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ABSTRACT: The contributions of additive, dominance 
and imprinting effects to the variance of number of teats 
(NT) were evaluated in two purebred pig populations using 
SNP markers. Three different random regression models 
were evaluated, accounting for the mean and: 1) additive 
effects (MA), 2) additive and dominance effects (MAD) 
and 3) additive, dominance and imprinting effects (MADI). 
Additive heritability estimates were 0.30, 0.28 and        
0.27-0.28 in both lines using MA, MAD and MADI, 
respectively. Dominance heritability ranged from 0.06 to 
0.08 using MAD and MADI. Imprinting heritability ranged 
from 0.01 to 0.02. Dominance effects make an important 
contribution to the genetic variation of NT in the two lines 
evaluated. Imprinting effects appeared less important for 
NT than additive and dominance effects. The SNP random 
regression model presented and evaluated in this study is a 
feasible approach to estimate additive, dominance and 
imprinting variance. 
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Introduction 
In pigs and other livestock species, selection has 

been carried out in purebred populations although the final 
goal is to improve crossbred performance. Crossbreeding 
takes advantage of breed complementarity and non-additive 
effects. Thus, to produce a better crossbred animal, it is 
necessary to select purebred animals in order to produce 
favorable allelic combinations in the crossbred generation 
(Zeng et al. (2013)). Including dominance and imprinting 
effects in genetic evaluations of crossbreeding schemes 
may, therefore, lead to a better crossbred product.  

Traditional and genomic selection has mainly 
focused on additive genetic effects. Previous studies have 
used pedigree information to estimate dominance (de Boer 
et al. (1993); Misztal (1997)) and imprinting effects (de 
Vries et al. (1994); Tier and Meyer (2012)), but using 
pedigree based methods it is difficult to accurately estimate 
dominance effects and to disentangle imprinting, maternal 
and permanent environmental effects (Tier and Meyer 
(2012)). Although the availability of genomic information 
has increased the possibilities to quantify dominance and 
imprinting effects, only recently attempts have been made 
to quantify and to exploit the proportion of genetic variance 
due to dominance effects (Toro and Varona (2010); Su et 
al. (2012); Zeng et al. (2013); Da et al. (2014)). The 
contribution of imprinting effects to the total genetic 
variance, however, has not been investigated using genomic 
data.  

In this study, the trait ‘number of teats’ (NT) was 
studied because QTLs with dominance and imprinting 
effects have previously been reported for this trait (Hirooka 
et al. (2001); Ding et al. (2009)). In addition, NT can be 

measured in males and females, which increases the 
number of animals with proper phasing and with 
phenotypic records. The objective of this study was to 
estimate the contribution of additive, dominance and 
imprinting effects to the variance of NT in two different 
purebred pig populations. 

 
Materials and Methods 

Data. A total of 2,013 Landrace-based (LN) and 
2,402 Large White-based (LW) animals, genotyped using 
the Illumina Porcine SNP60 Beadchip (Ramos et al. (2009)) 
were available for this study. All animals had a frequency 
of missing genotypes <0.05. SNPs with call rate <0.95, 
minor allele frequency <0.01, strong deviation from Hardy-
Weinberg equilibrium (χ²>600), GenCall<0.15, unmapped 
SNPs and SNPs located on either the X or Y chromosome, 
according to the Sscrofa10.2 assembly of the reference 
genome (Groenen et al. (2012)), were excluded from the 
data set. After quality control, 39,089 SNPs for LN and 
37,796 SNPs for LW out of the initial 64,232 SNPs were 
kept for phasing procedures. 

The phasing and imputation of missing genotypes 
were performed within line using AlphaImpute (Hickey et. 
al (2011)), which combines genomic and pedigree 
information to determine the parental origin of alleles. The 
pedigree depth used in this analysis was up to 5 generations 
(between genotyped animals). To ensure accurate phasing, 
only animals which had both parents or at least one parent 
and one sib genotyped were used. Due to these restrictions, 
1,538 LN and 2,112 LW animals were used for the 
estimation of variance components. All these animals had 
their individual NT counted at birth. The average NT in the 
LN population was 15.62±1.04, ranging from 12 to 20 teats. 
In the LW population the average NT was 15.37±0.97, 
ranging from 14 to 20 teats. 

Statistical analyses. Parameters were estimated 
using a random regression model implemented in the 
program BayZ (http://www.bayz.biz/). The analyses were 
performed within line using three different models: 

 
𝐲 = 𝟏µ + 𝐗𝐛 + 𝐀𝐚 + 𝐞                                                       (MA) 
𝐲 = 𝟏µ + 𝐗𝐛 + 𝐀𝐚 + 𝐃𝐝 + 𝐞                                        (MAD) 
𝐲 = 𝟏µ + 𝐗𝐛 + 𝐀𝐚 + 𝐃𝐝 + 𝐈𝐢 + 𝐞                              (MADI) 

 
where y is a vector of phenotypic observations; µ is the 
mean of the populations and 1 a vector of ones; X is the 
design matrix for the fixed effects (sex and herd-year-
season of birth); b is a unknown vector of fixed effects; A, 
D and I are design matrices with regressors for additive, 
dominance and imprinting effects, respectively; a, d and i 
are unknown vectors of additive, dominance and imprinting 
effects, respectively; and e is a vector of residuals. The 



entries of the design matrices A, D and I are regressors 
calculated from the observed phased probabilities of the 
marker genotypes. For each SNP of each animal, 
AlphaImpute (Hickey et. al (2011)) generates two 
probabilities: P1 being the probability that a specific allele 
was received from its father, say an allele G of a GC SNP, 
and P2 the probability that a G allele was received from its 
mother. Considering a heterozygous animal (GC) where the 
G allele was inherited, with certainty, from its father (and 
therefore a C allele from its mother), the probabilities 
would be P1=1 and P2=0. In order to obtain the regressors 
that constitute the entries of A (regA), D (regD) and I 
(regI), the following transformation of these probabilities 
was applied:  
 
regA= P1 + P2              regD= |P1 – P2|               regI= P1 – P2 
 
thus, the genotypes (GG, GC, CG, GG) were recoded as (0, 
1, 1, 2) for A, (0, 1, 1, 0) for D and (0, -1, 1, 0) for I. In 
cases where the phasing could not be established with 
certainty, the regressors were based on the probabilities.  

Uniform distributions were assigned to the 
variances. Assumed distributions of SNP effects were:           
a ~ N(0,𝜎𝑎2), d ~ N(0,𝜎𝑑2), i ~ N(0,𝜎𝑖2) and e ~ N(0,𝜎𝑒2), with 
𝜎𝑎2 , 𝜎𝑑2 , 𝜎𝑖2  and 𝜎𝑒2  being the additive, dominance, 
imprinting and residual variance, respectively. The total 
variance in the model can be expressed as (𝜎𝐀𝐚2  + 𝜎𝑒2) for 
MA,  (𝜎𝐀𝐚2  + 𝜎𝐃𝐝2  + 𝜎𝑒2) for MAD and (𝜎𝐀𝐚2  + 𝜎𝐃𝐝2  + 𝜎𝐈𝐢2 + 𝜎𝑒2) 
for MADI, being 𝜎𝐀𝐚2 =AA’𝜎𝑎2 , 𝜎𝐃𝐝2 =DD’𝜎𝑑2 and 𝜎𝐈𝐢2=II’𝜎𝑖2 . 
Alternatively, the total genomic variance explained by 
additive (𝜎𝐀𝐚2 ), dominance (𝜎𝐃𝐝2 ) and imprinting (𝜎𝐈𝐢2) effects 
can be obtained by evaluating var(Aa), var(Dd) and var(Ii), 
respectively, per MCMC cycle. This allowed to obtain 
posterior means and posterior standard deviation (SD) for 
all parameters. 

Each model was run as a single chain with a length 
of 1,000,000 which was sampled each 100 iterations. The 
first 15,000 iterations were regarded as burn-in period. 
Therefore, results from 9,850 samples were used to estimate 
the posterior mean of the parameters. As part of the 
diagnostics analyses of the MCMC chain, the R package 
CODA (Plummer et al. (2006)) was used to estimate the 
standard error (SE) of the chain, which was defined as    
(𝜎𝑝2 /√𝐸𝑆𝑆), where 𝜎𝑝2 was the variance of the pth parameter 
and ESS was the effective sample size after correction for 
autocorrelation across MCMC samples (Plummer et al. 
(2006)). Following the Monte Carlo theory, the asymptotic 
95% confidence interval (CI= 𝜎𝑝2±1.96*SE) was estimated.  

 
Results and Discussion 

The proportions of phenotypic variance explained 
by all genetic effects evaluated in this study were very 
similar between the two populations (Table 1). All 
parameters were statistically different from zero (based on 
the asymptotic 95% CI). 

Additive. Using the MA model, the estimated 
heritability for NT was 0.30 (Table 1) in both populations, 
which was slightly lower than the pedigree-based estimates 
(0.31±0.07 for LN and 0.32±0.05 for LW) using the same 
data. In both lines, the additive heritability estimate was 

0.28 using the MAD model. Using the MADI model, the 
additive heritability was slightly different between the two 
lines (0.27 for LN and 0.28 for LW). Using the MADI 
model compared to the MA model, the total heritability of 
NT (sum of the proportion of phenotypic variance 
explained by all genetic effects included in the model) 
increased by 23%, from 0.298 to 0.368, in the LN and by 
21%, from 0.303 to 0.368, in the LW population. A 
reduction of additive genetic variance and an increase 
(27%) of the total heritability was also observed by Su et al. 
(2012) when non-additive genetic effects (dominance and 
epistasis) were included in the model to evaluate daily gain 
in pigs. This reduction in the additive genetic variance was 
expected, since dominance effects also contribute to the 
additive genetic variance in the MA model (Falconer and 
Mackay (1996)). Therefore, applying a model that accounts 
for additive and dominance effects separately may result in 
dominance effects contributing less to the additive genetic 
variance.  
 
Table 1. Estimated variance components and 
heritabilities. Total additive, dominance, imprinting and 
residual variances (𝜎Aa2 , 𝜎Dd2 , 𝜎Ii2 and 𝜎𝑒2 , respectively) and 
additive, dominance and imprinting heritabilities (ℎ𝑎2 , ℎ𝑑2  
and ℎ𝑖2, respectively) of number of teats in two purebred pig 
population using three different models.  

  
Landrace  Large-white 

PM† SD¥ SE& 
 PM SD SE 

MA*         
𝜎𝑒2 0.730 0.047 0.001  0.623 0.029 0.001 
𝜎Aa2  0.310 0.073 0.002  0.272 0.032 0.001 

ℎ𝑎2  0.298 0.055 0.002  0.303 0.031 0.001 

MAD** 
      

𝜎𝑒2 0.692 0.055 0.003  0.582 0.036 0.002 
𝜎Aa2  0.294 0.072 0.002  0.252 0.035 0.001 
𝜎Dd2  0.061 0.050 0.007  0.064 0.035 0.004 

ℎ𝑎2  0.279 0.056 0.002  0.280 0.035 0.001 

ℎ𝑑2  0.058 0.048 0.007  0.071 0.039 0.004 

MADI*** 
      

𝜎𝑒2 0.662 0.071 0.005  0.568 0.036 0.002 
𝜎Aa2  0.289 0.096 0.006  0.249 0.037 0.001 
𝜎Dd2  0.083 0.054 0.006  0.072 0.036 0.004 
𝜎Ii2 0.021 0.039 0.003  0.011 0.009 0.001 

ℎ𝑎2  0.271 0.058 0.003  0.276 0.037 0.002 

ℎ𝑑2  0.078 0.045 0.005  0.080 0.040 0.004 

ℎ𝑖2 0.019 0.022 0.003  0.012 0.010 0.001 
†PM: posterior mean; 
¥SD: standard deviation of the posterior mean; 
&SE: standard error of the MCMC; 
*MA: model that includes only additive genetic effects; 
**MAD: model that includes additive and dominance genetic effects; 
***MADI: model that includes additive, dominance and imprinting genetic 
effects. 



Dominance. The proportion of phenotypic 
variance explained by dominance effects ranged between 6 
and 8% using MAD and MADI models for both lines. The 
estimated dominance variance in proportion to the additive 
variance was 21% for LN and 24% for LW using the MAD 
model. These results indicate that dominance effects make 
an important contribution to the genetic variation of NT. 
For daily gain in pigs, Su et al. (2012) estimated that 
dominance effects accounted for 5.6% of the total 
phenotypic variance (26% in proportion to additive effects). 
Based on pedigree estimates, Culbertson et al. (1998) 
reported that the ratio of dominance to additive variances 
for different traits in pigs ranged from 11 to 78%. 
Interestingly, there was an increase in dominance variance 
when imprinting effects (MADI) where included in the 
model (from 0.061 to 0.083 for LN and from 0.064 to 0.072 
for LW), although the SD of the posterior mean remained 
approximately the same for both lines (Table 1).   

In recent studies, dominance effects have been 
evaluated in genomic prediction scenarios. Including 
dominance effects in genomic evaluations has been 
reported to increase the accuracy and decreased the bias of 
estimated breeding values (Toro and Varona (2010); Su et 
al. (2012)). In addition, using dominance in genomic 
evaluations is expected to result in greater cumulative 
response to selection of purebred animals for crossbred 
performance than additive models, especially in the 
presence of overdominance and when retraining is not 
performed at each generation (Zeng et al. (2013)). Even 
when purely additive effects were evaluated, the inclusion 
of dominance in the genomic evaluations did not result in a 
decrease in accuracy of prediction (Toro and Varona 
(2010); Su et al. (2012); Zeng et al. (2013)). 

Imprinting. Imprinting effects accounted for a 
small proportion of the phenotypic variance (1-2%) in the 
two lines (Table 1). The posterior mean and SD for 
imprinting effects were 0.021±0.039 for LN and 
0.011±0.009 for LW. Although the SD were high, the 
asymptotic 95% CI ranged from 0.015 to 0.027 for LN and 
from 0.009 to 0.013 for LW, showing that the estimates of 
imprinting variance was statistically different from zero. 
The presence of imprinting variance is consistent with two 
imprinted QTL reported by Hirooka et al. (2001) on 
chromosome 2 and 12. However these two QTL alone 
explained 1.3 and 2.2% of the phenotypic variance. These 
larger imprinting variances may in part be explained by the 
design, an experimental F2 population, analysed in the QTL 
study.  

Due to the low proportion of phenotypic variance 
explained by imprinting variance, imprinting effects may 
not be highly relevant in selection for NT. However, this 
study shows that is feasible to estimate imprinting variance 
with the presented method, which can be used to evaluate 
the relevance of imprinting for other traits. Combining 
imprinting and dominance effects with mate allocation 
techniques, under a genomic selection scenario, opens new 
perspectives for the optimization of breeding programs 
aiming for an improved performance of crossbred animals.   

 

Conclusion 
Dominance effects make an important contribution 

to the genetic variation of NT in the two lines evaluated. 
Although imprinting effects may not be highly relevant for 
NT, it can be concluded that the method used in this study 
allows estimating additive, dominance and imprinting 
variance. These results open new perspectives for the 
inclusion of dominance and imprinting effects in genetic 
evaluations, especially regarding mate allocation techniques 
for the optimization of crossbreeding programs. The 
predictability of an individual’s total genetic merit using 
additive, dominance and imprinting simultaneously needs 
to be further evaluated. 
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