Genetic Management

from science to practice

Jack Windig

Why conserve old breeds?Valuable

- Beautiful
- Cultural Heritage
- Contain unique genetic diversity
- Convention Biological Diversity (Rio treaty)

Breeds with small population size

Vulnerable • Demographic • Genetic Inbreeding Loss of diversity Need special attention Promotion of the breed • Genetic management

Quantitative genetic perspective on diversity

Relatedness is opposite of diversity • Gdiv = 1 - f• f = average kinship of population, generation Average relatedness of parents determines inbreeding and genetic diversity in next generation \bullet r = c'Ac c = contribution of parents Genetic management: • Minimise r = find minimum of c'Ac• Software program: Gencont

- r = Relatedness coefficient, or coancestry
- f = kinship coefficient = 0.5 * r
- F = inbreeding coefficient, r(self) = 1 + F

• F = 0.5 * r(parents)

A = numerator relationship matrix

Gencont Output

- GENCONT -

Population Average Relationship (current) = 0.6920

No of male candidates= 20 No of female cands = 12

SOLUTION : Population Average Relationship (solution) = 0.6976

No of selected males = 11 No of selected females = 8

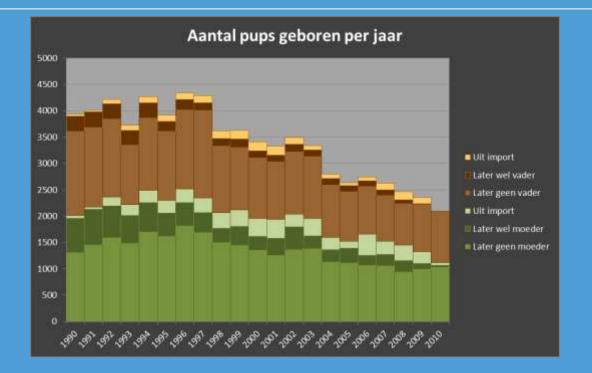
Animal	%_progeny	Animal	%_progeny	
2708849	33.710	2848719	6.319	
2708846	0.0	1730004	0.0	
2733564	6.505	2821142	0.0	
2700759	0.0	2821166	0.0	
2606756	0.0	2740390	63.870	
2595402	0.0	2735480	3.899	
2874910	0.0	2829267	0.0	
2689057	20.152	2810888	3.510	
2821141	0.0	2878392	4.314	
2677537	0.0	7986201	5.853	
2781928	0.0	2832077	1.949	
2740385	0.0	2894645	5.050	
2841667	3.950			
2825503	3.635	3.635		
2834574	3.845			
2829263	5.800			
2878391	5.113			
2747057	5.360	5.360		
2832071	5.049	5.049		
2698121	6.882			

You cannot do better than this In theory On paper

But

- Reliable pedigree?
- Reproduction possible?
- Breeders agreeing?

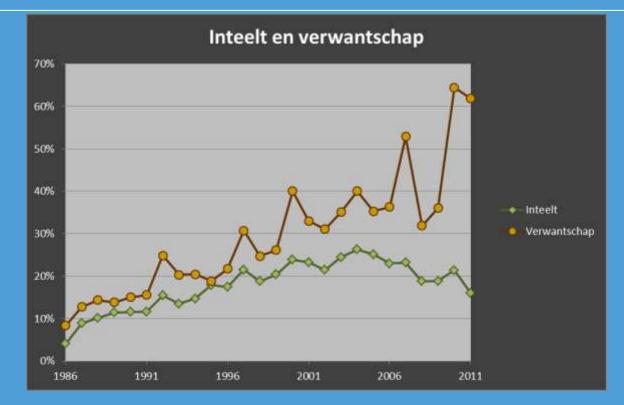
IVESTOCK RESEARCH WAGENINGEN UR


From science to practice

Three stages

- 1. Monitor population
 - Determine population structure, inbreeding rate etc.
- 2. Manage population
 - Set rules to minimise inbreeding rate
- 3. Pair individuals
 - Look for combination with lowest r

Example monitoring population size



Golden Retriever: large population decreasing numbers

- Small number used for breeding
- Substantial number of imports

LIVESTOCK RESEARCH WAGENINGEN UR

Monitoring: Inbreeding and Kinship

- Relatedness increased more than inbreeding
 - Irregular pattern because of popular sires
 - Last 10 years avoidance of mating highly related pairs

Genetic management

Only effective when approved by the breeders
Breeders have to work together

- "what is best depends upon the rest"
- Optimal contributions theoretically the best
 - More simple methods practically often more effective
- Different alternatives
 - Determine effectiveness
 - Determine applicability
 - Explain choices

Some alternatives for genetic management

Restrict breeding:

- Restrict # inseminations / sire / year
- Restrict # inseminations / sire / life
- Restrict # litters / dam / life
- Restrict # sons entered in herdbook / sire
- Manage relatedness
 - Optimal contributions
 - Exclude mating parents with high r
 - Exclude animals with high average r to rest of the entire population from breeding
 - Exclude animals with high F from breeding
- Change population structure
 - Exchange animals between subpopulations
 - Breeding circle

WAGENINGEN UR

Evaluation genetic management alternatives

Mathematically estimations of inbreeding rate

- Simple ones rather crude
- Only average estimate possible

Computer simulation

- All different situations can be accommodated
- Variation in outcome can be estimated
- General simulation program made
 - User gives population parameters
 - User chooses genetic management
 - Program estimates average inbreeding, inbreeding rate and generation interval

Example: Golden Retriever

One of the most popular dog breeds Dutch population • 600 breeding females • 150 breeding males • 300 nests / year • 5 top sires: 25% of the nests Disagreement on implementation of sire restrictions Need and effectiveness • How strict? • Per year of per life?

Simulation results: Sire restrictions

	ΔF (%)		Generation interval	
Restriction	per year	per life	per year	per life
None	0.41		3.6	
20 nests	0.43	0.49	3.6	3.5
10 nests	0.27	0.42	3.8	3.5
4 nests	0.18	0.26	3.7	2.6
2 nests	0.16	0.13	3.8	2.4

Sire restrictions more effective per year them per life

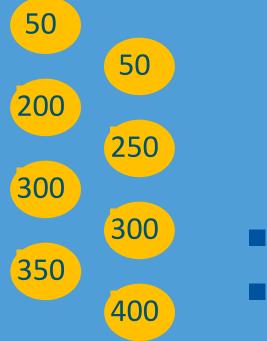
- Males are removed when life quotum is reached
- Generation interval decreases
- Next generation always more related

Example 2: Managing relatedness Golden Retriever

Options simulated

- Minimise coancestry parents
 - Breeders seek least related mate
- Exclude highly inbred animals from breeding
 - Reaction of some breeding organisations
 - However, highly inbred but unrelated parents do not produce inbred offspring
- Exclude animals with a high average relatedness to the rest of the population from breeding

Golden retriever: managing relatedness


Excluding animals with a high average relatedness to the rest of the population is most effective

WAGENINGEN UR

Example 3 Kempisch Heideschaap

8 herds varying from 50 to 400 sheep

No pedigreeNo control over mating

Simulation Kempisch Heideschaap

Estimate F without genetic management

 8 herds no exchange of individuals

 Estimate F with optimal contributions

 Fixed litter size

Estimate F with breeding circle

- Computer simulation: 50 generations 350
- Each herd uses rams of other herd according to scheme

200

40C

300

50

250

50

Result

Inbreeding rate without measures 1.2%
Inbreeding rate with Gencont: -3.2%
Inbreeding rate with breeding circle: 0.16%

- Gencont results ignored
- Herd book started breeding circle with 6 of the 8 herds
- Breeding circle collapsed because of blue tongue

Veluws Heideschaap

3000 animals
Ten herds of roughly equal size
After problems with congenital defects breeding circle started 15 years ago
Interupted by FMD

Result

Breeding circle maintained > 18 years
Good agreement

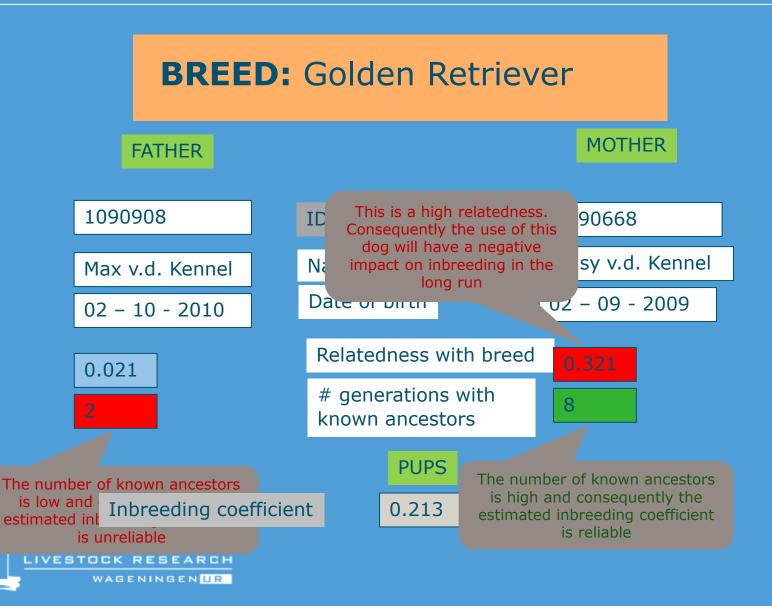
Right to pick rams from neighboring herd
Fixed price per ram

Limited number of professional herds
Congenital defects disappeared

Method to use depends on existing situation

Commercial nucleus

- Reliable pedigree, full control over mating and # offspring, single herd
- Optimal Contribution no restrictions
- Heath sheep
 - Few large flocks, no pedigree, different owners
 - Breeding circle
- Other situations
 - Limited control over breeding
 - Restrict # matings per sire per year
 - Publish average relatedness with population



Mating individuals

- Each breeder decides which sire to use for his or her dams
 - Limited to available sires
 - Availability can be restricted by breeding organisation
- Mating has only influence on
 - Single litters
 - Inbreeding in next generation

Mating decision tool developed for Dutch kennel club

Genetic management

- Needs to be tailored to the population
- In practice
 - Monitor
 - Manage
 - Simulation
 - Mate
- Software is available

