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Abstract: A linear regressive model structure and output predictor, both in algebraic form,
are deduced from an LTI state space system with certain properties without the need of
direct matrix inversion. On the basis of this, explicit expressions of parametric sensitivities
are given. As an example, a diffusion process is approximated by a state space discrete
time model with n compartments in the spatial plane and is then reparametrized. The
system output can then be explicitly predicted by ŷk = θ̂Tφk−n − γ̌k−n as a function
of n, the sensor position, the parameter vector θ, and input-output data. This method
is attractive for estimation, prediction and insight in experimental design issues, when
physical knowledge is to be preserved.
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1. INTRODUCTION

Identification is about matching selected models to
observations and is typically restricted to input-output
data in finite time. The dynamic input-output relation-
ships in LTI systems can be captured to get a reliable
model by frequency or time domain methods which
are widely available. Indeed, it is possible to estimate a
(parametric) transfer function model with appropriate
model order without using prior system’s knowledge.
However, it is not immediately clear how the structure
of the transfer function model is linked to the under-
lying physical and/or (bio)chemical processes. Con-
trary to this so-called black box modelling approach,
grey or white box modelling provides a model struc-
ture that is more suited for physical interpretation.
Grey or white models may also aid in the derivation
and/or explanation of (optimal) control solutions and
experimental design issues, e.g. sensor and/or actuator
placement. Therefore we would like to be able to es-
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model parameters and states while preserving
iginal) physical model structure.

ver, physical relevant parameters often appear
nearly in an input-output model structure. Con-
tly, in general non-linear optimization solvers

costly) iterative procedures are used, where it
ntly occurs that the parameter search gets stuck
al minima. The problem gets particularly more
ex when dealing with infinite dimensional sys-
In that case, it is a common approach to de-
e a minimal basis in order to solve the es-

on problem in a finite-dimensional space. See
alerkin approximation schemes (Banks and Ku-
1989; Baumeister et al., 1997), rational approx-
ns (Pintelon et al., 1998), collocation methods
rström and Bhikkaji, 2000), minimal finite ele-
approximations (Coca and Billings, 2002) and
ce identification techniques (Overschee, 1995).

stingly, the latter technique has the advantage



over classical prediction error techniques by the ab-
sence of non-linear parametric optimizations.

Our approach is to handle the parameter estimation
and prediction problem, initially for an LTI infinite-
dimensional system, via discretization and a linear
regressive parametric realization of the system in or-
der to obtain unique estimates. However, unlike a
‘data based’ approach such as subspace identification,
we will conserve the physical compartmental model
structure due to the reasons mentioned before.

In particular, we will consider a set of finite LTI state
space systems which can be regarded as compart-
mental diffusive systems. By the properties of such
a system (denoted as Σ), we are able to find another
realization of Σ which is suited for linear regressive
estimation and prediction. After some integral trans-
form of Σ, we obtain a set of linear equations of the
form STMR=b. It will be shown, that the inverse of
M is the resolvent of the system matrix A in Σ. In the
specific case that A is a symmetric tridiagonal matrix,
explicit solutions for the inverse of M are known,
see e.g. (Hu and O’Connell, 1996; Huang and Mc-
Coll, 1997). The key here is to findM−1, such that we
may rewrite this as a linear regressive set of equations:
θTφ = γ, with θ = ξ(ϑ) a known reparametrization
function of the physical parameter ϑ. From hereon,
it is rather straightforward to arrive at an estimate
θ̂ using existing estimation techniques. By a simple
rearrangement of terms we get an explicit expression
for the output at time instant k, i.e. ŷ(k|θ̂;Z−) with
Z− the current available input-output data set.

The key objective of the paper is twofold: to show (i)
the derivation and (ii) an application of explicit model
structures in estimation and sensitivity analysis of
diffusive-like systems, while conserving the physical
model structure.

For the exact modelling case, we illustrate in sec-
tion 2: (i) the methodology to arrive at an exact lin-
ear regressive representation suitable for estimation
and prediction of systems characterized by the model
structure Σ. Further, it will be shown how to achieve
this without the use of explicit matrix inversions. In
section 3 we work out (ii) by the derivation of an
explicit predictor for an infinite dimensional diffu-
sion process with boundary control at one side and a
Dirichlet boundary condition at the other side, which
typically can be approximated by a finite LTI model Σ.
Further, sensitivity analysis of Σ is performed. Finally,
conclusions are drawn in section 4.

2. REALIZATION OF A LINEAR REGRESSIVE
PARAMETRIC SYSTEM REPRESENTATION

2.1 Problem statement

Let us start by describing the problem in some more
detail. In this contribution we study the deduction
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hysically-based linear regressive output predic-
k|θ̂;Z−) for LTI systems having a typical and

system description Σ.

assume that we can rewrite the input-output
Σ : y = g(θ, Z−) described by the mapping

a mapping f which is governed by a linear
sive system θTφ(Z) = γ(Z) and a mapping
− �−→ Y + (the predictor), with Y + ⊂ Y . The
tion for finding such a system lies in the well-
optimal properties of linear regressions, that is,
solutions θ� can be found. Hence the problem
to find the mapping f .

arizing, starting from the state space descrip-

A,B,C,D) :

{
ẋ = A(ϑ)x+B(ϑ)u

y = C(ϑ)x+D(ϑ)u
(1)

(ϑ, s) = C(sI − A)−1B, we would like to
e reparametrization function θ = ξ(ϑ) and the
rmation of Σ to the linear regressive system,

Σ̃(φ, γ) :

{
θTφ(Z)= γ(Z)

ŷ= g̃(θ, Z−)
(2)

iscretization and shift-operator calculus

sequel, we will consider an LTI infinite-
sional system with control at the boundary.
ut loss of generality, we will focus on SISO type
s; extension to MIMO is straightforward. To

fy our analysis we consider a one-dimensional
l domain.

rst step towards a linear regressive realization of
ntinuous-time PDE model is to approximate it
nite dimensional model. We assume that we can
the following typical discrete-time linear state

representation Σd.

ption 1. There exists a discrete-time linear state
approximation of our LTI infinite dimensional
,{
wd(k + 1) = A(ϑ)wd(k) +B(ϑ)u(k)

y(k) = Cwd(k)
(3)

(ϑ) and B(ϑ) linear in ϑ as

A(ϑ) = Ā+ Ãϑ (4)

B(ϑ) = B̄ + B̃ϑ (5)

wd ∈ R
n and ϑ chosen as a lumped combina-

f original parameters such that (3)–(5) holds.

dealing with a diffusion process, the origi-
hite’ parameters are the diffusion constant, the
nd spatial discretization constant. Let us fur-
troduce the forward-shift operator q for ma-

ting the linear difference equations of (3) with



constant coefficients (see e.g Aström and Witten-
mark (1990)). Then, for what will follow in the
reparametrization step, consider the transfer function
G(ϑ, q)=C(qI−A(ϑ))−1B(ϑ) as a rational function
of polynomials in q and ϑ. For ease of notation, we
will omit the arguments ofA andB and write the time
instant k ∈ {1, 2, · · ·N} as index.

2.3 Linear regression by reparametrization

Splitting the rational transfer function G in a numera-
tor N and denominator part D, gives,

N(ϑ, q)uk = D(ϑ, q)yk (6)

with N and D polynomials in ϑ and q. For instance,
Pintelon et al. (1998), split N and D in functions of
the polynomial variable q (or the Laplace variable s)
and the parameter vector θ, so that N(ϑ)n(q)uk =
B(ϑ)d(q)yk is considered. It is common to treat the
entries of the vectors N(ϑ) and D(ϑ) as black-box
parameters for further estimation and prediction. As
a consequence, the link to the underlying ‘white’
parameters ϑ will soon be lost as the polynomial
order of N and/or D increases. However, we will try
to prevent this loss by decomposing N(�) and D(�)
not only in a shift operator dependent, but also in
a (physical) parameter dependent part so to obtain
polynomial coefficient matrices Ñ and D̃, that is,

N = ϕT Ñψ(q), D = ϕT D̃ψ(q) (7)

with,

ϕT =
(
θT 1

)
, ψ(q) =

(
1 q · · · qn−1 qn

)T
(8)

where θi = ξi(ϑ) for i ∈ {1, 2, · · · , n} and ξi
a polynomial function in ϑ. The final step in the
linear regressive reparametrization is to rewrite (6) to
the form θTφk = γk. Define therefore the polynomial
coefficient matrices,

Ñ =

(
(n̄ij) aN

bN cN

)
D̃ =

(
(d̄ij) aD

bD cD

)
(9)

with i, j ∈ {1, 2, · · · , n}, a� ∈ R
n×1, b� ∈ R

1×n and
c� ∈ R.

Furthermore, define

Zk =
(
Uk Yk

)T
=

(
Ū uk+n | Ȳ yk+n

)T
(10)

where,

Ūk =
(
uk uk+1 · · ·uk+n−1

)T

Ȳk =
(
yk yk+1 · · · yk+n−1

)T

Substitute (7), (8), (9) and (10) in (6), a transfer
function representation of Σd, and rewrite to,

ϕT
(
Ñ −D̃ )

Zk = 0 (11)

Now define,

φk =
(
(n̄ij) aN (−d̄ij) −aD

)
Zk (12)

γk =
(−bN −cN bD cD

)
Zk (13)
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ve that we can rewrite (11) to a linear regressive
tion, using the definitions (12) and (13):

yk+n = θTφk − γ̌k (14)

,

γ̌k = c−1
D

(−bN −cN bD
)
Žk, (15)

ˇ
k =

(
Ū uk+n Ȳ

)T
. After multiplication of

y q−n (i.e. a backward time shift is applied), we
rite (12)–(15) as our wanted linear regressive
:

Σ̃d :

{
θTφk−n = γk−n

yk = θTφk−n − γ̌k−n

(16)

that g in (2) has become a linear function
nd Žk−n, see (12) and (15). This leads to the
ing proposition.

sition 1. Given system Σd as in (3). Then,

xact explicit expressions ofN(ϑ, q) andD(ϑ, q)
s a function of n exist.
d (3) can be written in the form of Σ̃d as in (16)
ith θi =ξi(ϑ), a polynomial function.

o space limiting reasons, only a sketch of the
is given. More details can be found in the

cal report of Vries (2005).

F. (i). Let M = qI −A and the determinant
be denoted by M = det(M). By writing M

joint of M as Laplace expansions, and due to
earity of A(ϑ) and B(ϑ) in ϑ, it follows from
ion that M and adjM will be polynomials in q
with maximum degree n and n−1 respectively.
G=CM−1B andB linear in ϑ as in (5), the rest
proof follows from decompositions of N and D
7)–(8).
iven G(ϑ, q) = N(ϑ,q)

D(ϑ,q) , the transfer function
. Then, D(ϑ, q)yk = N(ϑ, q)uk and via direct
a and the proof of part (i) one readily obtains
= γk with θi = ξi(ϑ), a polynomial func-
otice that γk contains yk+n and we can write

uivalent form Σ̃d (16) after multiplication with
�

k 2. From the proof of Proposition 1(i) it fol-
irectly that,

he polynomial degree of N(ϑ, q) in q is de-
ermined by C and the adjoint of M . Let the
ntry cr be non-zero, with 1 ≤ r ≤ n. Then the
olynomial in q is of maximum degree n−r.
he polynomial degree of N(ϑ, q) in ϑ is deter-
ined by B(ϑ), C and the adjoint of M . Recall

hat B(ϑ) is linear in ϑ. Again, let the entry cr
e non-zero, with 1≤ r≤n. Then the maximum
egree of polynomial in ϑ is n−r+1.
N = bN = cN = 0, due to the maximum degree
− 1 of the polynomial adjM in ϑ and q. More

enerally, if the maximum degree of polynomials



is n − r, 1≤r≤n, then the lower r rows of
Ñ is filled with zeros. This result is caused by
causality of Σd.

Remark 3. (Identifiability). After defining
Φ=(φ1, · · · , φN ) and Γ = (γ1, · · · , γN ) one obtains:
θT Φ = Γ. Then, the least-squares estimate is given
by: θ̂ = (ΦΦT )−1ΦΓT . Consider Ñ a matrix orig-
inating from a polynomial of maximum degree n in
ϑ and maximum degree n − 1 in q. Then, a unique
solution is found as long as ker (Φ) ∈ ∅ or equiva-
lently (i) rank (Φ) is full or (ii) det (ΦΦT ) �= 0. It
is straightforward to show that Zk �= 0 is a sufficient
condition for a unique solution.

Remark 4. (Predictability). Note that, in order to pre-
dict yk+n, (i) if cD = 0, (−bN − cN bD)Žk = 0 for
all tk, or, (ii) cD �= 0, should hold. This follows from
the assumption that yk+n exists, see (14)–(16).

Consequently, we will not need the calculation of
M−1 by numerical matrix inversion methods, as we
have an explicit series solution. A diffusion example
case with Dirichlet boundary conditions will be used
to further illustrate the mentioned sequence of steps.

2.4 Sensitivity analysis

So far we have derived the model structure represen-
tation γk = θTφk, with θ explicitly depending on the
physical ϑ. Let us now, on the basis of this, investigate
its sensitivities. We start by realizing that the regres-
sion model of Σ̃d exhibits an input-output mapping
from Uk to the regression response γk. This becomes
clear by substituting the convolution sum, i.e. in ma-
trix form, Yk =HUk in (13) with H ∈ R

nH×nH . The
entries of the Hankel matrix H contain the Markov
parameters and can directly be found by an impulse
response as a function of the real parameters as θ0.
Consequently, for nH = n (notice that nH should be
large in order to satisfactorily approximate the infinite
impulse response, so that n will then be limiting),

φk =
(
(n̄ij) − (d̄ij)H

)
Uk (17)

Further, denote the real (unknown) parameters θ0. We
obtain the sensitivities of γ by differentiation and
substitution of (17) in (16), which gives,

γθ �
dγ

dθ
=

(
(n̄ij) − (d̄ij)H

)
U (18)

γθU �
dφ

dU
= (n̄ij) − (d̄ij)H (19)

An explicit solution for γθ and γθU in a compartmental
diffusion system (as in the next section) is reported in
(Vries, 2005).
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3. RESULTS

boundary controlled diffusion process

der an infinite dimensional system Σe of par-
type on [0,∞) × [0,∞),

:

⎧⎪⎪⎨
⎪⎪⎩
∂w

∂t
(x, t) = α2 ∂

2w

∂x2
(x, t)

w(0, t) = u(t), w(x, 0)=w0(x)

y(t) = w(x∗, t)

(20)

w0(x) ∈ L2(0,∞), x∗ ∈ [0,∞) and U = R.
ystem is a boundary control system, see (Curtain
wart, 1995).

mplies that for smooth initial condition w0 and
h control u, with w0(0) = u(0), there exists
ue classical solution of Σe with w(x, t) ∈
∞) for all t ≥ 0. The solution to this prob-
hen applying a step input u(t)= 1[0,∞)(t)

ll-known and is given by the output y(t) =
∗/(2α

√
t)

)
1[0,∞)(t), where α2 can be inter-

as the heat transfer constant or diffusion con-
Σe may thus describe a heating process of an
ely thick homogeneous wall or equivalently a
ion phenomenon of e.g. penetrating pollutant
ntrations from the earth surface into deeper lay-

nknown parameter α2 can be estimated via non-
estimation techniques using either an analytical
erical solution of (20). As said, this may lead
l solutions and a high computational effort. As
rnative, we seek an approximation of (20) and
d as Σe

d, such that it is equivalent to Σ̃d as in
In the sequel, we will follow the same name
ntions for the subsections as in section 2.

iscretization and shift-operator calculus

applying central finite differences, we get the
te-time compartmental system Σe

d in the form of
defining the lumped parameter,

ϑ = α2Λ

Λ = Δt/Δ
2
x denotes the fraction of the time

ntial operator Δt and the place differential op-
Δx. According to (4), Ā becomes the identity
I , I ∈ R

n×n and Ã a symmetric 3-banded
tz matrix with on the main diagonal ãii = −2
ll entries on the first sub- and superdiagonal
= ãi−1,i = 1, and further, B = (ϑ 0 · · · 0)T .

bservation y(t) = w(t, x∗) is approximated by
with C mapping a ‘point’ observation at the j-
partment (i.e cj∗ = 1, j∗ ∈ j). Notice that a
ith n points directly leads to n states, because

ve started with one state variable and one spatial
on in the PDE model Σe.



After forward-shift operations on Σe
d, it will later on

become clear that it is convenient to introduce,

M = qI −A =

⎛
⎜⎜⎜⎜⎝
ν 1 0
1 ν 1

· · ·
1 ν 1

0 1 ν

⎞
⎟⎟⎟⎟⎠ϑ (21)

with ν = (q − (āii + ãiiϑ)) /ϑ = (q − 1)/ϑ+ 2.

3.3 Linear regression by reparametrization

We can now decompose the numerator N and denom-
inator D of the transfer function G as in (7), given B
and C. We obtain the following,

Proposition 5. Given Σe
d(A,B,C), with A, B and C

as defined above, then an exact explicit expression for
Σ̃e

d(φ, γ, g) is given by a series solution.

PROOF. Following Hu and O’Connell (1996), we
can write M−1 as a quotient of series solutions in
ν. The rest of the proof is analogous to the proof of
Proposition 1. �

Because we are dealing with a single parameter, the
polynomial functions ξi become ξi(ϑ)=ϑn−i+1, i=
1, 2, · · · , n, so that θT =

(
ϑn ϑn−1 · · · ϑ)

.

Furthermore, equation (9) becomes indeed,

Ñ =

(
(n̄ij) 0

0 0

)
, D̃ =

(
(d̄ij) 0
bD cD

)
(22)

It should be noted that (n̄) and (d̄) become lower
triangular matrices with properties as stated in Remark
2. Now, denote for notational reasons n∗=n− j∗. We
find by direct algebra an explicit expression for (22)
and obtain the following.

Proposition 6. Given the SISO-LTI system (20), then
the entries in (22) are given by

d̃ij =

⎧⎨
⎩(−1)i+j−2

(
n+i

n−i+1

)(
i−1

j−1

)
if i ≥ j

0 elsewhere

ñij =

⎧⎪⎪⎨
⎪⎪⎩

(−1)i+j−2

(
n∗+i

n∗−i+1

)(
i−1

j−1

)
if i ≥ j∧
i ≤ n∗+1

0 elsewhere

where
(
n
k

)
denotes the binomial coefficient of n over

k.

Observe from Proposition 6 and the definition in (9),
that (22) is specified with

n̄ij = n̄{1···n−1}{1···n−1} d̄ij = d̄{1···n−1}{1···n−1}

bD = d̃n{1···n−1} cD = d̃nn
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we rearrange terms as in (10)–(13) in order
the regression vector φk and the so called

se vector γ. Each row i of the regression
Φ = [φ1 · · · φk], with column entry k ∈

· · · , N}, becomes,

Φi,k =

i∑
j=1

(
n̄ijuk+j−1 − d̄ijyk+j−1

)
ch entry k of the so-called response vector γ

e that here i ∈ {1, · · · , n+ 1}), is given by,

γk = (−1)n

n+1∑
i=1

(−1)i−1

(
n

i− 1

)
yk+i−1

(14) it follows that a predictor of the output
based on the uniquely estimated parameters θ̂

ivalently written as,

n = θ̂T Φi,k − γ̌, with,

γ̌ = (−1)n

n∑
i=1

(−1)i−1

(
n

i− 1

)
yk+i−1 (23)

ve that Σ̃e
d has only become dependent on the

r of compartments n, the sensor position j∗, the
eters θ, and available input-output data.

nsitivity Analysis

ation of the sensitivity matrix γθU gives us for
n impulse response as a function of θ0 valu-
nformation about sensitivities, independent of

. For the diffusion system Σe
d with α = 0.4,

H = 8, we calculated γθU at different sensor
ns. Although seeming counter-intuitively, fig-
hows that it is recommended to put the sensor at
st compartment which is closest to the boundary
see also (Keesman and Stigter, 2002). In this
rtment, all sensitivities are excited, whereas the
tude rapidly diminishes if the sensor is placed
r away. The eigenvalues in the right graph in fig-
onfirm this finding, but also show that there is a
ill-conditioning of γθU . The left graph in figure

the parametric sensitivity γθ when applying
input 1k, k = 1, · · · , n, which is obtained by

ation of the columns of γθU . Again, it seems
ble to place a sensor in the first compartment.
stingly, we notice that a constant input may not
iting enough if we compare it with the impulse
se (cf. figure 1). This indicates that a pulsating
ce with certain switching probability is to be

red.

4. CONCLUDING REMARKS

he proposed procedure it is possible to conserve
derlying compartmental physical model struc-
combination with linear regressive parameter

tion. The transformation to a newly obtained



Fig. 1. Contour plots of the sensitivity matrix γθU at
different sensor positions j∗
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Fig. 2. Parametric sensitivities γθ for a step input
and eigenvalues of the sensitivity matrix γθU , the
(×), (◦), (∗) and (�)-marked lines correspond to a
sensor at j∗=1, 3, 6 and 8 respectively.
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linear regressive system Σ̃ from a state space system
Σ is based on linearity of the system and linearity
in the parameter ϑ of A(ϑ) and B(ϑ). An a priori
analysis can be made on φ to inspect the (parametric)
sensitivities.

In practice however, there will be measurement noise
deteriorating both the inputs and outputs of the linear
regressive system Σ̃d in a correlated manner. This
unwanted effect can be tackled by e.g. TLS techniques
or prefiltering and is subject to further study.

The sketched methodology is attractive for estimation,
prediction and insight in experimental design issues,
when physical knowledge in the model structure is to
be preserved. Although the derivation of the structures
can be quite elaborative, they may aid in the insight of
the model structure properties. For compartmental dif-
fusive models we have derived these linear regressive
structures.
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