Efficiency improvement in the analyses for the Dutch national monitoring plan

Yvette Bolck¹, Coen Nibbeling¹, Richard Mensink², Mareen Verbrugge², Ruud Peters¹, Bjorn Berendsen¹, Tina Zuidema¹ and Linda Stolker¹

Netherlands Food and Consumer Product Safety Authority Ministry of Economic Affairs

Background

Discussion

Within the Dutch national monitoring plan a large variety of analytes is monitored in several matrices. Conventionally most antibiotics are screened using bioassays and for other analytes methods are operational for each individual analyte group. Especially the latter yields a very cost inefficient workflow. Combining these methods into a single workflow significantly increases sample throughput and is therefore more cost efficient.

Objective

• The development of a single workflow for the analysis of avermectins, anticoccidials, benzimidazoles, nitroimidazoles, NSAIDs and tranquilizers in egg, liver, kidney, milk and/or muscle.

- Acetone resulted in higher extraction recoveries compared to acetonitrile. However, matrix effects were more pronounced compromising quantitative performance and detection limits.
- Matrix effect were reduced by using dSPE with primary secondary amine (PSA). C_{18} was less effective in cleaning the raw extract.
- The balance between the composition of the final extract, dilution of the final extract and the injection volume proofed to be critical (table 1 for optimal results).

Validation results

 Table 2.
 Summary of validation results according to CD 2002/657/EC

Analyte group, matrix		LoD (µg/kg)	Trueness (%)	RSD _{RL} (%)
Anticoccidials, muscle	Qualitative	\leq 0.5*MRL		
Anticoccidials, milk	Qualitative	\leq 0.5*MRL		
Anticoccidials, egg	Qualitative	\leq 0.5*MRL		
Nitroimidazoles, muscle	Quantitative	≤ 1.0	83 - 105	2.7 – 17
NSAIDs, muscle	Quantitative	\leq 0.5*MRL	99 - 104	2.6 - 18
NSAIDs, milk	Quantitative	\leq 0.5*MRL*	87 - 105	2.9 - 22
Benzimidazoles, liver	Quantitative	< 0.5*MRL		
Benzimidazoles, milk	Quantitative	< 0.5*MRL	92 - 104	2.9 – 16
Avermectine, liver	Qualitative	7.5 – 10	94 - 104	4.1 - 18
Avermectine, milk	Qualitative	0.1 - 10		
Tranquilizers, kidney	Quantitative	< 0.5*MRL	97 - 102	3.8 - 14

Tranquilizers (n=8)

Sample preparation

Table 1. Composition of the final extract and injection volume per analyte/matrix combination

* MRL of diclofenac in milk (0.1 μ g/kg) only achievable using AB-Sciex Qtrap 6500 mass spectrometer

Instrumentation

- LC column: Acquity UPLC HSS-T3, 1.8 µm, 100 x 2.1 mm
- Gradient elution
- Mobile phase A: $NH_4COOH (1M)/HCOOH/H_2O (2:0,16:1000 v/v/v)$
- Mobile phase B: $NH_4COOH (1M)/HCOOH/MeOH (2:0,16:1000 v/v/v)$
- Flow: 0.4 ml min⁻¹
- Mass spectrometer: Waters Quattro Premier, SRM
- Ionisation: Electrospray

Conclusions

- A single workflow was developed for the analysis of anticoccidials, nitroimidazoles, NSAIDs, benzimidazoles, avermectins and tranquilizers in various matrices.
- The method consists of a solvent extraction combined with dSPE and is applicable for qualitative analysis of anticoccidials and

Analyte group	Solvent, volume	Injection volume	
Anticoccidials	MeOH, 200 μL	20 µL	
Nitroimidazoles	H ₂ O, 200 μL	10 µL	
NSAIDs	MeOH, 800 μL	5 µL	
Benzimidazoles	MeOH, 200 μL	4 µL	
Avermectine, liver	Liver: MeOH, 200 µL	4 µL	
Avermectine, milk	H ₂ O/MeOH (1:1 v/v), 200 μL	10 µL	
Tranquilizers	MeOH, 200 µL	4 µL	

avermectins and for quantitative analysis of most nitroimidazoles, NSAIDs, benzimidazoles and tranquilizers included.

- All methods are performed using the same procedure, chemicals and LC-MS/MS system, increasing sample throughput and flexibility.
- The developed workflow resulted in significant improvement in laboratory efficiency and reduction of costs in carrying out the Dutch national monitoring plan.

¹RIKILT Wageningen UR P.O. Box 230, 6700 AE Wageningen Contact: bjorn.berendsen@wur.nl T + 31 (0)317 48 03 14 www.wageningenUR.nl/en/rikilt

²The Netherlands Food and Consumer Product Safety Authority
 P.O. Box 144, 6700 AC Wageningen
 Contact: m.verbrugge@nvwa.nl
 T + 31 (0)88 223 27 50
 www.vwa.nl/english