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1.1   Introduction  

 

 

Required knowledge for this text is data exploration, 

multiple linear regression, and generalized linear 

modelling (e.g., Zuur et al . 2010, 2012, 2014).  
  

In Zuur et al. (2014) two detailed statistical analyses on wind farm data sets are presented. Both data 

sets consisted of data sampled before construction of the wind farm ( T0 data), and after building the 

wind farm ( T1 data). Advanced statistical techniques like zero inflated generalised additive mixed models 

(GAMM) with 2 -dimensional spatial smoothers  were applied.  

In this report, data on Common Guillemot  / Razorbills (ñrazormotsò Uria aalge  / Alca torda )  from seven 

European offshore wind farms (OWEZ, PAWP, Horns Rev I, Horns Rev II, Apha Ventus, Blighbank, Robin 

Ridge) are analysed. The sizes of the wind farms and the number of turbines per wind farm differ. The 

density of turbines is defined as the number of turbines divided by the size (in km 2) of the wind park, 

and for the seven wind park parks used in the current analyses we have the following den sities:  
 
  Density    Wind farm  

1    0.92          OWEZ 

2    2.77          PAWP 

3    2.89       HornsII  

4    3.07   AlphaVentus  

5    3.26    RobinRidge  

6    4.07        HornsI  

7    4.16     Blighbank  
 

In this report we will investigate whether there is a turbine density effect on Common Guillemots and 

Razorbills. As compared to Zuur et al . (2014), a different statistical analysis is applied; we only use data 

sampled during the post -construction periods (whereas in Zuur et al . (2014) T0 and T1 data was used) , 

since  it is not always clear where the T0 data stops and the T1 period starts.  

 

1.2   Analysis approach  

In the next five sub -sections we discuss the details of the models that were applied on the post -

construction data ( T1).  

1.2.1 Distribution  

The response variable is the density of Guillemots. Density is defined as observed numbers divided by 

survey area. Using a generalized linear model (GLM) allows us to model the number of birds with a 

Poisson, negative binomial or zero inflated distribution, while using (the log  of) survey area as an offset 

variable (Zuur et al . 2007). This means that we assume a linear relationship between sampling effort and 

expected number of birds.  

We will consider the following three statistical distributions for the number of birds:  
 
¶ Poisson distribution.  
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¶ Zero inflated Poisson distribution.  
¶ Negative binomial distribution.  

 

 

Density of bird is equal to the number of birds divided 

by survey area. This allows us to model the number of 

birds using a GLM for count data with the log of the 

survey  area as an offset variable. This approach 

assumes a linear relationship between sampling effort 

and expected number of birds.  
  

1.2.2 Covariates  

In all GLMs used in this report, the expected values of birds are modelled with a log link. For example, 

for  the GLM with a Poisson distribution we use:  
 

Birdsi ~ Poisson(m i )

E Birdsi( ) = m i

log m i( ) = Covariatesi +log(Survey areai )

 

 

Hence, there is an exponential relationship between the expected number of birds and the covariates, 

ensuring that the fitted values are positive. Similar expressions are used for the GLMs with a zero 

inflated Poisson (ZIP) or negative binomial (NB) distri bution, see Zuur et al . (2012) for details.  

We will consider the following three models in terms of the covariates:  
 
¶ Covariates = Distance effect  
¶ Covariates = Distance effect plus Year effect  
¶ Covariates = Distance effect plus Year effect plus an interaction between distance and Year (the 

distance effect changes per year)  
 

The term óDistanceô stands for distance of sampling location (bird count) to the wind farm. 

 

 

We will use distance and year as covariates.  

  

1.2.3 Correlation; approach 1  

The GLMs that we introduced in the previous subsection do not take into account spatial and/or temporal 

correlation. One approach to include spatial correlation into these models is by adding a residual term ei 

to the predictor function (the predictor function  is the term on the right hand side of the ólog(mi) =ô), and 

allow it to be spatially correlated. Such a model is given by:  
 

Birdsi ~ Poisson(m i )

E Birdsi( ) = m i

log m i( ) = Covariatesi + log(Survey areai )+ e i  
 

We considered the following three types of correlation structure:  
 
¶ Spatial correlation between all sampled observations. This type of correlation was used in Zuur et 

al . (2014). It allows for spatial correlation between observation i in year k and observation j  in 
year l, even if the two observations were taken in year k = 2000 and year l = 2010.  

¶ Spatial correlation between all sampled observations from the same survey. We consider the 
spatial correlation from different surveys as independent  realisations. Hence, we only allow for 
spatial correlation between observations f rom the same survey.  

¶ Spatial correlation that changes over time (interaction between spatial and temporal correlation).  
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Statistical details and R implementation are discussed in Blangiardo et al . (201 3). The package INLA 

(Rue et al . 2014) allows one to f it these models from within R (R Core Team 2013) . 

The full model specification is then given by:  
 

Birdsi ~ Poisson(m i )

E Birdsi( ) = m i

log m i( ) = Intercept + b 1 ´ Distancei + log(Survey areai )+ e i

e i  spatially(-temporal) correlated noise  

 

As discussed earlier, it is also an option to add year as a categorical covariate (and the interaction 

between distance and year).  

Whe n we ran these models on data from each wind farm we noticed that in most of the models the 

parameter b1 (the slope for the covariate Distance) was not significant, indicating that there is no 

distance effect.  

We then modelled distance as a categorical co variate, and also as a binary covariate (in -  or not inside 

the wind park). In only a few models we obtained a significant distance effect. Note that this type of trial 

and error modelling has a certain fata phishing element.  

A more detailed data exploratio n and initial modelling results showed a non - linear distance effect. We 

therefore used models of the form:  
 

Birdsi ~ Poisson(m i )

E Birdsi( ) = m i

log m i( ) = f (Distancei )+ log(Survey areai )+ e i

 

 

where the notation f(Distance) stands for smoothing function. Hence, this model allows for a non - linear 

distance effect (though keep in mind that the model is already non - linear due to the log - link function).  

INLA allows for Poisson, ZIP and NB GAMs with spatial, and spatial - temporal correlation, but we ended 

up with rather non -smooth smoothers. We also encountered various numerical optimisation errors. We 

therefore programmed a low rank thin plate regression spline, and also an OôSullivan spline (these are 

more advanced smoothers as compared to the available smoothers in INLA) and used these in INLA. See 

Zuur et al . (2014) for examples and R code. INLA produced rather large confidence intervals for the 

smoothers and computing time was in the order of 24 hours per model on a modern computer. The main 

problem is the large data size; some wind farms contained 50,000 observation s. For smaller data sets (< 

5,000 observations) we did not encounter major problems.  

The table below shows the number of observations per wind park.  
 
AlphaVentus       49086         

Blighbank    1238         

HornsRevI    8590         

HornsRevII   6247              

OWEZ       6571         

PAWP    5299           

RobinRigg   9948  

 

 

Although the software package INLA (which can be 

executed from within R) allows one to fit GAMs with 

spatial and/or temporal correlation structures, the 

tools for smoothi ng functions, in combination with the 

large data sets, means that we end up with excessive 

computing time and poor results. More time and 

research is needed in order to run INLA on such large 

data sets.  
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1.2.4 Correlation; approach 2  

Instead of modelling the spatial correlation with a spatially correlated residual term, we can use a 2 -

dimensional smoothing function of the spatial coordinates (Xkm and Ykm). And we can also use Survey 

as a random intercept. This results in models of the form:  
 

Birdsi ~ Poisson(m i )

E Birdsi( ) = m i

log m i( ) = f (Distancei )+ log(Survey areai )+ f (Xkmi,Ykmi )+ Survey

 

 

The inclusion of the 2 -dimensional smoother f(Xkm, Ykm) and the random intercept Survey is a quick 

and dirty way to capture the spatial correlation. Theoretically, its form should be similar to the residual 

spatial correlation estimated  by INLA. The advantage of this approach is that we can use the gamm4 

function from the gamm4 package (Wood 2006) to fit this model. The disadvantage is that this package 

does not have facilities to fit a ZIP distribution or a NB distribution with random e ffects.  

 

 

We will use a 2 -dimensional smoother f(Xkm, Ykm) 

and a random intercept to capture the spatial 

correlation.  
  

1.2.5 Dealing with overdispersion  

The model presented in Subsection 1.2.5 is in fact a generalized additive mixed effects model (GAMM ) 

with a Poisson distribution, two smoothers and a random intercept. Once a Poisson GAMM has been fitted 

we need to check the dispersion parameter. Its value should ideally be 1, with values larger than 1 

indicating overdispersion and values smaller than 1  underdispersion. If overdispersion (or 

underdispersion) occurs, then we need to figure out why this happens and solve the problem. Likely 

causes of overdispersion are zero inflation, correlation, or large variance, among many other possible 

causes. The wi nd farm data has a large number of zeros. However, one should not immediately apply 

zero inflated models. It is well possible that a Poisson GLM or Poisson GAMM can be used to analyse data 

with many zeros. Also, models that contain a zero inflation compone nt and a spatial correlation term may 

encounter numerical estimation problems as both components may be fighting for the zeros. A negative 

binomial distribution allows for more variation than a Poisson distribution, but this mechanism may also 

capture the excess number of zeros. And a smoother may also be able to model the zeros. Hence, we 

have five components that could potentially model the large number of zeros; the smoothing function 

f(Distance), the 2 -dimensional smoother f(Xkm, Ykm), a spatial correla tion term, the zero inflation 

component in a ZIP model, and the negative binomial distribution. Suppose that we have lots of 

observations sampled close to each other, with lots of zero counts. This may either be considered as 

spatial correlation, zero infl ation, or large variance. Or a covariate may explain the zero counts.  

 

 

The problem of zero inflation can be dealt with in at 

least 5 different ways. It is unwise to fit a model that 

contains all approaches (e.g. a zero inflated negative 

binomial GAMM with spatial correlation and spatial 

smoothers). It is better to fit a model  that only 

contains 1 or 2 approaches. In our GAMMs the 2 -

dimensional smoother f(Xkm, Ykm) can potentially 

model the zeros, and the same holds for the 

f(Distance) smoother.  
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If it turns out that the proposed Poisson GAMM is still overdispersed , then we will add an observation 

level random intercept (Elston et al . 2000). This is an extra latent variable that scopes up any extra 

variation not explained by the other covariates in the model.  

1.3. Setup of the analyses  

The total number of observation s for the seven wind farms is around 100,000, which makes computing 

time rather long. We therefore analyse the data for each wind park separately.  

1.4 Data exploration and model validation  

Prior to the analysis of the data , a data exploration following the  protocol described in Zuur et al . (2010) 

is applied. Once models have been fitted , model validation is applied to inspect the residuals for any non -

linear patterns.  
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2 Results  

We present the results for each wind park. The order of the results per wind par k is based on the order 

of the turbine density per park. To compare like -with - like we only use the data sampled up to 12 

kilometer from the wind parks.  

 

2.1 Results for OWEZ  

The data set for this park contains around 6,500 observations. Sampling took place from 2002 to 2012, 

though not every year was sampled. Figure 1 shows a so -called Cle veland dotplot of the birds sampled at 

OWEZ. In this graph the number of birds are plotted along the x-axis and the row number (as imported 

from the data file) is along the y-axis. A Cleveland dotplot allows one to check the data for outliers. In 

this case  we can see the large number of zeros (all the dots on the left), and there are only a few 

observations of relative large number s. In our experience, when the majority of the observations are 

between 0 and 25 - ish, a Poisson distribution tends to work well.  If the majority of the observations are 

considerably larger than 25 - ish, we tend to end up with a negative binomial distribution.  

 

Figure 1. Cleveland dotplot of the number of birds sampled at OWEZ.  

 

We also made scatterplots of distance (in kilometers) versus bird density; see Figure 2. Note the 

differences in patterns between the years.  
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Figure 2. Scatterplot of  bird density versus distance for the OWEZ data.  

 

We first applied a GAMM of the form:  
 

Birdsi ~ Poisson(m i )

E Birdsi( ) = m i

log m i( ) = f (Distancei )+ log(Survey areai )+ f (Xkmi,Ykmi )+ Survey

 

 

The smoothing function f(Distance) is presented in Figure 3. Note the wide 95% point -wise confidence 

bands for the smoother; this indicates that the smoother is not significantly different from 0. This is 

confirmed by the numerical output of the model (not presented here). The model can be rewritten as:  
 

Birdsi ~ Poisson(m i )

E Birdsi( ) = m i

m i = ef (Distancei )+log(Survey areai )+ f (Xkmi ,Ykmi )+Survey

   = ef (Distancei ) ´ elog(Survey areai )+ f (Xkmi ,Ykmi )+Survey 

 

Hence, a non -significant smoother f(Distance) in the GAMM means that   
 

exp( f(Distance)) º exp( 0) º 1.  
 

Therefore, a non -significant smoother f(Distance), as in Figure 3, means that we can state that expected 

number s of birds do not increase, or decrease, when we move away from the wind farm.  
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Figure 3. Results for OWEZ data. One dis tance smoother was used.  

 

The GAMM assumes that the distance effect is the same in each year. This may be a plausible 

assumption if the data has been sampled in only 1 or 2 sequential years, but sampling at OWEZ took 

place between 2002 and 2012. The model can easily be extended to allow for a different distance effect 

per year. Such a GAMM is specified below.  
 

Birdsi ~ Poisson(m i )

E Birdsi( ) = m i

m i = efk (Distancei )+log(Survey areai )+ f (Xkmi ,Ykmi )+Survey

   = efk (Distancei ) ´ elog(Survey areai )+ f (Xkmi ,Ykmi )+Survey  

 

Note the subscript k  for the fk(Distance) smoother. We now have one smoother for each year k. The 

estimated smoothers are pre sented in Figure 4. The AIC indicated that the model with 9 smoothers is 

better than the model with 1 smoother.  
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Figure 4. Smoothers for each year for the OWEZ data.  

 

The numerical output for the GAMM with 9 smoothers is given below.  
 
Parametric coefficients:  

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)  - 2.7713     0.6448  - 4.298 1.73e - 05  
 
Approximate significance of smooth terms:  

                      edf Ref.df Chi.sq  p - value     

s(Distkm):fYear2002  1.00   1.00  0.799 0.371319     

s(Distkm):fYear2003  1.00   1.00  0.025 0.874036     

s(Distkm):fYear2004  1.00   1.00 10.964 0.000929  

s(Distkm):fYear2007  2.99   2.99 13.310 0.003994  

s(Distkm):fYear2008  1.00   1.00  8.847 0.002936  

s(Distkm):fYear2009  1.00   1.00  0.151 0.697538     

s(Distkm):fYear2010  1.00   1.00  0.650 0.420167     

s(Distkm):fYear2011  1.00   1.00  4.193 0.040586    

s(Distkm):fYear2012  1.00   1.00  0.057 0.811017     

s(Xkm,Ykm)          15.37  15.37 93.279 4.12e - 13 
 

Note that the distance smoother is only significant for the years 2004, 2007 and 2008. The number 

under edf is the degrees of freedom of a smoother. A value of 1 means a straight line and the larger the 

value , the more non - linear is a smoother. The optimal edf is estimated using a process called cross -

validation. By the way, the flexibility of smoothers to estimate the optimal degrees of freedom is yet 

another way how a GAMM can fit excessive number of zeros.  

In all years, except for 2007, the distance effect is linear. Let us zoom in on the smoother for 2004, 2007 

and 2008; see Figure 5. When the smoother f(Distance) is negative, the exp( f(Distance)) term is smaller 

than one, which implies a decrease in expected number of birds. If the smoother is larger than 0, there is 

an increase.  
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Figure 5. The smoothers for 2004, 2007 and 2008 for OWEZ. Smoothers are centered 

around 0.  

 

To summarise the results of the GAMM with 9 smoothers, there is a distance effect but only in 3 years. In 

2004 there is a negative effect; the further away from the wind  farm the fewer (!) birds. In 2007 there is 

a non - linear effect, but confidence bands around the distance smoother are such that the distance effect 

is up to about 1 km. In 2008 there is a positive effect.  

 

2.2 Results for PAWP  

The second smallest wind par k is PAWP. We applied a GAMM with one distance smoother, and a GAMM 

with a distance smoother per year and compared the two models using the AIC. The AIC indicated that 

the model with one distance smoother for all years is better. The estimated smoother is presented in 

Figure 6. 

Note the linear shape of the smoother to about 3 km. In this distance range the smoother is negative. 

That means that the further we more away f rom the PAWP wind farm, the more birds we sample, but 

from 3 km onwards this effect plateaus.  

At the distance of -2 km (this is at the centre  of the wind park) the value of the smoother is around -1. 

The value of exp( -1) is around 0.36. This means that from 3 km to -2 km there is a decrease of 74% in 

bird numbers.  

 

-2 0 2 4 6 8 10 12

-3
-2

-1
0

1
2

3

Distance (km)

s
(D

is
tk

m
,1

):
fY

e
a

r2
0

0
4

-2 0 2 4 6 8 10 12

-3
-2

-1
0

1
2

3

Distance (km)

s
(D

is
tk

m
,2

.9
9

):
fY

e
a
r2

0
0

7

-2 0 2 4 6 8 10 12

-3
-2

-1
0

1
2

3

Distance (km)

s
(D

is
tk

m
,1

):
fY

e
a

r2
0

0
8



 11  of 20  

 

 

Figure 6. Smoother for distance for the PAWP data.  

 

 

For the PAWP data there is a distance effect up to 

about 3 km distance from the wind park. At the centre 

of the wind park there is a 74% decrease in abundance 

as compared to the 3 +  km values.  
  

2.3 Results for HornsRevII  

The third wind farm in terms of turbine density gave a non -significant distance effect. The smoother is 

presented in Figure 7. Although the smoother is not significant, it is interesting to note that  its shape 

again indicates a plateau pattern. It may be an option to add seasonal information in order to reduce the 

width of the confidence bands. If the confidence bands would be smaller, then the interpretation would 

be identical to the PAWP data (thoug h the distance where it reaches the plateau is slightly further away ) . 
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Figure 7. Smoother for the HornsRevII data.  

 

 

The shape of the HornsRevII distance smoother looks 

similar to that of the PAWP data, but unfortunately the 

confidence bands are wider. Further research may 

result in a better model.  
  

2.4 Results for AlphaVentus  

This data set contains more than 50,000 observations and we encountered various numerical estimation 

problems with the GAMM. We fitted a model with o ne smoother for distance, and also a model with 3 

smoothers (sampling took place in 3 years, though in the third year only November was sampled). The 

AIC indicated that a model with 3 distance smoothers is better. The three estimated smoothers are 

presente d in Figure 8. The results for 2010 and 2011 show that there is a negative wind farm effect up to 

about 4 km. As compared to the previous wind farms, the distance effe ct is stronger. Inside the wind 

park the value of the smoother is around   -3 and -2 for 2010 and 2011, respectively. That is a 90% 

reduction! Also note that the smoother does not plateau. Instead, observed numbers increase for larger 

distance.  

There is a  small amount of overdispersion in these models that is not accounted for yet. Hence, further 

model improvement is needed.  




