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PREFACE 

This book is the second of four Volumes containing the edited lecture notes of the 
International Course on Land Drainage, which is organized annually in Wageningen, 
The Netherlands. In the Course an effort is made to cover, as completely as possible 
and within a period of three months, the basic principles of land drainage and their 
application. As mentioned in the Introduction to Volume I, the authors - all specialists 
in their particular fields - do not profess to have treated their subject matter exhaust­
ively; within the limited time available, it is impossible for them to discuss all details 
of their subjects. 
This second Volume presents the basic principles of land drainage by gravity and 
wells. It also deals with salt balances, leaching requirements, effects of irrigation on 
drainage, field drainage criteria, and mathematical models for different types of 
groundwater flow and for watershed runoff. The book can be used independently of 
the other Volumes although, to avoid repetition, reference is often made to their 
chapters. Volume I, issued in August 1972, treats basic elements, physical laws 
governing groundwater flow, and concepts of the plant-soil-water system in which the 
processes of land drainage take place. The forthcoming Volumes III and IV will 
discuss the various surveys and investigations required to determine the parameters of 
the plant-soil-water system which are to be introduced into the drainage design 
computations ; and will also treat the design and dimensioning of drainage systems, 
some of the main engineering features, and aspects of operation and maintenance. 
The reasons why the lecture notes of the Course are being published have been ex­
plained in the Preface and Introduction in Volume I. It was mentioned in that Preface 
that, after the original Editorial Committee under the chairmanship of Mr. P. J. 
Dieleman had broken up, a Working Group was formed to finish the job. This group 
consisting of members of the Institute's staff, has made no substantial changes in the 



work programme and the principles laid down by the Editorial Committee for the 
publication of these lecture notes. The members of the Working Group who con­
tributed to the editing of Volume II were : 

Mr. J. Kessler, Chairman, Chief Editor 
Mr. N. A. de Ridder, Editor 
Mr. M. G. Bos, Editor 
Mr. R. H. Messemaeckers van de Graaff, Editor 
Mr. T. Beekman, Production 
Mr. J. Stransky, Subject index 
Mrs. M. F. L. Wiersma-Roche, Translator 

To our deep regret Mr. Kessler died suddenly in August 1972. Before his death, he 
had been able to complete most of the editorial work not only for Volume I but also 
for Volume II. His last contribution to the work was the preparation of a complete 
new draft of Chapter 11 : Field Drainage Criteria. Mr. J. W. van Hoorn, Mr. J. H. 
Boumans and Mr. C. L. van Someren made editorial changes in this chapter. 

Mr. Kessler's task as chairman of the Working Group has been taken over by Mr. 
N. A. de Ridder. I have full confidence that under his capable guidance the job of 
issuing the last two Volumes will be completed satisfactorily. 

Wageningen, April 1973 Ch. A. P. Takes 
Acting Director (1971-72) 
International Institute for 
Land Reclamation and Improvement 
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PURPOSE AND SCOPE 

Principles and applications of some generally used equations for subsurface flow 

to a system of parallel ditches or pipe drains under both steady and non-steady 

state conditions are discussed. 
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Flow into drains 

8.1 INTRODUCTION 

Until recently, all over the world, the only common practice of controlling the 

water table was by a system of open ditches. In modern agriculture many of these 

systems have been, or are now being, replaced by pipe drains (Chap.27, Vol.IV). 

In any system of drains one may distinguish between (Fig.J): 

- field drains or field laterals, usually parallel drains whose function is to 

control the groundwater depth; 

- collector drains, whose function is to collect water from the field drains and 

to transport it to the main drains; 

- main drains, whose function is to transport the water out of the area. 

—*- -* *- -* 

—*—* *- -* 
— » - -* *- -* 
— » - -« *- -* 

^ = ^ = main drain 
collector drain 
field drain or lateral F i g . 1 . D r a i n f u n c t i o n s . 

There is not always a sharp distinction between the functions of the drains. For 

instance all field and collector drains also have a transport function, and all 

the collector and main drains also control the groundwater depth to some extent. 

The discussion in this chapter will be restricted to parallel field drains. Fi­

gure 2 shows a cross-section of the laterals in Fig.1. The water table is usually 

curved, its elevation being highest midway between the drains. The factors which 

influence the height of the water table are: 

- precipitation and other sources of recharge 

- evaporation and other sources of discharge 

- soil properties 

- depth and spacing of the drains 

- cross-sectional area of the drains 

- water level in the drains 



1 I 1 A 
water t gb le_ 

open ditches 

1 _ 1 I I 
water t ab le 

p ipe dra ins 

Fig.2. Cross-section of laterals showing a 

curved water table under influence of 

rainfall. 

In this chapter the above factors are interrelated by drainage equations, based 

on two assumptions, viz.: 

- two-dimensional flow, i.e. the flow is identical in any cross-section perpendi­

cular to the drains; 

- a uniform distribution of the recharge, steady or non-steady, over the area be­

tween the drains. 

Most of the equations discussed in this chapter are moreover based on the Dupuit-

Forchheimer assumptions (Chap.6, Vol.1). Consequently they have to be considered 

as approximate solutions only. Such approximate solutions, however, are generally 

accepted as having such a high degree of accuracy that their application in prac­

tice is completely justified. 

A distinction is made between steady state and non-steady state drainage formu­

las. The steady state formulas (Sect.8.2) are derived under the assumption that 

the recharge intensity equals the drain discharge rate and consequently that the 

water table remains in position. The non-steady state drainage equations (Sect. 

8.3) consider the fluctuations of the water table with time under influence of a 

non-steady recharge. 

8.2 STEADY STATE DRAINAGE EQUATIONS 

8.2.1 HORIZONTAL FLOW TO DITCHES REACHING AN IMPERVIOUS FLOOR 

It is recalled from Chap.6, Vol.1 that under the assumptions of one-dimensional 

horizontal flow, implying parallel and horizontal streamlines, the flow to verti­

cally walled ditches reaching an impervious floor (Fig.3a) can be described by 

the so-called Donnan equation (DONNAN, 1946) 
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R = q = 4 K ( H W ! (1) 

where 

R = recharge rate per unit surface area (m/day) 

q = drain discharge rate per unit surface area (m/day) 

K = hydraulic conductivity of the soil (m/day) 

H = height above the impervious floor of the groundwater table midway between two 

drains (m) 

D = height above the impervious floor of the water level in the drains = thick­

ness of aquifer below drain level (m) 

L = drain spacing (m) 

which has also been derived by HOOGHOUDT (1936). 

Equation 1 may be rewritten as 

= 4K(H+D)(H-D) ( 2 ) 

L2 

Setting (Fig.3a) h = H-D and H+D = 2D+h, where h is the watertable height above 

drain level at midpoint, i.e. the hydraulic head for subsurface flow into drains 

(m), Eq. 2 then changes into 

= 8K(D+^h)h . . 

L2 

The factor D+Jh in Eq.3 can be considered to represent the average thickness of 

the soil layer through which the flow takes place (aquifer), symbolised by D, In­

troducing D into Eq.3 yields 

8KDh ,.. 
q = (4) 

L2 

where KD = transmissivity of the aquifer (m /day). 

Equation 3 can be written as follows 

8KDh + 4Kh2 (5) 
1/ 

Setting D = 0 gives 



4Kh2 

q = (6) 
L2 

Equation 6 apparently represents the horizontal flow above drain level. This 

equation is known as the Rothe equation. It seems to have been derived as early 

as 1879 by Colding in Denmark. 

If D is large compared with h, the second term in the numerator of the right hand 

side of Eq.5 can be neglected against the first term, giving 

8KDh ,,. 
q = (7) 

L2 

Equation 7 and the first term of Eq.5 apparently represent the horizontal flow 

below drain level. 

The above considerations permit the conception of a two-layered soil with inter­

face at drain level. Accordingly Eq.5 may be rewritten as 

8K, Dh + 4K h2 

q - - * — (8) 
L2 

where 

K = hydraulic conductivity of the layer above drain level (m/day) 

K, = hydraulic conductivity of the layer below drain level (m/day) 

8.2.2 PRINCIPLES OF THE HOOGHOUDT EQUATION 

If the ditches do not reach the impervious floor, the flow lines will not be pa­

rallel and horizontal but will converge towards the drain (radial flow). In this 

region the flow system cannot be simplified to a flow field with parallel and 

horizontal streamlines without introducing large errors. 

The radial flow causes a lengthening of the flow lines. This lengthening causes 

a more than proportional loss of hydraulic head since the flow velocity in the 

vicinity of the drains is larger than elsewhere in the flow region. Consequently, 

the elevation of the water table will be higher when the vertically walled dit­

ches are replaced by pipe drains, the drain level remaining the same. 

HOOGHOUDT (1940) derived a flow equation for the flow as presented in Fig.3b, in 

which the flow region is divided into a part with horizontal flow and a part with 

radial flow. 

If the horizontal flow above drain level is neglected, the flow equation for a 
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uniform soil reads 

h = ^ H (9) 

and 

FH = 
(L-D/2) ; 

8DL - In 
17 r /2 

f(D,L) (10) 

where 

r = radius of the drains 
o 

f(D,L) = a function of D and L, generally small compared with the other terms in 

Eq.10; it can therefore usually be ignored (LABYE, I960). 
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Fig.3. The concept of the equivalent depth to transform a combination of hori­

zontal and radial flow into an equivalent horizontal flow. 



The first term of the right hand member of Eq.IO pertains to horizontal flow, the 

second and the third term to radial flow. 

Instead of working with Eqs.9 and 10, HOOGHOUDT considered it more practical to 

have a formula similar to the equations given in the previous section. To account 

for the extra resistance caused by the radial flow, he introduced a reduction of 

the depth D to a smaller equivalent depth d. By so doing, the flow pattern is re­

placed by a model with horizontal flow only (Fig.3c). If we consider only the flow 

below drain level, Eq.7 is reduced to 

q - «HEU (11) 
L2 

where d < D. This equation must be made equivalent to Eq.9. Solving the latter 

equation for q and equating the result with Eq.11 results in the equation for the 

equivalent depth 

- - ^ 

The factor d is like F a function of L, D and r , as may be seen from Eqs.10 and 

12. Values of d for r = 0.1 m and various values of L and D are presented in 
o 

Table 1. For other drain diameters Fig.14 can be used, which will be explained in 

Sect.8.2.9. 

In order to take radial flow into account the d-value can be introduced into all 

equations of Sect.8.2.1. When introduced in Eq.8 it yields 

8VL dh + 4K h2 

(13) 

Equation 13 is called the Hooghoudt equation. 

Discussion 

In Eq.10 the first term in the right hand member pertains to the horizontal flow 

region. Comparison with Eq.7 proves that the horizontal flow is taken over a dis­

tance L-D/2 instead of L, and that the radial flow consequently is taken over a 

distance of JD/2 to both sides of the drains. 

If we neglect f(D,L) in Eq.10 and set 



Fh = 
(L -P /2 ) ; 

8DL 
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(14) 

and 
ir - ' i D 
F = — In r TT SÏ 

(15) 

Eq.10 may be written as 

F = F, + F 
H h r 

Consequently Eq.9 changes into 

h - % F„ + 4 F - \ + h K h K r h r (16) 

Thus the total hydraulic head is the sum of the hydraulic heads h, and h requir­

ed for horizontal and radial flow respectively. 

Table 1. Values for the equivalent depth d of Hooghoudt (r = 0.1 m, D and L 

in m) 

L->- 5 

D 

0.5 m 0. 

0.75 0. 

1.00 0. 

1.25 0. 

1.50 

1.75 

2.00 

2.25 

2.50 

2.75 

3.00 

3.25 

3.50 

3.75 

4.00 

4.50 

5.00 

5.50 

6.00 

7.00 

8.00 

9.00 

10.00 

0. 

m 

47 

60 

67 

70 

71 

7.5 

0.48 

0.65 

0.75 

0.82 

0.88 

0.91 

0.93 

10 

0.49 

0.69 

0.80 

0.89 

0.97 

1.02 

1.08 

1.13 

1.14 

15 

0.49 

0.71 

0.86 

1.00 

1.11 

1.20 

1.28 

1.34 

1.38 

1.42 

1.45 

1.48 

1.50 

1.52 

1.53 

20 

0.49 

0.73 

0.89 

1.05 

1.19 

1.30 

1.41 

1.50 

1.57 

1.63 

1.67 

1.71 

1.75 

1.78 

1.81 

1.85 

1.88 

1.89 

25 

0.50 

0.74 

0.91 

1.09 

1.25 

1.39 

1.5 

1.69 

1.69 

1.76 

1.83 

1.88 

1.93 

1.97 

2.02 

2.08 

2.15 

2.20 

2.24 

30 

0.50 

0.75 

0.93 

1.12 

1.28 

1.45 

1.57 

1.69 

1.79 

1.88 

1.97 

2.04 

2.11 

2.17 

2.22 

2.31 

2.38 

2.43 

2.48 

2.54 

2.57 

2.58 

35 

0.75 

0.94 

1.13 

1.31 

1.49 

1.62 

1.76 

1.87 

1.98 

2.08 

2.16 

2.24 

2.31 

2.37 

2.50 

2.58 

2.65 

2.70 

2.81 

2.85 

2.89 

1 
2.91 

40 

0.75 

0.96 

1.14 

1.34 

1.52 

1.66 

1.81 

1.94 

2.05 

2.16 

2.26 

2.35 

2.44 

2.51 

2.63 

2.75 

2.84 

2.92 

3.03 

3.13 

3.18 

3.23 

3.24 

45 

0.76 

0.96 

1.14 

1.35 

1.55 

1.70 

1.84 

1.99 

2.12 

2.23 

2.35 

2.45 

2.54 

2.62 

2.76 

2.89 

3.00 

3.09 

3.24 

3.35 

3.43 

3.48 

3.56 

50 

0.76 

0.96 

1.15 

1.36 

1.57 

1.72 

1.86 

2.02 

2.18 

2.29 

2.42 

2.54 

2.64 

2.71 

2.87 

3.02 

3.15 

3.26 

3.43 

3.56 

3.66 

3.74 

3.88 



Table 1. (cont.) 

L > 

D 

0.5 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

12.5 

15 

17.5 

20 

25 

30 

35 

40 

45 

50 

60 

oo 

50 

0.50 

0.96 

1.72 

2.29 

2.71 

3.02 

3.23 

3.43 

3.56 

3.66 

3.74 

3.88 

75 

0.97 

1.80 

2.49 

3.04 

3.49 

3.85 

4.14 

4.38 

4.57 

4.74 

5.02 

5.20 

5.30 

5.38 

80 

0.97 

1.82 

2.52 

3.08 

3.55 

3.93 

4.23 

4.49 

4.70 

4.89 

5.20 

5.40 

5.53 

5.62 

5.74 

5.76 

85 

0.97 

1.82 

2.54 

3.12 

3.61 

4.00 

4.33 

4.61 

4.82 

5.04 

5.38 

5.60 

5.76 

5.87 

5.96 

6.00 

90 

0.98 

1.83 

2.56 

3.16 

3.67 

4.08 

4.42 

4.72 

4.95 

5.18 

5.56 

5.80 

5.99 

6.12 

6.20 

6.26 

100 

0.98 

1.85 

2.60 

3.24 

3.78 

4.23 

4.62 

4.95 

5.23 

5.47 

5.92 

6.25 

6.44 

6.60 

6.79 

6.82 

150 

0.99 

1.00 

2.72 

3.46 

4.12 

4.70 

5.22 

5.68 

6.09 

6.45 

7.20 

7.77 

8.20 

8.54 

8.99 

9.27 

9.44 

9.55 

200 

0.99 

1.92 

2.70 

3.58 

4.31 

4.97 

5.57 

6.13 

6.63 

7.09 

8.06 

8.84 

9.47 

9.97 

10.7 

11.3 

11.6 

11.8 

12.0 

12.1 

| 
12.2 

250 

0.99 

1.94 

2.83 

3.66 

4.43 

5.15 

5.81 

6.43 

7,00 

7.53 

8.68 

9.64 

10.4 

11.1 

12.1 

12.9 

13.4 

13.8 

13.8 

14.3 

14.6 

14.7 

10 
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As can be seen from Table 1, the value of d increases with D until D - JL. For 

larger values of D the equivalent depth d remains approximately constant. Appa­

rently the flow pattern is then not affected by the depth of the impermeable 

layer (Fig.4). 

i t t t t t t t 
Fig.4. 

Flow pattern in case of a deep uniform soil. 

8.2.3 APPLICATION OF THE HOOGHOUDT EQUATION 

The Hooghoudt equation is commonly used to calculate the drain spacing L, if the 

factors q, h, K, D and r are known. The formula can also be used to calculate 

the soil constants K and D, if q, h, L and r are known (Chap.26, Vol.111). 

Since the drain spacing L depends on the equivalent depth d, which in turn is a 

function of L, the formula cannot be given explicitly in L. Its use therefore as 

a drain-spacing formula involves a trial and error procedure. The trial and error 

method can be avoided by making use of nomographs examples of which are given in 

Figs.6 and 7. 

Example 1 

For the drainage of an irrigated area drain pipes with a radius of 0.1 m will be 

used. They will be placed at a depth of 1.8 m below the soil surface. A relative­

ly impermeable soil layer was found at a depth of 6.8 m below the soil surface. 

From augerhole tests the hydraulic conductivity above this layer was estimated at 

0.8 m/day (Fig.5). 

Suppose that an irrigation is applied approximately once in 20 days. The average 

irrigation losses, which recharge the already high groundwater table, amount to 

40 mm per 20 days so that the average discharge of the drainage system amounts to 

2 mm/day. 



1.2 m 

1 
q :0.002m/day 

K=0.8m/day 

\mperv\ous£&>&>v&*<^ Fig.5. Drainage conditions in Example 1. 

What drain spacing must be applied when an average water-table depth of 1.20 m 

below the soil surface is to be maintained? 

From the above information we have 

r = 0.1 m 
o 

q =0.002 m/day 

Ka = K^ = 0.8 m/day 

D = 5 m 

h = 0.6 m 

Substitution of the above values into Eq.13 gives 

8ICdh2 + 4K h2 8 x 0 .8 x 0.6 x d + 4 x 0 .8 x 0 . 6 2 

T2 = _ b a__ _ 
q 0.002 

L2 = 1920d + 576 

T r i a l 1 

Take L = 80 m and read from Table 1: d = 3.55 m. 

1920 d + 576 1920 x 3.55 + 576 = 7392 

This is not in agreement with L2 = 802 = 6400 m2. 

Therefore L = 80 m is apparently too small. 

Trial 2 

Take L = 87 m and read from Table 1 : d = 3.63 m. 

This is sufficiently close to L2 = 872 7569 

12 



Flow into drains 

Conclusion: The drain spacing required to satisfy the above conditions is 

L = 87 m. 

Note: 

In the equation L2 = 1920 d + 576, the term 576, representing the flow above 

drain level is comparatively small. 

Neglecting it one obtains 

L = /1920 d = /1920 x 3.58 = 83 m. 

Example 2 

To illustrate the use of nomographs of Figs.6 and 7 consider again the previous 

example. 

Fig.6. 

Nomograph for the determination 

of drainspacing if r- < 100. 

(BOUMANS, 1963). 
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n 
discharge g 

v^n D 
* J1_L_^ 

raâiusr 
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•700 
800 

•900 
1000 

Fig.7. 

Nomograph for the determination of 

drainspacing if r > 100 (BOUMANS, 

1963). 

Calculate — h 
5 

0.6 = 8 . 3 and 
0.6 

irr TT x 0 .1 
o 

= 1.9 

Fix the intersection point of the corresponding curve in the left hand part of 

= 400. Fix this point on the right hand scale and con-„ . - , „ , - , K 0.8 
Fig.7. Calculate - - ö^Ö2 

neet it with the above intersection point by a straight line. Read at the inter­

section of the straight line and the middle scale that r- = 140. Calculate finally 

L = 140 h = 140 x 0.6 = 84 m. 

The same graphs may be used for open ditches by setting u = irr , where u is the 

wet perimeter of the drain (Sect.8.2.7). 

8.2.4 PRINCIPLES OF THE KIRKHAM EQUATION 

KIRKHAM (1958) gives an analytical solution for a problem similar to Hooghoudt's, 

viz. two-dimensional flow, a regularly distributed rainfall over the area, and 

14 
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drains not reaching an impervious floor. If the flow above the drains is ignored, 

Kirkham's solution can be written in a form similar to Eq.9 

K K (17) 

and 

2nirr 
In I 

n=] 
(cos - cos nïï)(coth —=— 1) (18) 

Values of F are given in Table 2. It is found that the F values of Kirkham are 

very close to the F values of Hooghoudt, so that both the Hooghoudt and the 
H 

Kirkham equations give almost identical results (WESSELING, 1964). 

Table 2. Values of F according to Toksöz and Kirkham. 
K 

L/D 

D/2r 

100 50 25 12.5 6.25 3.125 1.5625 0.78125 

8192 

4096 

2048 

1024 

512 

256 

128 

64 

32 

16 

8 

4 

2 

1 

0.5 

0.25 

2.66 

2.84 2.45 

- 3.40 2.63 2.23 

4.76 3.19 2.40 2.01 

7.64 4.53 2.96 2.19 1.78 

13.67 7.43 4.31 2.74 1.96 1.57 

13.47 7.21 4.09 2.52 1.74 1.35 

13.27 6.99 3.86 2.30 1.52 1.13 

13.02 6.76 3.64 2.08 1.30 0.90 

12.79 6.54 3.42 1.86 1.08 0.68 

12.57 6.32 3.20 1.63 0.85 0.46 

12.33 6.08 2.95 1.40 0.62 -

12.03 5.77 2.66 1.11 -

11.25 5.29 2.20 - - -

-
2.65 

2 .43 

2 . 21 

1.99 

1.76 

1.54 

1.32 

1.10 

0 .88 

0 .66 

0 .44 

2 .654 

2 .43 

2 .21 

1.99 

1.76 

1.54 

1.32 

1.10 

0 .88 

0.66 

0.44 

-

15 



In the solution represented by Eq.17 the flow in the upper region has been ne­

glected (fig.8). In a later paper KIRKHAM (1960) reported that, if vertical 

flow is assumed in this region, the hydraulic head should be multiplied by 

(1-q/K) . Since this term relates to the flow in the layer above drain level, 

the general equation for a two-layer problem is (WESSELING, 1964) 

h = §^ 1 
h >-<l/Ka 

(19) 

where K is the hydraulic conductivity above drain level and K, below that drain 

level. The boundary between the two layers must, as in the Hooghoudt solution, 

coincide with the drain level (Fig.8). 

Fig.8. 

Two-dimensional flow pattern according to the 

Kirkha'm (1960) analytical solutions of KIRKHAM (1958, 1960). 

8.2.5 APPLICATION OF THE KIRKHAM EQUATION 

A graphical solution of Kirkham's equation is presented in Fig.9 (modified after 

T0KSÖZ and KIRKHAM, 1961). An application of the graphical solution will be given 

below. 

Example 3 

The data of Example 1 (Sect.8.2.3) will be used. We have 

r = 0 . 1 0 m D = 5 m 
o 

q = 0.002 m/day h = 0.6 m 
K = IC = 0.8 m/day 

Take on the vertical axis of Fig.9 the value 

S Y 0.6 
a 

0.! 0J5 
0.002 0.8 

) = 48 

Go from this point in horizontal direction till the line marked D/(2r ) = 

5/(2 x 0.1) = 25, which is found by interpolation between the lines marked 16 and 

32. Go from this point vertically downwards and read on the axis L/D = 17. 

With D = 5 m, L = 5 x 17 = 85 m. 
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Fig.9. 

Nomograph for the determinat­
ion of drainspacing (modified 

40 60 80100 
L/D after T0KSÖZ and KIRKHAM, 1961). 

8.2.6 PRINCIPLES AND APPLICATION OF THE DAGAN EQUATION 

Analogous to the method of Hooghoudt, DAGAN (1964) thought the flow to be compos­

ed of a radial flow in the area between the drain and a distance JD/2 away from 

the drain, and an intermediate, though mainly horizontal, flow in the area be­

tween the jD/2 plane and the midplane between the drains. 

The Dagan equation, in a form similar to the Hooghoudt and Kirkham equations, 

reads 

at h = *êFD (20) 
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The expression for F is 

F -I (̂  D 4 4D ß) 

where & = - ln(2cosh — 2) 
TT D 

(21) 

(22) 

In Fig.10 the term ß has been presented as a function of — — . Note that ß-values 

are negative. With the aid of this figure the application of Dagan's equation is 

easy. 

ß 
4.6 

4.2 

2.6 

2.2 

1.8 

.1.4 

i \ 

\ l 

— 

\ J 

0.02 0.04 0.06 

Fig.10. 

Nomograph for the determination of 
0.08 0.10 

nr0/D Dagan equa t ion (DAGAN, 1964). 

in the 

Example 4 

The data of Example 1 (Sect.8.2.3) will be applied. We have 

r = 0 . 1 0 B D = 5 m 
o 

q = 0.002 m/day h = 0.6 m 

K =0.8 m/day 

Read from Fig.10 with —-^ = 3.14 x -^- =0.06 that 

Substitution of ß into Eq.21 gives 

2.1. 

*» = hh-v = { ( I Ï Ï + 2 - ' > -

Substitution of F into Eq.20 yields 

h=^FD=t(lïï +2-D 
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Inserting the given information and rearranging yields 

and 

21 ± / 441 + 4 x 9600 21 + 197 
m 2 2 

Since L > 0, we find L = 88 m. 

8.2.7 PRINCIPLES OF THE ERNST EQUATION 

The Ernst equation is applicable to two-layered soils. It offers an improvement 

on the former formulas insofar as the interface between the two layers can be 

either above or below drain level. It is especially useful when the upper layer 

has a considerably lower hydraulic conductivity than the lower layer. 

Like the Hooghoudt equation, the Ernst equation is found as the sum of the hy­

draulic heads required for the various flow components in which the flow towards 

the drains may be schematically divided. 

In analogy with Ohm's law, we may write for groundwater flow 

q = h/w or h = qw 

where q is the flow rate, h is the hydraulic head and w is the resistance. Thus, 

if we divide the flow towards the drains into vertical, horizontal and radial flow, 

the total hydraulic head may be given by 

h = h + h, + h =qw + qLw, + qLw 
v h r v h r 

where the subscripts v, h, and r refer to vertical, horizontal and radial flow. 

Note that horizontal and radial flow equal qL, i.e. the drain discharge per unit 

length of drain, whereas vertical flow equals q, the drain discharge rate per 

unit surface area. 

Writing out the various resistance terms, we can read Ernst's equation as (ERNST, 

1956, 1962) 

D 2 aD 

v h r 

19 



where 

h = total hydraulic head or water-table height above drain level at mid­

point (m) 

q = drain discharge rate per unit surface area (m/day) 

L = drain spacing (m) 

K = hydraulic conductivity in the layer with radial flow (m/day) 

K = hydraulic conductivity for vertical flow (m/day) 

D = thickness of layer over which vertical flow is considered (m) 
v 

D = thickness of layer in which radial flow is considered (m) 

I(KD), = transmissivity of the soil layers through which horizontal flow is con­

sidered (m /day) 

u = wet perimeter of the drain (m) 

a = geometry factor for radial flow depending on the flow conditions. 

The values for D , X(KD). , D , a, and u are to be determined in accordance with 
v h r 

the soil profile and the relative position and size of the drains. The appropri­

ate values are derived from the following data which characterize the specific 

drainage conditions, namely: 

Di = average thickness below the water table of the upper layer with perme­

ability Ki 

T>2 = thickness of the lower layer with permeability K2 

D = thickness below drain level of the layer in which the drains are located 
o J 

h = water-table height above drain level at midpoint 

y = water depth in the drain; for a pipe drain y = 0. 

The values for D , I(KD) , D , a, and u are now considered in some detail, with 

the help of Figs. 11a to d. 

- Vertical flow takes place in the layer between the maximum water table midway 

between the drains and the drain bottom. Usually the thickness of the layer for 

vertical flow can be taken as D = y+h for ditches, and D = h for pipe drains. 
v v 

In fact this should be \(y+h) and ĥ respectively, but usually this factor is of 

little importance. 

- Horizontal flow occurs over the whole thickness of the aquifer, thus T(KD), = 

K1D1 + K2D2. If the depth to the impervious layer increases, the value of K2D2 in­

creases too, making £(KD), tending to infinity and the horizontal resistance to 

zero. In order to prevent this, the total thickness of the layers below the 
drains D or D + D2 is restricted to iL when the impermeable layer is deeper than 

0 0 

JL below drain level. 
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- Radial flow is taken into account only in the layer below drain level, thus 

D = D , with the condition that for radial flow the 
r o 

applied for D as for horizontal flow, viz. D < |L. 

D = D , with the condition that for radial flow the same restriction should be 
r o 

+ { { » I I t.... _ _ _ _ _ _ _ _ 

Fig.11a 

Geometry of two-dimensional 

flow towards drains accor­

ding to ERNST (1962). 

Fig.lib 

Geometry of the Ernst equation 

for a homogeneous soil. 

y / ^ W / ^ W ^ W Ä N W ^ l % « W W * ! ^ m ^ W ^ « ^ 

Fig, lie 

Geometry of the Ernst 

equation for a two-layered 

soil with the drain in the 

lower layer. 

T—ï-^ 
Dh Dr=D0 

K2 

Fig.lid 

Geometry of the Ernst equation 

for a two-layered soil with 

the drain in the upper layer. 

- With respect to the value of a the following cases can be considered: 

Homogeneous soils 

In a homogeneous soil (D2 = 0, Fig.lib), take a = 1. Further D = y+h, X(KD) 

K1D1, K Ki and D so that Eq.23 becomes 
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y+h L' . _ L D 
h • i % + q M7ÏÏ7 + q WT l n ^ ( 2 4 ) 

In homogeneous soils the vertical resistance is usually negligibly small. More­

over, as in most practical cases h<<D , Dj is usually reduced to D , neglecting 

the horizontal flow through the layers above drain level. 

If the depth from drain bottom to impermeable layer, D , is larger than ;L, the 

flow is thought not to reach beyond this depth. Since the drain spacing is not 

known beforehand this condition has to be checked afterwards. Actually, the cal­

culations will lead to the same results when D is between JL and jL. Beyond 

these limits, however, too small spacings are calculated. 

Layered soils 

If the drains are situated in the lower layer of a two-layered soil (Fig.lie) and 

Ki < K2, the vertical resistance in the second layer can be neglected against 

that in the first one. 

From Fig.lie it can be seen that the thickness of the layer over which vertical 

flow must be considered equals D = 2Di. 
v 

For the horizontal flow component we have in this case E(KD) = KJDJ+ K2D2. Since 

Ki < K2 and Dj < D2, the first term is usually neglected and £(KD), = K2D2. 

Radial flow is taken into account over the layer D = D . 
r o 

For both the horizontal and the radial flow component, again the restriction is 

made that the thickness D may not exceed JL. The equation to be used then be-

2Di 2 , D 
h • q "TT + q M2U2- + q àl l n f (25) 

If the drain is entirely in the upper layer of a two-layered soil (Fig.lid), the 

following conditions must be discerned with respect to the geometry factor a: 

I K2 > 20 Ki 

The geometry factor a = 4 and Eq.23 becomes 

4D 
ĉ  

K^ ' H 8(K1D1+ K2D2) ' 4 AT i" u (26) 
, y+h L L . o 

II O.lKi < K2 < 20 Kj 

The geometry factor a has to be determined from the nomograph given in 

Fig.12, and to be introduced in Eq.23 

22 



Flow into drains 

I I I 0 . 1K i > K2 

The geometry factor a = 1. 

The lower layer can be considered impervious and the case reduces to that 

of a homogeneous soil underlain by an impervious boundary, so that Eq.24 is 

applicable. 

- In the above equations the wet perimeter u of the drain occurs. 

For ditches this factor is calculated as 

u = b + 2 yVs 2 + 1 (27) 

where 

b = bottom width of the ditch 

y = water depth in the ditch 

s = side slope of the ditch: horizontal/vertical. 

For pipe drains, laid in trenches and sometimes surrounded by enveloping mater­

ials of good permeability, it is more difficult to determine an exact value for 

u. Under normal conditions u is determined from 

u = b + 2 x 2r (28) 
o 

where 

b = the width of the trench and 

r = the radius of the drain. 

If filter material is used, it is advisable to replace 2r by the height of 

the filter. 

8.2.8 APPLICATION OF THE ERNST EQUATION 

Drain spacings may be calculated directly or determined with the aid of the nomo­

graphs given in Figs.12 and 13 (VAN BEERS, 1965). The computation is carried out 

in steps to facilitate the right choice of the equations. 

Step 1 

Check the soil profile. 

If the soil is homogeneous or if the depth of the layer in which the drain will 
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be situated is more than JL, apply Eq.24. If less, go to step 2 and 3. 

Step 2 

Calculate the term h = q D /K . 
v v v 

Since this term is independent of L, it can be calculated directly and subtracted 

from h to yield Eq.29 

*'- h-\ - eer • # l a ^ 
h r 

In most cases h is very small and may be ignored. 

(29) 

Step 3 

Determine the geometry factor a. 

If K2 > 20 Ki, set a = 4 and apply Eq.26. 

If O.lKi < K2 < 20 KI; determine a from Fig.12 and apply Eq.27. 

If K2 < O.IK, set a = 1, consider the soil homogeneous and apply Eq.24. 

15 
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Fig.12. Nomograph for the determination of the geometry factor a for radial re­

sistance in the Ernst equation (VAN BEERS, 1965). 
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Flow into drains 

Fig.13. Nomograph for the determination of drainspacing with the Ernst equation 

if D < JL. 
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The application of the Ernst equation as a drain spacing formula will be illust­

rated by three examples: for a homogeneous soil (D <JL), for a two-layered soil 

with interface below drain level (D <JL) and for a deep soil (D >|L) . 

Example 5 

The data of Example 1 (Sect.8.2.3) will be used. In addition to a trench width of 

0.25 m, we have (see Fig.lib) 

r = 0.1 m D = 5 m 
o o 

q = 0.002 m/day h = 0.6 m 

Ki = 0.8 m/day 

Since the soil is homogeneous, Eq.24 and Fig.13 are applicable. Thus we have, 

taking u = 0.25 + 4 x 0.1 = 0.65 m, 

ft qL2 _L_ ^o = 0.002 L2
 + 0.002 L , _5 

8KiDj q TTKi n u 8 x 0.8 x 5.30 TT x 0.8 n 0.65 

and 

_ - 0.8 ± / 0.64 + 4 x Q.03 x 30Ö" = - 0.8 ± 6.05 
2 x 0.03 0.06 

Since L > 0 it follows that L = 87.5 m. 

The nomogram of Fig.13 is used as follows: 

Connect the point XKD = Ki(D + Jh) = 0.8 x 5.30 = 4.2 m2/day on the left hand 
h 0 6^ 

axis with the point — = ' „ = 300 on the right hand axis by a straight line. 

Intersecting with the curve for 

1 aDr 1 5 
Wr = W ln ~TT = TlT^s ln 0̂ 5 = °-8 

r 

one reads in a vertical direction on the axis that L = 88 m. 

Examp1e 6 

A soil consists of two distinct layers. For the upper layer Ki = 0.2 m/day and 

for the lower layer K2 = 2 m/day. The interface of the two layers is at a depth 

of 0.50 m below the bottom of the drain ditch (Fig.lid). The thickness of the 

lower layer to an impermeable layer D2 = 3 m. The ditch has a bottom width of 

50 cm, side slope 1 :1 and the water depth y = 30 cm. The hydraulic head is set at 
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h = 1.20 m at a steady state discharge of q = 10 mm/day. 

From the above information (see Fig. lid) 

h = 1.2 m D = 0 . 5 + 0.3 = 0.8 m 0 , 
q = 0.01 m/day Di = 0.8 + j x 1.2 = 1.4 m 

Ki = 0.2 m/day D2 = 3.0 m 

K2 = 2 .0 m/day u = 0 . 5 + 2 x 0 . 3 / 2 = 1.35 m 

y = 0 .3 m 

Step 1 

Assume D <lL so that Eq.23 should be used, 
o ^ 

Step 2 

h v - q ^ - , ^ . 0.01 1 ^ 2 , 1 - 0 . 0 7 5 « 
v 

h' = h-h = 1.2 - 0.075 = 1.125 m. 
v 

Step 3 

Since K2/K1 = 10 determine a from Fig.12. 

Go from the point K2/K1 = 10 at the lower axis vertically upward to the line for 

D2/D = 3.0/0.8 = 3.8 (interpolate between 2 and 4) and read on the vertical axis 

a = 4. 

£(KD)h = KiDa+ K2D2 = 0.2 x 1.4 + 2 x 3.0 = 6.3 m2/day 

1 1 aDr > ! 4 D ° 1 ! 4 x Q.8 , „ ^ . 
Wr = W l n ~ = iKT l n ~V = TT x 0.2 l n 1.35 = K 3 7 d a y s / m 

Thus: 

h' = 1.125 m = „ff*. + -£- m — - - °-°' ̂  + 0.01 x 1.37 L 
8£(KD) TTK u 8 x 6.3 

or 

0.2 L2 + 13.7 L - 1125 = 0 

and 

- 13.7 + \/l3.72 + 4 x 0.2 x 1125 - 13.7 + 33 
L = _____ _ _ = 48 m 

This value can also be found from Fig.13. 

Since D = 0.8 m the condition D < JL is fulfilled. 
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Example 7 

The data are as in Example 6, except that D = 10 m. 

Step 1 

Since it is likely that D will be more than |L, the solution for a homogeneous 

soil, as given by Eq.24, will be applied. This means that the second layer, what­

ever its permeability or thickness, has no influence on the flow to the drains. 

The assumption that D > JL must be checked afterwards. 

Following Example 6, Step 2, the vertical hydraulic head h = 0.075 m and 

h' = 1.125 m. 

Solving now Eq.24 for a = 1, KiDi = 0.2 x 10.6 = 2.1 m2/day, D = 10 m and 

u = 1.35 m, results in 

i ,n 0.01 T2 . o.oi T , 10 1.125 m = „ ., „ , L + —,, - „ L In 
x 2. 1 TT x 0.2 1 .35 

from which the drain spacing is calculated: L = 24 m. 

Since D (= 10 m) is indeed more than JL (= 6 m) the assumption D > JL was correct 

and the example could be treated as a homogeneous soil. 

As D , introduced in the computation, is less than JL (= 12 m) the solution ob­

tained will also be correct. 

This can be checked by taking D = 6 m. Solving Eq.24 now results in 

, os 0.01 T2 ^ 0.01 T . 6 1.25 m = „ „ ,—TT L + — „ -, - L In 
x 1.3 TT x 0.2 1.35 

from which once again a drain spacing of 24 m is calculated. 

8.2.9 GENERALIZED NOMOGRAPHS 

For a homogeneous soil, with D < JL and without regard to head losses due to 

vertical and horizontal flow above drain level Eq.24 reads 

, qL2 ^ qL . D 
h = 8KD + ÏÏK l n Ü 

The corresponding Hooghoudt equation writes as 

h = . s t l 
8KD 

Equating the above expression for h yields, after rearrangement 

d = — 8 5 — 1 ) (30) 

i + —r l n _ 

TTL U 
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This expression for the equivalent depth d is presented graphically in Fig.14. 

D,d -*• 
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Fig.14. 

Nomograph for the determination of the 

equivalent depth d (VAN BEERS, unpublished). 

The nomograph of Fig.14 has the advantage that d can be determined for all values 

of r or u, whereas in Table 1, d is given for a fixed value of r only. An ex-o ' > 6 0 J 

ample of the use of the nomograph is given in Fig.14. When D/u = 15, D = 10 m and 

L = 40 m, d = 3.7 m. 

VAN BEERS (in press) expressed the drain spacing for a homogeneous soil with 

negligible flow above drain level and D < |L as 
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(31) 

where 

L = /8KDh/q 

C = D In -
u 

When the expression for L is compared with the Hooghoudt equation, it is rea­

dily seen that L represents the drain spacing for horizontal flow. For the ra­

dial resistance a subtraction C is applied. This is in contrast to the Hoog­

houdt solution where a reduction of D to d is used to account for radial flow. 

C .Dfn-tf 

40 60 80100 
D 

Fig.15. 

Nomograph for the calculat­

ion of the subtraction C in 

the generalized equation 

L = L - C (VAN BEERS, unpu­

blished) . 
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To calculate the subtraction C, the nomograph of Fig.15 may be used. This no­

mograph has the advantage of also being applicable to solve the non-steady 

state Glover-Dumm equation. 

To compute C, take the relevant value of D on the horizontal lower axis. From 

this point go vertically upward to the value of u and read D ln(D/u) on the 

vertical axis. 

8.3 NON-STEADY STATE DRAINAGE EQUATIONS 

8.3.1 INTRODUCTION 

In areas with periodic irrigations or high intensity rainfall, the assumption of 

a steady recharge is no longer justified. Under these conditions non-steady 

state solutions of the flow problem must be applied. Non-steady state solutions 

are indispensable when actual, non-steady water table elevations and 

drain discharges, as obtained from field data, must be evaluated (Chap.26, Vol. 

III). 

It is recalled from Chap.6 (Vol.1) that the differential equation for non-steady 

state flow, as derived on the basis of the Dupuit-Forchheimer assumption, can be 

written as 

KD ̂  = y !£ - R (32a) 
3x2 3 t 

or, when the recharge rate R equals zero 

KD Ü Ü _ u |£ (32b) 
3x2 8t 

where 

KD = transmissivity of the aquifer (m2/day) 

R = recharge rate per unit surface area (m/day) 

h = hydraulic head as a function of x and t (m) 

x = horizontal distance from a reference point, e.g. ditch (m) 

t = time (days) 

\i = drainable pore space (dimensionless, m/m) 
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8.3.2 PRINCIPLES OF THE GLOVER-DUMM EQUATION 

DUMM (1954) used a solution for Eq.32b found by Glover who assumed an initial ho­

rizontal groundwater table at a certain height above the drain level. The soluti­

on describes the lowering of the groundwater table - which does not remain hori­

zontal - as a function of time, place, drain spacing and soil properties. 

The initial horizontal water table is thought to have been the result of an in­

stantaneous rise caused by rainfall or irrigation, which instantaneously recharged 

the groundwater. Later DUMM (1960) assumed that the initial water table is not 

completely flat but has the shape of a fourth degree parabola, which resulted in 

a slightly different formula. 

Figure 16 depicts the condition before and just after an instantaneous rise of a 

horizontal groundwater table. The initial and boundary conditions for which Eq. 

32b must be solved are: 

t = 0 , h = R./y = h , 0 < x < L (initial horizontal groundwater table) 

t > 0, h = 0, 

where 

x = 0, x = L (water in drains remains at zero 

level = drain level) 

R. = instantaneous recharge per unit surface area (m) 

h = height above drain level of the initial horizontal water table. 

m^W//M*\\W///AXXW/m$ty////AW. 

Fig.16. 

Boundary conditions for the Glover-Dumm equation 

« L ^ with initial horizontal water table. 

The solution of Eq.32b for these conditions may be found in CARSLAW and JAEGER 

(1959) 

h ( x , t ) 
4h °° ? 

o „ 1 - n a t . nirx 
L — e s i n —— 

n = l , - 3 , 5 , 

w h e r e 

TTKD 
(reaction factor, day 1) 

(33) 

(34) 
yL 
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For the height of the water table midway between the drains at any time t, 

h = h(jL,t), one may substitute x = jL into Eq.33 yielding 

h = - h 
t TT O 

1 -n at 
— e (35) 

n=l,-3,5," 

Apparently the value of each term of Eq.35 decreases with increasing n. If 

at > 0.2 the second and next term will be comparatively small and may be neglect­

ed. Equation 35 then reduces to 

, 4 , -at , _, , -at 
h = — h e = 1.27 h e 

t TT o o (36) 

Under the assumption of an initial water table having the shape of a fourth de­

gree parabola, Eq.36 changes into (DUMM, I960) 

h = 1.16 h e 
t o (37) 

The only difference between Eq.36 and Eq.37 is a change of the shape factor 

- = 1.27 in 1.16. 

Substituting Eq.34 into Eq.37 and solving for L yields 

, i 
2 

KDt IT 
V 

In l.K (38) 

which is called the Glover-Dumm equation. 

As the Glover-Dumm equation does not take into account a radial resistance of 

flow towards drains not reaching an impermeable layer, the thickness of the aqui­

fer D is often replaced by the d-value of Hooghoudt to account for the convergen-

cy of the flow in the vicinity of the drains. This substitution is justified 

since the flow paths for steady and non-steady flow may be considered at least 

similar, although not exactly identical. 

Thus Eq.34 becomes 

a = U M (day"!) 
UL2 

and Eq.38 changes into 

(39) 
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Kdt 
y 

h 
In 1.16- (40) 

This may be called the modified Glover-Dumm equation. 

8.3.3 APPLICATION OF THE GLOVER-DUMM EQUATION 

The Glover-Dumm equation is particularly used to calculate the drain spacing 

in irrigated areas. It requires the determination of the soil properties 

K, D, and \i, the geometry of the drains and a drainage criterion. Compared with 

steady state formulas the Glover-Dumm equation requires a water table drawdown 

criterion in a certain time (h /h ), instead of a water table elevation-discharge 

criterion (Chap.11, Vol.11). Moreover, the drainable pore space u, is only re­

quired in non-steady state drain spacing formulas. 

The calculation of the drain spacing L from Eq.40 requires a trial and error pro­

cedure, because due to the introduction of the equivalent depth d = f(L,D,u) the 

quantity L cannot be given explicitly. With the help of Fig.15, the trial and 

error procedure may be avoided. 

Example 8 

Water is applied in an irrigated area every 10 days. The field application losses 

which percolate to the groundwater are 25 mm each irrigation and are regarded 

as an instantaneous recharge, R. = 0.025 m. With an effective porosity y = 0.05 

the recharge causes an instantaneous rise of the water table, Ah = R./y = 

0.025/0.05 = 0.5 m. 

The maximum permissible height of the water table is set at 1 m below the soil 

surface. The drain level is chosen at 1.8 m below the soil surface. We then have 

h = 1.8 - 1.0 = 0.8 m. 
o 

The water level must be lowered by Ah = 0.5 m in the next 10 days or else with 

the next irrigation, it will rise to above 1.0 m below ground surface. Therefore 

we have h = h - Ah = 0.8 - 0.5 = 0.3 m. If the depth to an impervious layer 

is found at 9.5 m below the soil surface, if K = lm/day, and if the radius of 

the pipe drains is 10 cm, calculate the drain spacing. 

From the above information we have 
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K =1.0 m/day 

D = 7.7 m 

m = 0.05 

h = 0.8 m 
o 

h = 0.3 m 

t = 10 days 

r = 0.1 m 
o 

Substituting the above data into Eq.40, gives 
-, 1 

L = TT 
1.0 x d x 10 

0.05 
In 

1.16 x p.; 
0.3 

L = 41.8 /d 

1st trial: L = 80 m. 

Read from Fig.14, with 
D D 7.7 

TT x 0 . 1 
25 and D = 7 . 7 m, t h a t d = 4 . 4 m. 

u TTr 
c 

Substitution gives: 41.8 /4.4 = 88 m. 

This is more than 80 m and L should be estimated at more than 

2nd trial: L = 100 m. 

Read from Pig.14 that d = 4.8 m. Thus: 41.8 /4.8 = 92 m. This is less than 

100 m and L should be estimated less than 92 m. 

3rd trial: L = 90 m. 

Read from Fig.14 that d = 4.7 m. Thus: 41.8 /4.7 = 90 m, and since the estimate 

was 90 m this is the correct drain spacing. 

The solution with the nomograph of Fig.15 proceeds as follows: 

Calculate (Eq.38) 

T, 
o 

= TT 
r v KDt 

L U J 
In 1 

_ 
= TT 1.0 x 7.7 x 

0.05 

• 
16 h /h 

0 tj 
10 

1 r 

II 
1.16 x 0. 

0.3 
= 116 m 

D Determine C = D In — from Fig.15 by taking on the lower axis the point D = 7.7 m. 

Go from there vertically upward to intersect the curve for u = TTr = 0.3 m. Read 

on the vertical axis that C = 25 m. 

Compute L = L - C = 1 1 6 + 2 5 = 9 1 m . 
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8.3.4 DISCUSSION OF THE GLOVER-DUMM EQUATION 

Time averaged hydraulic head 

For various reasons, e.g. to account for the average horizontal flow above drain 

level or to apply steady state equations, it may be required to compute a time 

averaged hydraulic head, h, between h and h or between h. and h during tail 
O t t} 12 

recession. 
One could during tail recession take the arithmetic mean S(h + h. ) but then h 

t2 ti 
will be overestimated since h changes according to an exponential function. 

The average h may be defined as 

_ . t t 
h = - /h dt = - ƒ1.16 h e dt 

t t t o 
o o 

which yields upon integration and rearranging 

h = 
1.16 h _ 1.16 h - h 

o . -at. _ o t 
~ät U e ; ln(1.16 h /h ) 

o t 
Another possibility is to use the geometric mean giving 

h = /h h 
ta t2 

(41) 

(42a) 

log h = -Ulog h. + log h. ) (42b) 
Z ti t2 

Flow above the drains should be taken into account if h is relatively large or D 

is small. 

Eq.40 then reads , 

K(d+|h). L = IT In 1.16 h /h 
o t 

(43) 

Non-steady discharge 

The discharge of the drains at time t, when expressed per unit surface area, can 

be found from Darcy's law 

- 2KD [dh] 
dx 

(m/day) (44) 
x=0 

Differentiating Eq.33 with respect to x and substituting x=0, gives for Eq.44 

8 R. Z - n 2 a t (45) 
q = — a i L e 

TT2 n=l,3,5, 

Neglecting all the terms except the f i rs t gives 

} = — osR.e 
t 2 i 

TT 

- a t (46) 
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Substituting R. = h y and for h the expression given in Eq.36 yields 

qt = | «Uht (47) 

Substituting the value of a from Eq.39 gives 

qt - _ _ ht (48) 

which is similar to the Hooghoudt equation except that the factor 2ir is now ob­

tained instead of 8. 

From Eqs.36 and 46 it can be deduced that, during tail recession 

_Ü._Ü=.e-°«t*-t.> (49) 
q

t l
 h t, 

According to Eq.49 a plot of q or h on a logarithmic scale and time (t) on a 

linear scale will result in a straight line. 

This relation is of importance to determine a from field data of drained plots 

(Chap.26, Vol.111). 

8.3.5 PRINCIPLES OF THE KRAIJENHOFF VAN DE LEUR-MAASLAND EQUATION 

Both KRAIJENHOFF VAN DE LEUR (1958) and MAASLAND (1959) derived solutions for 

non-steady state groundwater flow to drains. The solution is based on a steady 

recharge over any time period t instead of an instantaneous recharge as assumed 

by Glover-Dumm. 

The applicable differential equation is Eq.32a. Starting with a flat water table 

at drain level at t = 0 and assuming a recharge intensity R (m/day) from the mo­

ment t = 0 on, yields the following initial and boundary conditions: 

h = 0 for t = 0 and 0 < x < L (initial horizontal groundwater table at drain 

level at t = 0) 

h = 0 for t > 0 and x = 0, x = L (water in drains remains at zero level = drain 

level) 

R = constant for t > 0 (constant recharge R starts at t = 0). 

For the above boundary conditions the height of the water table midway between 

parallel drains (x = \L) at any time t is 

h t - £ £ j E ^ ( l - e - n t / J ) (50) 
Z " U „_! oc „3 

n=l,-3,5, n 
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uL2 

where j = is called the reservoir coefficient. (51) 
TT2 KD 

It is remarked that convolution of Eq.35 with R/y yields Eq.50 (Chap.15, Vol.11). 

The factor a = - , used by DUMM (1954) and DE ZEEUW (1966) is a "reaction factor" 

which expresses the drainage intensity (Chap.16, Vol.11). 

The discharge intensity q (m/day) of a parallel drainage system at any time t 

is found in a way similar to that given for Eq.45 

CO r, 

q = ^ R I i-U-e-nt/J> (52) 
TT2 n=l,3,5 n2 

The equations 50 and 52 are only valid as long as the constant recharge rate R 

continues. When such a recharge rate occurs long enough, the flow conditions must 

become steady too. For t -> °°, Eq.52 changes into 

q = ^ R £ -L = ̂ R l i = R (53) 

TT2 n=l,3,5 n2 TT2 

which gives the steady state condition where the discharge intensity q equals the 

recharge intensity R. 

For t + » , Eq.50 becomes 
CO 1 1 

4 R . „ 1 4 R . TT3 TT2 R . , , „ 
h = ü TT J l — = Û TT J T T = R ~ TT J < - 5 4 ) 

TT y 3 TT y il o y 

n=l,-3,5, n 

Substitution of j from Eq.51 and rearranging gives 
h • iïï <55> 

The latter equation is similar to the Hooghoudt equation with the exception that 

no radial flow is taken into account. 

When introducing the equivalent depth d of Hooghoudt instead of D, to account for 

the convergence of streamlines in the vicinity of drains not reaching an imperm­

eable layer, Eq.51 changes into 

j = ]; = H L - (days) (56) 
a TT2Kd 

The justification of the substitution of the equivalent depth d is based on the 

same grounds as for Eq.39. 
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8.3.6 APPLICATION OF THE KRAIJENHOFF VAN DE LEUR-MAASLAND EQUATION 

The Kraijenhoff van de Leur-Maasland equation is not used for routine drain spac­

ing computations, which are usually based on an assumed steady or instantaneous 

recharge. The equation however proves very useful when changes in water table elev­

ation and discharge rate must be known for chosen drainage conditions and in res­

ponse to a changing recharge pattern. Such calculations are usually computerized. 

The Kraijenhoff van de Leur-Maasland equation will be applied in order of increas­

ing complexity: constant and continuous recharge, constant recharge during a res­

tricted period, and intermittent recharge. 

constant and continuous recharge 

Equations 50 and 52 can be written as 

ht - J j ct (57) 

where 

and 

: » £ E ~ (l-e-n2t/j) (58) 
' ïïn=l,-3,5, n3 

qt = R gt (59) 

where 

g - S - Ê i- (l-en2t/j) (60) 
IT2 n=l,3,5 n2 

The factors c and g depend only on time t and on reservoir coefficient j , so 

that they can be tabulated (Table 3). 

Example 9 

Assume a drainage system with j = 5 days. The soil has an effective porosity 

U = 0.04. There is a constant recharge of 10 mm/day (R = 0.01 m/day). The value 

for — i will then be 1.25 m. 
V 

For the computation of the water-table height h or the discharge q at any time 
Table 3 can be used, as is illustrated below. 
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Table 3. c and g coefficients for the Kraijenhoff van de Leur-Mas sland 

equation. 

t/j 8t ct t/j g ( ; c t t / j g t c t 

0.01 0.072 0 .010 0.A8 0.497 0.447 1.10 0.730 0.809 

0.02 0 .102 0.020 0 .50 0.507 0 .463 1.15 0.743 0 .830 

0.03 0 .125 0.030 0 .52 0 .518 0.477 1.20 0.756 0 .850 

0.04 0 .143 0.039 0 .54 0.528 0.492 1.25 0.767 0.869 

0 .05 0.161 0.049 0 .56 0.537 0.507 1.30 0.779 0.887 

0.06 0 .176 0.060 0 .58 0.546 0 .521 1.35 0.790 0 .903 

0.07 0 .190 0.070 0 .60 0.554 0 .535 1.40 0 .800 0 .920 

0 .08 0 .203 0.080 0 .62 0.563 0.549 1.45 0.810 0.935 

0.09 0 .215 0.090 0 .64 0.572 0 .563 1.50 0.819 0.950 

0 .10 0.227 0 .100 0.66 0.580 0.576 1.55 0.828 0.964 

0.12 0.249 0 .120 0 .68 0 .588 0 .588 1.60 0.836 0.977 

0.14 0.269 0 .139 0 .70 0.597 0.602 1.65 0.844 0.989 

0.16 0 .288 0.159 0.72 0.605 0 .614 1.70 0.852 1.002 

0.18 0 .305 0.179 0.74 0.612 0.627 1.75 0.859 1.012 

0.20 0.321 0.199 0 .76 0 .620 0 .638 1.80 0.866 1.023 

0 .22 0.337 0 .218 0 .78 0 .628 0 .650 1.85 0.872 1.033 

0.24 0.352 0 .238 0 .80 0.636 0 .661 1.90 0.879 1.044 

0.26 0.367 0.257 0 .82 0.643 0.672 1.95 0.885 1.052 

0.28 0 .380 0.275 0 .84 0.650 0 .683 2 .00 0.990 1.061 

0.30 0 .393 0.294 0 .86 0.657 0 .695 2 .10 0 .901 1.078 

0.32 0.406 0.312 0 .88 0.663 0.706 2 .20 0.910 1.093 

0.34 0 .419 0.329 0 .90 0.670 0.717 2 .30 0.919 1.107 

0.36 0.430 0.347 0 .92 0.677 0.727 2 .40 0.927 1.118 

0 .38 0 .442 0 .364 0 .94 0 .683 0.737 3 .00 0.960 1.171 

0.40 0.454 0 .381 0.96 0.689 0.746 4 .00 0.985 1.210 

0 .42 0 .465 0 .398 0 .98 0.696 0.756 5 .00 0.995 1.226 

0.44 0.476 0 .415 1.00 0.702 0.765 » 1.000 jf_ 

0.46 0.487 0 .431 1.05 0 .715 0.787 8 

1.232 
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ime 

4 hrs 

8 hrs 

12 hrs 

16 hrs 

20 hrs 

24 hrs 

48 hrs 

72 hrs 

96 hrs 

20 hrs 

= 
= 

= 

= 

= 

= 

= 
= 

= 

= 

00 

1/6 

1/3 

1/2 

2/3 

5/6 

1 

2 

3 

4 

5 

day 

day 

day 

day 

day 

day 

day 

day 

day 

day 

t/j 

0.033 

0.067 

0.100 

0.133 

0.166 

0.200 

0.400 

0.600 

0.800 

1.000 

IT 
CO — 

c t 
(Table 

0.033 

0.067 

0.100 

0.133 

0.166 

0.199 

0.381 

0.535 

0.661 

0.765 

3) 

2 
- = 1.232 

S t 
(Table 3) 

0.131 

0.184 

0.227 

0.262 

0.292 

0.321 

0.454 

0.554 

0.636 

0.702 

1.000 

h t = 

R . 

v J ct 
(m) 

0.041 

0.084 

0.125 

0.166 

0.208 

0.249 

0.476 

0.669 

0.827 

0.956 

1.540 

qt = 

R g t 

(m/day) 

0.00131 

0.00184 

0.00227 

0.00262 

0.00292 

0.00321 

0.00454 

0.00554 

0.00636 

0.00702 

0.01000 

constant recharge during a restricted period 

Consider a drained area with irrigation or rainfall occurring during one single 

day followed by a dry period. In order to compute the water-table heights on 

days subsequent to the irrigation or rainfall, we assume (Fig.17) that the 

recharge R of the first day continues throughout the following days, but from 

the second day onwards an equal negative recharge, -R, is taken into account 

so that the total recharge is equal to zero (principle of superposition). 

ĥ  pos 

htneg 

2 3 4 
time (days) 

Fig.17. 

_h' Principle of superposition of recharge (R) and 

water-table elevation (h) for the Kraijenhoff van 

de Leur-Maasland equation. 

For the water-table height at the end of the first day (t = 1) we then have accor­

ding to Eq.57 

h hi - - J c, 

41 



At the end of the second day we have had a positive recharge R over two days, 

hence 
' R 

ti2 = ̂ J j C2 

from which we have to subtract the effect of a negative recharge over 1 day, 

equalling 
i R 

1»! - - j Cl 

so that 
' ' R 

h2 = h2 - hi = — j (c2- ci) 

Similarly, at the end of the third day, we have 

J R • 

v . ' R • 
h 2 = — 1 C2 

s o t h a t 

tl3 = h3 - h2 = — j ( c 3 - C2) 

and at the end of the t day 

h t = ht - h t - r t i ( v ct-i} 

The height of the water table during the recession period can thus be computed 

with the aid of Table 3. 

Example 10 

Consider an area with pipe drainage at a depth of 1.00 m below soil surface and 

the impermeable layer at a depth of 1.20 m below the drains. The drain diameter 

is 0.20 m and the drain spacing is 20 m, so that d = 1.0 m (Table 1). The hydrau­

lic conductivity of the soil K = 0.5 m/day and the effective porosity y = 0.05. 

From the above information we have 

K = 0 .5 m/day 

y = 0.05 

D = 1 .2m 

L = 20 m 

r = 0.1 m 
0 

d = 1.0 m 

Substituting the above data into Eq.56 yields 

UL2 0 . 0 5 x 20 2 . , 
j = = = 4 d a y s 

TT2Kd IT2X 0 . 5 x 1 .0 
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Suppose that the initial water table was at drain level and that during the first 

day a total amount of 30 mm of percolation water (from irrigation or rain) rea­

ches the groundwater. There is no percolation in the following days. 

What will be the height of the water table midway between the drains during the 

days subsequent to the irrigation or rainfall? 

The calculation is given in the following table: 

time 

days 
t/j c/t 

"t-1 

R . 

water-table height 

h = — i (c -c ,) 
t U J t t-1 

0.25 0.248 0.000 0.248 2.4 m 

0.50 0.463 0.248 0.215 2.4 m 

1.00 0.765 0.633 0.132 2 .4 m 

0.60 m 

0.52 m 

0.32 m 

intermittent recharge 

The above method can be worked out in a more general way for intermittent re­

charge. Since, in general, hydrologie data are available per day only the fol­

lowing examples are worked out with days as the time unit. The theory however 

holds for any time length. 

Suppose that we wish to compute the height of the water table or the discharge at 

the end of any arbitrary day. Let us choose the m day (Fig.18). 

Fig.18. 

Superposition of intermittent recharge for the 

Kraijenhoff van de Leur-Maasland equation. 

time (days) 

Both the height of the water table and the discharge rate are influenced by the 

percolation during each of the preceding days. So we have to take into account: 
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- the recharge R over 1 day; 
m 

- the recharge R over 2 days minus the recharge R over 1 day; 
m-i m-i 

- the recharge R over 3 days minus R over 2 days, etcetera. 
a m-2 m-2 

The height of the water table is thus given by 
h = 1 
m ja 

R ci + R (c2-cj)+ R (C3-C2) + ... + Ri(c -c ) 
m m-j m-2 m m-j 

Setting Ci = cij, C2 = (c2-ci)j, C = (c -c )j we obtain 

(62) 

h = -
m ji 

CiR + C2R + C3R + ... + C Ri 
m m-i m-2 m (63) 

Similarly, the discharge rate is given by 

q = GaR + G2R + G3R + ... + G Ri 
m m m-i m-2 m 

(64) 

where 

Gl = gl, G2 = (g2-gi). G = (g -gm ) (65) 

The factors Ci, C2, etc. and Gi, G2 etc. are found in Tables 4 and 5 as a functi­

on of a= 1/j. The use of these tables will be explained in some examples. 

Example 11 

A drainage system with a = 0.25 days a (j = 4 days) in a soil with an effective 

porosity p = 0.05 receives the following groundwater recharge: 

February 

recharge (mm) 

15 

5 

16 

20 

17 

10 

18 

5 

19 

0 

20 

0 

What heights of water table and discharges will occur if on February 14 the water 

level was horizontal and at drain depth. 

Taking successively February 20, 19, 18, 17, 16 and 15 as the m day, we obtain 

the following C -values: 

date recharge (m) 20 19 18 17 16 15 (C -values) 

20 

19 

18 

17 

16 

15 

0 

0 

0.005 

0.010 

0.020 

0.005 

0.99 - - - - -

0.86 0.99 - - - -

0.68 0.86 0.99 - - -

0.53 0.68 0.86 0.99 

0.41 0.53 0.68 0.86 0.99 

0.32 0.41 0.53 0.68 0.86 0.99 
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