overestimated since ht changes according to an exponential funetion.

The average h may be defined as
t t
r _ 1 - -t
Jhtdt - J1.16 hOE

o o

h = dt

1
t

which yields upon integration and rearranging

- 1.16 b e .16 b - b o
3 In{i.16 0_/h_)
et
Ancther possibility is to use the gecmetric mean giving
wo=vh_n (42a)
ty te
or
= _ 1
log h —Aj(log ht1+ log htg) (42b)
Flow above the drains should be taken into account if h is relatively large or D
is small.
Eq.40 then reads 1 1
- 2z 2
1
L= ﬁ%—z@t {111 1.16 holhtJ (43

Non-steady discharge

The discharge of the drains at time t, when expressed per unit surface area, can

be found from Darcy's law

- 2KD |dh
a9, =T [al(=0 (m/day) (44)

Differentiating Egq.33 with respect te x and substituting x=0, gives for Eq.44

« _a2
8 Kior LRt (45)
2

m n=1,3,5,

4. =

Neglecting all the terms except the first gives

q, = & aRie_at (46)
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Substituting Ri = hou and for h0 the expression given in Eq.36 yields

q, = % uuht (47)

Substituting the value of o from Eq.39 gives

_ 2nKd
t 2 b (48

which is similar to the Hooghoudt equation except that the factor 27 is now ob-

tained instead of 8,

From Eqs.36 and 46 it can be deduced that, during tail recession

qtz htz

g, ty

- o o(t2mty) (49)

According to Eq.49 a plot of q, or ht on a logarithmic scale and time {t) on a
linear scale will result in a straight line.
This relation is of impertance to determine ¢ from field data of drained plots

(Chap.26, Vol.III).

8.3.5 PRINCIPLES OF THE KRAIJENHOFF VAN DE LEUR-MAASLAND EQUATION

Both KRAIJENHOFF VAN DE LEUR (1958) and MAASLAND (1959) derived solutions for

non-steady state groundwater flew to drains. The sclution is based on a steady

recharge over any time period t instead of an instantaneous recharge as assumed

by Glover-Dumm.

The applicable differential equation is Eq.3Za., Starting with a flat water table

at drain level at t = Q and assuming a recharge intensity R (m/day) from the mo-

ment t = 0 on, yields the following initial and boundary conditions:

h=0for t=20and 0<x<L (initial horizontal groundwater table at drain
level at t = 0)

h=0fort>0and x =0, x =L (water in drains remains at zero level = drain
level)

constant for t > O (constant recharge R starts at t = Q).

=]
1

For the above boundary conditions the height of the water table midway between

parallel drains (x = L) at any time t is

2o
1 ey (50)
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m2KD

where j = is called the reservoir coefficient. (51)

It is remarked that convolution of Eq.35 with R/p yields Eq.50 (Chap.l5, Veol.II).
1 . .

The factor g = T used by DUMM (1954) and DE ZEEUW (1966) is a 'reaction factor”

which expresses the drainage intensity (Chap.15, Vel.II).

The discharge intensity 4, (m/day} of a parallel drainage system at any time t
is found in a way similar to that given for Eq.45

o3 2 \
Ror LD (52)
™  n=1,3,5 nf
The equations 30 and 532 are only valid as long as the constant recharge rate R
continues. When such a recharge rate cccurs long enough, the flow conditions must

become steady too. For t + =, Eg.52 changes into

® 2
q = g . 5 1 .8 4 %_ =R (53)
m™  n=1,3,5 n?® 7?

which gives the steady state condition where the discharge intensity g equals the
recharge intensity R.

For t + =, FEq.50 hecomes

22
4R, 1 4R, m _m R
h=—=] L o=l T gl (54)
U a=1,-3,5, af W38 oW
Substitution of j from Eq.5]1 and rearranging gives
_ RL*
h = BED (55)

The latter equation is similar to the Hooghoudt equation with the exception that
no radial flow is taken inte account.

When introducing the equivalent depth d of Hooghoudt instead of D, to account for
the convergence of streamlines in the vieinity of drains neot reaching an imperm-

eable layer, Eg.51 changes into

= HLZ
T2 KRd

= (days) (56)

The justification of the substitution of the equivalent depth d is based on the

same grounds as for Eq.39.
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8.3.6 APPLICATION OF THE KRAIJENHOFF VAN DE LEUR-MAASLAND EQUATION

The Kraijenhoff van de Leur-Maasland equatiom is not used for routine drain spac—
ing computations, which are usvally based on an assumed steady or instantaneous
recharge. The equation however proves very useful when changes in water table elev-
ation and discharge rate must be known for chosen drainage conditions and in res-

ponse to a changing recharge pattern. Such caleulations are usually computerized.

The Kraijenhoff van de Leur-Maasland equation will be applied in order of increas—
ing complexity: constant and continuous recharge, constant recharge during a res-

tricted period, and intermittent recharge.

constant and continuous recharge

Equations 50 and 52 can be written as

R .
ht S (57}
where
=) .2 .
“t =% £ L™ e (58)
n=1,-3,5, =’
and
9, = Reg, (5%)
where
) 2 .
g, == 1 Loaem (60)
n? n=1,3,5 n°

The factors . and £, depend only on time t and on reservoir ceefficient j, so

that they can be tabulated {Table 3).

Example 9

Assume a drainage system with j = 5 days. The soil has an effective porosity

UL = 0.04, There is a constant recharge of 10 mm/day (R = 0.01 m/day). The value
for 5 j will then be 1.25Im.

For the computation of the water-table height ht or the discharge q, at any time

Table 3 can be used, as is illustrated below.
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Table 3. c, and g, coefficients for the Kraijenhoff van de Leur—Massland

t .
equation.

t/j &, °, £/i g, o, £/ e, e,
0.01 0.072 0.0i0 0.48 0,497  0.447 1.10 0.730 0,809
0.02 0.102  0.020 0.50 0.507  0.463 1.15 0.743 0.830
0.03 0.125  0.030 0.52 0,518 0.477 1.20  0.756  0.850
0.04 0.143  0.039 0.54 0.528  0.492 1.25  0.767  0.86%
0.05 0.161  0.049 0.56 0.537  0.507 1.30  0.779 0.887
0.06 0.176 0.060 0.58 0.546 0.521 1,35 0.7%0  0.903
0.07 ©0.190  ©0.070 9.60 0.554 ©0.535 1,40 0.800  6.320
0.08 0.203 ©.080 0.62 0.563 0.549 1.45  0.810  0.935
0.09 0.215  0.090 0.64 0.572  0.563 1,50 0.819  0.850
0.10 0.227  0.100 0.66 0.580 0.576 1.55 0.828 0.964
0.12 0.249 0,120 0.68 0.588 0.588 1.60  0.836 0.977
0.14 0,269 0.139 0.70 0.597  0.602 1.65  0.844  0.989
0.16 0.288  0.159 0.72 0.605 0.614 1.70  0.852  1.002
0.18 0.305  0.179 0.74 0.612 0.627 1.75  0.859  1.012
0.20 0.321  0.199 0.76 0.620 0.638 1.80  D.866  1.023
0.22 0.337 0,218 0.78 0.628  0.650 1.85  0.872  1.033
0.24 0.352  0.238 0.80 0.536 0.661 1.90 0.879 1.044
0.26 0.367  0.257 0.82 0.543 0,672 1.95  0.835  1.052
0.28 0.380 0.275 0.84 0.650 0.683 2.00  0.950  1.061
0.30 0.393  0.29% 0.86 0,657 0.695 2,10 0.901 1.078
0.32 0,406 0.312 0.88 0.663 0.706 2,20 0,910 1.093
0.34 0.418  0.329 0.90 0.670 0.717 2,30 0.919  1.107
0.36 0.430  0.347 0.92 0.677 0.727 2,40 0.927 1.118
0.38 0.442  0.364 0.94 0.683 0.737 3.00  0.960 1.171
0.40 0.454  0.381 0.96 0.689 0.746 4,00  0.985 1.210
0.42 0.465 ©.398 0.98 0.696 0.756 5.0C  0.995 1.224
0.44 0.476  0.415 1.00 0,702 0.765 m 1.000 7 _
0.46 0.487  0.431 1.05 ©.715  0.787 8

1.232
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ht = a, -
i t/j Rie R

time h| ¢, g, T e By
(Table 3) (Table 3) {m) (m/day}
4 hrs = 1/6 day 0,033 0.033 0.131 0.041 0.00131
8 hrs = 1/3 day 0.067 0.067 0.184 0.084 0.00184
12 hrs = 1/2 day 0.100 0.100 0.227 0.125 0.00227
16 hrs = 2/3 day 0,132 0.133 0.262 0.166 0.00262
20 hrs = 5/6 day 0.166 0.166 0.292 0.208 0.002%2
24 hrs = 1 day 0.200 0.199 0.321 0.249 0.00321
48 hrs = 2 day 0.400 0.381 0.454 0.476 0.00454
72 hrs = 3 day 0.60C 0.535 0.554 0.669 0.00554
96 hrs = 4 day 0.800 0.661 0.636 0.827 0.00636
120 hrs = 5 day 1.000 0Q.765 0.702 0.956 0.00702

2

o © e 1.232 1.060 1.540 0.01000

constant recharge during a restricted period

Consider a drained area with irrigation or rainfall oceurring during one single
day follewed by a dry period. In order to compute the water-table heights on
days subsequent to the irrigation or rainfall, we assume (Fig,l7) that the
recharge R of the first day continues throughout the follcowing days, but from
the second day onwards an equal negative recharge, -R, is taken into account

so that the total recharge is equal to zero (principle of superpcsitiom).

-

~.-M
~

Fig.17.

hyneg Principle of superposition of recharge (R} and
. water—table elevation {h) for the Kraijenhoff van
1 2 3 4 .
time (days) de Leur-Maasland equation.
For the water-table height at the end of the first day (t = 1)} we then have accor-

ding to Eq.57
T
h =h =

==

i
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At the end of the second day we have had a positive recharge R cver two days,

hence
f

=)

hz =H'C2

from which we have te subtract the effect of a negative recharge over 1 day,
equalling
hy = X
==jec
1=y ler

50 that
L) 1 R ;
hg = hy =~ hy = T j{ez- e1)

Similarly, at the end of the third day, we have

1
R .
hy = yd e
1
R
he = = 3§ ¢
2 u ] Cz
so that
1 t R.
hs = hz - ha =a_‘|(C3- cs)

and at the end of the tth day

A T
R .
h,=h_-h__. = 7 J(ct

t t t=~1 )

Ce-1
The height cof the water table during the recession pericd can thus be computed
with the aid of Table 3.

Example 10

Censider an arez with pipe drainage at a depth of 1.00 m below soil surface and
the impermeable layer at a depth of 1.20 m below the drains. The drain diameter
is 0.20 m and the drain spacing is 20 m, s0 that d = 1.0 m (Table 1). The hydrau-
lic conductivity of the soil K = 0.5 m/day and the effective porosity p = 0.05.

From the above information we have

K = 0,5 m/day L =20m
= 0.05 t =0,1m

o
D=1.2m =1.0m

Substituting the above data into Eq.56 yields

2 2
§ o ME 005 %307

m?Kd  7Tix 0.5 x 1.0
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Suppose that the initisl water table was at drain level and that during the first
day a total amount of 30 mm of percolation water (from irrigation or rain) rea-
ches the groundwater. There is no percoiation in the follewing days.

What will be the height of the water table midway between the drains during the
days subseguent to the irrigation or rainfall?

The calculation is given in the following table:

water—table height

time ) R "

days e/3 c/t €1 € -1 3w b= 3 epme, )
1 0.25 0.248 0.000 0,248 2.4 m 0.60 m
z 0.50 0.463 0.248 0.215 2.4 m 0.52 m
3
4 1.00 0.765 0.6%3 0.132 2.4 m 0.32 m

intermittent recharge

The above method can be worked out in a more general way for Intermittent re-
charge. Since, in general, hydrologic data are available per day only the fol-
lowing examples are worked out with days as the time unit. The thecry however
holds for any time length.

Suppose that we wish to compute the height of the water table or the discharge at

the end of any arbitrary day. Let us choose the mth day (Fig.18).

Fig.18.

Superposition of intermittent recharge for the

¥Kraijenhoff van de Leur-Maasland equatiom.

time (days)

Beth the height of the water table and the discharge rate are influenced by the

percolation during each of the preceding days. So we have to take into account:
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- the recharge Rm over 1 day;

- the recharge Rm over 2 days minus the recharge Rm_1 over I day;
-1

- the recharge Rm over 3 days minus Rm_2 over 2 days, etcetera.
-2

The height of the water table is thus given by

b= él%mcl + R (eame)* B (e3me2) + .o ¥ Rl(gm-cmfj%
Setting C1 = c1j, Cz = (c2-e1lj, Cm = (cm—cmfj)j we obtain
h = Hcmm tCoR_ * OGR4 .. Cle]
Similarly, the discharge rate is given by
2

= + ... + G R
qm GJ.Rm + Gsz_l + GaRm_ - 1

where

Gi1 = g1, Gz = {gz-g1l, G, = (gm‘gm_l}

(62)

(63)

{64)

(65)

The factors Ci, C2, ete. and Gi, G2 etc. are found in Tables 4 and 5 as a functi-

on of 0= 1/j. The use of these tables will be explained in some examples.

Example 11

A drainage system with o = (.25 days—J {(j = 4 days) in a soil with an effective

porosity B = 0.05 receives the following groundwater recharge:

February 15 16 17 18 19 20
recharge (mm) 5 20 10 5 0 a

What heights of water table and discharges will occur if on February 14 the water

level was horizental and at drain depth.

Taking successively February 20, 19, 18, 17, 16 and 15 as the mth day, we obtain

the following Ct—values:

date recharge (m) 20 19 18 17 16 15 (Ct—values)

20 0 .99 - - - - -
19 0 .86 0.99 - - - -
18 0.005 0.68 0.86 0.%% - - -
17 0.010 0.53 0.68 0.8 0.99 - -
16 0.020 0.41 0.53 0.68 0.86 0.99 -

15 0.005 0.32 0.4l 0.53 0.88 0.86 0.99
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