


### Flood Insurance and Adaptation

#### Flood insurance in the Netherlands

- No general coverage available
- Ex-post public compensation (WTS)

#### Insurance as an instrument to increase economic resilience

- Risk spreading
- Financial security
- -Incentives to reduce losses via price signal (Botzen et al., 2009 Ecol. Econ.)
- -Mitigation via insurance limits variance of risk (Aerts & Botzen et al., 2008 Ecol. Soc.)
- -Prevents government relief paid by tax money



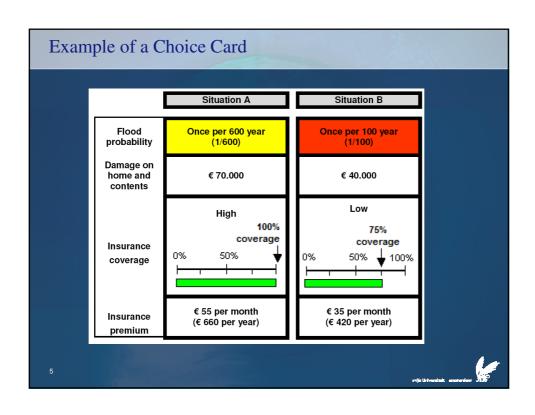
## Public-Private Partnership for Insuring Flood Damage

| Extreme damage   | Government                                                        |
|------------------|-------------------------------------------------------------------|
| Medium<br>damage | Capital markets Reinsurance companies Primary insurance companies |
| Low<br>damage    | Households and companies                                          |

Source: Botzen and van den Bergh (2008) Risk Analysis

Is WTP for flood insurance sufficient to make a private market viable?

3


## Valuing Demand for Flood Insurance

Internet survey of 1200 homeowners in the river delta to examine

- WTP for flood insurance in the current situation
- Effects of climate and socio-economic change on WTP
- Influence of government compensation on WTP
- -Possible problems with adverse selection
- Heterogeneity of WTP



4



| Attributes                        | Levels              |
|-----------------------------------|---------------------|
| Flood probability                 | Once per 1250 years |
|                                   | Once per 600 years  |
|                                   | Once per 400 years  |
|                                   | Once per 100 years  |
| Damage on home contents and house | € 40,000            |
|                                   | € 70,000            |
|                                   | € 120,000           |
| Insurance coverage                | High (100%)         |
|                                   | Low (75%)           |
| Insurance premium                 | € 10 per month      |
|                                   | € 20 per month      |
|                                   | € 35 per month      |
|                                   | € 55 per month      |
|                                   | € 80 per month      |

### **Insights from Economic Decision Theories**

Prospect theory (Kahneman and Tversky, 1992)

- Non-linear probability processing

Prospective reference theory (Viscusi, 1989)

- Individual risk perceptions

Availability heuristic (Kahneman et al., 1982)

- Experience of flooding

Samaritan syndrome (Kunreuther et al., 2009)

- Government relief

7



## Model with Observed Heterogeneity

 $U_{\text{Insurance}} = \beta_1 * SQRT(probability) + \beta_2 * damage + \beta_3 * coverage + \beta_4 * (coverage * close to river) + \beta_5 * price + \beta_6 * (price * high income)$   $U_{\text{No insurance}} = constant + \beta_k * x_n$ 

Where x contains variables on (n=25)

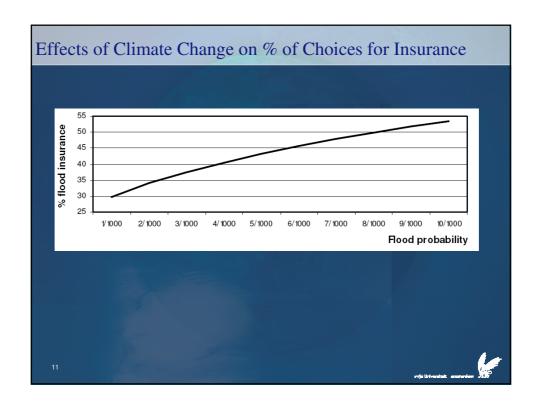
- Availability of government relief
- Perceptions of flood probability, flood damage, climate change
- Experience with flooding
- Geographical characteristics (GIS)
- Risk aversion and actual insurance purchases
- Socio-economic characteristics

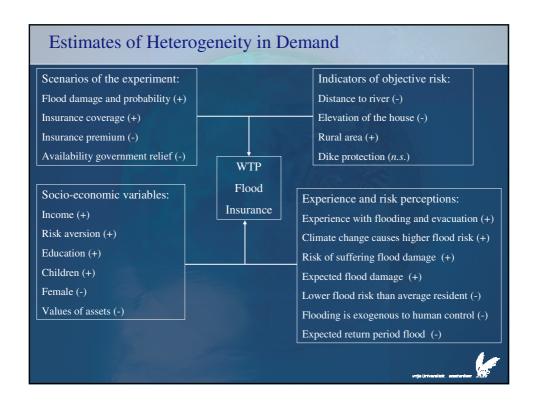


# Unobserved Heterogeneity

## Mixed Logit Model

- Behavioral literature indicates heterogeneity in probability processing
- Random parameter of probability attribute


$$p_{ni} = \int \prod_{t=1}^{T} \left( \frac{e^{\beta x_{nit}}}{\sum_{j} e^{\beta x_{njt}}} \right) f(\beta) d\beta$$


9

6

# Results of the Model with Heterogeneity

|                                            | Logi        | t model        | Mixed logit |                |  |
|--------------------------------------------|-------------|----------------|-------------|----------------|--|
| Variable                                   | Coefficient | Wald-statistic | Coefficient | Wald-statistic |  |
| Attributes and interactions (U Insurance): |             |                |             |                |  |
| Flood probability                          | 10.0541***  | 7.67           | 18.7052***  | 11.99          |  |
| Flood damage                               | 0.0041***   | 3.70           | 0.0044***   | 3.72           |  |
| Insurance coverage                         | 0.0072**    | 2.33           | 0.0077**    | 2.36           |  |
| Insurance coverage * Close to main river   | 0.0032***   | 2.58           | 0.0035***   | 2.59           |  |
| Insurance premium                          | -0.0447***  | -20.48         | -0.0486***  | -20.12         |  |
| Insurance premium * High income            | 0.0117***   | 3.44           | 0.0131***   | 3.60           |  |
| Standard deviation flood probability       | n.a.        | n.a.           | 18.7052***  | 12.00          |  |
| Constant                                   | 0.6173*     | 1.68           | 1.0616***   | 2.70           |  |
| Number of observations                     | 2751        |                | 2751        |                |  |
| Log likelihood                             | -2061       |                | -2027       |                |  |
| Pseudo R <sup>2</sup>                      | 0.32        |                | 0.33        |                |  |





# Market Penetration Insurance under a Range of Scenarios

## Insurance premiums

- Risk based: *probability* \* *damage*
- Loading factor similar as in NFIP

| Socio-economic scenarios |               | Climate change scenarios     |          |                     |                |  |  |
|--------------------------|---------------|------------------------------|----------|---------------------|----------------|--|--|
| Government relief        | Expected      | Current climate Small change |          | Middle large change | Extreme change |  |  |
| available:               | Flood damage: | 1 in 1250                    | 1 in 600 | 1 in 400            | 1 in 100       |  |  |
| No                       | € 40,000      | 58%                          | 59%      | 59%                 | 46%            |  |  |
| No                       | € 70,000      | 58%                          | 56%      | 53%                 | 21%            |  |  |
| No                       | € 120,000     | 58%                          | 52%      | 44%                 | 4%             |  |  |
| Yes                      | € 40,000      | 49%                          | 50%      | 47%                 | 38%            |  |  |
| Yes                      | € 70,000      | 49%                          | 47%      | 45%                 | 16%            |  |  |
| Yes                      | € 120,000     | 49%                          | 43%      | 36%                 | 3%             |  |  |



# WTP, Conditional WTP, and Risk Premiums for Insurance

$$\Delta E(CS_n) = \frac{1}{\alpha_n} \left[ \ln \left( \sum_{j=1}^{J1} e^{V_{nj}^1} \right) - \ln \left( \sum_{j=1}^{J0} e^{V_{nj}^0} \right) \right]$$

|                          |            |                                                    |           |              |          | -17/                | 102575 (87.7) |                |          |        |
|--------------------------|------------|----------------------------------------------------|-----------|--------------|----------|---------------------|---------------|----------------|----------|--------|
| Insurance coverage and   |            | Flood probabilities under climate change scenarios |           |              |          |                     |               |                |          |        |
| socio-economic scenarios |            | Current climate                                    |           | Small change |          | Middle large change |               | Extreme change |          |        |
| Insurance                | Government | Expected                                           | 1 in 1250 |              | 1 in 600 |                     | 1 in 400      |                | 1 in 100 |        |
| coverage                 | relief     | flood damage:                                      | WTP       | CWTP         | WTP      | CWTP                | WTP           | CWTP           | WTP      | CWTP   |
| 100%                     | No         | € 40,000                                           | 180       | 220          | 209      | 259                 | 233           | 290            | 388      | 491    |
|                          |            |                                                    | {148}     | {188}        | {142}    | {192}               | {133}         | {190}          | {-12}    | {91}   |
| 100%                     | No         | € 70,000                                           | 196       | 240          | 227      | 280                 | 252           | 312            | 414      | 520    |
|                          |            |                                                    | {140}     | {184}        | {111}    | {164}               | {77}          | {137}          | {-286}   | {-180} |
| 100%                     | No         | € 120,000                                          | 225       | 274          | 260      | 317                 | 286           | 352            | 458      | 569    |
|                          |            |                                                    | {129}     | {178}        | {60}     | {117}               | {-14}         | {52}           | {-742}   | {-631} |
| 100%                     | Yes        | € 40,000                                           | 134       | 167          | 159      | 199                 | 178           | 226            | 314      | 405    |
|                          |            |                                                    | {102}     | {135}        | {92}     | {133}               | {78}          | {126}          | {-86}    | {5}    |
| 100%                     | Yes        | € 70,000                                           | 148       | 183          | 174      | 217                 | 195           | 245            | 337      | 432    |
|                          |            |                                                    | {92}      | {127}        | {57}     | {101}               | {20}          | {70}           | {-363}   | {-268} |
| 100%                     | Yes        | € 120,000                                          | 172       | 212          | 201      | 250                 | 224           | 280            | 377      | 478    |
|                          |            |                                                    | {76}      | {116}        | {1}      | {50}                | {-76}         | {-20}          | {-823}   | {-722} |



### Conclusions

### Demand side of flood insurance in the Netherlands

- Opportunities for (partly) private flood insurance
- Problems with adverse selection may be minor
- Damage mitigation limits impacts of climate change
- Samaritan syndrome

### Behavioural findings

- Concave relation between WTP and the flood probability
- Perceptions play an important role in choice
- Intense experience with flooding drives demand
- Heterogeneity exists in processing of probabilities

### Comparison of results

- Similar to results of a CV study and prospect theory
- Price elasticity and market penetration are similar to RP studies in USA

15

rije Universiteit: excetendem :