


Propositions  

 

1. For an unstable atmospheric surface layer, analytical footprint models predict a too 
large upwind source area and no downwind contribution.  
(this thesis) 

 

2. Monin�Obukhov similarity theory can be extended to include the effects of 
entrainment.  
(this thesis) 

 

3. Since women shy away from competitive workplaces (Gneezy et al. 2003, Q. J. 
Econ 118:3), the tenure track enhances gender inequality.  

 

4. PhD�research should be combined with exercising, because non�competitive 
physical activities build self�esteem (Badami et al., 2012, Res. Q. Exercise Sport 
83:2). 

 

5. You can chain yourself to your desk, but you cannot chain your mind. 

 

6. A cow faces east when the rain comes from the west. 

 

7. A PhD�proposal is like the constraints of Monin�Obukhov similarity theory:  never 
really achieved. 

 

8. Instead of a bypass for cars, Wageningen needs a bicycle highway. 
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Abstract

In this thesis we deal with some major challenges for studying atmospheric turbu-
lence over crops. Land-atmosphere interactions are specifically complex because of
surface heterogeneity and boundary-layer entrainment. Furthermore, the absence
of high-frequency observations and of measurements of underlying soil and vege-
tation processes complicates studying these interactions. Atmospheric turbulence
plays a key role in hydrological and carbon cycles and is essential for weather and
climate. Understanding and forecasting turbulence is thereby relevant for human
life and environment.

Turbulent scalar transport takes place via so-called ‘eddies’ that can be analyzed
using the eddy-covariance method, in which high-frequency observations of wind
speed, air temperature and gas concentrations are combined. The method is widely
used to study gas exchange between a specific land surface and the atmosphere
above. Before eddy-covariance became feasible, the so-called Monin-Obukhov sim-
ilarity theory was used to estimate gas exchange, from low-frequency data. This
theory is still used in models and data analyses, to relate mean turbulent quantities
(e.g. vertical gradients, variances, and the refractive index structure parameter Cn2)
to atmospheric stability.

We evaluate semi-analytical footprint models that are used to estimate the sur-
face source area of a turbulence measurement. These models are based on Monin-
Obukhov similarity theory, which means that a homogeneous surface is assumed.
Such models are however only needed for heterogeneous areas. Therefore, we crit-
ically test three of these models for eddy-covariance data gathered at a station
surrounded by three different agricultural fields in Merken (Germany). By carrying
out a natural tracer experiment, we generally find an overestimation of the foot-
print length, but a combination of two of our tested models results in an acceptable
estimate for land-atmosphere studies over a site with environmental conditions sim-
ilar to our site. This model is, however, very sensitive to atmospheric stability and
surface roughness, and should not be used for highly convective cases.

For an intensive atmospheric measurement campaign in southern France
(BLLAST), we find deviations from Monin-Obukhov similarity theory for humidity vari-
ances. Our study reveals that these were caused by entrainment of dry air from the
free atmosphere that was transported all the way down to the surface. We develop a
method to detect such entrainment events from eddy-covariance data only. Further-
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ABSTRACT

more, we manage to quantify the contribution of entrainment to the total observed
turbulence for a certain relative height within the boundary layer, and for a certain
atmospheric stability, using variance budgets and scaling theories.

To apply Monin-Obukhov similarity theory for estimating mean turbulent quanti-
ties, in case no flux data are available, we test and extend a scheme from which
surface fluxes can be derived from single-level weather data. This scheme is based
on the Penman-Monteith approach, in which the dependencies of fluxes on the dif-
ference between air and surface temperature are linearized. We determine with
tests on the two above-mentioned datasets and one year of data over grass in the
Netherlands (Wageningen) that the scheme is most sensitive to the transpiration
estimate. It matters largely which stomatal reaction on atmospheric water vapor
deficit is implemented. We apply the scheme for the estimation of Cn2 from the de-
rived surface fluxes via Monin-Obukhov similarity theory for a given location, height
and wavelength, and thereby develop an approach that results in very good optical
turbulence estimates for the above-mentioned agricultural sites.

Finally, we deal with the fact that eddy-covariance observations give us net ex-
change fluxes between the surface and the atmosphere, that result from both plant
and soil processes. To distinguish plant transpiration from soil evaporation, a range
of methods has been described in literature. We evaluate an existing method that is
based on the observed correlation between CO2 and water vapor fluctuations, and
an estimated water-use efficiency of the vegetation. We perform a critical reeval-
uation of the method, specifically focusing on the estimation of the water-use effi-
ciency and assumptions considering the temperature and humidity profiles in and
above the canopy. We suggest a determination to improve the method for a growing
wheat field in Merken (Germany).

Keywords: Atmospheric turbulence, eddy covariance, footprint model, surface het-
erogeneity, entrainment, Penman-Monteith, crop water-use efficiency, transpiration

vi



Contents

Abstract v

1 Introduction 1

1.1 Description of atmospheric turbulence . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Atmospheric turbulence in a simplified world . . . . . . . . . . . . . . . . . . 4

1.3 Real-world topics discussed in this thesis . . . . . . . . . . . . . . . . . . . . 5

1.4 Turbulence observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Sensitivity and uncertainty of analytical footprint models according
to a combined natural tracer and ensemble approach 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 HKC00 and KM01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Our implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Research strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Footprint model evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 Sensitivity analysis and specification of the ensemble . . . . . . . . 20

2.3.3 Ensemble average . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.2 Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.3 Land use map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.1 Meteorological conditions and eddy covariance fluxes . . . . . . . . 24

2.5.2 Footprint model evaluation: Forward method . . . . . . . . . . . . . . 24

2.5.3 Footprint model sensitivity to input parameters . . . . . . . . . . . . 27

2.5.4 Footprint model ensemble average . . . . . . . . . . . . . . . . . . . . 28

2.5.5 Footprint model evaluation: Inversion method . . . . . . . . . . . . . 29

2.6 Conclusion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2A Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2A.1 Footprint model equations . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2A.2 Surface layer scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

vii



CONTENTS

3 Detection of entrainment influences on surface-layer measurements
and extension of Monin-Obukhov similarity theory 35
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.1 Surface-Layer and Boundary-Layer Scaling . . . . . . . . . . . . . . . 38
3.2.2 Entrainment Signals in Surface-Layer Observations . . . . . . . . . 42

3.3 Data and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.1 Field Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.2 Data Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.1 Meteorological Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.2 MO Similarity Theory for Different Surfaces and Scalars . . . . . . . 53
3.4.3 Indications of Entrainment in ASL Observations . . . . . . . . . . . . 54
3.4.4 Relations Between ASL Observations and Entrainment Regime . . 57
3.4.5 MO Similarity Theory in Relation to Entrainment Data . . . . . . . . 59

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Estimation of the refractive index structure parameter from single-
level daytime routine weather data 67
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.1 Estimation of surface fluxes from single-level weather data . . . . 71
4.2.2 Estimation of temperature, humidity and joint structure parame-

ters from surface fluxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2.3 Estimation of Cn2 from temperature, humidity and joint structure

parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.2 Data processing and selection . . . . . . . . . . . . . . . . . . . . . . . 77

4.4 Estimates and validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4A Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4A.1 Appendix A; Scheme to estimate fluxes from weather data . . . . 89
4A.2 Appendix B; Coefficients capturing the wavelength dependency

of Cn2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5 Leaf water-use efficiency: impact on the estimation of evapotran-
spiration partitioning 95
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

viii



CONTENTS

5.2.1 General concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.2.2 Original method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.2.3 Determination of WUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.3.2 Research strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.4.1 WUE: methods to derive external and internal CO2 and H2O con-

centration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.4.2 WUE: evaluation-height dependence . . . . . . . . . . . . . . . . . . . 106
5.4.3 Hybrid method to derive WUE . . . . . . . . . . . . . . . . . . . . . . . 107
5.4.4 Partitioned fluxes: WUE dependence . . . . . . . . . . . . . . . . . . . 108

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6 Perspectives 113
6.1 Footprint modeling over complex terrain . . . . . . . . . . . . . . . . . . . . . 113
6.2 Footprint modeling for a highly turbulent atmosphere . . . . . . . . . . . . 114
6.3 Effect of surface heterogeneity on Monin-Obukhov similarity theory de-

rived from observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.4 Modeling deviations from Monin-Obukhov similarity functions . . . . . . . 117
6.5 Applications to urban areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.6 Measurement campaigns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

References 123

Samenvatting 131

Dankwoord 137

The author 139

Journal publications by the author 141

Education of the author 143

ix



CONTENTS

x



1
Introduction

Life is mainly present near the interface between the earth surface and the atmo-
sphere. One of the interactions between the soil, vegetation and atmosphere is
the uptake, release and distribution of gases like CO2 and water vapour, in which
atmospheric turbulence plays a key role. Gas exchange processes are related to
transport of pollen, black carbon, heat, moisture, and thereby greatly influence our
health and comfort, as well as weather and climate. Because the Earth’s surface
is continuously changing (partly by human activities), we should know the effect of
different types of surfaces on the atmosphere and vice versa. For example, cutting
a pine forest may lead to less transpiration, and thus a higher ground water level
locally. On a larger scale, forest clearance causes an increase in atmospheric CO2,
leading to a warmer earth surface.

To predict and evaluate characteristics of the soil, vegetation and atmosphere
(e.g. crop growth, rain, global temperature), we need to understand transport pro-
cesses at different scales. This thesis focuses on processes at relatively small scales
in approximately the lowest 100 m of the atmosphere, which is called the atmo-
spheric surface layer. In this chapter, we first explain how and where turbulence is
formed, how it can be recognized, and how it is described. Next, we present how
the atmospheric surface layer is simplified for academic studies. Furthermore we
describe how these simplifications differ from the real world, and we thereby in-
troduce our research questions. Finally, we describe how and where we measured
atmospheric turbulence for our studies.

Chapters 2, 3 and 4 of this thesis are published in three different scientific jour-

1



1. INTRODUCTION

nals, and Chapter 5 is in preparation for submission. The individual chapters are
presented as published, therefore especially the measurement-methodology de-
scriptions slightly overlap. Our vision on and recommendations for atmospheric-
turbulence studies are given in Chapter 6. At the end of this thesis, my acknowledg-
ments, research school certificate and a list of my publications are presented.

1.1 Description of atmospheric turbulence

An example of atmospheric turbulence can be observed by watching the scintilla-
tions or twinkling of an object over hot asphalt or transpiring maize. A very turbulent
atmosphere is characterized by many whirls, so called eddies, of different sizes and
air densities, that are chaotically moving and rotating, indicated by circular arrows
in Figure 1.1. Such a whirl can for example be observed when it is strong enough to
pick up some leafs.

Turbulence is generated by surface heating. A relatively warm surface heats the
air parcels just above, which thereby get lighter and will rise. Birds and gliders make
use of such rising air parcels, also called thermals. Relatively heavy, cold air will
consequently sink, and buoyancy turbulence is produced.

On a sunny summer day, the air will be warmer above a dry sandy area than
above well-watered vegetation, because in the first case, energy is used for atmo-
spheric heating, whereas it is used for evapotranspiration in the second case. In
a daytime surface layer, the wind speed increases and humidity and temperature
decrease rapidly with height (see Figure 1.1 for the decrease with height of temper-
ature and humidity).

Turbulence is also mechanically produced. Mechanical turbulence is the result of
an airflow over a surface with obstructions (e.g. plants). The wind speed, surface
roughness, and stability or the air, determine the strength of mechanical turbulence.
The stronger the airflow that moves contrary to the main flow, the more whirls are
formed. This is also the type of turbulence one notices in an aircraft, or that is
attempted to be minimized using aerodynamic helmets, suits and vehicles.

The largest eddies can be as large as the atmospheric boundary-layer height,
which is the height until which the surface has a direct effect on the temperature,
humidity and motions of the air. The large eddies in the boundary layer break down
into smaller eddies, since energy cascades, and the smallest eddies (≈ 1 mm) dissi-
pate: the mechanical energy of the eddy is converted into heat due to friction. The
top of the boundary layer is over land typically between 500 and 2000 m during the
day, which corresponds with eddies with a maximum duration of 15 to 20 min.

On top of the boundary layer, there is an inversion layer with a positive potential
temperature gradient, i.e. the potential temperature, the temperature an air parcel
would have when brought adiabatically to a standard referenced pressure, increases
with height (see Figure 1.1). This layer suppresses turbulent exchange between the

2



1.1. DESCRIPTION OF ATMOSPHERIC TURBULENCE

Figure 1.1: Daytime situation of the atmospheric boundary layer (BL) in a simplified world,
where the rate of exchange of heat and moisture between the surface (s) and air (a) is the-
oretically controlled by resistances (r and rc), and where the surface influences the vertical
profiles of potential temperature (T) and humidity (q). Net radiation at the surface equals soil
and air heating and evaporation and transpiration (moisture flux). The indicated surface-layer
and BL heights are estimates, as they depend on the weather and the time of the day.

boundary layer and the free atmosphere aloft (up to ≈10 km above the inversion
layer). The suppression of exchange between the boundary layer and the free at-
mosphere causes the concentration of pollutants to be much higher in the boundary
layer. The inversion layer can often be seen from an air-plane around the cloud
layer, as the transition between humid polluted air and dry cleaner air.

3



1. INTRODUCTION

1.2 Atmospheric turbulence in a simplified world

Because turbulent motions are chaotic, they can only be described using statistics
and probability theory in atmospheric models and data analyses. One way to quan-
tify atmospheric turbulence is using Reynolds decomposition, in which the fluctuat-
ing parts of a variable are separated from the mean. This represents that individual
eddies are characterized by a different temperature, humidity and wind speed than
the mean air characteristics. The average deviation from the mean, and the related
variance, are used as a measure of how far the values (e.g. temperature) are spread
out, i.e. how many different air parcels are present.

The temperature variance can be combined with the variance of the vertical wind
speed, to determine the vertical flow rate, flux, of in this case heat (represented
by straight arrows in Figure 1.1). This flux calculation follows the so-called eddy-
covariance technique, which makes use of the average product of the vertical wind-
speed variance and the variance of another variable. The required eddy-covariance
instrumentation is given in Section 1.4.

Another mean statistical quantity that can be used to characterize atmospheric
turbulence is the structure parameter of scalar , C2 . It relates the difference be-
tween concentrations at two locations to the fluctuation intensity, and can be inter-
preted as a spatial variance. Atmospheric turbulence can be quantified by combining
the effects of temperature and humidity fluctuations on the structure parameter of
the refractive index of air, Cn2 . The refractive index n describes the propagation and
refraction of a beam, as a function of its wavelength, in this case through the air.

In a turbulent atmosphere, n changes in time and space because all beams travel
through air parcels with different air densities and thus different refractions of the
beam. Diffraction of an optical beam between an object and ones eye gives a blurred
vision of for example a tree behind a transpiring maize field. An example of the
result of internal reflections in water droplets is the rainbow. Light of different colors
that together form white light is refracted when both entering and returning from a
water droplet. Because each color corresponds with a slightly different wavelength,
n differs per color and the light beam spreads out as a rainbow.

At the earth surface, the lower boundary of this layer, radiation that is not re-
flected is used for heating of soil and plants, heating of air, thermal radiation into
the atmosphere, evaporation of soil water, and transpiration of water by photosyn-
thesizing plants. This system is in energy balance, which means that the sum of soil
and air heat transport and evaporation and transpiration equals net radiation re-
ceived from the sun and the atmosphere (e.g. from clouds and greenhouse gases),
as indicated in Figure 1.1 (assuming an infinite thin surface as control volume for
the energy).

Due to turbulent mixing, wind speed, humidity, and potential temperature are, in
the simplified world, constant with height in the boundary layer above the surface
layer (as indicated with the vertical lines (profiles) of potential temperature and

4



1.3. REAL-WORLD TOPICS DISCUSSED IN THIS THESIS

humidity in Figure 1.1). Furthermore, the exchange between the boundary layer and
the free atmosphere does not influence the surface-layer processes in the simplified
world.

To capture the transport between the land surface and the atmosphere, both
in weather and climate models and in observations, a widely used theory was in-
troduced by Monin and Obukhov (1954). Monin-Obukhov (MO) similarity theory
relates turbulence properties within the atmospheric surface layer to the surface
fluxes, based on dimensional analysis. Therefore, derived relationships between at-
mospheric variables for a certain situation, can be applied to all similar situations.
Their theory is applicable to an ideal flat and homogeneous surface, for temperature,
humidity, CO2, wind speed, and other variables. For example, if the air temperature
is known at two heights, then the surface sensible heat flux can be estimated for
a certain height and situation (atmospheric stability and wind speed). Also, rela-
tionships between a variable’s variance and the corresponding flux are empirically
derived for a range of atmospheric stabilities, known as flux-variance relationships.

The rate of exchange of heat and moisture between the surface and atmosphere
depends on the buoyancy intensity, wind speed, and on the roughness of the sur-
face. A wind flow over a surface with plants with various heights (a rough surface)
will produce strong turbulence, which enhances the transport of heat and moisture
released by the soil and vegetation. Accumulation of the released heat and moisture
occurs around the plants in case of no transport.

In theories and models, the complex surface-roughness dependency of the sur-
face fluxes is represented as a resistance (see at the bottom of the vertical profiles in
Figure 1.1). This so-called aerodynamic resistance is very low when the atmospheric
surface layer is very turbulent, such that the surface heat flux is relatively high.

The moisture flux, called the evapotranspiration flux, additionally depends on
plant physiology via the so-called canopy resistance (see Figure 1.1). If a plant
experiences heat stress (e.g. when radiation or temperatures are high), or water
stress (e.g. when the soil or the air is dry), then the plant decreases the loss of
water by closing its stomata. This is represented by a high canopy resistance in crop
models and leads to less photosynthesis and transpiration, and on a larger scale to
a drier and warmer boundary layer, with fewer clouds and rain.

1.3 Real-world topics discussed in this thesis

Studying atmospheric turbulent transport, we obtain knowledge about the related
land surface. To understand the soil-vegetation-atmosphere system, generalizations
based upon empirical observations need to be developed and tested. In this thesis
we study how and why turbulent transport deviates from the simplified cases de-
scribed above, and how we can implement real-world implications in atmospheric-
turbulence studies and simulations. We tested and improved four of such concepts

5



1. INTRODUCTION

Figure 1.2: Daytime situation of the atmospheric surface layer in the real world, with an
eddy-covariance station with a flux footprint, indicated with eddies, upwind from the station
leaving either the wheat or grass. A large eddy related to entrainment reaches the instru-
ments as well. The magnifier shows the plant and soil processes that together form an upward
moisture flux.

that are commonly used by modelers and data analysts. These are all related to the
exchange of water vapour, heat and momentum via atmospheric turbulence.

The first two concepts we deal with in this thesis, consider the sources of
atmospheric turbulence. The third concept deals with estimating turbulence in the
absence of turbulence observations. The fourth concept involves separating plant
processes from soil processes, while measuring the net exchange. We restricted the
studies to daytime data, when boundary-layer turbulence is much better defined.
Each of the paragraphs below introduces a problem that is related to the studies
that are presented in this thesis.

Parameterizations for turbulent transport in land-surface models are generally
based on a landscape with only one land use type. Measurements that are used
for validating these models, are therefore ideally performed over a homogeneous
terrain. However, in the real world, eddy-covariance flux measurements originate
from a mostly upwind area that might be a mixture of land use types, depending on
the measurement site. This area is called the flux footprint, and will be larger if one

6



1.3. REAL-WORLD TOPICS DISCUSSED IN THIS THESIS

measures higher up or when the atmosphere is stably stratified such that horizontal
motions are relatively important with respect to vertical motions. An example is
given in Figure 1.2, where the footprint is the horizontal area where the air parcels
leave the surface.

Different land-use types next to each other create a variable source and sink dis-
tribution, and thereby influence the turbulent flow field. To determine whether flux
measurements come from the agricultural field of interest, footprint models are used
to estimate the extent of the source area of eddy-covariance measurements. Be-
cause numerical models are computationally expensive, several analytical footprint
models have been developed (Leclerc and Foken, 2014). These footprint models
assume MO similarity theory, and thus a homogeneous turbulent flow field. How-
ever, footprint models are only needed for heterogeneous area’s. So which footprint
model is the best for studying turbulent transport over a heterogeneous surface?

We investigate this, by testing the three most-commonly applied analytical
footprint models. Different than what they are developed for, we critically evaluated
the estimated footprint for an eddy-covariance station surrounded by three different
land-use types. We measured latent and sensible heat fluxes separately at these
land-use types, and compared the fluxes of the mixed station with the fluxes as
calculated from combining the locally measured fluxes of the surrounding land-use
types with the estimated footprint (Chapter 2).

The land surface and the inversion layer, also called the entrainment zone, define
two boundaries of the simplified atmospheric boundary-layer. However, even across
a strong inversion, the boundary-layer top exchanges air with the free atmosphere
aloft (enhanced by wind shear). MO similarity theory considers basically a horizon-
tally homogeneous surface layer, thus a homogeneous surface and no influences
from the free atmosphere. The surface layer might in reality however be affected
by entrainment, such that the theory is not applicable. This is indicated with the big
whirl in Figure 1.2. Compared to the boundary layer, the free atmosphere is rela-
tively dry and warm (see the upper parts of the temperature and humidity profiles in
Figure 1.1). During daytime, the effect of entrainment on the water-vapour content
in the boundary layer is thus opposite to that on the boundary-layer temperature.

In Chapter 3, we discuss the effect of entrainment on deviations from simplified-
world turbulence predictions that follow from MO similarity theory. What is the
exact impact of entrainment on flux-variance relationships derived from this the-
ory? We compare MO similarity theory with eddy-covariance measurements, and
use boundary-layer measurements to quantify humidity entrainment. We use an
analytical footprint model to select situations in which the measurements originate
from one land use type only, such that the criterion of a homogeneous surface
is met. Furthermore, we theoretically derived a term to expand MO similarity
theory for entrainment. For that we used an existing budget of the humidity flux
variance, in which the total humidity variance is equal to the sum of a surface and
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1. INTRODUCTION

an entrainment term (Chapter 3).

A concept that is used to derive surface heat fluxes and turbulence from single-
level weather-station data is discussed in Chapter 4. This scheme is based on the
Penman-Monteith equation that can be used for determining evapotranspiration
from air temperature, wind speed, humidity and solar radiation. The scheme is
furthermore based on the surface energy balance, and can be used in combination
with MO similarity theory in case turbulence observations are not available. But,
how well can this ‘big leaf’ approach represent surface heat fluxes for an agricultural
field? Moreover, how good are turbulence estimates derived from these fluxes using
MO similarity theory? We quantify atmospheric scintillations by estimating Cn2 from
the surface fluxes, using MO similarity theory. We test our approach for two different
locations and land use types, for both an optical and a millimeter wavelength,
and compare daytime estimates with Cn2 values determined from eddy-covariance
measurements (Chapter 4).

The moisture transport in the atmospheric surface layer is generally measured
as the evapotranspiration flux. This is the net flux of evaporation related to soil
processes, and transpiration related to plant photosynthesis (see the magnifier in
Figure 1.2). The observed daytime CO2-transport is the result of the production of
CO2 by soil organisms, and the uptake of CO2 by plants for assimilating carbon for
their metabolism. For studying e.g. plant growth or water usage, only transpiration
and assimilation are the variables of interest, whereas they cannot be measured
directly at field scale. For studying plant processes at field scale, the observed net
fluxes should be partitioned.

We present in Chapter 5 a study on partitioning transpiration and evaporation,
and assimilation and respiration, from eddy-covariance data. We tested and im-
proved a method that is based on the observed correlation between CO2 and water-
vapour fluctuations, and a calculated water-use efficiency of the vegetation. Differ-
ent algorithms were studied to determine the leaf water-use efficiency. Furthermore,
the sensitivity of the partitioning method to the water-use efficiency was examined
(Chapter 5).

1.4 Turbulence observations

Atmospheric turbulent transport of gas above a certain surface is often measured
using the eddy-covariance technique. This method relates the covariance between
vertical wind speed fluctuations and fluctuations in the concentration of a specific
gas, to land-atmosphere gas exchanges. The instrumentation contains a gas ana-
lyzer and a sonic anemometer, to respectively measure fluctuations in gas concen-
trations (e.g. CO2, water vapour or methane), and fluctuations in the horizontal and
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Figure 1.3: Locations from which data is used for the studies presented in this thesis (cour-
tesy of Google Earth): the meteorological site in a flat grass area in Wageningen, the Nether-
lands, the FLUXPAT-2009 campaign in a relatively flat area with wheat, barley and sugar beets
in Merken, Germany, and the BLLAST-2011 campaign in a relatively flat area with wheat and
grass in Lannemezan, France.

vertical wind speed. Such an instrument can be installed on a tower, ship, or aircraft.
An example is given in Figure 1.4, where the instruments are installed on a mast in
a wheat field. The temperature, humidity and wind speed fluctuations are measured
at a high frequency of ≈ 20 Hz, to minimize the statistical errors of the turbulent
quantities that are derived from a certain amount of samples. A time interval of
30 minutes is often used because it is long enough to capture the most important
turbulence scales, and short enough to exclude concentration variations caused by
weather events or by the diurnal cycle (different solar input). An eddy-covariance
station is rather expensive (≈25ke) and is not (yet) standard at an official weather
station.

We based all analyses on observations over different regions and crop types. We
had access to data from two measurement campaigns and from one continuously
operating meteorological site. The continuous meteorological site we used is located
in the Netherlands (Wageningen), in an agricultural area with grass as the main land-
use type. An eddy-covariance station was installed at the site in 2005.

The objective of the FLUXPAT campaign in the summer of 2009 in western Ger-
many (Merken) was to study patterns in soil-vegetation-atmosphere-systems. A va-
riety of soil and vegetation parameters were measured. Three eddy-covariance sta-
tions were located in a field with sugar beets, winter wheat, and barley. One eddy-
covariance station was installed at the edge between two of these fields, such that
data with homogeneous and heterogeneous footprints were observed.

I was involved in the BLLAST campaign in the summer of 2011 in southern France,
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Figure 1.4: The author of this thesis working with, among other instruments, a gas analyzer
and a sonic anemometer (above in the mast), in a wheat field in southern France during the
BLLAST campaign in 2011.

which was mainly intended for studying the late afternoon transition of the atmo-
spheric boundary layer. We installed three eddy-covariance stations in a grass field,
a wheat field (see Figure 1.4), and on the edge between these fields to study hetero-
geneity effects. During this campaign, radio-soundings were performed intensively
at a meteorological site at 500 m distance from the fields. Both the FLUXPAT and
the BLLAST dataset have a well-defined surface heterogeneity.
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2
Sensitivity and uncertainty of analytical

footprint models according to a
combined natural tracer and ensemble

approach

Evaluations of analytical footprint models using data from several stations located

in different land use types are still scarce, but valuable for defining the spatial

context of the measurements. Therefore, we evaluated two analytical footprint

models by applying a ‘forward’ and an ‘inversion’ method. We used eddy covari-

ance measurements from a flat agricultural landscape in western Germany in the

summer of 2009, with seven eddy covariance systems over three different land

use types with contrasting sensible heat fluxes. We found that the model of Hsieh

et al. (2000, Adv. Water Resour. 23, 765-772) and of Kormann and Meixner (2001,

Bound.-Lay. Meteorol. 99, 207-224) are both overestimating the distance of the

peak contribution of the footprint. In our evaluation, the former model performs

slightly better, independent of whether the crosswind dispersion was used from

the latter model, or from the proposed model by Detto et al. (2006, Water Resour.

Res. 42, 1-16).

This chapter is published as van de Boer et al. (2013).

11



2. SENSITIVITY OF ANALYTICAL FOOTPRINT MODELS

2.1 Introduction

The large horizontal variability of the energy and gas exchange down to very small
scales, and especially the representation of gas exchange in land-surface models,
still poses major problems. Long term monitoring networks have been established
during the last decades to determine trace gas fluxes between terrestrial surfaces
and the atmosphere, e.g. FLUXNET (Baldocchi et al., 2001), AMERIFLUX and CAR-
BOEUROPE. The eddy covariance (later referred to as EC) method is widely used
to quantify land-atmosphere exchange of carbon dioxide and water vapor. How-
ever, EC systems measure fluxes at field to catchment scale, which implies that the
measured flux often originates from a mixture of land use types. Footprint models
(Schmid, 2002) aim at predicting the contribution of different parts of the surface to
a measured flux or scalar concentration.

Although footprint models are frequently used to determine the homogeneity
of the footprint of EC-measurements, little is known about their validity and ac-
curacy. The use of artificial tracer gases, natural sources of scalars, and isolated
heterogeneities for footprint model evaluation is discussed by Foken and Leclerc
(2004). They point out that well designed experiments with natural tracers should
be performed to investigate the application range for different footprint models,
since those studies can often be included into on-going flux field campaigns. This
was done by Reth et al. (2005) and Göckede et al. (2005) among others, who tested
the suitability of natural tracer experiments in the evaluation of footprint models.
Reth et al. (2005) attempted to use soil chamber measurements and EC data to
evaluate footprint models. Göckede et al. (2005) compared soil chamber measure-
ments with EC and scintillometer measurements with various footprints, using data
from the same field experiment as Reth et al. (2005). During the past decades, re-
search on footprint modeling has increased significantly. Different types of methods
have been developed by many researchers. Pasquill (1972) simulated the transfer
between downwind observations and two-dimensional upwind sources analytically.
The advantage of an analytical footprint model is its ability to describe the horizontal
distribution of source weight with one or two equations and a manageable amount of
parameters. The parameters can typically be computed from measurement height,
roughness length, atmospheric stability and crosswind variance.

Analytical footprint models in the strict sense are analytical solutions of the
advection-diffusion equation (e.g. Gash, 1986; Schmid and Oke, 1990; Schuepp
et al., 1990; Horst and Weil, 1992; Schmid, 1994; Stannard, 1997; Horst, 1999;
Haenel and Grünhage, 1999; Kormann and Meixner, 2001). The flow field in analyt-
ical footprint models is implicitly calculated using either (quasi) logarithmic profiles
from MOST (Monin-Obukhov similarity theory) or power law profiles. The crosswind
dispersion is described as a Gaussian plume. As an improvement to such analyti-
cal models, an approximate analytical model was developed by Hsieh et al. (2000).
Their model is based on a combination of Lagrangian stochastic dispersion model
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results and dimensional analysis. It does not contain a crosswind distribution in its
original form, which is a prerequisite for the kind of application and evaluation our
study aims at. However, it can be combined with the crosswind distribution in the
frequently used model of Kormann and Meixner (2001) as well as with a crosswind
distribution suggested by Detto et al. (2006).

Lagrangian stochastic dispersion models (e.g. Kljun et al., 2002) and LES-based
models (e.g. Steinfeld et al., 2008) have been developed as well. However, com-
putations in those types of footprint models are time consuming. The approximate
analytical parametrization by Kljun et al. (2004) would be interesting to include in a
comparison because of its ability to predict downwind contributions. However, the
model does not yet include a published crosswind distribution for these downwind
contributions.

Here, we test two frequently used analytical footprint models and various ways to
obtain their required input data on a set-up that allows for extensive natural tracer
experiments. We deliberately focus on sensible heat flux because it depends (apart
from the Schotanus correction) on one sensor only, which is the same providing all
other footprint-relevant turbulence data; the sonic anemometer. Other scalar fluxes
are known to fail quality tests more often than sensible heat fluxes. Furthermore, we
will use a dataset from a landscape with different land use types, but without hetero-
geneities in orography or roughness which would affect the mean flow in a direct way
and to a high degree. With the present study, we hope to contribute to the proper
use and further development of footprint models used over sites with several land
use types, for EC flux data quality control, validation of new instruments (e.g. scin-
tillometers and chambers), or for dis-aggregation by inversion (Hutjes et al., 2010).
In this study, we build on the suggestion of Foken and Leclerc (2004) to include
a footprint evaluation in a larger field experiment. Seven EC sensor pairs (sonic
anemometers and gas analyzers) at locations implying footprints with differences
in the main land use type were operated in a landscape dominated by a mosaic
of three land use types. In this way, the natural tracer evaluation concept can be
extended to a dataset where different footprint model properties (e.g. upwind and
crosswind extension) become important in different situations (e.g. wind direction
and stability).

Within the core of our study, a forward application of the footprint model of Hsieh
et al. (2000), hereafter referred to as HKC00, is used to predict fluxes at the border
station, which is located in the most heterogeneous surrounding. For this purpose,
the HKC00 model is combined with a land use map. EC data were used to determine
the representative fluxes of the three dominant land use types in the measurement
area. These fluxes were multiplied with contributions of the corresponding land use
type in the calculated footprint of the border station. The predicted fluxes at the
border of the two fields were evaluated with flux measurements from the border
station.

This evaluation method is repeated systematically using the model of Kormann
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and Meixner (2001), hereafter referred to as KM01. Furthermore, the sensitivity of
the evaluation results to different choices of parameterizations and input variables
is investigated. These runs include the parametrization of crosswind distribution,
surface roughness, and atmospheric stability. Moreover, we will give a brief example
of solving the evaluation problem with an inversion approach, which estimates fluxes
for each land use type from all measured fluxes and modeled footprints for each
station, rather than assuming any of the stations to deliver ‘pure’ surface fluxes of
a single land use type. Together, these approaches aim at answering the following
questions:

1. Can we identify, by reference to the natural tracer experiment, certain rec-
ommendations on the implementation of the approaches presented by HKC00
and KM01? (Section 2.5.2)

2. Is the footprint model uncertainty related to

• the crosswind distribution,

• surface roughness of an area with different land use types,

• atmospheric stability in an area with different land use types?

(Section 2.5.2 and 2.5.3)

3. Does an ensemble average derived from different model combinations and
input parameterizations improve our forward evaluation results? (Section
2.5.4)

4. Is inversion, as suggested by Neftel et al. (2008) and Hutjes et al. (2010),
robust enough to serve as an alternative way to determine ‘pure’ land use
fluxes? (Section 2.5.5)

We will first describe the two footprint models (HKC00 and KM01), our implemen-
tation of the models, and the method to obtain footprint weights of each land use
type in Section 2.2. In Section 2.3, we describe the evaluation methods and the
sensitivity analyses. A description of the measurements, the data processing and
the measurement area is given in Section 2.4. In Section 5.4, results will be shown
characterizing the meteorological conditions, the model evaluation, the sensitivity
analysis, and the ensemble evaluation. Conclusions are given in the final Section
2.6. Equations used in this study can be found in 2A.1 (footprint models) and 2A.2
(surface layer similarity).

2.2 Model description

2.2.1 HKC00 and KM01

The parameters in the models proposed by HKC00 and KM01 are determined ex-
plicitly from micro-meteorological parameters (see 2A.1 for equations used in the
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footprint models). The model by HKC00 requires roughness length (z0), Obukhov
length (L) and aerodynamic measurement height (zm, height above displacement
height) as input to determine its shape parameters (cf. Equation 2A.1). A rougher
surface, a more unstable atmosphere, and lower sensors all result in a smaller foot-
print. The model returns the crosswind integrated source weight as a function of
upwind distance (). The crosswind distribution later added by Detto et al. (2006)
additionally requires the standard deviation of crosswind speed (σ, Equation 2A.5)
and the friction velocity (∗). The crosswind integrated part of KM01 (cf. Equation
2A.2) also requires z0, L and zm (see Table 2.1). The crosswind distribution part of
KM01 (Equation 2A.3) only requires σ as extra input.

Figure 2.1 shows crosswind integrated flux footprints for both models (after Equa-
tion 2A.1 and 2A.2) for two different atmospheric stability cases. The input data
chosen represent a daytime and night-time situation which are inspired by our mea-
surement data. The figure clearly shows the main difference between the two mod-
els for unstable conditions. For the unstable case, the peak contribution according
to HKC00 is located 12 m closer to the instrument, and is one and a half times
higher than the peak modeled by the function of KM01. When comparing the KM01
model with their backwards in time Lagrangian stochastic dispersion model, Kljun
et al. (2003) found that the upwind tail of the KM01 footprint was heavier than their
tail. We also included the parameterized footprint model by Kljun et al. (2004) (not
shown). Although the model by HKC00 gives a lower tail than KM01, it is still rela-
tively high compared to Kljun et al. (2004).

For the stable case, the peak contributions predicted by HKC00 and KM01 are
very small and occur at less different locations, and tails are much longer than for
the unstable case. The peak locations of both models differ less than 10% for this
case. The dependence on stability within a stability regime (stable or unstable) is dif-
ferent for both models. HKC00 shows a stronger dependence on z/L than KM01 (not
shown). Also the dependence on surface roughness (not shown) is different. The
KM01 model is more affected by a changing z0. In Figure 2.2a, a Gaussian crosswind
dispersion function is shown. The second part of Figure 2.2 shows the increase of
the crosswind width parameter σy (depending on crosswind standard deviation and
∗, Equation 2A.4 and 2A.5) with upwind distance for the crosswind dispersion func-
tions of KM01 and Detto et al. (2006). The specification of σy is the only difference
between the two Gaussian crosswind dispersion functions. Further away from the
station, the difference between the two crosswind functions increases, and the func-
tion of Detto et al. (2006) results in more crosswind dispersion than KM01 for both
the day and night time case.
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Figure 2.1: Longitudinal distribution function of KM01 and HKC00 for a typical unstable
situation (z/L = −0.44, z0 = 0.05m, ∗ = 0.22ms−1, U = 1.8ms−1), and a stable situation
(z/L = 1.13, z0 = 0.05m, ∗ = 0.05ms−1, U = 1.2ms−1, ). Note that the values on the axes
are different for both cases.
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Figure 2.2: a) Crosswind distribution function at upwind distance of the peak location. Peak
locations are 18, 93, 6 and 84 m for KM01 unstable, KM01 stable, HKC00 unstable and HKC00
stable respectively. b) Crosswind width, described by KM01 and Detto et al. (2006), depending
on upwind distance, for the same unstable and stable situation as in Figure 2.1, with σ = 0.83
and 0.21 ms−1 respectively.

2.2.2 Our implementations

Determination of roughness length

In a widespread implementation of the KM01 model (Neftel et al., 2008), the ob-
served wind speed (U) together with the variables zm/L and ∗ are used to deter-
mine z0 (Equation 2A.7), rather than using a fixed estimate of z0. By doing so, the
z0 value that would be consistent with the observed combination of U, ∗, and L
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Table 2.1: Footprint model input for the original models and our implementations. HKC,
KM and Det indicate our implementations of respectively the alongwind part of HKC00, the
alongwind or crosswind part of KM01, and the crosswind function described by Detto et al.
(2006). � indicates that the parameter is required for the given implementation.

Original Our implementations
Longitudinal Crosswind

Input HKC00 KM01 Det KM01 HKC-KM KM-KM HKC-Det

∗ - - � - � � �
z0 � � � � - - -
L � � � � � � �

zm � � � � � � �
σ - - � � � � �
U - - - - � � �

can be used to detect violations of the assumptions underlying the model, in par-
ticular MOST. We calculate z0 using Equation 2A.7 (Neftel et al., 2008) in our three
implementations of the models (see Table 2.1 how the model input differs). Records
yielding values outside the range 1×10−4 to 0.2 m were adapted to these limits. We
analyze the effect of z0 by also using fixed estimates of z0 for footprint calculations
in two members of our ensemble study.

Discretization

To assign the flux contributions to different land use types, the source weight func-
tion (footprint), the position of the EC station, wind direction (Udir) and a land use
map are required. Neftel et al. (2008) integrated the footprint density function over
a defined surface area given as quadrangular polygons representing the fields. In
contrast, we used grid information of the land use types to compute the integral
footprint weight of each land use type. This grid information is more easily appli-
cable to arbitrary field shapes. However, the resolution at which the source weight
function is discretized is imposed by the resolution of the land use map. Therewith, a
certain minimum resolution is required to properly integrate the dispersion function.

In a series of numerical experiments, we found that for our conditions the foot-
print models need a spatial resolution roughly equal to the measurement height for
unstable atmospheric stratifications. Using a coarser resolution will lead to a wrong
description of the sharp peak contribution close to the station. Furthermore, the
integral of the discretized footprint function can differ significantly from one (up to
10% for Δ = 8 zm) in case the function is under-resolved.

Construction of 2-D footprint model

A combination of the longitudinal part of HKC00 and the crosswind part of KM01
was chosen for our reference footprint model. Comparison results of Kljun et al.
(2003) show a disadvantage (mentioned in Section 2.2) of using KM01. On the other
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hand, HKC00 initially did not include a crosswind distribution function; therefore
we use the one of KM01. The choice of the reference run RefHKC-KM does not
imply any appraisal at this point, but is owed to the requirement of one central
combination from which only one element at a time is changed in the model runs,
which is described in more detail in Section 2.3.2. Detto et al. (2006) propose a
crosswind function for the HKC00 model, which is used in one of the configurations of
footprint model functions and input (given in Section 2.3.2). Hereafter, HKC, KM and
Det indicate our implementations of respectively the alongwind part of HKC00,the
alongwind or crosswind part of KM01, and the crosswind function described by Detto
et al. (2006).

2.3 Research strategy

The core of our study is the evaluation of our implementations of HKC00 and KM01
using a natural tracer experiment for sensible heat flux. We use two different eval-
uation methods; a forward method and an inversion method (Section 2.3.1). We
tested the sensitivity (Section 2.3.2) to choices of model combinations (longitudinal
and crosswind distribution) and input parameterizations (e.g. instantaneous esti-
mates vs. long-term averages of roughness length) using our forward method. In
order to give the uncertainty with respect to the choice of model components and in-
put parameters we also evaluate the performance of an ensemble average (Section
2.3.3).

2.3.1 Footprint model evaluation

We used HKC-KM, KM-KM, and HKC-Det (see Table 2.1) to predict the measured flux
at the border station, in order to evaluate the models. This border station is the
station with the most heterogeneous surrounding, located in a barley field near the
border with a sugar beet field (a more detailed site description is given in Section
4.3.2). We calculate H at the border station as:

Fborder =

∑

=1

c �F (2.1)

in which Fborder is the estimated flux at the border station, c is the fractional contri-
bution of land use type ,  is the number of land use types, and �F is the ‘pure’ flux
of land use type .

These estimates are compared to the measured flux (question 2). The footprint
of the border station may be rather homogeneous in case the flux is resulting from
the field it was installed in; barley regrowth. Therefore, we separately examined the
10% of the cases when the footprint contained the most sugar beet concentration.
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We applied a forward (Section 2.3.1) and an inversion (Section 2.3.1) method to
estimate the ‘pure’ fluxes �F of all land use types.

Forward method

To estimate the ‘pure’ fluxes ( �F) using this method, we first applied RefHKC-KM to
select those half-hours, where the lower levels of all three EC stations located in the
middle of the fields had a flux contribution of more than 80% from their own target
field:

�F = Fj |c > 80% (2.2)

in which measured fluxes at station ‘j’ are indicated with Fj. It should be noted that
this filtering unavoidably depletes atmospherically stable situations in the dataset,
because these situations produce larger footprints.

To ensure that the model combinations are evaluated on the same dataset, the
80% input criterion was always determined according to the reference run ‘RefHKC-
KM’ (see Table 2.2). The forward evaluation method was applied to each model
combination, as well as to the other runs (described in Section 2.3.2).

Inversion method

The fluxes measured at the stations are acknowledged to contain contributions from
different land use types. Hence, for the inversion method the ‘pure’ fluxes �F are
defined implicitly:

Fj =

∑

=1

cj �F (2.3)

where the modeled contribution of each land use type to each station is given by
matrix cj, and the measured fluxes at each station (except for the border station) are
indicated with Fj (question 3). This system (Equation 2.3) was solved in a similar way
as suggested by Neftel et al. (2008) for two ground-based stations, or by Ogunjemiyo
et al. (2003), Hutjes et al. (2010), and Metzger et al. (2012) for an arbitrary number
of airborne measurement points.

Unlike in the Neftel et al. (2008) case, our system is overdetermined, with six
included stations and three considered land use types, requiring regression as the
solution strategy. At the same time, however, the relatively small degree of overde-
terminedness as compared to the Hutjes et al. (2010) case does not allow for an
application of robust statistics. Consequently, we used the ordinary least squares
solution to determine the unknown ‘pure’ surface fluxes. Different from the for-
ward approach, this approach does not require the 80% criterion for the input data.
Hence, a larger part of the dataset can be used for the evaluation. However, in-
version is more vulnerable to violations of the assumptions underlying analytical
footprint models, as pointed out by Schmid (2006).
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Table 2.2: Configuration of the different model setups. The first three runs are used for
the model evaluation (results in Table 2.3), the other 7 are used in the sensitivity analyses
(results in Table 2.4). The entire list of 10 runs is used in the ensemble average (results in
Table 2.5).

Run Longit. model Crossw. model z/L source z0 source

RefHKC-KM HKC KM border border
KM-KM KM KM border border
HKC-Det HKC Det border border

AreaAvg HKC KM average average
MostStableb HKC KM highest z/L border
MostUnstabb HKC KM lowest z/L border
BorderZc0 HKC KM border 0.02 m
SugBeetZc0 HKC KM border 0.07 m
CorWDd HKC KM border border
Hacte HKC KM border border

 Averages are taken of ∗, H and U of the 7 EC-systems. From those, area average z0 and
z/L were determined.
b The quartiles and median for z/L for MostUnstab are -0.63, -0.15 and -0.01, and for
MostStable -0.05, 0.01 and 0.72 (without selection for heterogeneity).
c 0.02 m is the most frequently observed z0 at the border station in August 2009. 0.07 m is
the most different frequently observed z0, measured at the sugar beet field in August 2009.
d A correction of -6 ◦, the deviation from the median of the 7 systems, was applied to the
wind direction measured at the border station.
e The actual instead of the virtual sensible heat flux was taken for the footprint calculations.

2.3.2 Sensitivity analysis and specification of the ensemble

The model evaluation tests the dependence of the model performance on the choice
of model components: HKC or KM for the alongwind component, and KM or Det for
the crosswind component. For our sensitivity analysis, we varied the input parame-
ters one at a time (Table 2.2). Different values were used for L because of its large
variation between the different fields and because of its impact on footprint size. In
the reference run we used L calculated from measurements at the border station.
In the runs ‘MostStable’ and ‘MostUnstab’, we used the most stable (typically the
least unstable) and the most unstable (sometimes the least stable) z/L respectively.
Moreover, one model run is based on the determination of z/L (and z0) from the area
averaged ∗, H and U (‘AreaAvg’). The effective area average of z/L (and of z0)
was computed from the arithmetic averages of ∗, H and U from all (7) EC-systems
for every half hour of data.

Since the roughness length is calculated for each interval as a function of ob-
served thermal and aerodynamic parameters (Neftel et al., 2008), unnecessary and
unrealistic variability may be introduced. Because a change in the roughness length
affects the features of the footprint, other footprint models (e.g. HKC00) use the as-
sumption that the roughness length has a fixed value of for example 10% of the
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vegetation height. However, potential real time-variability and direction depen-
dence are not taken into account using this assumption. To quantify the effect of
a constant z0, we use two runs with two different constant mostly observed values
at the two most different stations (‘BorderZ0’ and ‘SugBeetZ0’, question 4). Further-
more, we use an area average z0 in the run ‘AreaAvg’ (calculated from the arithmetic
averages of ∗, H and U).

We also deal with the fact that the wind direction was not exactly the same for
all the 7 EC-systems due to small differences in alignment. We corrected the wind
direction at the border station with -6◦, which is the mean deviation of the border
station from the median of the 7 systems. The last run is related to the heat flux
used in the Obukhov length L (Section 2A.2). In principle, this should be the virtual
sensible heat flux. However, some past studies used the actual sensible heat flux,
which might have affected the usual parameterization of universal functions. There-
fore, we include a run ‘Hact’, in which we used the actual sensible heat flux (see
Table 2.2).

2.3.3 Ensemble average

In the sensitivity analysis we perform a number of runs, but it is not a priori clear
which permutation is correct. Therefore, we created an ensemble out of all members
given in Table 2.2. An ensemble average (and associated variances) were calculated
from the contributions of the members. To see if an ensemble out of different model
and input choices provides a better flux estimate than the reference run, the eval-
uation method mentioned in Section 2.3.1 was applied to the ensemble average:

Fborder =
1

M


∑

=1

M
∑

m=1
cm �F (2.4)

where an average is taken over a number of M ensemble members (given in Table
2.2) .

2.4 Data

2.4.1 Experiment

Eddy covariance data used in this study were collected within the Transregio 32
FLUXPAT campaign in summer 2009 near Merken, Germany (6◦24’E, 50◦50’N, 114 m
asl), see e.g. Graf et al. (2010). Three stations with EC sensors at 6.0 m and at 2.5 m
were installed in the middle of a field containing one of the three dominating crops:
winter wheat, winter barley and sugar beet. Each EC system consisted of a fast
response 3D sonic anemometer (CSAT3, Campbell Scientific, Logan, UT, USA), and
an open-path infra-red gas analyzer (LI-7500, LI-COR). A border station was installed
with sensors at 2.5 m height, in a barley field 50 m away from its border with a sugar
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Figure 2.3: Land use map of the study area with locations of the four EC stations in Merken
(Germany), and a wind rose of daytime measurements with wind speeds between 0 (light
grey) and 8 ms−1 (dark), both of August 2009.

beet field. As a result, this station has a more heterogeneous footprint for certain
wind directions. Figure 2.3 gives an overview of the locations of the EC-stations, and
of the wind directions for the daytime data. The study region was chosen, among
other reasons, for the fact that spatial flux variability in the footprint of the stations
is dominated by sharp contrasts between few land use types (Figure 2.3), rather
than gradual changes due to soil properties or other resources. At a radius of 700 m
around the EC stations, the terrain is flat with a maximum slope of less than 0.7◦.
No ditches and no plants higher than the mapped crops were found, and the soil
texture is uniform within this area (silt loam). Comparing chamber measurements
between juvenile sugar beet and fully growing wheat in the spring of 2008 yielded
differences in soil CO2 efflux between the fields twice as high as the 95% confidence
interval of spatial variability within each crop (Graf et al., 2011).

Data from all anemometers and gas analyzers were logged at 20 Hz. The az-
imuth angle of the anemometers in the three fields was 230◦, and the angle of the
anemometer at 2.5 m close to the border was 135◦. Data from 4 to 27 August 2009
were used for this study. The barley field had already been harvested before August,
however another canopy from weeds and new barley seedlings, scattered and with
a maximum height of about 0.1 m, had developed in August. This field is therefore
be called ‘barley-regrowth’. The wheat field was harvested at the 3rd of August and
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are called ‘wheat residual’, and the sugar beet field was harvested after August. The
height of the sugar beet plants was 0.68 m throughout August. We used a displace-
ment height of zero for the wheat residual and barley regrowth, and a displacement
height of d=0.51 m for the sugar beets.

2.4.2 Processing

The 20 Hz raw data were processed to yield 30-minute average fluxes with the soft-
ware ECpack (van Dijk et al., 2004). A planar fit tilt correction (Wilczak et al., 2001)
was performed with tilt angles determined over periods of 5 to 12 days, depending
on the maintenance dates. Linear trends were removed, and the Webb-correction
(Webb et al., 1980) was carried out. The Schotanus correction (Schotanus et al.,
1983) was applied to correct for humidity effects on the temperature. Raw data
points flagged by the instrument were eliminated, and 95% confidence intervals
were estimated by quantifying the sampling error for each scalar average and flux
following van Dijk et al. (2004). Half-hours with sensible heat flux confidence inter-
vals larger than 20 Wm−2 were removed.

2.4.3 Land use map

Depending on stability, either the coverage of a large area (stable conditions), or
a high resolution near the stations (especially unstable conditions) may become
critical (explained in Section 2.2.2). In order to satisfy both requirements, our land
use map was merged from two different sources. The station locations, crop types
and corner points of all fields surrounding the stations to a distance of at least
300 m, were manually surveyed with a differential GPS (GPS-702/Propak V3,NovAtel,
Calgary, Alberta, Canada), which assures an accuracy in the cm range. The resulting
vector dataset was converted to a 1 m resolution grid and amended to a distance of
at least 1 km from the stations with a satellite based land use classification with an
effective resolution of 15 m. This classification was based on ASTER and RapidEye
data (see Waldhoff, 2010). Each grid point of the combined dataset was assigned
to one of the land use types winter wheat, winter barley, sugar beet, maize, road,
water, and other, but only the first three crop types and the sum of weights from
all points assigned to any other land use type are important within the framework
of this study. The combined map is shown together with the location of the stations
in Figure 2.3. Domains of 2400x2400 m around each EC-system were selected as
square subsets of the map for the actual calculation of the footprint.
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2.5 Results and discussion

2.5.1 Meteorological conditions and eddy covariance fluxes

Figure 2.4 shows the sensible and latent heat fluxes as observed over the different
fields during the experiment. Sensible heat fluxes were highest at the harvested
wheat field, with peaks of 300 W m−2, and latent heat fluxes were highest at the
sugar beet field, with peaks of 350 W m−2. From the flux differences between
the wheat and barley field, we can derive that the young and new barley canopy
is already contributing a significant amount of transpiration to evapotranspiration.
Hence, the daytime Bowen ratios and sensible heat fluxes can be put into the order
wheat residual > barley regrowth > sugar beet, and three considerably different flux
magnitudes are used in the footprint model evaluation.

The four stations measured similar temperatures and wind directions. The mea-
surement area was characterized by relatively dry summer weather in August 2009,
with a mean maximum air temperature of 26.9◦C, a mean minimum air temperature
of 14.8◦C, with only 5 days of rain, and with winds coming from the west mainly
(see Figure 2.3 and 2.4). This implies that the footprint of the border station did not
generally include the closest sugar beet field at the south east of the border station.

A period of fair weather can be found between day of the year (DOY) 216 and 219,
when the winds mainly came from the southeast during the day. The wind also came
from the southeast at DOY 230-232 and 235-236, which implies that those days
are characterized by a heterogeneous footprint for the border station, containing a
considerable sugar beet contribution. However, we can conclude from Figure 2.3
and 2.4 that the barley-regrowth field acts as the main source in the footprint of
the border station for most of the days. For those cases, the footprint of the border
station can not be ideally heterogeneous, which confirms that the unpredictability
of the wind direction is a disadvantage of natural tracer experiments.

Some light rain events occurred at DOY 214, 225, 233 and 238, and a heavy rain
event occurred at DOY 220, which can be seen in Figure 2.4. Logically, latent heat
fluxes increase after a rain event, which decreases the contrast between the wheat-
residual and the sugar beet fluxes significantly. Hence, using fluxes from periods
after a rain event (similar fluxes for all fields) for our evaluation might lead to a
trivial result for those data points.

2.5.2 Footprint model evaluation: Forward method

Figure 2.5 shows the evaluation of predicted fluxes of the two analytical models
(both combined with the KM crosswind dispersion) with measured sensible heat
fluxes from the border station for the full dataset. ‘Pure’ fluxes were estimated
using the forward method described in Section 2.3.1. Most of the stable data do not
meet the 80% criterion and were therefore filtered out. Using the full KM01 model
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Figure 2.4: From top to bottom: sensible (H) and latent (LE) heat fluxes measured at the
EC-station at 2.5 m in the wheat residual, sugar beet, barley regrowth, and at a station close
to the border between the sugar beet and barley regrowth, respectively. The wind direction
is measured at the border EC-station, and precipitation (shown cumulative over 6 hours) is
measured at the Research Centre, close to Merken.

(KM-KM) instead of HKC-KM, we found a very slight degradation (from 0.95 to 0.94)
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Figure 2.5: Evaluation of sensible heat fluxes estimated using a combination of HKC00 and
KM01 and of KM01 only, with measurements from the border station. Black dots indicate
heterogeneous data as identified by a minimum sugar beet contribution (see text). The 1:1
line is given dashed.

Table 2.3: Evaluation of different model combinations, evaluated for different data selec-
tions (heterog. indicates filtered data with a minimum sugar beet contribution to the border
footprint)

Run Data slope offset R2 N
- Wm−2 - -

RefHKC-KM all 0.95 ± 0.03 3.1 ± 2.8 0.84 267
KM-KM all 0.94 ± 0.03 2.5 ± 2.9 0.83 267
HKC-Det all 0.95 ± 0.03 3.1 ± 2.8 0.84 267

RefHKC-KM heterog. 0.96 ± 0.03 2.7 ± 1.6 0.98 27
KM-KM heterog. 0.87 ± 0.02 2.6 ± 1.3 0.99 27
HKC-Det heterog. 0.96 ± 0.03 2.7 ± 1.6 0.98 27

of the slope. Also, R2 is slightly lower. The difference is however not significant (see
Table 2.3 for regression results). We also see that it does not matter much which of
the two crosswind functions is chosen for HKC.

Next we applied regression analysis on the 10th percentile of data with the high-
est sugar beet contributions (explained in Section 2.3.1), which corresponds to a
minimum contribution larger than 16.2% in the reference run RefHKC-KM. We see
that for KM-KM, the data points for which the footprint model matters most show an
underestimation of the sensible heat flux. The slope of the regression fit for only het-
erogeneous data, which is only shown in Table 2.3 and not in the Figure, increases for
this sub-dataset to 0.96 ± 0.03 for RefHKC-KM, but decreases to 0.87 ± 0.02 for KM-
KM. The large R2 values found for the heterogeneous sub-dataset might be caused
by the fact that the selection for heterogeneity only includes data from similar days.
Varying the minimum criterion for the sugarbeet contribution and thus the size of
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Table 2.4: Evaluation of different runs explained in Table 2.2, evaluated only for the hetero-
geneity data selection

Run slope offset R2 N
- Wm−2 - -

RefHKC-KM 0.96 ± 0.03 2.7 ± 1.6 0.98 27
AreaAvg 0.96 ± 0.03 2.8 ± 1.6 0.98 27
MostStable 0.94 ± 0.03 2.0 ± 1.6 0.98 27
MostUnstab 0.97 ± 0.03 2.6 ± 1.5 0.98 27
BorderZ0 0.97 ± 0.03 2.6 ± 1.6 0.98 27
SugBeetZ0 0.99 ± 0.03 2.8 ± 1.7 0.98 27
CorWD 0.97 ± 0.03 2.8 ± 1.6 0.98 27
Hact 0.95 ± 0.03 2.2 ± 1.5 0.98 27

the heterogeneous sub-dataset (not shown) yielded considerable differences in the
overall performance (e.g. slopes and R2) of all runs, but the relative performance of
runs compared to each other remained conserved. This finding also applies to most
results presented in the following sections.

Since sensible heat fluxes were generally much lower at the sugar beet field com-
pared to the barley-regrowth and the wheat-residual field, an underestimation of the
border station sensible heat flux indicates that a too large sugar beet contribution
was estimated by the footprint model. This is the case for all runs considered so far,
especially KM-KM. If we combine these results with the land use map in Figure 2.3,
we can derive that this can be explained by the extent of the footprint. The peak
contribution is located further from the instrument according to KM01 compared to
HKC00 (Figure 2.1). For winds from the south-east, KM-KM will therefore predict
larger contributions of sugar beet than the other runs. It should be noted that the
criteria of a considerable sugar beet contribution in the border station footprint, and
of >80% target field contribution to each center station, are somewhat conflicting.
Heterogeneous footprints of the border station installed 50 m from the border, in
the barley field, should partly capture the sugar beet field, whereas the footprints of
the other stations should be small enough to be mostly located in one field. How-
ever, flux measurements from the border station which remain after this selection
are equally spread between 0 and 200 Wm−2.

2.5.3 Footprint model sensitivity to input parameters

Regression results of the evaluation of different input parameters (mentioned in
Section 2.3.2) are given in Table 2.4. We only present the sensitivity evaluations
using the most heterogeneous border footprints, since regression results without
this heterogeneity selection are less different among the different runs. This is due
to the fact that for the full dataset, most points have a homogeneous footprint which
makes the evaluation insensitive to the exact details of the footprint model. Even
for the heterogeneity selection, slope differences are only significant between the
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Table 2.5: Evaluation of the ensemble average from all members explained in Table 2.2,
evaluated for two different data selections (all data and only heterogeneous data)

Run Data slope offset R2 N
- Wm−2 - -

RefHKC-KM all 0.95 ± 0.03 3.1 ± 2.8 0.84 267
EnsAvg all 0.95 ± 0.03 3.0 ± 2.8 0.84 267

RefHKC-KM heterog. 0.96 ± 0.03 2.7 ± 1.6 0.98 27
EnsAvg heterog. 0.95 ± 0.03 2.6 ± 1.5 0.98 27

most extreme results.
Using the most stable stability parameter from the four EC-stations (measured

over sugar beet) leads to larger footprints and a poorer fit (‘MostStable’), which is in
agreement with the overestimation of sugar beet contributions. We found that this
result also applies for the model combination HKC-Det, but it does not apply for the
model combination KM-KM (not shown). A fixed roughness length which corresponds
with the sugar beet field (‘SugBeetZ0’) instead of the area around the border station
(mainly barley-regrowth), results in a slope insignificantly different from 1 (see the
regression slopes in Table 2.4).

The other changes in input parameterizations do not significantly improve or de-
cline the footprint model results; using averaged stability and roughness parame-
ters from the four stations (‘AreaAvg’) does not change performance. Applying the
most unstable stability parameter does hardly change the model performance. This
is probably due to the fact that the border station was among the most unstable
stations. Furthermore, using a fixed roughness length from the border station it-
self is not significantly better than calculating z0 after Neftel et al. (2008) for every
half hour of data. Moreover, a small correction for the wind direction due to small
alignment differences between the stations does not significantly change the results
using the more heterogeneous footprints (‘CorWD’). Using the actual sensible heat
flux instead of the virtual sensible heat flux for L also does not significantly change
the slope, and R2 (‘Hact’).

2.5.4 Footprint model ensemble average

The evaluation of the ensemble average is shown for the full dataset in Figure 2.6.
Errorbars are given according to 95% confidence intervals; for the horizontal bars
they are estimated by ECpack (see Section 4.3.2), and the vertical bars are calcu-
lated from the standard deviations within the ensemble. We see that errors in ob-
servations and in predictions are both not negligible; predictions may be expected
to additionally be affected by the flux measurement errors of the three stations in
the field centers (not shown).

The ensemble average does not improve the outcome of the evaluation com-
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Figure 2.6: Evaluation of sensible heat fluxes estimated using the average of the 10 en-
semble members given in Table 2.2, with measurements from the border station and without
selection for heterogeneous data. Error bars show 95% confidence intervals from standard
deviations within the ensemble (vertical), and from ECpack (horizontal). The 1:1 line is given
dashed.

pared to the reference run RefHKC-KM, neither for the full, nor for the reduced
dataset (see Table 2.5). According to our dataset, the ensemble of models and input
is therefore only a helpful tool to indicate the uncertainty resulting from modeling
decisions, but not to reduce this uncertainty. This result is however depending on
the weight assigned to each ensemble member. In our case, all members account
for 10% in the ensemble average, including the most deviating member (KM-KM). If
the weights would have been different among the members, the ensemble average
would behave differently. An alternative distribution of the weights would be: 25%
for each of the three model variations discussed in Section 2.5.2, and 25% for the 7
runs with different input (mentioned in Section 2.5.3).

2.5.5 Footprint model evaluation: Inversion method

Figure 2.7 shows the evaluation of the HKC-KM combination using the inversion
method. Unlike the forward method, near neutral and stable conditions remain,
since no selection of ‘pure’ fluxes (measurements with homogeneous footprints)
needs to be made. The regression line fits with R2= 0.92, and its slope is very close
to one when using homogeneous and heterogeneous data. The same applies when
using exactly the same 267 data points as for the non-heterogeneity filtered forward
80% criterion for reasons of consistency. When using the heterogeneous data (all
data with a sugar beet contribution larger than 16.2%, which is consistent with the
10th percentile using the forward method), 364 points remain with a slope slightly
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Table 2.6: Evaluation of HKC-KM, where ‘pure’ fluxes are derived after the inversion method,
for different data selections (all data and only heterogeneous data, with and without the
non-homogeneity filtering described in Equation 2.2)

Run Data slope offset R2 N
- Wm−2 - -

Ref forward all 0.95 ± 0.03 3.1 ± 2.8 0.84 267
Ref invers. all 0.99 ± 0.03 2.0 ± 3.1 0.82 267
Ref invers. all 1.01 ± 0.01 0.4 ± 0.7 0.92 867

Ref forward heterog. 0.96 ± 0.03 2.7 ± 1.6 0.98 27
Ref invers. heterog. 1.04 ± 0.05 -0.2 ± 2.7 0.95 27
Ref invers. heterog. 0.97 ± 0.01 0.1 ± 0.4 0.93 364

lower than one, but which is still larger than follows from the forward method. A
slope of 1.04 ± 0.05 results when using only the same heterogeneous data as for
the reference forward run.

Due to the interactions between filter criteria, dataset size and model perfor-
mance on the dataset, it is not save to conclude whether the inversion method is
better or worse for calculating the fluxes from every land use type. The advantage
of the inversion method is that more data remain, so that the evaluation of the foot-
print model can be made with more confidence (note the smaller error in the slope
for the inversion method on the full dataset, as compared to the forward method (Ta-
ble 2.6). However, it has been pointed out that footprint models may be overcharged
by efforts to inversely determine fluxes (Schmid 2002, 2006). The systematic error
introduced by the non-pure footprint is reduced, at the cost of increasing random
errors (with respect to the originally measured fluxes).

2.6 Conclusion and outlook

This study presents a comparison of two-dimensional footprint models based on
HKC00 (Hsieh et al., 2000), KM01 (Kormann and Meixner, 2001), and Detto et al.
(2006). The main focus is the evaluation of these models through a natural tracer
(here sensible heat) experiment over terrain with multiple land use types with con-
trasting sensible heat fluxes: Do the models predict the correct flux for a station that
is influenced by a combination of land use types?

Based on a forward approach and all available data points, we found a slight
underestimation of the estimated sensible heat fluxes compared to measurements
for all model combinations. Due to our set-up, this indicates an overestimation of
the footprint length. However, most data points did not contain significant contribu-
tions from the most deviating land use type (sugar beet). Selecting only the most
heterogeneous footprints of the border (evaluation) station resulted in a negligible
overestimation by the reference model RefHKC-KM and a significant underestima-
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Figure 2.7: Evaluation of HKC-KM, where ‘pure’ fluxes are derived with the inversion method.
Black dots indicate the heterogeneous sub-dataset). The 1:1 line is given dashed.

tion by KM-KM, which indicates an overestimation of the peak distance. The number
of data points with such a heterogeneous footprint for the border station was very
limited. For the forward evaluation approach and the encountered wind directions, a
placement of the border station closer than 50 m to the border would have increased
this sample size.

Compared to the ‘forward’ method, a substantial part of the systematic non-
random deviations disappeared using the inversion method for HKC-KM. An addi-
tional advantage of the method is that the footprints of the fluxes from the individ-
ual fields (used as input) need not be homogeneous, so that more data remain. A
disadvantage is that the footprint model has to be applied twice for this method.
On the heterogeneity sub-dataset defined by a minimum sugar beet contribution to
the border station and simultaneous data availability for the forward approach, the
inversion approach yielded a slight flux overestimation by HKC-KM. Inversion seems
however a promising method for future studies.

In the application of footprint models over terrains with different land use types,
there is some uncertainty what the ‘effective’ values for stability and roughness
should be. From our sensitivity analysis, we can conclude that the performance
of the HKC00 model deteriorates if input parameters are chosen such that they
increase the footprint length (e.g. a more stable z/L than observed at the station
with the heterogeneous footprint). In contrast, the model results improved after
applying a fixed but too high roughness length. We did not find a significant impact
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of replacing H by H in the definition of L, of using area averaged values for z/L and
z0, and of applying a small wind direction correction. Although we found an impact of
the choices for z/L and z0, it remains unclear if the choices made for the reference
run were correct, or that they were compensated by deficiencies in the footprint
models themselves. In general, the choice of the input parameters appears to affect
model results less than the choice of the model itself. Both footprint models depend
on stability, but the model by KM01 has a weaker dependence on stability than
HKC00. Unfortunately we do not have enough data to decompose the dataset into
stability classes and evaluate the performance for each stability class separately.

For all evaluations, scatter might have been caused by a hypothetical imperfect
homogeneity of the single fields and by the random errors of the measured fluxes.
For the forward approach, additionally only relatively small footprints and mostly
unstable situations remained after applying the 80% criterion that was required to
confirm the purity of input fluxes measured by the field center stations. Further-
more, the set-up of the natural tracer experiment was not ideal concerning the wind
direction during the experiment.

Altogether, the HKC00 model combined with the crosswind function from KM01
or Detto et al. (2006), form the best out of our tested footprint modeling approaches
in our site conditions . However, to confirm the choice for the roughness length and
stability to be used in the determination of the footprint, natural tracer experiments
need to be repeated at more sites with different conditions, including an even more
balanced mix of land use types in the footprint of at least one station. Our study
is restricted to measurements in the lower part of the surface layer, and to non-
complex terrain conditions where scalar flux contrasts are the only source and type
of major heterogeneity. Furthermore, the evaluation needs to be extended to other
scalar fluxes, notably those of moisture and CO2. Since these involve an additional
instrument, typically reducing the amount of high-quality data, it is important to
operate multi-station set-ups not only within campaigns, but also on long-term sites,
as has already been suggested for other reasons (Mahrt, 2010).

2A Appendices

2A.1 Footprint model equations

The crosswind integrated footprint function at upwind distance  and height zm
(zm = z − d, in which z is the height of the instrument above the surface, and d

is the displacement height of 75% of vegetation height in our study) is in HKC00
described by:

ƒHKC00() =
c

2
e−c/ , c =

RzP

|L|1−P

κ2
(2A.1)

where κ (=0.4) is the von Kármán constant, P and R are constants depending on
stability, z is a length scale depending on z0 (the roughness length in meters, cf.
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Equation 2A.7) and zm, and L is the Obukhov length defined in Equation 3.1. The
crosswind integrated flux footprint at the upwind distance  > 0 and at the height
zm is described in KM01 by:

ƒKM01() =
1

(μ)

ξμ

1+μ
e−ξ/ (2A.2)

where ξ(zm, z0, L) is the flux length scale,  the Gamma function, and μ(zm, L, z0)
a constant (power law estimates are performed for these parameters, see KM01,
p 211). The crosswind dispersion function depends on the crosswind distance y and
is described by:

D(, y) =
1

�
2πσy

e
−y2/2σ2

y (2A.3)

in which σy is the crosswind width (m), described by Detto et al. (2006) as:

σyDetto = 1z0
σ

∗

� 

z0

�p1
(2A.4)

and by KM01 as:

σyKM ≈
σ

Up

(2A.5)

where σ is the standard deviation of the crosswind speed in m s−1 (depending on
wind speed and stability), Up is the effective plume velocity in m s−1 (see Equation
18 in KM01), ∗ is the friction velocity and 1 (=0.3) and p1 (=0.86) are empirical
parameters. The 2D footprint DF(, y) is calculated as:

DF(, y) = D(, y)F() (2A.6)

The roughness length z0 is estimated following Neftel et al. (2008) using:

z0 =
zm

eκU/(∗−ψ(zm/L)
(2A.7)

Where U is the observed wind speed in m s−1, and the stability parameter ψ is
described in Equation 2A.10.

2A.2 Surface layer scaling

The Obukhov length L is defined by:

L = −
ρcpT3∗
κgH

(2A.8)

In which ρ is the air density in kg m−3, ∗ the friction velocity in m s−1, κ the
von Kàrmàn constant, H the virtual sensible heat flux in W m−2, cp the specific
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heat capacity at constant pressure in J (kg K)−1 and T the air temperature in K.
Logarithmic wind profiles from MOST are calculated using:

U =
∗

κ

�

log
zm

z0
+ ψ

�zm

L

��

(2A.9)

in which ψ is the integrated flux gradient relationship given in Equation 2A.10 (which
drops out for neutral conditions). The integrated flux-gradient relationship for mo-
mentum for unstable conditions is given by:

ψ

�zm

L

�

= −2 log
1+ ζ

2
− log

1+ ζ2

2
+ 2 tn
�

ζ−
π

2

�

(2A.10)

where ζ is given as:

ζ =

�

1−
16zm

L

�0.25

(2A.11)

For stable conditions, the integrated flux-gradient relationship for momentum can
be described by:

ψ

�zm

L

�

= 5
zm

L
(2A.12)
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3
Detection of entrainment influences on

surface-layer measurements and
extension of Monin-Obukhov similarity

theory

We present a method to detect influences of boundary-layer processes on surface-

layer measurements, using statistics and spectra of surface-layer variables only.

We validated our detection method with boundary-layer measurements. Further-

more, we confirm that Monin–Obukhov similarity functions fit well to temperature-

variance data obtained at two different homogeneous surfaces. However, we

found that humidity variance measurements deviate from the universal functions

above one of the two studied surfaces for days on which entrained air reached the

surface layer. These results confirm that Monin–Obukhov similarity theory should

be used with care in the analysis of surface-layer data. Finally, we propose the

use of an extra term in flux-variance relations that depends on the entrainment

ratio for humidity and on the boundary-layer height. If boundary-layer measure-

ments are not available, we show how the entrainment ratio for humidity can be

approximated from the skewness of the humidity distribution.

This chapter is published as van de Boer et al. (2014a).
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3. ENTRAINMENT INFLUENCES ON SURFACE LAYER MEASUREMENTS

3.1 Introduction

One step towards improving weather and climate models is to provide limits for
the use of parametrizations for surface fluxes (Katul et al. 2008), which are usually
based on Monin–Obukhov (MO) similarity theory. In MO similarity theory, a mean
turbulent quantity is described by a limited number of variables related to height,
turbulent kinetic energy production, surface roughness, and surface fluxes (Monin
and Obukhov 1954). MO similarity theory assumes a homogeneous surface, sta-
tionarity, and that surface-layer turbulence only depends on surface fluxes, which in
turn depend on surface characteristics, radiation, and the properties of the air that
interact with the surface. Subsequently, fluxes of e.g. momentum, sensible heat
(H) and moisture (LvE) can be determined from mean turbulent quantities such as
gradients or variances, in combination with the universal functions derived from MO
similarity theory.

However, if the atmospheric surface layer (ASL) is influenced by larger-scale pro-
cesses such as advection and entrainment, or if the surface is horizontally hetero-
geneous, the additional sources and sinks for a specific scalar cause an increase
in scalar variance. MO similarity theory then gradually loses validity (Moene et al.
2006). Differences between the universal functions for temperature and humid-
ity are also expected in very buoyant conditions, due to their different effect on
buoyancy: temperature plays an active role while humidity plays a mostly passive
role. Deviations from the universal functions are also expected in the case of non-
stationarity (Katul et al. 2008). These deviations might be different for every scalar
(e.g., potential temperature θ and specific humidity q), resulting in a specific univer-
sal function for every scalar. However, even for ideal conditions universal functions
derived from MO similarity theory are expected to be accurate to no more than
10–20 % (Högström 1996).

Katul et al. (2008) review the causes of dissimilarity between the different pub-
lished universal functions and conclude that surface heterogeneity, entrainment,
and non-stationarity of the data are the main causes. In this study, we focus on the
impact of entrainment. Mahrt (1991) found that in a dry convective boundary layer
(CBL), entrainment of dry air might exceed evaporation at the surface, causing large
eddies to transport dry air towards the surface. De Bruin et al. (1993) hypothesize
that the observed scalar fluctuations close to the surface are generated by local
and non-local (e.g. entrainment) processes. De Bruin et al. (1999) present evidence
for this hypothesis. Michels and Jochum (1995), Sempreviva and Højstrup (1998)
and Sempreviva and Gryning (2000) pursued research regarding temperature and
humidity fluctuations in the CBL.

Lohou et al. (2010) show that during the drying and moistening periods of a
monsoon cycle in western Africa, the temperature source and humidity sink at the
boundary-layer top are sufficient to allow entrainment to affect the entire CBL down
to the surface. They relate this to humidity statistics in particular, and show that MO
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similarity theory fails for the parametrization of humidity-related moments. How-
ever, a detection method for entrainment using only surface-layer data has not been
presented yet to our knowledge. Neither has the addition of variance related to en-
trainment been quantified.

In this study, we investigate the impact of entrained dry air on surface-layer
data, and thereby on the validity of MO similarity theory. Our study focusses on the
following four research questions:

• Is MO similarity theory valid for our surface-layer data?

• Do we find indicators for entrainment in the surface-layer data?

• Are these indicators in agreement with entrainment that is implied in boundary-
layer data?

• Can we quantify the effects of entrainment on turbulence measurements and
thus extend universal functions for entrainment effects, based on surface-layer
measurements?

We start with a review on surface-layer and boundary-layer scaling relevant to
this study in Section 3.2. We describe our measurements and data selection proce-
dure in Section 3.3.1. In Section 3.3.2 we present our method to detect entrainment
influences on surface-layer turbulence measurements using wavelet analysis, sta-
tistical analysis, or a so-called ‘local entrainment ratio’. We furthermore describe
in Section 3.3.2 how we obtain an extension to MO similarity theory. In Section 3.4
we evaluate the validity of MO variance scaling for our dataset, and determine the
moisture entrainment regime in different ways. Finally, we establish the relation-
ship between the entrainment regime and invalidity of the MO scaling. Section 3.5
provides conclusions.

3.2 Theory

In this section we summarize surface-layer and boundary-layer scaling relevant to
our analysis. Furthermore, we outline characteristics of boundary-layer turbulence
that can be exploited for the detection of entrainment effects in surface-layer ob-
servations. We also discuss typical time scales of surface-layer and boundary-layer
processes, and we introduce the wavelet analysis, which will be used later for the
separation of fluctuations at small and larger time scales. Finally we show how to
relate the shape of the vertical profile of humidity in the CBL to surface-layer mea-
surements.
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3.2.1 Surface-Layer and Boundary-Layer Scaling

Monin–Obukhov Surface-Layer Scaling

In this study, we focus on flux-variance relations rather than flux-gradient relation-
ships because the former are commonly used in the analysis of surface-layer mea-
surements. In MO similarity theory, scalars have identical flux-variance relations,
in which scalar variance depends on the scaled scalar flux and on the atmospheric
stability via the Obukhov length L Obukhov (1946), where

z

L
= −

H

ρcp

κgz

θ3∗
, (3.1)

with height z, virtual sensible heat flux H, air density ρ, specific heat of air cp (for
dry air cp = 1004 J kg−1 K−1), von Kàrmàn constant κ (0.4), acceleration due to
gravity g (9.81 m s−2), mean virtual potential temperature θ and surface friction
velocity ∗.

Flux-variance relations derived from MO similarity theory were established by, in-
ter alia, De Bruin et al. (1993), who fitted their variance data to a similarity equation
for local free-convective conditions (very unstable, indicated with subscript ), and
to a function that is valid for near-neutral conditions (indicated with subscript n). In
squared form, to describe variances rather than standard deviations, we obtain

σ2


2∗
= ƒsn

�z

L

�

= 8.4(1− 28.4(z/L))−2/3 (3.2)

for unstable and near-neutral conditions, and

σ2


2∗
= ƒs

�z

L

�

= 0.9(−z/L)−2/3 (3.3)

for very unstable conditions, where s stands for surface, and ∗ is the turbulent
scale −Fs /∗ of scalar  (we use F for flux). Historically, flux-variance relationships
were primarily derived for θ. However, the temperature variance in the ASL (which
is relatively humid and warm) is affected less and in a different way by entrainment
(of dry and warm air) than is humidity variance.

Boundary-Layer Scaling

Entrainment processes produce a transport of relatively warm and dry air from the
free atmosphere into the CBL, and occasionally down into the ASL (Mahrt 1991; De
Bruin et al. 1999). The entrainment flux of a scalar is its flux density due to turbulent
mixing between the top of the boundary layer and the free troposphere above. Its
definition and particularly its sign with respect to the vertical direction follows the
same convention as that of the surface flux. The combination of a turbulent flux and
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a concentration gradient implies the production of scalar variance. Therefore, scalar
variance in the CBL is related to the surface flux of that scalar (Fs), and to the scalar
entrainment flux (Fe). The ratio of these fluxes (Deardorff 1980), referred to as the
entrainment ratio, can be written as

β =
Fe

Fs
. (3.4)

We note that the production of variance by the entrainment flux can be an order of
magnitude larger than the production of variance by the surface flux (Moene et al.
2006).

The entrainment ratio for buoyancy generally ranges from −0.4 to −0.1 (Hägeli
et al. 2000), and may increase significantly with shear-induced turbulence (Pino et al.
2003), or just after sunrise (Braam et al. 2012). Furthermore, entrainment at the top
of the CBL may vary in response to changes in surface forcing (Angevine 2008) and
to the lapse rate in the free atmosphere above the CBL (Sorbjan 1996). However, a
constant value of −0.2 is often used in atmospheric numerical models.

The entrainment ratio for humidity can vary widely in magnitude. If the entrain-
ment ratio for humidity is <1, humidity in the CBL increases and humidity transport
is dominated by the surface flux. On the other hand, if βq >1, the CBL is drying: the
entrainment process drives the humidity transport (Moene et al. 2006).

To describe the effects of entrainment on scalar variances, we need expressions
for scalar variances. We describe two expressions for the total scaled variance; the
first is based on scaling functions derived from a large-eddy simulation (LES) study
of Patton et al. (2003) that was instigated by Moeng and Wyngaard (1989), and
the second is derived from a parametrized variance budget equation with scaling
functions from Moeng and Wyngaard (1989).

Moeng and Wyngaard (1989) presented a decomposition of scalar variances into
variance related to top-down processes (related to entrainment fluxes), bottom-up
processes (related to surface fluxes), and to the correlation of these two types of
processes (Equation 4.12 in their paper). In their scaling theory, which is derived
from LES, the total variance depends on height relative to boundary-layer height
(z/z), the surface and entrainment scalar fluxes, and the free-convection velocity
scale ∗ defined as

∗ =

�

gzH

θρcp

�1/3

. (3.5)

We replace the entrainment flux in this decomposition by βFs , after Equation
3.4. Furthermore, the variance is non-dimensionalized with X∗ = −Fs /∗ (Moene
et al. 2006), which results in an expression for the total scaled variance,

σ2


X2
∗

= β2

ƒe

� z

z

�

+ ƒs

� z

z

�

+ βƒes

� z

z

�

(3.6)
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where ƒe, ƒs and ƒes are boundary-layer similarity functions.
The top-down (called entrainment, ‘e’ in this study) and bottom-up functions of

Moeng and Wyngaard (1989) are evaluated in Patton et al. (2003) with a LES model
of a finer resolution for the ASL (5 m) than Moeng and Wyngaard (1989). Patton et al.
(2003) simulated the atmospheric boundary-layer flow for a case with and without
a forest canopy. We use their results of the non-canopy case to create a similarity
function, specific for the ASL instead of for the whole CBL. The surface-related term
is described as

ƒs

� z

z

�

= 1.8
� z

z

�−2/3
(3.7)

for z < 0.1z, and the entrainment term within the ASL is described as

ƒe

� z

z

�

= 0.87
�

1−
z

z

�−0.43
(3.8)

for z < 0.1z. The entrainment term in the ASL is not very sensitive to z/z. From the
LES data of Patton et al. (2003) we find a value of 0.7 for ƒes for z < 0.1z.

The surface-layer based estimate for σ2


(Equation 3.3) should match the
boundary-layer based estimate (Equation 3.7) for very unstable conditions. Indeed,
ƒs(z/L) and ƒs(z/z) can be rewritten using Equation 3.1 to expand L and Equation
3.5 to expand ∗ to obtain

2∗ƒs

�z

L

�

≈ X2
∗ƒs

� z

z

�

. (3.9)

This result can be used in Equation 3.6. For comparisons with surface-layer scaled
functions, Equation 3.6 should be converted to a variance function normalized with
∗, which means a multiplication with X2

∗/
2
∗, or thus with 2∗/

2
∗. Therefore, we

derived from Equation 3.1 and Equation 3.5,

∗

∗
=
�

−
z

L

�−1/3
κ1/3. (3.10)

The surface-layer scaled variance function, which partly depends on MO universal
functions, can then be rewritten as

σ2


2∗
= ƒs

�z

L

�

+ β2







ƒe

� z

z

�

+
ƒes
�

z
z

�

β







�

−
z

L

�−2/3
κ2/3. (3.11)

An alternative way of determining the impact of entrainment processes on scalar
variances in the ASL is through the variance budget of specific humidity (q). We
here derive the entrainment-related variance from the parametrized budget equa-
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tion after Equation B3 in Moene et al. (2006), viz.

σ2
qe

q2∗
≈

τD

q2∗






−2′q′

e

∂qe

∂z
−
∂′q′2

e

∂z






, (3.12)

which is only a fair approximation of the total variance near the surface and the top
of the CBL for a horizontally homogeneous flow in a steady state. In Equation 3.12,
τD is a dissipation time scale, which can be derived from Figure 22 in Moeng and
Wyngaard (1989) for the ASL (≤ 0.1z) as

τD ≈
z

∗
. (3.13)

The total scaled variance in the ASL due to local production (surface related) and
production in the upper part of the CBL (entrainment related) can then be written as

σ2
q

q2∗
≈ ƒs
�z

L

�

+
τD

q2∗






−2′q′

e

∂qe

∂z
−
∂′q′2

e

∂z






. (3.14)

We rewrite the boundary-layer production terms using two derivations from Figures
11 and 14b respectively in Moeng and Wyngaard (1989). From their Equation 4.11a
it follows that ∂qe

∂z depends on the top-down gradient function gt shown in their Figure
11, which is approximately 1 in the ASL, at 1− z/z = 0.9. Thus,

∂qe

∂z
≈ −

′q′
e

∗z
. (3.15)

In Figure 14b (Moeng and Wyngaard 1989), the top-down turbulent transport ′q′2
e

decreases with height by ≈ 4
z

′q′
e

2

∗
in the ASL, viz.

∂′q′2
e

∂z
≈ −4

′q′
e

2

∗z
. (3.16)

By substituting Equations 3.10, 3.13, 3.15, and 3.16 into Equation 3.12, and replac-
ing ′q′

e
by βq′q′s (Equation 3.4), we obtain a quantification of the contribution of

the entrainment processes to the total variance that depends on the entrainment
ratio for humidity

σ2
qe

q2∗
≈ (2+ 4)β2

q

�

−
z

L

�−2/3
κ2/3. (3.17)

In this expression, the term for the transport of scalar variance (e.g. of humidity) is
twice as large as the production term caused by the vertical scalar gradient in the
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entrainment zone. The total variance can be written as

σ2
q

q2∗
= ƒ

�z

L
,
z

z
, βq

�

≈ ƒs
�z

L

�

+ 6β2
q

�

−
z

L

�−2/3� z

z

�2/3
κ2/3. (3.18)

Both Equations 3.11 and 3.18 require βq and z as boundary-layer input for these
variance quantifications. Also, both equations are normalized with the same scale,
such that they can be compared to each other.

3.2.2 Entrainment Signals in Surface-Layer Observations

Spectral Analysis

Turbulence measurements contain information on time scales (fixed measurements)
or length scales (moving airborne measurements), which can be compared to each
other using Taylor’s frozen turbulence hypothesis. We here associate boundary-layer
processes such as entrainment with relatively large time scales (low frequencies)
≈ 20 min, which is ∼ z/∗. This value of 20 min also corresponds to results pre-
sented in Figure 3.3 in Canut et al. (2010). In their study, the horizontal distance
between the entrained ‘dry tongues’ is approximately 4 km at a mean wind speed
of 3.2 m s−1. Surface-layer turbulence is associated with relatively short time scales
(high frequencies) ≈ 1 min, see Figure 3.4 in Kaimal et al. (1972). However, a clear
distinction can not be made between these two sources of variance in the scalar sig-
nal, because scalar fluctuations can also arise from the ‘chewing-up’ of large-scale
turbulence by smaller-scale turbulence (Kimmel et al. 2002).

To extract dominant frequencies from time series, we can use the wavelet analy-
sis and, as with Fourier analysis, it can be used to detect the distribution of variance
over different frequencies. However, the Fourier transform assumes the data are
cyclic, whereas the wavelet transform can be used for waves with only a few periods
and a finite lifetime. The application of wavelet analysis to atmospheric turbulence
started already in the last century by e.g. Hudgins et al. (1993) and Farge et al.
(1996). Fourier analysis cannot cope with non-linear convection, which is charac-
teristic of a CBL. Therefore, Terradellas et al. (2001), Cuxart et al. (2002), Mauder
et al. (2007) and others proceeded with wavelet analyses in atmospheric turbulence
studies.

For wavelet analysis, we need a so-called mother function. De Moortel et al.
(2004) studied the use of non-orthogonal and complex mother wavelets (e.g. Paul
and Morlet). They concluded that a smaller value of the wavelet parameter pro-
vides a better time resolution, whereas a larger wavelet parameter improves the
frequency resolution. We intend to clearly distinguish between different frequency
ranges in the turbulence signal and make a compromise between obtaining the ex-
act dominant frequency and the timing of changes in the spectra. To finally deter-
mine the fraction of the variance contained in a certain part of the spectrum, we use
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an ogive, the integral of the power spectrum up to a certain frequency (Oncley et al.
1996).

Statistical Analysis

Graf et al. (2010) conclude that turbulence statistics obtained near the surface can-
not be solely explained by local effects, but contain information about the whole
CBL, including the entrainment zone. These boundary-layer-scale variations in e.g.
T, q and  may in turn also enhance or diminish the surface fluxes (Sorbjan 1996).
However, here we focus on entrainment effects on scalar variances rather than on
entrainment-flux induced variations of the surface fluxes.

Figure 3.1 sketches vertical profiles of specific humidity for two different entrain-
ment regimes. The solid blue line represents the profile in a well-mixed CBL with
relatively weak entrainment, whereas the dashed red line shows the humidity profile
for relatively strong entrainment and therefore a non-negligible gradient in the CBL.
We expect that the distribution of humidity in the ASL for the first case is positively
skewed because air that is drier than the constant mixed-layer value cannot reach
the surface layer. The humidity distribution of the second case loses its skewness
because dry air from the upper part of the CBL, and even drier air entrained from the
free atmosphere above, reaches the ASL. Studies of Mahrt (1991), Lenschow et al.
(2000), de Arellano (2004), Couvreux et al. (2007), Lothon et al. (2007) and Lohou
et al. (2010) confirm this relation between humidity skewness (further referred to as
Skq) and entrainment processes.

Accordingly, we might expect a relation between Skq in the ASL and violation of
MO similarity theory (caused by boundary-layer-scale fluctuations in the q signal).
However, using humidity distributions, turbulent advection of dry air from another
region that is much drier than the study area cannot be distinguished from entrain-
ment processes. That is, the effect of a horizontal humidity gradient on the skewness
of q may be similar to that of a vertical gradient.

The relation between skewness and violation of MO similarity theory will not be
valid for temperature, because warm entrained air from the free atmosphere cannot
be distinguished from warm air from the surface in the distribution of temperature in
the ASL. As a result, enhanced entrainment will not significantly affect the skewness
in the ASL.
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Figure 3.1: Sketch of the vertical profile and distribution of the humidity signal observed in
the ASL in the case of relatively weak entrainment (solid blue, high skewness) and in the case
of relatively strong entrainment (dashed red, zero skewness)

3.3 Data and Methods

3.3.1 Field Measurements

BLLAST Experimental Set-Up

The field campaign Boundary-Layer Late-Afternoon and Sunset Turbulence (BLLAST)
took place near the Pyrenees in south-west France, from 14 June to 8 July 2011
(Lothon et al. 2012). The main objective of this campaign was to better understand
the physical processes that control and follow the transition from a CBL towards
a stratified nocturnal boundary layer. Surface and boundary-layer measurements
were performed around Lannemezan, a village located on a large plateau (200 km2)
with several mainly agricultural land-use types.

Two masts were installed at the so-called Edge site (which was actually used to
study the effect of an edge between two different land-use types on the validity
of MO similarity theory). They were installed (Figure 3.2) in a grass field and in a
field mainly cropped with wheat. The latter will further be referred to as ‘fodder’,
because it is a mixture for fodder purposes also containing minor portions of oats,
barley and peas. The masts were equipped with sensors for the main surface energy
components: sensible heat flux (sonic anemometer), moisture flux (sonic anemome-
ter and infra-red gas analyzer) (CSAT3, Campbell Scientific, Logan, Utah, USA and
LI-7500, LI-COR, Lincoln, Nebraska, USA), incoming and outgoing shortwave and
longwave radiation (CNR1, Kipp and Zonen, Delft, the Netherlands), and soil heat
flux (HFP01SC, Hukseflux, Delft, the Netherlands).
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The grass was cut before the installation of the masts, and grew throughout the
campaign. The fodder reached its final height (0.95 m) around the start of the
campaign. The EC sensors in the grass field were placed 2.55 m above the surface,
which is 2.25–2.50 m above the grass top, depending on growth. In the fodder field,
the EC sensors were installed 3.00 m above the surface, which is 2.05 m above the
top of the fodder. Both radiometers were installed 1.68 m above the surface.

A 60-m tower was located at a distance of 500 m from the Edge site, on which EC
sensors were installed at different heights. In this study we used sensible heat fluxes
(CSAT3, Campbell Scientific), relative humidity measured at 60 m, and precipitation
measurements (EM LTD, ARG100). The land-use types closely surrounding the EC
stations (Figure 3.2) were determined during the campaign. We used a GPS device
to specify corners and borders of the fields. The characterization covered the area
at least up to a distance of 300 m around the stations in order to apply a footprint
model. The aerial view also shown in Figure 3.2 was used to complement the point
dataset. Both were used to create a vector map of land use around the site. A grid
(1 m) dataset was derived from this map for the footprint criterion explained in the
following section.

During fair weather conditions throughout the campaign, so-called intensive ob-
servation periods (IOP), additional observations were performed using radiosound-
ings and other boundary-layer profiling instruments. Several radiosondes were
launched at two agricultural sites located 1 and 4 km away from our EC site. We used
Vaisala (Digicora III, RS92 SGP) and MODEM (developed by CNRS) sondes launched
at 1100, 1300 and 1400 UTC at both locations, and obtained vertical temperature
and humidity profiles from the soundings. These are shown, including the fit of the
first-order jump model (explained in Section 3.3.2), in Figures 3A.1 and 3A.2 (see for
an overview of all soundings the open database at http://bllast.sedoo.fr).

Data Processing and Selection

We determined fluxes and variances from the raw 20-Hz data using ECpack-2.5.23-
1.3 (van Dijk et al. 2004). The averaging time was 30 min, which is a typical av-
eraging time for EC data needed to capture surface-layer turbulence and exclude
mesoscale processes. We performed a planar fit rotation (Wilczak et al. 2001) over
the whole measurement period of 23 days to adjust the coordinate system. Linear
trends were removed and the density correction (Webb et al. 1980) was carried out
to correct the observed humidity for variations of the air density. The sonic tem-
perature was transformed to actual air temperature using the Schotanus correction
(Schotanus et al. 1983). The sensible heat flux is based on the sonic temperature
(i.e. not corrected for humidity influences on the temperature), and so is close to
the buoyancy flux as needed (Section 3.3.2).

Ninety-five percent confidence intervals were estimated by quantifying the sam-
pling error for each scalar average and flux, following van Dijk et al. (2004). We re-
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Figure 3.2: Land-use map of the study area (Edge site) with locations of two eddy-covariance
(EC) stations in Lannemezan (France), in the summer of 2011. Two example footprints are
given that contributed for 75 % (the surface heterogeneity criterion, Section 3.3.1) to the
observed fluxes at the EC station in the so-called ‘fodder’ field at day of the year (DOY) 177
(solid) and 182 (dashed) at 1330 UTC (these moments are also used for other figures). Aerial
view: GoogleTM Earth, IGN-France. 43◦07′N, 0◦21′E, 582 m above mean sea level

moved processed data for which the confidence interval of the non-dimensionalized
standard deviation (see left-hand side of Equation 3.2) was >0.5 to exclude sam-
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pling errors. Furthermore, 30-min periods with a sensible heat flux or latent heat
flux <10 W m−2 were removed in order to only focus on data collected during un-
stable conditions.

We eliminated data with wind directions between 135◦ and 145◦ to avoid mast
disturbances, and to exclude any surface-heterogeneity effects at field scale, we
only used EC data of which at least 75 % of the footprint is located in the field of
measurements (grass or fodder). Based on van de Boer et al. (2013), we used a
combination of the footprint model of Hsieh et al. (2000) and the crosswind function
of Kormann and Meixner (2001) to estimate the location of the flux footprints. Vari-
ance footprints might differ from flux footprints, but to date no variance-footprint
model has been created and tested.

For the raw data analyses on statistics and spectra, we discarded the same data
as for the 30-min averaged data. In addition, we applied linear detrending per hour
of raw data and removed non-physical data. In both the raw and processed data we
removed data obtained between 0900 and 1100 UTC at DOY (day of the year) 178
and between 1300 and 1500 UTC at DOY 186 because of non-stationarity caused by
the passage of a cold front (which can be recognized in the vertical humidity profiles
in Figure 3A.1 in the Appendix). All these restrictions led to a reduction by 8 % of
all daytime data (0800-1600 UTC) above the fodder, and a reduction by 20 % of all
grass daytime data. The difference in data reduction between both sites is mainly
due to the footprint restriction.

3.3.2 Data Analyses

We here describe our wavelet analysis on the surface-layer data that was performed
in order to detect events with low-frequency contributions. Based on our schematic
in Figure 3.1, we attributed these low-frequency events to entrainment when the
natural positive skewness of the humidity distribution (as described below) was re-
duced. We show how we calculated entrainment ratios for humidity to validate our
entrainment detection method. Furthermore we describe how we separated the
data of the driest surface (fodder) in a low and a higher entrainment regime (based
on surface-layer data), so that we could quantify the effect of entrainment on the
surface-layer scaled variances. We finally explain here how we tested MO similarity
functions (Section 3.2.1) for all daytime data over two different surfaces, for tem-
perature and humidity.

Quantification of Entrainment Regime Based on Surface-Layer Data: Spec-
tra and Central Moments

To obtain information about the time scale of variations we have used spectral anal-
ysis based on wavelet transforms. We used spectral analysis in two ways:
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Figure 3.3: Ogives of humidity data without a predominance of large-scale variance (left,
blue, DOY 182), and with a predominance of large-scale variance (right, red, DOY 177) at
1300–1400 UTC, measured over fodder. The solid black lines indicate the 10-min time-scale
threshold, and the dashed lines indicate the time scale at which 75 % of the variance is
covered

• To separate (non-periodic) events with time scales >10 min from events with
time scales <10 min.

• To find the time scale per time interval at which 75 % of all variance is reached.

We used the Paul wavelet as the mother function to capture non-periodic scales,
and we used the fourth-order function to have as much information about the exact
frequencies as possible. Using the wavelet spectrum, we separated the total vari-
ance into a part related to time scales <10 min and a part related to larger time
scales (see Figure 3.3). We define the relative contribution of larger time scales as
σ2
>10min/σ

2
tot. It will be justified later in this study (Figure 3.6) that, in the ASL, there

is a small energy gap at a time scale of 10 min. The separation of variance by a
10-min time scale was done for all IOP days and based on detrended time series of
1 h of 20-Hz data. Furthermore, ogives based on the wavelet spectra were used to
determine a specific time scale. In Figure 3.3 we show two examples of ogives; one
case with and one without a predominance of large time scales. The time scale at
which 75 % (that is, a significant part) of the humidity variance was reached is our
definition of the time scale TS (see dashed lines in Figure 3.3). As shown in Figure
3.3, TS is approximately 1 min if large time scales are not predominant, whereas
TS can be 10 min in the case of predominant large time scales in the surface-layer
data. The latter agrees with our assumption that boundary-layer processes have a
time scale >10 min (Section 3.2.2).

We do not expect large differences in the daily course of daytime surface-layer
related time scales, because the increase of larger scales in the CBL during the
day goes along with an increase in smaller scales (surface-related turbulence), such
that the relative role of large scales on the total variance in the ASL does not change
much (except during the morning and afternoon transition). If larger-scale processes
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are dominant, we expect them to be dominant for most of the daytime data of that
day. Therefore, we determine TS each day. We calculated the median and standard
deviation of hourly dominant time scales between 0800 and 1600 UTC to obtain a
daily value based on more daytime data without a predominance of both transition
periods.

In Section 3.2.2 it was identified that in situations with strong entrainment, the
scalar skewness in the surface layer is expected to decrease. Therefore, for the
same 20-Hz data as were selected for the time scale study, we calculated Skq. We
also calculated medians and the standard deviation per day of hourly skewnesses
between 0800 and 1600 UTC.

Quantification of Entrainment Regime Based on Boundary-Layer Data: Lo-
cal Entrainment Ratio

Because the value of the entrainment ratio for the buoyancy fluxes is rather con-
fined, we expect a larger variability in the effect of entrainment on surface-layer
data for humidity than for temperature. Therefore, we determined the entrainment
regime in terms of the entrainment ratio for humidity. We used radiosonde data to
determine the entrainment ratio for humidity.

We first calculated the entrainment buoyancy flux He from the surface buoyancy
flux (Equation 3.4), using a fixed value of −0.2 for the entrainment ratio for the
buoyancy flux. We calculated He by using a daytime-averaged surface buoyancy
flux Hs (1000-1500 UTC, in agreement with sounding launching times) obtained at
60 m (see Section 3.3.1), representing the area averaged flux of our study area per
day.

Then we applied an adapted Bowen ratio (based on the buoyancy flux rather than
on the sensible heat flux) at the boundary-layer top (Betts 1992) to calculate LvEe ,

Be =
He

LvEe

=
cpΔθv

LvΔq
, (3.19)

in which Δθv and Δq are the jumps in virtual potential temperature and specific hu-
midity at the height of the temperature inversion at the top of the boundary layer,
and Lv is the latent heat of vaporization of water (≈ 2.5× 106 J kg−1). The location
and the size of the jumps that are needed in Equation 3.19 were derived from the
vertical profiles of potential temperature and specific humidity (see Appendix, Fig-
ures 3A.1 and 3A.2 for these vertical profiles). We manually fitted a first-order jump
model to the temperature and humidity profiles of every radiosounding dataset to
estimate the scalar difference between the borders of the entrainment zone. We
note that the first-order jump model assumes that the entrainment zone has a finite
thickness (Mahrt and Park 1976). However, we see in Figures 3A.1 and 3A.2 that the
quantification of the jumps is not straightforward, such that values of the derived
LvEe are uncertain.
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Table 3.1: Entrainment fluxes (He , LvEe ) and entrainment ratio for humidity over the fodder
field (βq), calculated from surface fluxes (H−re, LvEƒodder) and the temperature and hu-
midity jumps (Δθ and Δq) in the vertical profiles in Figure 3A.1 (1 km from the EC stations)

DOY Time z Δθ Δq Hv−re He LvEe LvEƒodder βq
UTC m a.g.l. K gkg−1 Wm−2 Wm−2 Wm−2 Wm−2 -

170 1104 983 4.5 −5.0 210 −42 115 267 0.43
171 1101 713 1.3 −2.6 123 −25 119 266 0.45
175 1052 1110 3.1 −2.0 160 −32 50 202 0.25
176 1034 531 1.8 −4.7 189 −38 250 221 1.13
177 1052 349 0.4 −2.2 143 −29 396 208 1.90
177 1347 1052 0.2 −2.0 143 −29 620 208 2.98
178 1050 481 1.0 −3.7 105 −21 189 289 0.65
178 1345 1062 0.8 −4.6 105 −21 282 289 0.98
181 1053 1363 5.9 −5.3 97 −19 44 146 0.30
182 1050 1368 2.7 −1.1 130 −26 26 199 0.13
186 1047 480 −0.2 −4.9 119 −24 −1567 210 −7.5
186 1248 797 2.0 −4.6 119 −24 138 210 0.66

In order to quantify the effect of entrainment on data above a specific field, we
define a local entrainment ratio

β =
Fe

Fsloc
, (3.20)

which will be larger in a field with a lower surface latent heat flux. We derived the
local entrainment ratio for humidity βq from the calculated LvEe and the measured
LvEs . We took LvEs from the 30-min averaged fluxes (again averaged from 1000 to
1500 UTC) of the location of interest (grass or fodder in our case). We calculated
entrainment ratios from daytime radiosoundings that were launched between 1100
and 1400 UTC on IOP days (see Tables 3.1 and 3.2 for details per sounding).

We compared all local entrainment ratios for humidity observed above the grass
and the fodder with Skq and σ2

>10min/σ
2
tot observed at the time of the radiosounding

observations from both launch locations. We excluded the soundings of DOY 178 at
1050 UTC, and DOY 186 at 1258 and 1358 UTC because of non-stationarity caused
by the passage of a cold front. We derived relationships between βq and these
surface-layer characteristics Skq and σ2

>10min/σ
2
tot. We hereby distinguish between

days with both a very low Skq and a high TS, from cloudy days (on which we do not
expect significant entrainment at the inversion top) with higher values for Skq, lower
values for TS, or both. We selected a few days of our experiment as ‘entrainment
day’, based on a low Skq (<0.2 and high TS (>25 min), in combination with a high
entrainment ratio (>0.5).

Evaluation of Combined Surface-Layer and Boundary-Layer Scaling

To determine deviations from MO similarity theory, we evaluated non-
dimensionalized temperature and humidity variances obtained over the grass and
the fodder against the similarity relation Equation 3.2. We distinguish days with a
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Table 3.2: Entrainment fluxes (He , LvEe ) and entrainment ratio for humidity over the fodder
field (βq), calculated from surface fluxes (H−re, LvEƒodder) and the temperature and hu-
midity jumps (Δθ and Δq) in the vertical profiles in Figure 3A.2 (4 km from the EC stations)

DOY Time z Δθ Δq Hv−re He LvEe LvEƒodder βq
UTC m a.g.l. K gkg−1 Wm−2 Wm−2 Wm−2 Wm−2 -

166 1410 961 2.3 −4.3 97 −19 89 204 0.44
170 1300 921 1.9 −2.7 210 −42 146 267 0.55
170 1358 889 0.5 −1.3 210 −42 289 267 1.08
171 1256 802 2.2 −2.7 123 −25 75 266 0.28
171 1402 894 2.8 −2.6 123 −25 56 266 0.21
176 1257 589 1.6 −2.0 189 −38 114 221 0.52
176 1401 642 1.8 −2.9 189 −38 153 221 0.69
177 1225 701 0.2 −3.1 143 −29 972 208 4.67
177 1408 876 0.3 −2.2 143 −29 534 208 2.57
178 1357 1416 0.7 −6.0 105 −21 455 289 1.57
182 1257 1312 4.0 −0.7 130 −26 −11 199 −0.06
182 1355 1276 3.5 −3.5 130 −26 65 199 0.33
183 1257 891 2.1 −0.7 145 −29 24 208 0.12
186 1258 878 0.7 −3.3 119 −24 279 210 1.33
186 1358 935 0.5 −1.2 119 −24 148 210 0.70

low Skq and a high σ2
>10min/σ

2
tot from days without these indications for dominant

entrainment processes.
We fitted the data to the function c1(1− 28.4z/L)−2/3 using orthogonal distance

regression (without weighting of the residuals), where both variables (−z/L and the
scaled variance) were log-transformed before fitting. We calculated the first coeffi-
cient, c1, for the two specific fields, for temperature and for humidity, and for days
with and without indications of dominant entrainment processes. We applied a fixed
value of 28.4 (De Bruin et al. 1993) for the second coefficient, c2, because the data
do not cover near-neutral conditions such that the transition between neutral and
free convection (i.e. −z/L ≈ c−12 ) could not be determined accurately.

To investigate whether the differences between observed relationships and the
function given in Equation 3.2 are in agreement with boundary-layer scaling theory,
we added the variance produced by entrainment processes expected from a cer-
tain βq and z to the expected surface-layer flux-variance. The entrainment-related
variance was estimated for different entrainment regimes, using the two approxi-
mations presented in Section 3.2.1 by Equations 3.11 and 3.18. We calculated the
normalized humidity variances for the whole observed stability range, at 2.1 m.
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Figure 3.4: DOY numbers indicate the start of the day, for, a sensible heat flux (H), b latent
heat flux (LvE), c net radiation (Qnet) all averaged for 0900–1500 UTC and obtained from EC
stations over the grass (green) and fodder (yellow) (see Figure 3.2), d relative humidity (RH),
measured at the 60-m tower (Section 3.3.1); IOP days are indicated by a black bar. e wind
direction (Udr) measured at the EC station in the fodder; precipitation (r) measured at the
60-m tower

3.4 Results and Discussion

3.4.1 Meteorological Conditions

During the days that were selected as the IOP days, the Azores anticyclone extended
to the Pyrenees and produced fair weather. On most other days, the influence of the
high pressure system weakened, leading to a number of rain events. Throughout the
campaign, midday sensible heat fluxes obtained over the grass varied less between
the days than did the sensible heat fluxes over the fodder site. Latent heat fluxes
obtained over the grass were significantly larger than were sensible heat fluxes (see
Figure 3.4a, b), resulting in a Bowen ratio of ≈0.3 over the grass at around 1200 UTC.
Over the drier fodder the Bowen ratio was higher, ≈0.5 during the first days of the
campaign. Due to the ripening of the wheat within the fodder, the Bowen ratio
over the fodder increased to values >1. Due to an almost twice as large albedo
of the grass compared to the fodder, the available energy was higher above the
fodder than over the grass, for all days (see Figure 3.4c), although longwave outward
radiation was slightly higher above the fodder.

A period with warm and dry boundary-layer conditions is recognized for DOY 176
through 178 and for DOY 182 through 183 (Figure 3.4d). In these periods, the relative
humidity in the CBL is so low that the high available energy is used for evapotran-
spiration rather than for the sensible heat flux.
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Figure 3.5: Normalized variances of temperature (top) and humidity (bottom) over the grass
(left) and the fodder (right) depending on atmospheric stability (z/L) and on the DOY (colour
bar) for 30-min intervals. The MO similarity function proposed by De Bruin et al. (1993)
(Equation 3.2) is displayed as a solid black line

3.4.2 MO Similarity Theory for Different Surfaces and Scalars

In Figure 3.5, we show the agreement of the variances of temperature and humidity
measured over the grass and the fodder with the similarity function of De Bruin et al.
(1993) (Equation 3.2). For temperature over both the grass and fodder, observed
variances are close to this similarity function with a fit for the first coefficient in
Equation 3.2 of 9.9 ± 0.7 and 9.7 ± 0.3 respectively. This indicates that the similarity
function (which has a value of 8.4 for the first coefficient) slightly underestimates
the temperature variance for both fields.

For humidity over the fodder, variances were clearly higher than the similarity
function predicted. The first coefficient in Equation 3.2 is identical to the values
for temperature (9.6 ± 0.8) over the grass, whereas it has a clearly higher value
of 14.7 ± 0.6 over the fodder. The colours in Figure 3.5 represent the day of the
year. We see that the observed non-dimensionalized variances exceeded the values
predicted by the similarity relationship especially later on in the campaign. This
may be a consequence of ripening of the wheat, leading to a smaller latent heat
flux, which makes the non-dimensionalized humidity variance more susceptible to
disturbances. Furthermore, discrepancies in temperature variance mostly occur in
the weakly unstable regime, since that is when the surface sensible heat flux is small
and enhances the relative importance of larger scales.
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Figure 3.6: Unscaled wavelet spectra of a temperature and b humidity. The data were

obtained over grass (green) and fodder (yellow) at 1300–1400 UTC. Solid lines refer to data

from DOY 177, a day with significant large-scale fluctuations in humidity. Dashed lines refer

to 1 h of data from DOY 182, a day without significant large-scale fluctuations

Note that less data remain for the grass field than remain for the fodder field, due

to the homogeneity criterion (the footprint of the grass measurements exceeded

field boundaries more often). However, we do not know to what extent the grass

field and fodder field are internally homogeneous. Small-scale surface heterogeneity

may give rise to additional variance production, see Section 3.4.5 and Moene and

Schüttemeyer (2008).

3.4.3 Indications of Entrainment in ASL Observations

Spectral Analysis

In Figure 3.6 we show wavelet spectra of the temperature and humidity signals for

two specific days on both fields; these days differ in the presence of large-scale

variance in the humidity signal. In the spectra of vertical velocity (), all fluctuations

affecting  are of a time scale <10 min (not shown here). Thus the surface-flux

related variance is expected to occur at time scales <10 min as well. In the data

selected for Figure 3.6a, all temperature variance is produced by processes at a time

scale ≤15 min on both days. However, for humidity we find a difference between

the 2 days per field; large-scale processes contribute a lot to the humidity variance

at DOY 177 (second peak in Figure 3.6b), while we do not find this direct contribution

of large-scale processes at DOY 182 (also in Figure 3.6b). The relative contribution

of large-scale motions to the total humidity variance at DOY 177 is much larger over

the fodder, where fluctuations generated by the surface moisture flux are relatively

low (first peak in Figure 3.6b). We noticed (not shown) that the power (amount of

variance) for all frequencies in the inertial subrange of the humidity spectra over

both fodder and grass is higher at DOY 177 than at DOY 182. This indicates that the

large-scale processes on DOY 177 also increase the variance associated with smaller
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Figure 3.8: The daily median and standard deviation of Skq of 1 h of data above grass
(green) and fodder (yellow) between 0800 and 1600 UTC at IOP days

time scales, mentioned as the ‘chewing-up’ in Section 3.2.2, Kimmel et al. (2002).
The time scale TS for humidity is approximately 10–15 min for most of the days

above both fields (see Figure 3.7), but it reaches 35 min over the fodder for DOY
176–178 and DOY 186. This indicates that, on those days, processes at a spatial
scale larger than the depth of the ASL affected surface-layer measurements. To en-
sure that the observed differences in TS were not due to a specific selection of the
data, we examined different time intervals (0700–1700 UTC, 0800–1600 UTC, 0900–
1500 UTC, and 1000–1400 UTC). However, the difference for the fodder TS between
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Figure 3.9: Density distributions of humidity at DOY 177 (left, a day with predominant large-
scale influences) and DOY 182 (right, a day without a predominant large-scale influence)
obtained over the grass (top, green) and the fodder (bottom, yellow) at 1300–1400 UTC

DOY 176–178 and 186 and the other days remained ≈20 min for all intervals. More-
over, we did not observe a trend in TS within the tested intervals.

Distribution of Humidity Signal

In Figure 3.8 we compare the midday skewnesses of humidity between the two
fields. Over the grass we find values around 0.9, and only for DOY 176, 177 and
178, skewnesses are lower, around 0.5. For fodder, Skq is generally lower than for
grass (around 0.4), caused by lower latent heat fluxes and thus a smaller humidity
range at the right part of the distributions in Figures 3.9c, d. Consequently, the rel-
ative importance of non-local effects (left part of the distributions in Figures 3.9a,
c) is larger above the fodder, which lowers the skewness even more. Skq values
observed over the fodder reduce to zero on the same days as for which lower values
were found over the grass (DOY 176–178). As discussed in Section 3.2.2, humidity
skewnesses close to zero are an indication of the signal being not only influenced by
surface-layer processes.

As entrained air from the free atmosphere is clearly drier than that of the CBL,
we relate the extra variance on the dry side of the distribution at the fodder field
to entrainment. An alternative explanation for the enhanced variance on the dry
side of the distribution could be horizontal advection from the town of Lannemezan
(2 km to the south-east of the site). However, south-easterly winds occur also on
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days where the humidity signal does not show low skewnesses and large time scales.
Furthermore, in the east-west direction the town is only ≈500 m wide. Hence, it is
questionable whether the town has a significant impact on the humidity signal over
the measurement site (e.g. in contrast to the study of Tapper (1990), which refers to
a much larger town). For a further discussion on the effect of surface heterogeneity,
see Section 3.4.5.

3.4.4 Relations Between ASL Observations and Entrainment
Regime

We analyzed all radiosoundings to obtain the boundary-layer height, entrainment
latent heat flux, and the local entrainment ratio (as presented in Section 3.2.2).
Boundary-layer heights at 1400 UTC varied between 600 and 1400 m (above ground
level, a.g.l.), and the entrainment latent heat flux varied considerably, between 24
and 972 W m−2 (see Tables 3.1 and 3.2 in Section 3.3.2).

In Section 3.4.3 we implied that entrainment processes influenced the observed
turbulence at DOY 176–178 and partly on DOY 186. This is in agreement with the
local entrainment ratios we found for humidity over the fodder; βq was more than
three times larger than was βθ on DOY 176, 177, 178, 186 and also partly on DOY
170 (see also Tables 3.1 and 3.2).

A clear difference in βq between the radiosoundings at a distance of 1 and 4 km
is not apparent (last column in Tables 3.1 and 3.2); however, some ambiguity exists
with respect to βq. To determine whether this is site-dependent, more radiosondes
should have been launched during daytime at both locations at exactly the same
time. The calculation of βq is very sensitive to the estimation of the area-averaged
surface fluxes and to the determination of the jumps of θv and q at the boundary-
layer top, for which we use local profiles of θv and q that may differ from the area-
averaged profiles.

In Section 3.4.3 it was shown how entrainment enhances the large-scale vari-
ance in the ASL. In Figure 3.10 we show the contribution of large-scale variance
(variance at time scales >10 min) to the total variance as a function of entrainment
ratio. Above the grass, βq is not large enough to confirm a clear relationship with
the large-scale variance. At the fodder, the relative contribution increases with in-
creasing entrainment ratio. However, observed relative variances do not confirm
the black lines that show the sum of the entrainment term β2

q
ƒe and covariance term

βqƒes divided by the sum of all three terms following Equation 3.11. For ƒe, we ap-
plied both the function presented in Figure 3.12a in Moeng and Wyngaard (1989)
and Equation 3.8, which we derived from the LES data of Patton et al. (2003). Both
top-down variance-related estimates do not fully explain the relative contribution of
larger-scale processes that was detected in the data. The variance-budget derived
estimate (thin dashed line) shows a better agreement with the measurements. How-
ever, also for this approach, the observations contain a greater large-scale humidity
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Figure 3.10: The contribution of variance at a time scale >10 min to the total variance in-
creases with the entrainment ratio. Black lines: contribution of entrainment-related variance
to the variance following Moeng and Wyngaard (1989), our fit after Patton et al. (2003), and
Equation 3.18 derived from the variance budget. The dots are based on hours of humidity
data for which also radiosonde data were available. The black line shows Equation 3.9 for rep-
resentative values for ‘entrainment days’ (Tables 3.1 and 3.2). Red dots indicate observations
on ‘entrainment days’ (Section 3.3.2)

variance than is estimated from the variance budget.
As we use the LES-derived scaling profiles of Moeng and Wyngaard (1989) and

Patton et al. (2003) down to a level where in the simulations the subgrid-scale pro-
cesses may dominate, the exact value of the scaling profile should be considered
with some care. However, the strongest height dependence in the ratio of top-down
variance to total variance is due to the height dependence of the surface-related
variance. The higher surface flux combined with the same entrainment flux pro-
duces a smaller contribution of large-scale variance to the total variance above the
grass than above the fodder. This indicates that surface-layer measurements are
not affected by the larger-scale processes over the grass (with larger LvE) on any
day, in contrast to the fodder field measurements (smaller LvE).

The observed simultaneous variation of entrainment ratio and skewness suggests
that they are correlated. In Figure 3.11 we show that the entrainment ratio can be
written as a function of humidity skewness,

βq = 1.5− 1.1
Skq

Skq ref
, (3.21)
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Figure 3.11: The normalized Skq (each based on 1 h of humidity data for which also ra-
diosonde data were available) decreases with the entrainment ratio for both land-use types
for a 95 % confidence interval (black continuous lines). Skq ref = 0.9 for grass and 0.5 for
fodder

in which Skq is normalized with a reference value (Skq ref) of 0.9 and 0.5 for grass
and fodder respectively. These reference values are the humidity skewnesses in the
case of relatively weak entrainment (see Figure 3.8), which correspond to βq ≈ 0.3
(see Figure 3.11). The 95 %-confidence intervals for the offset and slope respectively
are [1.2 2.0] and [−1.7 −0.7].

Equation 3.21 could be combined with Equations 3.11 and 3.18 to obtain a func-
tion for surface-layer scaling, in the case where only surface-layer measurements
are available (note that z/z still needs to be estimated).

3.4.5 MO Similarity Theory in Relation to Entrainment Data

Figure 3.12 is similar to Figure 3.5d, but with different criteria for colouring the data,
and with only data from IOP days. Red crosses are data from DOY 176–178 and
DOY 186, days for which we found larger time scales in wavelet spectra, and a
lower Skq than usual, and which we both relate to the impact of entrainment on
surface-layer turbulence. MO similarity theory is especially invalid on those days;
the red crosses (c1 = 15.8 ± 0.6) deviate more from the flux-variance relation with
c1 = 8.4 (De Bruin et al. 1993) than do the blue squares (c1 = 13.5 ± 0.5). We found
(not shown) that although humidity variance observed above the grass is captured
quite well by Equation 3.2, there is a slight difference (not significant) between the
days with (c1 = 10.1 ± 0.8) and without (c1 = 9.1 ± 0.3) surface-layer indications
for entrainment. Above the fodder for days that we marked as ‘no dominance of
entrainment’, c1 still deviates from its literature value. This means that, above the
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Figure 3.12: Normalized variances of humidity above the fodder depending on atmospheric
stability for 30-min intervals, including the Monin–Obukhov similarity function proposed by
De Bruin et al. (1993). Dashed lines show Equation 3.18 for a range of boundary-layer depths
and entrainment ratios. The black line shows Equation 3.11 for representative values for
‘entrainment days’ (Tables 3.1 and 3.2). Red dots indicate observations on ‘entrainment days’
(Section 3.3.2). Blue squares indicate days without signs of direct entrainment influences on
the ASL (only data of IOP days are shown here)

fodder, next to entrainment, other processes disturb the MO similarity relationships.
De Bruin et al. (1999) argue that violation of MO similarity theory occurs if fluxes
generated by surface heating or surface evaporation are of the same order as non-
locally (entrainment or local advection) generated fluxes. In our case, violation of
the theory occurs if βq > 0.6 (for βθ = −0.2 and derived from days on which we
found a high TS and a low Skq).

Our results presented in Figure 3.5a, b indicate that standard MO similarity is
captured well for temperature. However, the results presented above imply that
the standard MO similarity functions for humidity miss a relevant variable, espe-
cially under conditions of relatively strong entrainment. The variance produced by
entrainment processes is, as expected, larger for a larger entrainment ratio, and it
is smaller for deeper boundary layers (dashed lines in Figure 3.12, calculated solely
from the boundary-layer scaling theory after Equation 3.18). The deviations from MO
similarity theory observed in Figure 3.12 correspond to extra variance produced by
entrainment processes for βq between 1.0 and 1.5, and z between 500 and 1000 m,
which are both realistic values for our measurement campaign. The sum of variance
predicted from MO similarity theory and the LES-based function (Equation 3.11) at
βq = 1.25 and z = 750 m (representative values from Tables 3.1 and 3.2 for days

60



3.4. RESULTS AND DISCUSSION

with significant entrainment influences) is clearly lower than the variance observed
on days with signs of relatively strong entrainment (which we concluded before from
Figure 3.10). This result indicates that, by using the budget-derived approach, we
are able to correct the universal functions derived from MO similarity theory for a
strong influence of entrainment relative to the surface. However, to improve the

LES-based estimations of τD,
∂qe
∂z , and

∂′q′2
e

∂z (Section 3.2.1), they should be based
on LES with a higher vertical resolution in the ASL than in Moeng and Wyngaard
(1989).

Through the relation we observed between Skq and βq (Equation 3.21), we can
use Skq instead of βq in the budget (and LES) derived equations to add the normal-
ized variance produced due to entrainment to the normalized variance expected fol-
lowing MO similarity theory; z is still needed for both equations (Equations 3.11 and
3.18). However, a robust guess will suffice because (z/z)−2/3 in the budget-derived
equation and (z/L)−2/3 in the LES-derived equation are both not very sensitive to z.

One could wonder whether advection or the horizontal turbulent transport of hu-
midity variance plays a role here. A horizontal humidity gradient could produce ex-
tra variance in addition to the MO similarity functions. Therefore, we estimate these
contributions from the humidity variance budget equation for stationary conditions,
aligned with the mean wind with negligible mean vertical wind speed,


∂q′q′

∂
= −2′q′

∂q

∂
− 2′q′

∂q

∂z
− 2εs −

∂′q′q′

∂
−
∂′q′q′

∂z
. (3.22)

We approximate the total normalized humidity variance for a horizontally hetero-
geneous flow from this budget by writing the dissipation term as εs ≈ 1

2σ
2
q
/τD and

transferring it to the left-hand side. We move the horizontal variance advection term
to the right-hand side, normalize both sides with q2∗, and multiply both sides with the
ASL dissipation time scale τD ≈ κz/∗. If we assume that vertical flux divergence
is negligible, and estimate the budget terms following the relevant scales given in
Moene and Schüttemeyer (2008) in their Section 3.2.1, we obtain

σ2
q

q2∗
≈



∗

�

Δq∗

q∗

�2 κz

L
+
Δq∗

q∗

2κz

L
+ 2+

�

Δq∗

q∗

�2 κz

L
, (3.23)

in which the terms are placed in the same order as in Equation 3.22, representing
horizontal variance advection, production by a horizontal gradient, production by a
vertical gradient, and horizontal turbulent transport. The order of magnitude of the
production term due to a vertical gradient of humidity (which is approximately 2 in
Equation 3.23), corresponds to the estimated variance from the MO similarity func-
tion of De Bruin et al. (1993) for unstable conditions. The other three terms increase
with the magnitude of the relative horizontal contrast in humidity flux, Δq∗/q∗ (Δq∗
is the horizontal difference between the turbulent scales of humidity for the two
locations), and decrease with the horizontal length scale L at which this humidity
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contrast is observed. The horizontal variance advection furthermore depends on
/∗, which is larger for neutral conditions.

With typical values for the fodder field of this study, the city at 2 km with a roughly
estimated latent heat flux of 50 W m−2 theoretically creates extra normalized vari-
ance of ≈ 2×10−3. This value is negligible compared to the variance observed above
the fodder (shown in Figure 3.12). The estimate of the effect of the grass field next
to the wheat field (L = 50 m) is approximately 2×10−2 for humidity (ΔLvE = 100 W
m−2) and 8× 10−2 for temperature (ΔH = 175 W m−2). From this we conclude that
the extra variance we observed was mainly creted by entrainment influences, and
hardly any by surface heterogeneity or advection.

3.5 Conclusion

Monin–Obukhov similarity relationships for the variance of humidity were shown to
deviate from their documented values for observations made a few metres above a
drying fodder field. It turns out that on days with the largest deviations (DOY 176–
178 and 186 during the BLLAST campaign in southern France in 2011) a number of
metrics derived from the surface-layer observations suggest the effect of entrain-
ment processes:

• Skewnesses of humidity distributions were significantly lower than they were
on days with small deviations from Monin–Obukhov similarity theory (which we
relate to entrainment in the case of a dry surface)

• Contributions to the humidity variance were observed at a time scale corre-
sponding to z/∗, the boundary-layer height divided by the vertical velocity
scale (≈20 min).

Analysis of radiosonde data, and in particular the magnitudes of the entrainment
flux of humidity relative to the corresponding surface flux over the fodder field (local
entrainment ratio βq), revealed that indeed the affected days showed high entrain-
ment ratios. Therefore, we could use the ASL observations to identify days with a
predominance of entrainment.

The observed additional variance in q on days where the ASL is affected by en-
trainment is in accordance with the variance produced by entrainment processes,
estimated from a simplification of the variance budget equation. We built on the
work of e.g. De Bruin et al. (1999), Moene et al. (2006), and Lohou et al. (2010),
and succeeded in developing a robust method to detect and quantify entrainment
influences on surface-layer data, based on eddy-covariance data at low levels in the
ASL.

We identified a surface-layer scaling function for humidity that includes the en-
trainment effect, and which requires atmospheric stability, a rough estimate of z,
and either βq or skewness statistics of the surface-layer humidity observations. This
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relationship could be used for further surface-layer data analysis. Furthermore, the
presented methods (and some of the equations) can be tested and applied for more
scalars, such as CO2 concentration or reactive species.

3A Appendix

Vertical profiles of temperature (red) and humidity (blue) from all successful ra-
diosoundings at a site 1 km from our EC stations are shown in Figure 3A.1. We
manually added a first-order jump model to every vertical profile (black lines). Corre-
sponding surface and entrainment fluxes are given in Table 3.1. Soundings launched
at a site 4 km from our EC stations and contributing calculated fluxes are shown in
Figure 3A.2 and in Table 3.2 respectively.
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4
Estimation of the refractive index

structure parameter from single-level
daytime routine weather data

Atmospheric scintillations cause problems for applications where an undistorted

propagation of electromagnetic radiation is essential. These scintillations are re-

lated to turbulent fluctuations of temperature and humidity that are in turn re-

lated to surface heat fluxes. We developed an approach that quantifies these

scintillations by estimating Cn2 from surface fluxes that are derived from single-

level routine weather data. This approach allows for an efficient evaluation of

the performance of e.g. infrared imaging systems, laser geodetic systems, and

ground-to-satellite optical communication systems. We tested our approach for

two grass fields in central and southern Europe, and for a wheat field in central

Europe. Although there are uncertainties in the flux estimates, the impact on Cn2

is shown to be rather small. The Cn2 daytime estimates agree well with values

determined from eddy covariance measurements for the application to the three

fields. However, some adjustments were needed for the approach for the grass

field in southern Europe because of dominant boundary-layer processes instead of

surface-layer processes.

This chapter is published as van de Boer et al. (2014b).
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4. QUANTIFYING TURBULENCE FROM SINGLE-LEVEL WEATHER DATA

4.1 Introduction

Atmospheric turbulence and the related fluctuations of the refractive index of air
affect the propagation of electromagnetic waves. These scintillations are a problem
for communication and imaging systems (e.g. ground-based telescopes) that use
radiowaves, visible, or infrared radiation (Tunick, 2002). Fluctuations in the refrac-
tive index of air are mainly related to temperature, humidity, and pressure. There-
fore, turbulent fluctuations of temperature and humidity determine the intensity of
turbulence-induced refraction. Various instruments and calculation methods have
been developed to obtain the structure parameter of the refractive index of air (Cn2)
for a certain wavelength, to qualify signals of imaging or communication systems
that use electromagnetic radiation. However, these instruments (sonic anemome-
ter, scintillometer, air refractometer) are not easy to operate and expensive, such
that frequent observations are rare. A robust method to quantitatively estimate Cn2

based on readily available data is therefore needed.
Already forty years ago, Wyngaard et al. (1971) developed a semi-empirical the-

ory which relates the temperature structure parameter CT2 (which is related to Cn2)
to atmospheric stability and the vertical temperature gradient at a certain height in
the atmospheric surface layer (the lowest meters of the atmosphere). In the years
after, several studies showed that Cn2 does not only depend on CT2 , but also on
the humidity structure parameter Cq2 and on the joint structure parameter CTq (We-
sely, 1976). For wavelengths in the visible and near-infrared, Cn2 mainly depends
on CT2 , while for radio wavelengths, Cq2 mainly determines Cn2 . A summary of past
research on models and measurements for optical turbulence is presented in Tu-
nick (2002). Friehe (1977) and Davidson et al. (1978) estimated Cn2 from dual-level
meteorological data over the ocean for visible light. Andreas (1988) performed a
sensitivity study for a) a Cn2 derivation method based on observed surface fluxes of
heat, moisture and momentum using Monin-Obukhov similarity theory (Monin and
Obukhov, 1954), and for b) a method based on dual-level meteorological data. He
tested both methods above snow for a broad wavelength range (visible, infrared,
millimeter, and radio).

However, fluxes or vertical gradients are usually not available from regular mete-
orological observations. Therefore, Sadot and Kopeika (1992) developed a method
based on single-level standard weather-station data to estimate Cn2 in the atmo-
spheric surface layer. Also, weather forecasts can be used to predict Cn2 by their
method. The method needs, however, several empirical parameters which were
only derived for a desert region, and which need to be first determined for other re-
gions. Rachele and Tunick (1994) and Bendersky et al. (2004) developed methods to
similarly obtain Cn2 from single-level weather data for prairie grasslands and coastal
environments, which are, however, also not generally applicable. Cheinet and Cumin
(2011) show how Cn2 at different heights within the boundary layer could be derived
from atmospheric turbulence models. However, a very fine vertical resolution of
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4.2. FRAMEWORK

their model would be needed, which is usually not practical. Thus, robust and easy-
to-use methods for estimating Cn2 from single-level weather data are lacking, which
motivates our study.

The daily course of Cn2 depends on the atmospheric conditions which depend on
the time of the day, the day of the year (DOY), and the weather type of that specific
day. Observations of Cn2 above a grass field in the Netherlands are given in Figure
4.1 for cloudy and clear sky conditions, for a summer and an autumn day, for an
optical and a millimetre wavelength. With our scheme, we hope to capture both the
daily and seasonal changes of Cn2 for different locations.

We use an adaptation of the scheme introduced by Holtslag and van Ulden (1983)
and de Rooy and Holtslag (1999), later referred to as dRH99, that estimates surface
heat and moisture fluxes from air temperature, humidity, pressure, wind speed and
incoming shortwave radiation. This scheme is based on the Penman-Monteith equa-
tion, which estimates evapotranspiration rates from atmospheric conditions and
vegetation specific parameters (e.g. canopy resistance, surface albedo and rough-
ness) that are all easy to estimate. Our implementation of the scheme of dRH99
is described in Section 5.2 and Appendix A. In Section 5.2, we also explain in more
detail how CT2 , Cq2 and CTq are derived from surface fluxes (using Monin-Obukhov
similarity theory), and how Cn2 is derived from the meteorological structure param-
eters. Our method can be used to provide insight on optical turbulence at a specific
location for a certain moment, but also for a period of several years. Estimates of
optical turbulence effects on electro-optic or laser systems could be derived, mainly
for horizontal atmospheric paths. The complete scheme that estimates Cn2 from
standard single-level weather data follows from the Appendix and Section 4.2.2 and
4.2.3.

We validate estimated fluxes and structure parameters with summertime mea-
surements from different locations and vegetation types: grass in the Netherlands,
grass in the South of France, and wheat in the West of Germany. In Section 4.3, we
describe the datasets, and in Section 4.4 we explain the evaluation of our scheme.
We restrict ourselves to daytime data because at night, Monin-Obukhov similarity
theory is often not valid. Moreover, we use surface flux observations for the scheme
validation, which are ambiguous during the night because of low values. In Section
5.4, we compare fluxes and structure parameters derived using our method with
high frequency measurements (eddy covariance). In contrast to other methods,
our scheme only weakly depends on empirical assumptions and is computationally
cheap.

4.2 Framework

In this section, we describe how we derive Cn2 from the atmospheric variables tem-
perature, humidity, pressure, wind speed and radiation, and from the surface char-
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Figure 4.1: Daily course of observed values of Cn2 for λ = 670nm (a and b) and λ = 2mm (c
and d) for different weather types (blue is clear sky, red is cloudy) and seasons; summer (a
and c) and autumn (b and d) above a grass field in the Netherlands (Haarweg Wageningen,
2005).
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4.2. FRAMEWORK

acteristics albedo, roughness, leaf area index, vegetation height and the minimal
stomatal resistance of the canopy. Our scheme follows three steps. First (Section
4.2.1), fluxes are estimated from the single-level weather data using an adaptation
of an existing scheme. Then (Section 4.2.2), these fluxes are used to estimate the
structure parameters CT2 , Cq2 and CTq2 , following Monin-Obukhov similarity theory.
Cn2 is finally estimated from the latter (Section 4.2.3) using theory described by
Ward et al. (2013).

4.2.1 Estimation of surface fluxes from single-level weather
data

dRH99 presented a scheme that relates surface fluxes of momentum and sensi-
ble and latent heat to only a few weather variables. They successfully tested their
scheme for a full year of observations above a grass field in Cabauw, the Nether-
lands. The scheme consists of an iteration loop with the following parameters
needed for the Penman-Monteith equation: net radiation Qn, soil heat flux G, and
canopy and aerodynamic resistances rc and r. The canopy resistance together with
the aerodynamic resistance determine the partitioning between sensible and latent
heat flux. In the Penman-Monteith equation, the latent heat flux (LvE) is calculated
as

LvE =
s(Qn −G) +

ρcp
r
(est − e)

s+ γ(1+ rc
r
)

. (4.1)

The sensible heat flux H can be calculated as a residual of the surface energy bal-
ance Qn −G− LvE. In Equation 4.1, est − e is the water vapour deficit in Pa, where
e is the water vapour pressure and est is the saturation pressure of water vapour
(which only varies with temperature). s is the slope of the saturated vapour pres-
sure curve s(T) = dest/dT, ρ is the air density, cp is the specific heat capacity of
air at constant pressure (p) that depends on humidity, and γ is the psychrometric
constant (given in Appendix A). Note that Equation 4.1 describes transpiration only.
However, if rc would be set to zero, evaporation of intercepted water is simulated.

To obtain LvE, the estimation of the surface skin temperature is crucial because
of its role in both Qn and G. The estimation of the surface skin temperature de-
pends on r, that in turn depends on the friction velocity ∗. Because ∗ depends
on atmospheric stability, the surface skin temperature is estimated via an iteration
that starts with a neutral atmosphere (further explained in Sec. 4.4). The radia-
tion balance and thus the available energy for heat fluxes further depends on the
downward shortwave radiation (Sin), the surface albedo (), cloud cover, surface
longwave emissivity, and atmospheric longwave emissivity.

Our scheme to solve Equation 4.1 to estimate heat fluxes from single-level
weather data is given in Appendix A. In this section, we discuss the adaptations that
we made to the scheme of dRH99 regarding rc and radiation calculations. Because
the scheme of dRH99 was only tested for one specific grass field in the Netherlands,
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4. QUANTIFYING TURBULENCE FROM SINGLE-LEVEL WEATHER DATA

its performance for other regions or vegetation types is uncertain. E.g. their empir-
ical parametrization rc = 104Δq = 104 (est − e) Rd

pRv
is not generally applicable for

warmer or dryer regions (Δq is the specific humidity deficit in kg kg−1, calculated
as qst − q, and Rd and Rv are the specific gas constants for dry air and for water
vapour respectively; 287 and 462 J kg−1 K−1).

We here show a comparison of the approximations for the dependency of rc on
water vapour deficit given by dRH99 and by Beljaars and Bosveld (1997), referred to
as BB97, and three approximations used in the land-surface schemes of the weather
and climate models of a) the National Centre for Meteorological Research in France
(CNRM, the ISBA-Ags scheme), b) the United States National Centers for Environ-
mental Prediction (NCEP, the Noah scheme), and c) the European Centre for Medium-
range Weather Forecasts (ECMWF, the HTESSEL scheme). The Noah and HTESSEL
schemes are based on the Jarvis-Stewart approach (Jarvis, 1976; Stewart, 1988),
where

rc =
rs,min

LA
ƒdqƒrdƒT ƒθ. (4.2)

This approach is based on rs,min, a minimum stomatal resistance for optimal con-
ditions, which is vegetation dependent (see Table 4.1), and that is scaled from a
square meter of leaf surface to a canopy with a specific leaf area index (LA, see
Table 4.1 as well). The four functions represent the reaction of vegetation to envi-
ronmental factors: global radiation, water vapour deficit, air temperature, and soil
moisture. In this discussion, we only address the water vapour deficit dependency.
In Noah, ƒdq is calculated as 1 + hs Δq (Chen and Dudhia, 2001), where hs is an
empirical coefficient that describes the reaction of stomatal resistance on humidity
deficit. hs ≈ 45 kg kg−1, the inverse of K3 in Stewart and Gay (1989). The Ags
scheme contains a similar type of response, but with hs = 58 kg kg−1. In HTES-
SEL, ƒdq = egD

8
5pΔq is used, which has a similar effect as the Noah implementation

(see Figure 4.2) for gD = 0.02 mb−1 (gD =0.03 mb−1 for trees and zero for crops in
HTESSEL). BB97 calculate the canopy resistance as

rc = 25.9ƒdqƒrdƒθ, (4.3)

where ƒdq = 1+hs (Δq− Δq0). hs =160 kg−1 kg, Δq0 = 0.003 kg−1 kg, and the factor
25.9 represents a specific rs,min

LA .
The approach of dRH99 significantly deviates from the other approximations (Fig-

ure 4.2). Their response function (and thus the canopy resistance) at zero water
vapour deficit (relative humidity of 100%) is zero. Herewith, dRH99 empirically take
into account that at low water vapour deficits, the evapotranspiration term is dom-
inated by evaporation whereas it is assumed in the Penman-Monteith equation that
transpiration is the only contribution to evapotranspiration. For the three land sur-
face schemes, the response function is one (rc = rs,min/LA), and it is 0.24 according
to BB97 for a saturated atmosphere. The other difference is that the function of
dRH99 shows a much stronger increase of rc with Δq than the other four functions,
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Table 4.1: Vegetation types and parameter values after the ERA40 surface scheme (HTES-
SEL) used in the ECMWF model.

Vegetation rs,min LAI

Low crops, mixed farming 180 3
Irrigated low crops 180 3
Short grass 110 2
Tall grass 100 2
Low shrubs 225 3
Deciduous broadleaf trees 175 5
Needle-leaf trees 500 5
Tundra 80 1
Desert 250 0.5
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f dq
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Figure 4.2: The reaction of rc to water vapour deficit Δq according to different schemes
for the observed range of Δq. The reactions by dRH99 and by BB97 were defined for the
same grass area (Cabauw, the Netherlands), and are therefore both calculated by rcLA/rs,min
(LA = 2, rs,min = 110s m−1, being representative for Cabauw).

which leads to large deviations for dry air conditions (Δq > 10g kg−1). This is prob-
ably caused by the fact that they tested their scheme only for a Dutch grassland
(Cabauw), where Δq typically ranges between 5 and 11 g kg−1.

Given the above limitations, we replace the representation by dRH99 by a func-
tion that is also applicable for other locations and land use types (e.g. a function with
a small rc for very humid conditions and a weak dependence on Δq). We however
found that rc calculated from the water vapour deficit dependency as in Noah, HTES-
SEL and Ags, is very different from rc derived from measurements via the inverted
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4. QUANTIFYING TURBULENCE FROM SINGLE-LEVEL WEATHER DATA

Penman-Monteith equation. Namely, the values obtained with Noah, HTESSEL, and
Ags all stay within a very short range around rs,min/LA. The function of BB97 is
a nice integration between a small offset and a weak slope of the response func-
tions. In our scheme, we use Equation 4.3, omitting ƒθ (see Appendix A), and we
replace the scaling factor 25.9 by 0.47rs,min/LA (which equals 25.9 for LA = 2 and
rs,min = 110s m−1, being representative for Cabauw). In this study, we define our
scaling factor of 0.47 as fr .

To estimate incoming longwave radiation, dRH99 use an expression given by Pal-
tridge and Platt (1976), where Lin depends on the apparent emissivity of the atmo-
sphere, the fractions of low and high clouds, and two empirical cloud coefficients.
To avoid the dependence on low and high cloud information, we use relations de-
scribed in Idso (1981) for clear skies, and Crawford and Duchon (1999) for cloudy
skies, which depend on the total cloud cover only (as detailed in Appendix A). We
also slightly adapted the albedo calculation of dRH99, such that it does not depend
on the fraction of diffuse radiation, but on the total cloud cover fraction.

4.2.2 Estimation of temperature, humidity and joint structure
parameters from surface fluxes

Based on Monin-Obukhov similarity theory, structure parameters have been esti-
mated from surface fluxes by among others Wyngaard et al. (1971), Andreas (1988),
Hill (1992), Thiermann and Grassl (1992), De Bruin et al. (1993), and Li et al. (2012).
Maronga (2013) found, from a Large Eddy Simulation for resolving surface layer tur-
bulence (vertical resolution of 2 m, horizontal resolution of 4 m), that the functions
derived for CT2 follow Monin-Obukhov similarity theory, while the functions for Cq2
are very sensitive to entrainment and not universal. Deviations from Monin-Obukhov
similarity theory for variances were quantified by van de Boer et al. (2014a). Here we
use the universal functions for the structure parameters of temperature and humid-
ity, for unstable conditions presented by Li et al. (2012). They calculate the structure
parameters from the surface fluxes via the temperature and humidity scales T∗ and
q∗ (Equation 4A.4d in Appendix A):

(κz)2/3CT2

T2∗
= 6.7κ2/3(1− 14.9

z

L
)−2/3, (4.4a)

(κz)2/3Cq2

q2∗
= 3.5κ2/3(1− 4.5

z

L
)−2/3. (4.4b)

In these equations, κ is the von Kármán constant with a value of 0.4. z is the
height above the canopy, that depends on the measurement height zm and the
displacement height d following z = zm − d, where d is estimated as 2

3zc (zc is the
canopy height). L is the Obukhov length defined by Obukhov (1946) as a function of
surface friction and buoyancy (see Appendix A).
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For homogeneous turbulence, the joint structure parameter CTq can be estimated
from the temperature and humidity structure parameters following Moene (2003):

CTq = rTq
�

CT2Cq2 , (4.4c)

where rTq is the correlation coefficient between temperature and humidity. CTq has
the value of the joint structure function in the inertial subrange, assuming that rTq
is similar for all scales within the inertial subrange.

The step from surface fluxes to CT2 and Cq2 introduces uncertainty in our Cn2-
scheme, because Monin-Obukhov similarity theory is not always valid (van de Boer
et al., 2014a). Also, the step from CT2 and Cq2 to CTq introduces uncertainty, be-
cause an estimate of rTq has to be made.

4.2.3 Estimation of Cn2 from temperature, humidity and joint
structure parameters

The relationship between the structure parameter of the refractive index of air n,
and the temperature, humidity and joint structure parameter is given by Hill and
Clifford (1978) as

Cn2 =
AT2

T
2
CT2 +

Aq2

q2
Cq2 + 2

ATAq

Tq
CTq, (4.5a)

where AT and Aq depend mainly on pressure, air temperature and specific humidity
and the wavelength. Note that, although historically absolute humidity is used in
the definitions of AT and Aq, here we will follow Ward et al. (2013) and use specific
humidity. Functions for AT and Aq are given by Ward et al. (2013) as

AT = −
p

T

�

b1 +
b2qRv

R

�

, (4.5b)

and

Aq = −
p

T

bq2qRv

R

�

1−
q (Rv − Rd)

R

�

, (4.5c)

where R is the universal gas constant (8.314 J K−1 mol−1). The wavelength depen-
dency of AT and Aq is captured by the coefficients b1 and b2 (see Appendix B).

4.3 Data

In the first part of this section we describe the three measurement sites, specifica-
tions on instrumentation and vegetation, and the available data that we used to test
our scheme. An overview of the measurements used for input or validation is given
per site in Table 4.2. We choose to test our scheme for two vegetation types (grass
‘G’ and wheat ‘W’), and two climatic regions (central ‘C’ and southern Europe ‘S’).
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The names of the sites are: Haarweg (GC), Lannemezan (GS) and Merken (WC). In
the second part of this section, we explain our data processing and selection.

4.3.1 Datasets

Haarweg: GC

The weather station at the Haarweg (http://www.met.wau.nl/haarwegdata) in Wa-
geningen (the Netherlands, 7 m a.s.l.), an agrometeorological station, provided all
four radiation components and the soil heat flux (7.5 cm below ground level). In
2005, additionally, fluxes of sensible and latent heat were measured using an eddy-
covariance (EC) station (3.2 m above ground level, a.g.l.). Over the year, the grass-
land was mowed frequently to keep zc ≈ 10 cm. The soil at the Haarweg site con-
tains clay and is rich in organic matter. We used data from the period 1 April to 30
September in 2005.

Merken: WC

Surface energy components were measured during the FLUXPAT campaign near
Merken (Germany, 114 m a.s.l.) in the summer of 2009. This campaign was or-
ganized to study the soil-vegetation atmosphere system (see e.g. Graf et al. (2010)
and van de Boer et al. (2013) for details). A station with an EC system (see Table
4.2 for details) at 2.4 m a.g.l. was installed in the middle of a flat winter wheat
field. The four radiation components were measured at 1.7 m a.g.l., and the soil
heat flux at 7.5 cm depth. The site contains a bouldered silt-loam soil. From 4 June
on, the weight of green plant matter decreased, which we specified as the start of
the ripening process. Data from 15 April to 3 June (DOY 104-154) were considered
as the growing phase of the wheat, and data from 4 June to 27 July (DOY 155-208) as
the ripening phase. The height of the wheat was between 55 and 85 cm, depending
on the growth-state. The canopy height was 75 cm at the start of the ripening period
(see Table 4.3).

Lannemezan: GS

The BLLAST campaign (Boundary Layer Late Afternoon and Sunset Turbulence) took
place near the Pyrenees in southern France (582 m a.s.l.) from 14 June to 8 July 2011
(Lothon et al., 2012). The main objective of this campaign was to better understand
the physical processes that control and follow from the transition of a convective
boundary layer towards a stratified nocturnal boundary layer. Surface and boundary-
layer measurements were performed around Lannemezan, a village located on a
large plateau (200 km2) with several mainly agricultural land use types on a sandy
loamy soil. An EC station was installed in a grass field, equipped with sensors for
the main surface energy components: sensible and latent heat flux (2.55 m a.g.l.),
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Table 4.2: Instrumentation specifications per input or validation variable for the three mea-
surement sites

Instrument Var Inp Valid Haarweg Merken, Lannemezan

Son. anemom. T x CSAT3, Campb. Sci. CSAT3, Campb. Sci.
 x
∗ x
H x
CT2 x

Gas analyser q x LI-7500, Li-cor LI-7500, Li-cor
LvE x
Cq2 x

Pyranometer Sin x CM11, Kipp & Z. CNR1, Kipp & Z.
Sot x

Pyrgeometer Lin x CG1, Kipp & Z. CNR1, Kipp & Z.
Lot x

Barometer p x PTB101B, Vaisala PTB101B, Vaisala
Soil heat plate G x Thermopile, TNO HFP01SC, Hukseflux

Table 4.3: Land-surface input variables per dataset. zm is the height above ground of the
heat flux observations, and zc is the vegetation height.

Variable GC WC grow WC ripe GS

zc (m) 0.1 ∗ 0.85 0.25
zm (m) 3.18 2.44 2.44 2.55
LA (m2 m−2) 2 6 5 2
rs,min (s m−1) 110 180 180 110
LAT 51◦58’N 50◦50’N 50◦50’N 43◦07’N
LON 5◦38’E 6◦24’E 6◦24’E 0◦21’E

∗0.1+ 0.65DOY−105
50

incoming and outgoing shortwave and longwave radiation (1.68 m a.g.l.), and soil
heat flux (3 cm below ground level), see Table 4.2 for details. The grass was cut
before the installation, and grew throughout the campaign reaching 35 cm at the
end of the campaign.

4.3.2 Data processing and selection

We first determined averages of temperature, specific humidity, wind speed, at-
mospheric stability, friction velocity and sensible and latent heat fluxes from the
20 Hz EC-data using the software ECpack-2.5.23-1.3 (van Dijk et al., 2004) for every
measurement site. The averaging time was 30 minutes, which adequately captures
surface-layer turbulence and excludes mesoscale processes. We performed a planar
fit rotation (Wilczak et al., 2001) where the rotation angles were determined over a
period of 7 days to adjust the coordinate system. Linear trends were removed and
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Table 4.4: Land-surface input variables used for all sites (kept constant in our study although
they can be site dependent). The albedos mx, min, and clod are used for shortwave
radiation calculations in 4A.2b, and εs is the surface emissivity used for longwave radiation
calculations. Ag determines the heat transfer between the vegetation top and the soil in W
m−2 K−1.

Variable mx min clod εs Ag rTq

Value 0.3 0.17 0.21 0.96 5 0.6

the Webb-correction (Webb et al., 1980) was applied to correct humidity fluctuations
for density fluctuations induced by temperature fluctuations. The sonic temperature
was corrected for humidity effects using the Schotanus correction (Schotanus et al.,
1983). 95% confidence intervals were estimated by quantifying the sampling error
for each scalar average and flux, following van Dijk et al. (2004).

Incoming and outgoing shortwave and longwave radiation, soil heat flux, and
pressure measurements were averaged from 1-minute to 30-minute data. We used
fixed upper and lower plausible limits for the radiation and flux components, and a
storage term was added to the soil heat flux using the calorimetric method (Rouse,
1984), applying a volumetric soil heat capacity of 2.2×106 J m−3 K−1 for all three
sites (assuming that the contributions of sand, clay, organic matter, water and air
are similar at the sites). Because the sum of observed H and Lv is generally lower
than the observed available energy, we adjusted the sensible and latent heat fluxes
to the total available energy (Qn−G), while maintaining the value of the Bowen ratio
(H/LvE) following Twine et al. (2000).

We also used the ECpack software to obtain structure parameters of T, q, and
their joint structure parameter based on the structure function and a separation of
0.9 m. We applied a constant path-averaging-factor of 1.12 to correct the structure
parameters for the sonic anemometer measurement that originates from a finite
path (0.12 m) instead of one point Kooijmans (2013). Furthermore, we applied a
correction on the structure parameters obtained by ECpack (Equation 5 in Braam
et al. (2012)) to improve the conversion from time to space (for a non-constant wind
speed U) that is needed for the structure function following Bosveld et al. (1998).
They derived this correction factor for the structure parameters from Wyngaard and

Clifford (1977), who only determined it for
σ2
U

U2 < 0.1. If our data exceeded this limit,

we applied a correction of 95
90 (Equation 5 in Braam et al. (2012) for

σ2
U

U2 = 0.1). To
obtain Cn2 from the calculated structure parameters, we used the expressions of
Ward et al. (2013) described in Section 4.2.3. The observed correlation coefficient
between T and q in Equation 4.4c was taken from ECpack output. We calculated Cn2

for an optical wavelength (λ = 670 nm) and for a millimetre wavelength (λ = 2 mm).
We selected daytime data between 10 and 15 UTC and eliminated stable situa-

tions by excluding data with z/L > −0.02, because the flux estimating part of our
scheme might have difficulties if the surface fluxes are very small. We also excluded
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rainy days from the data, because wet sonic anemometers and gas analysers intro-
duce errors. Furthermore, turbulence in the lowest part of the atmosphere is very
weak on rainy days. For GC, we removed 36 days such that 148 days remained.
We also excluded rainy days for WC, such that 38 days were left for the growing
period, and 30 days for the ripening period. For the grass data in Southern France,
we excluded 6 days (DOY 167, 169, 173, 174, 180 and 185) at which rain events
were observed (17 days remained).

4.4 Estimates and validation

From the 30-minute daytime data of T, q, p,  and Sin, we calculated the sensible,
latent and soil heat fluxes, and the radiation components from the first step in our
scheme as discussed in Section 4.2.1, following the parametrizations given in Ap-
pendix A. The required land surface characteristics that differ per measurement site
are given in Table 4.3. Table 4.4 contains the constants in our scheme. These values
can be made site dependent, however, our aim here is to present an easy to use
scheme that performs reasonably at several locations.

The iteration loop for the energy balance components (Equation 4A.3c − 4A.4e)
is initiated with neutral conditions, and is stopped when the sensible heat flux con-
verged within 1 Wm−2, or when the calculation needs > 10 iterations (3 iterations
are usually enough). From the estimated values for z/L, H, LvE, and ∗ that follow
from the iterations (also when forced to stop), we calculated the structure parame-
ters CT2 , Cq2 and CTq following the theory described in Section 4.2.2. In contrast to
the derivation from observations (Section 4.3.2), we applied a fixed rTq of 0.6 in the
scheme. We derived Cn2 for λ = 670 nm and λ = 2 mm via Equation 4.5.

We validated our estimates of the radiation components, fluxes and structure
parameters with the values directly obtained by radiation and EC measurements.
We also validate the key parameters of the first part of our scheme: Ts, r and rc.
These parameters are however not directly measured. To compare the estimated
surface temperature Ts with measurements, we calculated the measured Ts using

Ts =

�

Lot − (1− εs) Lin
εsσ

�1/4

(4.6)

in which we also used 0.96 for the surface emissivity εs, and 5.67× 10−8 Wm−2K−4

for the Stefan Boltzman constant σ. The measured resistances were calculated fol-
lowing

r = −ρcp
T − Ts

H
, (4.7)

and

rc = r







s(Qn −G) +
ρcp(est−e)

r

γLvE
−
s

γ
− 1






, (4.8)
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Figure 4.3: Validation of estimated estimates of r, rc, Ts, H, LvE, and Qn − G with mea-
surements at a grass field in the Netherlands (GC) in 2005. Blue markers indicate clear-sky
conditions, whereas red markers indicate very cloudy conditions.

which is an inverted form of the Penman-Monteith equation (Equation 4.1).
We calculated regression fits per variable (r) for the four datasets, using or-

thogonal distance regression. The offset was set to zero, and the slope was calcu-
lated, including its standard deviation. For this regression, we excluded outliers that
we defined as data for which the shortest distance to the linear fit (i.e. perpendic-
ular to the regression line) was larger than 3 times the average of these distances.
We calculated new regressions until the slope changed by < 0.3. We normalized the
RMSE by dividing by the mean observed value of the specific variable to obtain the
NRMSE to compare multiple regressions of different variables.

We tested the agreement of the datasets with Monin-Obukhov similarity theory
by calculating the parameters in the similarity functions for the structure parameters
as follows: we kept the second parameter c2 in Eqs 4.4a and 4.4b constant (14.9
for T, 4.5 for q), and fitted the data to a regression with the prescribed shape of
y = c1 (1− c2)−2/3. The structure parameter and stability data were weighted using
the inverse of the confidence intervals for CT2 , Cq2 , and z/L (via the intervals of ∗,
T, q, ′T ′ and ′q′) that were calculated by ECpack.

4.5 Results

We here discuss the results in the same steps and order as we described our scheme;
first the estimation of fluxes from weather data, then the estimation of temperature
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Table 4.5: Regression results of estimated versus observed fluxes, structure parameters and
variables at the Haarweg (GC, left) and in Lannemezan (GS, right). Indicated with ‘MO’ are
regression results using adapted Monin-Obukhov parameters for the scheme.

GC GS
Var Slope NRMSE n Slope NRMSE n

H 0.98± 0.01 0.04 708 0.83± 0.02 0.09 108
LvE 1.00± 0.00 0.02 707 0.95± 0.01 0.01 108
G 0.85± 0.01 0.23 714 0.89± 0.03 0.13 112
Qn 0.98± 0.00 0.00 710 0.92± 0.00 0.01 112
∗ 0.85± 0.01 0.07 713 0.93± 0.02 0.06 112
rc 0.77± 0.01 0.35 705 0.74± 0.03 0.29 105
r 1.25± 0.02 0.14 704 1.73± 0.06 0.23 109
Ts − T 1.40± 0.01 0.13 714 1.36± 0.03 0.11 112
Lin 0.98± 0.00 0.00 713 0.88± 0.00 0.02 112
Lot 1.02± 0.00 0.00 714 1.02± 0.00 0.00 112

CT2 1.18± 0.02 0.12 709 1.58± 0.06 0.22 112
Cq2 1.32± 0.01 0.12 712 2.58± 0.06 0.39 112
CTq 1.23± 0.01 0.09 707 2.43± 0.07 0.37 112

Cn2λ670nm 1.16± 0.02 0.12 702 1.51± 0.06 0.21 112
Cn2λ2mm 1.31± 0.01 0.11 713 2.54± 0.05 0.38 112

CT2MO 1.08± 0.04 0.14 112
Cq2MO 1.76± 0.04 0.21 112
CTqMO 1.67± 0.05 0.20 112

Cn2λ670nmMO 1.03± 0.04 0.15 112
Cn2λ2mmMO 1.73± 0.04 0.20 112

and humidity structure parameters from fluxes, and finally the estimation of Cn2 .
The difference between the surface temperature Ts and air temperature T is very
important for the calculation of the energy that is available for H and LvE. This
difference is however overestimated for all four datasets (see the regression fits
and errors for all datasets in Table 4.5 and 4.6, and for GC Figure 4.3c). Despite the
overestimation of this difference, and thus of Ts, the longwave radiation components
are estimated fairly well for all datasets. Thereby, Qn estimates fit the observations
with a general underestimation of 2-8% (see also Figure 4.3f for GC). For GS, this is
caused by an underestimated incoming longwave radiation. The surface reflectance
of shortwave radiation (albedo) is however underestimated for all sites (not shown).
G is estimated well for the Haarweg (GC) and Lannemezan (GS) dataset, whereas
for both Merken datasets (WC), G is underestimated. However, its value is very low
compared to Qn such that this underestimation does not produce large errors for the
energy that is available for H and LvE.

rc estimates are much lower than the values we derived from observations using
the inverted Penman Monteith approach (Equation 4.8) for all datasets. However, we
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Table 4.6: Regression results of estimated versus observed fluxes, structure parameters and
variables during the growing (left) and ripening (right) season in Merken (WC).

WC Growing WC Ripening
Var Slope NRMSE n Slope NRMSE n

H 1.54± 0.05 0.15 47 1.15± 0.03 0.11 154
LvE 0.87± 0.03 0.08 47 1.00± 0.02 0.08 162
G 0.53± 0.03 0.86 47 0.60± 0.02 0.66 168
Qn 0.93± 0.02 0.02 50 0.97± 0.01 0.01 167
∗ 1.04± 0.02 0.02 50 1.23± 0.01 0.05 167
rc 0.56± 0.17 1.63 24 0.27± 0.04 3.30 146
r 1.08± 0.13 0.24 19 0.08± 0.03 5.51 162
Ts − T 1.77± 0.17 0.30 28 1.27± 0.08 0.48 168
Lin 1.03± 0.01 0.00 28 1.01± 0.00 0.00 168
Lot 1.01± 0.00 0.00 28 1.00± 0.00 0.00 168

CT2 3.29± 0.27 0.53 50 1.35± 0.09 0.53 157
Cq2 1.08± 0.05 0.12 50 1.42± 0.05 0.22 166
CTq 2.39± 0.18 0.41 50 1.74± 0.09 0.38 168

Cn2λ670nm 3.37± 0.28 0.54 50 1.27± 0.09 0.58 157
Cn2λ2mm 1.22± 0.06 0.13 50 1.47± 0.05 0.23 167

did not validate our estimated rc with direct observations, and thus the presented
underestimation of rc is uncertain. A high NRMSE was calculated for the regression
of rc. Nevertheless, the partitioning of the available energy into H and LvE is appro-
priate for GC and GS, which indicates that rc is of the correct order of magnitude.
For WC, H is generally overestimated, and LvE is slightly underestimated. However,
the estimations of all variables are quite scattered for the growing phase of the WC
dataset (see the standard deviations and NRMSE values given in the first columns in
Table 4.6. This is not surprising, because we use several fixed values to describe the
vegetation (e.g. LA, , surface roughness z0m, d) whereas the vegetation develops
in time. Furthermore, this is by far the smallest dataset we used (partly because of
the stability criterion). r estimates are quite scattered, however, most of the data
used here is in a rc-regime in which the fluxes are not very sensitive to r, see Jacobs
and De Bruin (1992).

Although H and LvE are predicted well for GC, CT2 and Cq2 and thereby CTq are
overestimated. For the growing wheat (WC), H is largely overestimated, which leads
to a clear overestimation of CT2 as expected from the relation between H2 (or T2∗)
and CT2 given in Equation 4.4a. For GS, the regression slopes for H and LvE are quite
satisfying around 1.0, whereas the slopes for CT2 and Cq2 are both more than twice
as large. This is not expected from the relation between the slopes of H2 and CT2 as
mentioned above. We think that this is partly related to the Monin-Obukhov param-
eters used for this relation. We determined the similarity relationships (Equations
4.4a and 4.4b) for GS where we kept c2 to its literature values of 14.9 for tempera-
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Figure 4.4: Validation of estimates of the structure parameters of n for an optical (a) and a
millimetre wavelength (b), with derivations from measurements at a grass field in the Nether-
lands in 2005. Blue markers indicate clear-sky conditions, whereas red markers indicate very
cloudy conditions.

ture and 4.5 for humidity. The obtained values for c1 deviate largest for the GS data,
for both temperature and humidity (4.7 and 2.4 respectively, compared to the coef-
ficients we took from Li et al. (2012) as 6.7 and 3.5). The coefficients for the other
datasets agree better with Li et al. (2012), with 6.8 and 3.9 for GC, 6.9 and 3.9 for
the growing phase of the wheat (WC), and 6.4 and 3.4 for the ripening phase (WC).
If we use the newly obtained coefficients for GS (4.7 and 2.4 for temperature and
humidity respectively), we obtain improved regression slopes (indicated with MO in
Table 4.5). However, Cq2 is still overestimated (albeit with a large NRMSE) while the
estimation of LvE is close to perfect with a very low NRMSE. The large NRMSE for Cq2

is probably caused by the fact that at GS, humidity fluctuations were smaller than
at GC and WC, and therefore more sensitive to instrumental errors.

The estimates of CT2 , Cq2 and CTq lead to reasonable estimates of Cn2 , see Tables
4.5 and 4.6 and Figures 4.4 and 4.6. Note that the structure parameters occur in a
large range (mind the logarithmic scale in the figures, and hence a slope of 2 should
be interpreted as an error of much less than an order of magnitude. For GS, we
see the overestimation of Cq2 again in the estimate for Cn2 for λ = 2mm because
at this wavelength, scintillations are more sensitive to humidity fluctuations than at
nanometre wavelengths. For the growing season in Merken, we find the opposite.
The large uncertainty of CT2 for the data of both the growing and ripening phase
leads to an overestimation of Cn2 for λ = 670nm, a wavelength at which Cn2 is more
sensitive to temperature fluctuations.

As an example of the possible application of our scheme, we show in Figure 4.7
the performance of our scheme for a sunny and cloudy day at the Haarweg (GC).
The scheme estimates the turbulence at the cloudy day very well, and for the clear
sky day there is a slight overestimation. It can be seen that for the optical wave-
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Figure 4.5: Validation of derivations of Cn2 from measured values for CT2 , Cq2 , CTq and
rTq, with derivations from flux measurements (T∗ and q∗) at a grass field in the Netherlands
in 2005. Red markers indicate an optical wavelength, blue markers indicate a millimetre
wavelength.

length, scintillation values are highest around noon, decrease until sunset and in-
crease again towards midnight. On the other hand, for the millimetre wavelength
the scintillations decreases to zero in the night. Cloudy conditions weaken the scin-
tillations, especially for the millimetre wavelength that is more sensitive to humid-
ity fluctuations. For this case, our method performs better for λ = 2mm than for
λ = 670nm, because humidity fluctuations are larger and better defined.

4.6 Discussion

We developed a method to estimate Cn2 from single-level weather data that consists
of three steps:

a From single-level weather data to surface fluxes

b From surface fluxes to structure parameters of temperature and humidity

c From structure parameters to Cn2

For step a, we applied an existing scheme of dRH99 that was developed for a grass
field in the Netherlands (Cabauw). We adjusted their scheme for other field con-
ditions, and tested it for another grass field in the Netherlands, a grass field in
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Figure 4.6: Validation of estimates of the structure parameters of n for an optical (a and c)
and a millimetre wavelength (b and d), with derivations from measurements. Above: a grass
field in southern France in 2011 for adjusted Monin-Obukhov parameters. Below: a wheat
field in the ripening phase in western Germany in 2009. Blue markers indicate clear-sky
conditions, whereas red markers indicate very cloudy conditions.

southern France, and a wheat field in western Germany. This scheme is based on
the Penman-Monteith equation, which is an appropriate description of the process
of transpiration. But this only holds provided that it is used with observations from
the location of interest; a different surface results in different temperature, humidity
and wind observations.

In our scheme, we replaced the water vapour deficit dependency of rc described
by dRH99 as rc = 104Δq by the approach of BB97. In Figure 4.8 we show the perfor-
mance of the scheme for LvE and rc if we use the water vapour deficit dependency
described by dRH99. When comparing these results with the results presented in
Figure 4.3b and e, we see that the estimation of the latent heat flux is improved
especially for dry air conditions by applying the water vapour deficit and global ra-
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Figure 4.7: Cn2 measured (markers) and estimated (lines) for a clear (red) and cloudy (blue)
summer day (19 June 12 UTC, 2005) at the Haarweg (similar to Figure 4.1).
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Figure 4.8: rc and LvE for the Haarweg (GC) using the approach for rc from dRH99, coloured
by Δq (blue is 0, red is 20 g kg−1).

diation dependency of BB97. This result agrees with Figure 4.2, in which we see
that the approach of dRH99 differs from the other approaches mainly for dry air
conditions.

To investigate which parameters and constants have the largest influence on the
derived Cn2 , we performed a sensitivity analysis. In Table 4.7 we list the parame-
ters of step a, and show for one midday summer situation the relative increase of
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Cn2 for a realistic increase of the parameters. We see that the dependency on the
parameters in ƒdq are very strong. Furthermore, our scheme is very sensitive to the
estimated LA, canopy height and albedo. This indicates that for the first step of
our method, a good estimate of the vegetation characteristics is the most crucial
part. The increase of the parameters that lead to an increase or decrease of Cn2
for both wavelengths (e.g. N,  and Ag) are related to the available energy. If a
certain increase leads to a decrease of Cn2 for one wavelength and an increase for
the other wavelength, then the parameter is mainly related to the partitioning of
energy between latent and sensible heat (e.g. LA, rs,min and fr).

Next to the values given for the HTESSEL land-surface scheme, we tested our
method with vegetation parameters from the Noah land-surface model (not shown).
However, the flux and structure parameter validation results are much worse using
values from Noah. It seems that the definition of LA and rs,min cannot be separated
from their appearance in the land-surface schemes. We did not implement the de-
pendency of rc on the type of carbon fixation the vegetation uses (C3 or C4). Adding
such a plant-physiological process requires a clear separation between transpiration
and evaporation processes. If Cn2 estimates are needed for partly wet vegetated
surfaces, our method is empirically solid. However, we actually need a more real-
istic treatment to capture interception and soil evaporation. For that, a SVAT (soil
vegetation atmosphere) could be used.

In step b, the uncertainties in the scheme are the validity of Monin-Obukhov
similarity theory, and the value for rTq. In Figure 4.5 we show that even if mea-
sured fluxes (scaled as T∗ and q∗) are used, the estimates of Cn2 are still quite
scattered. Comparing Figure 4.4 with 4.5 (in which both wavelengths are presented
in the same figure), we see that the scatter partly introduced by the flux estima-
tion is only slightly larger than the scatter solely caused by the calculation of Cn2
from fluxes. Values for Cn2 calculated from measured fluxes using Monin-Obukhov
similarity theory are somewhat smaller than Cn2 values derived from the observed
structure parameters of T and q. This holds for both wavelengths for this data (GC),
which indicates that here, the Monin-Obukhov similarity functions for both temper-
ature and humidity should have a slightly larger c1 or smaller c2 (see Equation 4.4a
and 4.4b). In the previous section we wrote that, indeed, we found a slightly larger
value for c1 for T and q for the GC data.

We found that for the GS dataset, we should certainly change the coefficients in
the Monin-Obukhov relations. In the previous section, we calculated c1 that fitted
the data with a c2 that was kept constant. However, we would like to point out that
if we fit the GS data to the function without keeping c2, we get for temperature
c1 = 4.2 and c2 = 10.8, and for humidity c1 = 2.5 and c2 = 4.7. These values are
very unusual compared to reported values for several datasets Kooijmans (2013),
especially for humidity.

Considering a fixed value for rTq, one would expect a value close to one because
temperature and humidity are assumed to behave similar during daytime. However,
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Table 4.7: Sensitivity estimates of Cn2 to the main input parameters and constants (or pa-
rameters directly derived from Sin) for 19 June 2005 12 UTC at the Haarweg.

Variable Relative increment

Name Value Unit Input Cn2λ = 670nm Cn2λ = 2mm

LA 2 m2 m−2 0.501 -0.16 0.17
rs,min 110 s m−1 -0.102 -0.05 0.06
fr 0.47 - 0.503 0.23 -0.20
hs 160 (kg kg−1)−1 -0.204 -0.06 0.07
Δq0 0.003 kg kg−1 2.005 -0.08 0.10
zc 0.1 m -0.806 -0.12 -0.17
Ag 5 W m−2 K−1 2.007 -0.26 -0.08
z0h/z0m 0.1 - -0.608 -0.04 -0.07
εs 0.96 - 0.029 -0.04 0.02
N 0.17 - 2.6010 0.12 0.04
 0.19 - 1.6011 -0.32 -0.13

1Reported LA values for grassland vary between 0.5 and 3 (HTESSEL).
2Reported rs,min values for grassland vary between 100 and 110 s m−1 (HTESSEL).
3The factor 25.9 s m−1 in BB97 is the optimal rs,min for the best of their two tested Penman-Monteith
schemes. The optimal factor for their other scheme is 39.2 s m−1, which would result in a factor of
39.2 LA

rs,min
= 0.71 for our approach.

4The optimum hs of 160 (kg kg−1)−1 was found by BB97. Land-surface models use a type of hs that
differs between 40-50 (kg kg−1)−1. Assuming the same relative range, our hs would maximum range
between 130-190 (kg kg−1)−1 (an increment of 0.20 leads to reversed values).
5From figure 14b in BB97 we derived that this value should be between 0.003 and 0.006 kg kg−1.
6εs varies between 0.95 and 0.98 for all kinds of crops, forest and bare soils.
7The height of maintained grassland is between 2 and 10 cm.
8In HTESSEL, Ag doubles between low and high vegetation.
9Betts and Beljaars (1993) found a ratio for z0h/z0m between 12 and 26.
10The approaches by Kasten and Czeplak (1980) and Spena et al. (2010) give results within 0.11 and
0.44 for the estimation of the cloud cover for this case.
11The maximum albedo given for this grassland is 0.3.

we found in our datasets that the daytime value differs from -1 to 1, with a median
of ≈ 0.6. It seems that our datasets suffered from non-local effects. This means
that our assumption of a fixed rTq is actually not valid and introduces errors in the
calculation of CTq and therefore also in Cn2 . We cannot omit this assumption when
only weather data is available, because rTq cannot be derived from low frequency
temperature and humidity data.

Step c is the most straightforward part of our method, because that part is based
on physical theories. Only the dependency on the wavelength of interest influences
the performance of our method. For the tested datasets, our method generally
performs better for λ = 670nm than for λ = 2mm. Note that a more elaborated Cn2

model would also include the scattering effect of aerosols on the wave propagation
equation and thus on Cn2 .
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4.7 Conclusions

A good estimation of the optical turbulence gives knowledge on the performance of
communication and imaging systems. Often, weather data is available at only one
level, precluding the use of methods based on vertical gradients (Sivasligil et al.,
2013). Therefore, we here present an approach to estimate the structure param-
eter of the refractive index of air (Cn2), based on single-level weather station data
and Monin-Obukhov similarity theory. Our estimates of Cn2 are accurate enough to
help in the development of systems based on the propagation of electromagnetic
waves (e.g. radio wave communication and ground-based telescopy). Based on
large time series of weather station data, the climatology of Cn2 for arbitrary wave-
lengths could be determined. For existing weather and imaging data, our estimates
provide information on the quality of the images.

For a grass field in The Netherlands, the estimated values for Cn2 are in agree-
ment with values derived directly from eddy covariance measurements. The results
of a growing wheat field in western Germany contained more scatter than validation
results from the Dutch and a French grass field, and the ripening phase of this wheat
field, due to difficulties with the estimation of fixed land surface and vegetation input
parameters. The scheme is most sensitive to the first part of the scheme; the esti-
mation of surface fluxes from single-level weather data. Especially the parametriza-
tion of the canopy resistance is important, which differs per vegetation type and
growing state. It determines the partitioning of energy between sensible and latent
heat fluxes.

However, the scatter introduced by flux estimation uncertainties is only slightly
larger than the scatter that is obtained when calculating Cn2 from observed surface
fluxes. For the second step in which the structure parameters of temperature and
humidity are estimated from surface fluxes, validity of Monin Obukhov similarity
theory is of importance. For the grass field in southern France, we had to fit the
Monin-Obukhov parameters to the data to obtain good validation results. In the third
step, Cn2 is calculated from the structure parameters for one specific wavelength.
For our datasets, estimated values for Cn2 agree slightly better with eddy covariance
data for the optical wavelength than for the millimetre wavelength. The code for this
application (MATLAB) can be obtained from the second author.

4A Appendices

4A.1 Appendix A; Scheme to estimate fluxes from weather
data

First, our scheme that is adapted from dRH99 directly estimates air density ρ, air
heat capacity cp (= 1004 (1+ 0.84q)), water vapour pressure e and saturated
water vapour pressure est (both in Pa) from air temperature (T), specific hu-
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midity (q) and pressure (p). The slope of the saturated vapour pressure curve is
s(T) = dest/dT, and the psychrometric constant is γ = cppRv/(LvRd), where Rd is
the specific gas constant for dry air (287 Jkg−1K−1), and Rv is the specific gas con-
stant for water vapour (462 Jkg−1K−1). The temperature dependency of est, s and
Lv can be found in Moene and van Dam (2014), page 355.

Secondly, the surface resistance is calculated following

rc = fr
rs,min

LA
ƒdqƒrd (4A.1a)

where the scaling factor fr = 0.47, and ƒdq is calculated following BB97:

ƒdq = 1+ hs (Δq− Δq0) , (4A.1b)

in which Δq is the specific humidity deficit in kg kg−1 (calculated as qst − q),
hs =160 kg−1 kg, Δq0 = 0.003 kg−1 kg, and where

ƒrd =
1000Sin + 230 (1000− 2Sin)

Sin (1000− 230)
. (4A.1c)

Thirdly, most of the radiation components can be calculated. Outgoing shortwave
radiation (Sot) is calculated following

Sot = Sin, (4A.2a)

where  is the surface albedo that depends on the solar elevation angle α and the
effective cloud cover fraction N as

 = mx − (1−N) sn (α) (mx − min)−N (mx − clod) . (4A.2b)

mx, min, and clod are the surface albedo’s for respectively a minimum solar
elevation and a clear sky (the highest ), a maximum solar elevation and a clear sky
(the lowest ), and a very cloudy sky. We calculated N as

N =

Sin,0−Sin
Sin,0

− 0.2

0.8
, (4A.2c)

where Sin,0 is the solar constant 0 (≈ 1365 W2m−2) multiplied with the cosine of
the zenith angle θz of the specific location and time and corrected for the orbital
eccentricity via the difference in distance (d) to the sun,

Sin,0 = 0

�

dsn

dsn

�2

cosθz. (4A.2d)
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Incoming longwave (L) radiation is calculated as

Lin = εσT
4
 , (4A.2e)

where ε is the air emissivity, and σ is the Stefan Boltzmann constant (5.67 ×10−8).
We used the following expressions for the emissivity of air, adapted from Idso (1981)

ε,cler = 0.63+ 5.95× 10−7ee1500/T , (4A.2f)

and (Crawford and Duchon, 1999)

ε = N+ (1−N)ε,cler. (4A.2g)

Fourthly, H is calculated from the energy balance equation, which we can write
as

H = Qn,0 +Qn,T (Ts − T)−G0 −GT (Ts − T)− LvE0 − LvET (Ts − T), (4A.3a)

where all energy terms consist of an isothermal term that is calculated using T
instead of Ts (indicated with the subscript 0), and a correction term that corrects
for that assumption of an isothermal atmosphere. This correction term therefore
depends on (Ts − T) (indicated with the subscript T). Thereby, the correction terms
depend on H, via

Ts − T =
Hr

ρcp
. (4A.3b)

Because r depends on the atmospheric stability which is unknown, an iteration loop
is needed to calculate H. Inserting the H-dependent correction terms in Equation
4A.3a results in

H =
Qn,0 −G0 − LvE0

1+Qn,T +GT + LvET
, (4A.3c)

where the isothermal terms are calculated following

Qn,0 = (1− )Sin + (ε − 1)εeσT4 , (4A.3d)

G0 = Ag (T − T24h) . (4A.3e)

Here, Ag is the soil heat transfer coefficient, and T24h is the temperature history of
the last 24 h that represents the deep-soil temperature, and

LvE0 =
ρcp

γ

est − e
r + rc

. (4A.3f)

Note that LvE0 depends on r too, which means that the calculation of LvE0 is part
of the iteration loop that is used for the calculation of H.
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The correction terms are all part of the iteration loop, because via H, we intro-
duced an r-dependency:

Qn,T =
r

ρcp
εsσ4T3 , (4A.3g)

where εs is the surface emissivity,

GT =
r

ρcp
Ag, (4A.3h)

and

LvET =
r

γ

s (T)

r + rc
. (4A.3i)

The loop starts with neutral conditions (ΨT = Ψ = 0) for a first estimate of the
atmospheric-stability dependent r and ∗. The aerodynamic resistance is calcu-
lated as

r =
1

κ∗

�

n
z

z0h
− ΨT

�z

L

�

+ ΨT

�z0h

L

��

. (4A.4a)

κ is the von Kàrmàn constant (0.4), z the height (z = zm − d, d = 2
3zc is the dis-

placement height), z0h is the roughness length for heat, calculated as 0.1z0m, the
roughness length for momentum (z0m = 0.4 (zc − d)). ΨT is the Businger-Dyer in-
tegrated Monin-Obukhov flux profile relation function for temperature gradients as
described in Paulson (1970). L is the Obukhov length calculated following Equation
4A.4c, and the friction velocity ∗ is calculated as

∗ =
κ

n
�

z
z0m

�

− Ψ

� z
L

�

+ Ψ

� z0m
L

�

, (4A.4b)

where  is the wind speed, Ψ is the Businger-Dyer integrated Monin-Obukhov flux
profile relation function for wind speed gradients. The Obukhov length L is calculated
within the loop as

L =
T2∗
κgTv∗

, (4A.4c)

where the temperature scale Tv∗ is a scaled buoyancy flux. The scalar scales are
calculated as

Tv∗ =
−Hv

ρcp∗
, T∗ =

−H
ρcp∗

, q∗ =
−LvE
Lvρ∗

(4A.4d)

where the buoyancy flux

Hv = H (1+ 0.61q) + 0.61cpT
LvE0

Lv
(4A.4e)

and g is the acceleration due to gravity (9.81 m s−2).
After H converged to one value, the following variables are extracted explicitly
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for diagnosis:

Ts = T +
Hr

ρcp
+ zd, (4A.5a)

where d is the dry adiabatic lapse rate of 0.01 Km−1. If Ts is known, the longwave
outgoing radiation, net radiation, and soil and latent heat flux can be calculated
following

Lot = εsσT
4
s + (1− εs)Lin, (4A.5b)

Qn = Sin − Sot + Lin − Lot = Q0 − εsσ4T3 (Ts − T) . (4A.5c)

G = −Ag (T24h − Ts) = G0 + Ag (Ts − T) , (4A.5d)

and

LvE =
s (Qn −G) +

ρcp
r (est − e)

s+ γ
�

1+ rc
r

� = LvE0 +
ρcp

γ

s (T) (Ts − T)

r + rc
. (4A.5e)

4A.2 Appendix B; Coefficients capturing the wavelength de-
pendency of Cn2

For λ < 1 mm

b1 = 10−6
�

0.237134+ 68.39397

130− λ−2
+

0.45473

38.9− λ−2

�

, (4A.6a)

b2 = 10−6(0.648731+ 5.8058× 10−3λ−2 − 7.115× 10−5λ−4

+ 8.851× 10−6λ−6)− b1,
(4A.6b)

bq2 = b2, (4A.6c)

and for λ > 1 mm
b1 = 0.776× 10−6, (4A.6d)

b2 = 10−6
�

7500

T
− 0.056
�

, (4A.6e)

bq2 = 10−6
�

3750

T
− 0.056
�

. (4A.6f)
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5
Leaf water-use efficiency: impact on the

estimation of evapotranspiration
partitioning

Transpiration can be measured for a single plant, and soil evaporation can be mea-

sured on a squared meter of bare soil. However, measuring water vapor fluxes at a

larger scale, e.g. using an eddy-covariance system, automatically leads to the sum

of evaporation and transpiration, known as evapotranspiration. The same holds for

observed CO2 fluxes. Net ecosystem exchange (NEE) is observed at field scale,

whereas gross primary production (GPP) is usually the variable of interest. Several

partitioning methods exist for eddy-covariance data, of which one by Scanlon et al.

(2010, Agr. Forest Meteorol. 150, 89-99). Their method is based on the observed

correlation between CO2 and water vapor fluctuations, and a water-use efficiency

at leaf scale. We critically reevaluate their method and show some improvements

on the determination of the water-use efficiency for growing wheat in Germany

(western Europe).
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5.1 Introduction

Crop-growth modelers, water-resource managers, farmers, and carbon and climate
modelers, are all interested in plant transpiration, plant assimilation, soil evapora-
tion and soil respiration on field scale. Field-scale instruments, however, only mea-
sure the total water-vapour and CO2 fluxes. Continuous separate observations of
the different soil and plant processes are not easy to obtain at field scale.

Models for estimating plant transpiration and soil evaporation are usually vali-
dated with data from lysimeters and from sap-flow measurements. Using a lysime-
ter, the weight of water that is lost from a certain volume of soil can be related to
evaporation if no plants are in the volume, or under the canopy (Boast and Robert-
son, 1982). Using sap-flow measurements, transpiration rates can be derived for a
single plant, by measuring the amount of heat that is taken up by the sap stream in
the stem of the plant (Swanson, 1994). Transpiration estimates can also be derived
using heavy stable isotopes of water (18O and 2H) as tracers of water movement in
the soil and atmosphere (Zundel et al., 1978). However, this method only provides
data occasionally.

Soil respiration is often measured using a so-called chamber, which is placed
on top of the soil to measure the increase of CO2 within the chamber (Graf et al.,
2011). There are types that are easy to carry around to measure at several places
temporally, and there are types that are installed at one location and provide data
continuously. Assimilation of carbon by a plant is generally derived from measure-
ments of chlorophyll fluorescence, or directly from the CO2 exchange measured in
the leaf cuvette of a mobile photosynthesis device (Long et al., 1996).

Sap flow instruments, lysimeters, chambers, and cuvettes only measure gas ex-
change very locally. None of these instruments provides both spatial and tempo-
ral variability of evaporation, transpiration, assimilation or respiration (except when
using many instruments simultaneously or repetitively). Therefore, methods exist
to derive the fluxes that correspond to these four processes indirectly from eddy-
covariance observations. Eddy-covariance observations provide continuous field-
scale values for the net exchange of CO2 (NEE) and H2O (evapotranspiration) be-
tween the surface and the atmosphere.

A method that is often used to estimate gross primary production (assimilation,
GPP) from NEE is to derive daytime respiration from nighttime temperature and
respiration data. However, despite a correction for the temperature-dependence of
soil respiration, nighttime respiration is not representative for daytime respiration,
due to a light dependency (Amthor and Baldocchi, 2001). Moreover, this method
does not provide transpiration or evaporation values. Bos extended the Penman-
Monteith model to describe the interactions between evaporation and transpiration
in a partly wet plant canopy. Their modeled transpiration values compared well with
sap-flow measurements obtained in a pine forest.

Scanlon and Kustas (2010), further referred to as SK10, developed an analytical
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method to derive field-scale transpiration, assimilation, evaporation, and respiration
from high-frequency eddy-covariance measurements. The method is based on the
fact that there are two locations in the canopy that are the shared source or sink
for both water vapour and CO2. The soil is the origin of soil respiration and soil
evaporation, whereas the stomata are the pathway that is shared by transpiration
and assimilation. The latter two fluxes are quantitatively related by the water-use
efficiency at leaf level. SK10 tested their method for data gathered over growing
maize in Beltsville (USA). Palatella et al. (2014) applied the method to observations
obtained over artichoke thistle (cultivated for biofuel) in southern Italy in April 2010.
They speed-up the method by applying a different iterative method to solve the
system (roots of the main function). Furthermore they stress that the resolvability
of the system is very sensitive to the WUE estimate.

We here show an elaborated study on the sensitivity of the SK10-method to the
WUE. Note that this leafWUE is not the same as the ecosystem water-use efficiency,
which could be derived from the ratio of the ecosystem CO2 and H2O fluxes (which
would include the soil-related fluxes). We use eddy-covariance data observed over
growing wheat to study the effect of different options in the calculation of the WUE.
Those options are related to the way the internal concentrations (in the stomata) of
water vapour and CO2 are estimated. We compare different ways (described in Sec-
tion 5.3.2) to derive the WUE for several environmental conditions, and investigate
the impact of the uncertainties in the WUE on the resolvability of the system and on
the partitioned fluxes.

5.2 Theory

5.2.1 General concept

The correlation between the atmospheric transport of temperature, humidity, and
CO2 has mainly been studied in the context of Monin-Obukhov similarity theory,
according to which the transport of several scalars is similar. This implies that all ob-
served scalar fluctuations are related to the same specific surface. For example, an
eddy that is more moist than its environment because it just left a transpiring plant
or evaporating surface, will also be warmer because of the relatively warm surface,
leading to a positive temperature-humidity correlation (rTq = 1, with T for temper-
ature and q for specific humidity), excluding any disturbances (e.g. entrainment,
advection, non-stationarity). Over a bare soil, the two scalars related to evaporation
(q) and respiration (CO2, c) are positively correlated because both scalars are re-
leased from the soil, into the atmosphere (rcq = 1). Above a fully vegetation-covered
surface, plants are the only humidity source and CO2 sink, due to photosynthesis,
leading to an anti-correlation (rcq = −1).

However, over a heterogeneous surface, there is a combination of several
sources and sinks, such that scalar transport is not similar. A system of plants and
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soil, where transpiration and evaporation together form the observed moisture flux,
and where assimilation and respiration together form the observed CO2 flux, will
lead to an rcq value between -1 and 1. Furthermore, de-correlation between temper-
ature and humidity will then occur because the eddies come from different surface-
types, moist versus dry and cold versus warm, see Moene and Schüttemeyer (2008).
Entrainment of air at the top of the boundary layer might lower the scalar correla-
tions at the surface as well, as was studied by van de Boer et al. (2014a), shown in
Chapter 3.

5.2.2 Original method

Scanlon and Sahu (2008) developed a method based on eddy-covariance data, to
relate an observed rcq to the separate biophysical components of the moisture and
CO2 fluxes. The key parameter in this relationship is the water-use efficiency at leaf
scale (WUE), i.e. the amount of CO2 uptake, through stomata, that corresponds with
a certain amount of water loss. The leaf WUE is based on the ratio of the CO2 and
H2O fluxes at leaf level.

The humidity fluctuations that are related to transpiration (σqT ), and the CO2

fluctuations that are related to assimilation (photosynthesis, σcA), are related via
the WUE:

σcA =WUE σqT . (5.1)

Figure 5.1 shows how the WUE can be used to determine the range at which a
combination of the four fluxes related to assimilation (A), transpiration (T), respi-
ration (R) and evaporation (E) can be found. The ratio of A and T is known via the
WUE, and the total humidity (T+E) and CO2 (A+R) fluxes are the fluxes as observed
at the field scale. Starting at the combination of the observed fluxes, and keeping
A/T constant by following the WUE slope, a range of combinations (yellow in Figure
5.1) can be defined where both the respiration and evaporation flux are positive.

For the exact combination of flux contributions, a system of equations consid-
ering correlation coefficients has to be solved. Within this system, the correlation
coefficient between transpiration related q-fluctuations and assimilation related c-
variations rqT,cA is −1 because transpired water vapour leaves the canopy, and as-
similated carbon enters the canopy. Evaporated soil water and respired soil CO2

both leave the soil, such that rqEcR = 1. Furthermore, plant transpiration and soil
evaporation are equally well (or poorly) correlated as plant assimilation and soil res-
piration, with a reversed sign (rqTqE = −rcAcR). For the correlation between soil and
plant related variations in humidity and CO2 variations, the following assumptions
are made:

rqTqE =
FqE

FqT

σqT

σqE
, (5.2)
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Figure 5.1: Schematic of how the WUE is used to obtain a range of combinations (thick,
yellow arrow) of assimilation (A), transpiration (T), respiration (R), and evaporation (E), from
the observed humidity and CO2 fluxes (′q′obs and ′c′obs respectively). Yellow circle: one
of the possible combinations of respiration and evaporation that would cause the observed
(kinematic) fluxes that are indicated with the red circles.

rcAcR =
FcR

FcA

σcA

σcR
. (5.3)

From these assumptions and a few mathematical characteristics, it can be derived
that:

WUE =
Fc

Fq

1± q̃
1± c̃

, (5.4)

where Fc and Fq represent the total observed CO2 and H2O fluxes, and q̃ = FqE/FqT
and c̃ = FcR/FcA. q̃ and c̃ are determined by the roots of the two quadratic functions
that relate the observed humidity and CO2 variances (σq and σc), with the estimated
WUE, rcAcR and σcA. See for this implementation Palatella et al. (2014), which ba-
sically leads to the same as the implementation of SK10. Equation 5.4 provides
an implicit relationship between observed quantities (fluxes, variances, correlation
coefficients, WUE) and unknown quantities (in particular E/T and R/A). This rela-
tionship yields at most one physically realistic solution for E/T and R/A. From those
ratios, in combination with the observed total fluxes, the component fluxes can be
determined.

SK10 applied their method to data from a growing-maize field. Maize is a C4
plant, that means it uses a more efficient way to fixate carbon than C3 plants (e.g.
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sugar beets, and grasses like wheat). I.e. the same amount of carbon fixation results
in less water loss for a C4 plant compared to a C3 plant, corresponding to a higher
WUE.

In SK10, ce and qe are estimated at leaf-level from the observed concentrations,
applying an empirical vertical concentration profile that is based on Monin-Obukhov
similarity theory (Brutsaert, 1982). Therefore, the method requires the roughness
lengths for CO2 and q (z0q), that are both derived from the height at which the wind
speed theoretically becomes zero (z0m). These roughness lengths depend on the
canopy height hc, in SK10 following z0m = 0.1hc, and z0h = z0m/e

2. SK10 assume
that ci is 280 ppm for C3 plants, which equals 280× 10−6 p/(ρ Rc T) = 0.42 g kg−1

for ρ = 1.2 kg m−3, p = 1002.5hPa, T = 293K, and Rc = 189.9 J kg−1K−1 (the gas
constant for CO2). For C4 plants, SK10 assume that ci = 0.44ce. Furthermore, qi is
assumed to be the saturated value at the leaf temperature qst(T).

Because the partitioning method is based on the correlation coefficient between
humidity and CO2, its performance is very sensitive to advection, entrainment and
large-scale weather effects (see Section 5.2.1). Therefore, SK10 eliminate relatively
large scale fluctuations. This is done by wavelet analysis, using the discrete Haar
wavelet. A solution is derived, if any, for 15 levels of data elimination. For 20 Hz
datasets of 30 min. (36.000 data points), this means that the first solution that is
found is based on the first 27 minutes (215 data points) of raw data, the second
contains scales <13.5 min., the third <6.8 min., the fourth <3.4 min., etc.

5.2.3 Determination of WUE

In SK10, the WUE is estimated by dividing the CO2 concentration difference be-
tween the stomata and the air just outside the leaf, by the humidity concentration
difference between the stomata and the air:

WUE = −0.7
ce − ci
qe − qi

, (5.5)

where the subscripts ‘e’ and ‘i’ indicate the external and internal concentration in g
CO2 per kg air (c), and in kg H2O per kg air (q). The factor 0.7 accounts for the dif-
ference in diffusivity between CO2 and H2O, which is approximately 1/1.6 as derived
in Willmer and Fricker (1996). The internal CO2 concentration should be lower than
the external concentration to maintain CO2 uptake. The internal H2O concentration
will then be higher than the external concentration, leading to a negative fraction,
but to a positive WUE as defined in Equation 5.5 (SK10 define WUE negative).

The WUE should be evaluated for the height at which the exchange between
plants and atmosphere takes place: at leaf-level. SK10 however assume an isother-
mal atmospheric surface layer, such that leaf temperature is equal to air tempera-
ture. We introduce the use of a non-isothermal atmospheric surface layer, in which
the leaf temperature is higher than the observed air temperature (at daytime). Sim-
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ilar to estimating ce and qe, we use the heat roughness length z0h and an empirical
profile derived from Monin-Obukhov similarity theory to estimate leaf temperature.
It is however questionable what the exact leaf-level within a vegetation canopy is,
i.e. where the sources and sinks are located on average within the canopy.

Furthermore, like SK10 state, if the distance from observation height increases,
uncertainties arise in the extrapolation of q and CO2, and in case of the non-
isothermal configuration in the derivation of the leaf temperature as well. These
uncertainties in the WUE follow from assuming Monin-Obukhov similarity theory,
and using surface fluxes that are not always well-defined. Moreover, the similarity
relationships that are used for extrapolation are actually not valid within the canopy,
in the so-called roughness sublayer (Harman and Finnigan, 2007). Scatter-wise, it
might be more robust to evaluate WUE at observation height.

Denominator of WUE

Both the vertical profiles of temperature and humidity determine the vertical profile
of the denominator of theWUE, q−qe. This difference in specific humidity is related
to the water vapor deficit pd, which equals est − e = (qi − qe)

pRv
Rd

(Rd and R are
the gas constants for dry air and for water vapor, 287 and 461 J K−1kg−1 respec-
tively). The WUE that is evaluated at a specific height, differs from the WUE derived
from the same observations for a different height.

Before we quantify the change ofWUE with height in Section 5.4.2, we first derive
that there is a situation for which the pd does not change that much with height,
i.e. (δqst − δq) /δz ≈ 0. To find the situation for which WUE does not depend on
height, we use the vertical gradients derived for observation height. We rewrite the
first term (δqst/δz) to obtain a temperature gradient which we can rewrite in terms
of the, from Monin-Obukhov similarity derived, flux-gradient relationship ϕ (z/L):

δqst

δT

δT

δz
= s ϕh

T∗

κz
, (5.6)

where s is the increase of qst for a certain temperature increase, T∗ is the heat
flux divided by the friction velocity, −H/

�

ρcp∗
�

(where H is the sensible heat flux
in W m−2, ρ is the density of the air in kg m−3, cp is the specific heat capacity of
air at constant pressure (p) that depends on humidity, and ∗ is the friction velocity
in m s−1), and κ is the von Kármán constant (0.4). The second term δq/δz can be
written in terms of ϕ as well, using q∗ = −LvE/(ρLv∗) (where E = Fq, Lv is the latent
heat of vaporization in J kg−1, and their product LvE is the latent heat flux in W m−2).
Assuming that the ϕ-functions are equal for temperature and humidity leads to

s
H

cp
=
LvE

Lv
. (5.7)

This means that the pd does not change with height for the Bowen-ratio β =
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H/LvE =
1
s
cp
L
. A typical value would be β = 0.5, assuming a temperature of 293 K

and humidity of 10 g kg−1 (then s = 143 Pa−1K−1 = 889 mg K−1). We will in this
Chapter study the height-dependence of theWUE for a whole range of Bowen ratios.

Numerator of WUE

Instead of using a fixed internal CO2 concentration, we introduce the use of a param-
eterization from the so-called A-gs-model to determine ci. This plant-physiological
model relates assimilation (A) to stomatal conductance gs through the difference
between internal and external CO2 concentration, ci and ce respectively, (Ronda
et al., 2001). The estimate of ci is based on the pd:

ci = (ƒmx − d pd) (ce − ) + . (5.8)

For C3 plants, ƒmx = 0.89, d = 7×10−5 Pa−1, and the CO2 compensation concentra-
tion  = 4.5×10−51.5

T−298
10 kg kg−1. For C4 plants, ƒmx = 0.85, d = 15×10−5 Pa−1,

and  = 4.3 × 10−6 kg kg−1. Note that this parameterization introduces the pd-
dependence in the numerator of WUE as well.

5.3 Methods

We elaborately studied the method that was developed by SK10. We applied their
method to eddy-covariance data observed above a wheat field for the growing sea-
son, using several adaptations to their code.

5.3.1 Data

The FLUXPAT-2009 campaign was organized near Merken (Germany, 114 m a.s.l.) in
the summer of 2009 to study the soil-vegetation atmosphere system (see Chapter
2 for more details). Among other stations, one station with an eddy-covariance
system at 2.4 m a.g.l. was installed in the middle of a flat winter wheat field. All
eddy-covariance stations provided 20 Hz wind speed, temperature, humidity and
CO2 concentration (CSAT3, LI-7500), and pressure data. Biweekly measurements
of canopy height hc were performed, from which we derived a linear wheat-canopy
growth. The wheat was growing 65 cm in 50 days, starting at a height of 10 cm at
15 April (DOY 105). From 12 June on (DOY 163), the wheat height remained 0.85 m.
The displacement height (at which momentum transfers between the air flow and
the vegetation) is assumed to be d = 2

3hc.
As SK10 did, we allowed a maximum of 25% missing high-frequency samples,

and filled the data gaps using a normal distribution or a generalized extreme-value
distribution, depending on the skewness of the data (with < 0.2 as threshold for a
normal distribution). The high-frequency data was verified for being within physical
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limits (−10 < ,, < 10m s−1, −20 < T < 50◦C, 0 < H2O < 0.1g m−3, 0 < CO2 <

0.02mg m−3, and 80 < p < 140kPa).

5.3.2 Research strategy

We use the technique provided by SK10 and implement the different ci and qi ap-
proaches presented in Section 5.2.3. We use our scheme with different configu-
rations, where T indicates an isothermal air layer above the surface, and where
ci = ƒ (T, q, c) indicates that we apply the A-gs parametrization:

Ta-280: ci = 280 ppm, qi = ƒ (T)

Ts-280: ci = 280 ppm, qi = ƒ (Ts)

Ta-Ags: ci = ƒ (Ts, qs, cs), qi = ƒ (T)

Ts-Ags: ci = ƒ (Ts, qs, cs), qi = ƒ (Ts)

robust: ci = ƒ (T, q, c), qi = ƒ (T)

We compare the WUE’s for the different configurations by presenting their daily
(6-18 UTC) course for the growing (DOY < 200) and the ripening phase (DOY > 200)
of the wheat data. Also, we compare probability density functions of the WUE for
the isothermal and non-isothermal case, based on data obtained in the afternoons
(12-16 UTC). We furthermore study the dependence of the WUE on the vertical tem-
perature profile for varying conditions, for a relative humidity of 0.6-1, and for a
Bowen ratio of 0.1-10.

For the same conditions, we quantify the influence onWUE of the height at which
qe and ce are evaluated. Based on the explanation in Section 5.2.3, we compare the
WUE evaluated at hc, with the WUE evaluated at 0.75hc. To examine whether WUE

can be evaluated at observation height instead of in the canopy, we also compare
the WUE evaluated at 3hc with the WUE evaluated at 0.75hc. We choose 0.75hc as
a reference because the correct evaluation height should roughly be in the upper
half of the canopy (Graf et al., 2014).

Note that either all variables should be taken from observation height, or they
should all be extrapolated to the same evaluation height that lays within the canopy
(unlike in the original method of SK10, where the temperature is not extrapolated).
We moreover quantify the effect of the WUE on the partitioning, based on two hours
of data during the growing season of the wheat. These data were selected because
for these hours, the method finds a partitioning solution without eliminating low-
frequency data.
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Figure 5.2: The daily course of the WUE in g kg−1 for the growing (left, DOY < 200) and
ripening (right, DOY > 200) phase of a winter wheat, derived using the first four different
methods that are described in Section 5.3.2, considering the estimations of the internal CO2
and H2O concentrations.

Figure 5.3: Probability density functions of WUE, for daytime data (12-16 UTC), obtained
over a growing winter wheat. Left: Ta-Ags, right: Ts-Ags (see Section 5.2.3).
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5.4 Results

5.4.1 WUE: methods to derive external and internal CO2 and
H2O concentration

In Figure 5.2, we show the WUE for the first four configurations described in Sec-
tion 5.2.3. First of all, there is a clear difference in the early mornings between the
isothermal and the non-isothermal configurations. Using the temperature at obser-
vation height for the determination of qi (Ta-280 and Ta-Ags) results in a very small
difference with qe for humid conditions. This may result in either a very high, or
a strongly negative WUE (which is physically impossible). As we can see in Figure
5.2, this occurs mostly in the early mornings, when the air is close to saturated. For
these hours, the non-isothermal configurations lead to a plausible WUE. Figure 5.3
shows as well that the use of a surface temperature for deriving qi, decreases the
number of non-physical values for WUE significantly.

We furthermore show in Figure 5.2 that theWUE is lower at the end of the season
for all configurations, especially the estimates using the 280 ppm-cases decrease
significantly. In the growing phase, the WUE decreases during the afternoon, when
the temperature increases. This effect is stronger for the isothermal cases. We
moreover found that the external CO2 concentration does not differ much through-
out the season, such that the numerator of WUE depends mainly on ci. The internal
CO2 concentration that was kept 280 ppm (0.42 g kg−1) in the original model, is
generally higher than 280 ppm using A-gs, but lower than that at the end of the
measurement campaign (not shown).

In Figure 5.3 we show the probability density functions using the observed air
temperature to derive the internal leaf humidity concentration (left), and using a
leaf temperature that was extrapolated from observed air temperature (right). Be-
cause the internal CO2 concentration is known to depend on meteorological condi-
tions (Lauer and Boyer, 1992), we only show the two A-gs configurations. As already
mentioned, much less negative values occur for WUE by introducing a leaf temper-
ature. However, we here see that the scatter of the WUE is slightly larger for this
non-isothermal case, which has a wider distribution around 20 g kg−1, and a less
clear peak.

Figure 5.4 shows the WUE for the observed range of relative humidity (RH) and
Bowen ratio. In the first case (isothermal), we see that, for a given RH, the WUE

decreases when the Bowen ratio increases (decreasing evapotranspiration) as will
happen during the ripening phase of a crop. In the non-isothermal case, this effect
of Bowen ratio on theWUE is reverse and also stronger. Furthermore, the limit where
WUE = 0 is clearly visible (we excluded negative values).

105



5. PARTITIONING EC-DERIVED EVAPOTRANSPIRATION

Figure 5.4: The effect of the Bowen ratio and the relative humidity on the WUE (g kg−1.
Left: Ta-Ags, right: Ts-Ags. Negative values are eliminated (white), and dark red indicates
a very high WUE. Based on observations, we used Qn =300 Wm−2, ∗ = 0.3 ms−1, cm =
5.5× 10−4 kg kg−1, c∗ = −12/700 q∗ K, hc = 1 m, zm =3 m, p = 100.25 kPa, ρ = 1.2kg m−3,
Tm = 293K.

5.4.2 WUE: evaluation-height dependence

Here we describe the importance of the exact height for which the WUE is evalu-
ated, applying a non-isothermal surface layer and the A-gs parametrization (Ts-Ags).
Figure 5.5 shows how the WUE relatively changes (Δ WUE/WUE) when we evaluate
WUE at two different heights. In the left figure, we compare theWUE determined for
z = 0.75hc with theWUE at the canopy top. In the right figure, we compare theWUE

determined for z = 0.75hc with the WUE determined for observation height. Both
cases are based on observations at 3.0 m and hc = 1 m.

In both comparisons, we see the same pattern, with a specific β at which the
method is not sensitive to the evaluation height (black line) as explained in Section
5.2.3. Until DOY 200 (19 July), the Bowen ratio of the wheat was 0.1 (= 10−1). From
DOY 200, the ripening of the wheat made β increase linearly to 4.5 (≈ 100.65) at
DOY 215 (3 August), when the wheat was harvested. For β = 0.1, theWUE increases
with increasing distance between observation height and evaluation height. For
β = 4, the WUE decreases with increasing distance between observation height and
evaluation height (see Figure 5.5).

For the within-canopy comparison, the sensitivity to the evaluation height is only
significant in very humid conditions, when the vertical profiles of specific humidity
and of saturated humidity content are almost equal. In other cases, it does not
matter much whether the observed temperature, humidity, and CO2 values are ex-
trapolated towards the canopy top, or a bit lower than that top.

Evaluating the WUE at observation level leads to significantly lower values for a
growing season, and to clearly higher values for very high Bowen ratios. However,
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Figure 5.5: The relative increase in WUE per increase in evaluation height for the same
cases as Figure 5.4, for Ts-Ags. Left: hc vs. 0.75hc, right: 3hc vs. 0.75hc (hc = 1 m). Dark
blue and red indicates a large sensitivity of WUE to the evaluation height.

we show in Figure 5.6 that the scatter of the WUE using the Ta-Ags or the Ts-Ags
configuration as shown in Figure 5.3 is reduced significantly by evaluating the WUE

at observation height. For colder regions, the difference between evaluating at mea-
surement height or in the canopy will even be higher for a growing season (we here
used T = 293 K). This is, because s is lower for lower temperatures, such that the β

at which the pd does not change with height will be higher, and the whole figure
will move rightward.

5.4.3 Hybrid method to derive WUE

We here propose a solution for the scatter that is introduced by the extrapolations of
humidity, CO2, and temperature in theWUE determination. The ‘robust’WUE that is
derived directly from the observed variables reduces scatter (see Figure 5.6), but is
biased (see Section 5.2.3) and thereby decreases the resolvability of the partitioning
method. Therefore, we scale the robust WUE with the daytime median of the WUE

that is derived from the variables that are all extrapolated into the canopy (Ts-Ags).
Thereby, we obtain a WUE that generally leads to a solution of the flux partitioning,
which is physically more substantiated than the original method.

The daily course of this so-called ‘hybrid’ WUE, derived from the wheat data,
is presented in Figure 5.7. We show that compared to the Ts-Ags configuration, the
hybrid configuration is of the same order of magnitude, which means that the bias of
the ‘robust’ method is deceased in the hybrid method. Because the hybrid method
is based on the ‘robust’ method, its probability density function will look similar as
Figure 5.6, with low scatter. Thereby, the hybrid method will be an improvement on
the WUE determination in SK10.
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Figure 5.6: The probability density function of WUE, for daytime data (12-16 UTC), obtained
over a growing winter wheat, derived using the A-gs parametrization and the observed air
temperature, humidity and CO2 concentration without extrapolating towards the canopy (‘ro-
bust’).

5.4.4 Partitioned fluxes: WUE dependence

In Figure 5.8 we show for two half hours of data, the influence of theWUE on the par-
titioning, and thereby the effect of the different configurations on the partitioning.
First of all we see that there is a wide range of WUE’s for which the solution method
of SK10 finds a solution to explain the observed fluxes, variances and correlations.
Solutions are found for a WUE up to 7000 gkg−1, for which all ET is assumed to be
evaporation. No solution is found for these two cases forWUE � 10. That is, because
an observed negative CO2 flux can only be explained by photosynthesis and thus
transpiration, which means that there is a certain base value for WUE.

The contribution of transpiration to the total humidity flux decreases with increas-
ingWUE, because a higherWUEmeans that for the uptake of a fixed amount of CO2,
less transpiration is needed. The different configurations lead for the data of DOY
149 (13 UTC) to a maximum WUE difference of 10 g kg−1. This leads to a transpi-
ration flux between 146 and 218 Wm−2. For DOY 153, the differences between the
configurations is smaller, and the order of the configurations slightly changed. Still,
the range of transpiration contributions is quite large (between 0.7 and 0.9).

The WUE for both data points determined using the ‘robust’ method are 10.5
and 8.6 g kg−1 (D149 and D153 respectively). These are however not shown in the
Figure, because no partitioning solution is found for these low values for WUE.
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Figure 5.7: The daily course of the WUE for the growing (left) and ripening (right) phase of
a winter wheat (comparable with Figure 5.2). In all cases, the A-gs parameterization was ap-
plied. In Ts-Ags, q, c, and T are extrapolated, in ‘robust’ none of the variables is extrapolated,
and hybrid is a combination of both configurations (as described in Section 5.5).

5.5 Discussion

In this Chapter we show the influence of the surface temperature (which is assumed
to be the leaf temperature) on the WUE and thereby on the partitioning of evap-
otranspiration. We use functions derived from Monin-Obukhov similarity theory to
estimate the surface temperature. However, these functions introduce scatter by
extrapolating air temperature. Moreover, their validity is uncertain, especially within
the vegetation, that is located in the roughness sublayer (Harman and Finnigan,
2007). To overcome the scatter and uncertainty, the leaf temperature could be de-
rived from outgoing longwave radiation measurements, if available, as described in
Chapter 4.

We found that for obtaining a solution with the method of SK10, often many
larger-scale frequencies (wavelet levels, see Section 5.2.2) have to be eliminated.
We however show in Chapter 3 that surface-related turbulence is captured by
timescales up to 15 min. By eliminating those scales, flux contributions are lost,
and we found that that slightly changes the partitioning fractions. Furthermore, this
part of the method is very time consuming. Therefore, we suggest to perform a sen-
sitivity study on the flux-partitioning method, considering the wavelet part of the
method. Ideally, it should only be necessary to exclude scales > 15 min.

The partitioning system did not solve, or only solved for a low wavelet level, for
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Figure 5.8: The contribution of transpiration to the total observed humidity flux, derived
from a range of WUE’s that is defined from the different methods (see Section 5.3.2) to
determine the WUE for the winter wheat, for DOY 149, 13 UTC and DOY 153, 14 UTC.

our wheat data in the ripening phase and for the period after harvest. Thereby,
we could not study the development of the crop. A more elaborated study should
therefore be performed on how to increase the success rate of the method. The
assumption described in Equation 5.2 should thereby be taken into account. With a
tool that often finds a solution for various environmental conditions, obtained respi-
ration fluxes can be compared with chamber data and soil moisture data, to validate
the flux output of the model. Also, quality checks can be performed by e.g. compar-
ing the evaporation rate before and after harvesting, relating respiration fluxes with
temperature observations, and linking precipitation events to the evaporative flux.

The concept of the WUE could be combined with existing methods to derive the
four partitioned fluxes. This could for example be done with the method that derives
daytime respiration from the observed nighttime CO2 flux. From the total CO2 and
H2O flux, theWUE, and the estimated respiration flux, the assimilation, transpiration
and evaporation fluxes can be derived following the system described in Figure 5.1.
However, the amplification of errors should hereby be taken into account, as the
smallest flux is used to determine the other three fluxes by this method.

Once a well-established partitioning tool has been developed, the effect of the
degree of plant-scale surface heterogeneity on Monin-Obukhov similarity functions
can be studied. It is expected that when soil evaporation significantly contributes
to the observed moisture flux, Monin-Obukhov similarity is less valid for moisture.
That is, because the humidity source at the surface then actually consists of a source
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exactly at the surface, and a source around canopy height.

5.6 Conclusions

In this chapter we demonstrate that the determination of WUE by SK10 often re-
sults in unphysical values for the data obtained over a growing wheat field, such
that no solution is found in their partitioning method. This is mainly caused by their
assumption that the leaf temperature is equal to the observed air temperature. In
their method, the humidity just outside the leaf is extrapolated from the observed
air humidity by applying flux-profile functions derived from Monin-Obukhov similarity
theory. Meanwhile, the internal leaf humidity is determined as the saturated humid-
ity at air temperature. This results often in a very large or a negativeWUE, especially
for relatively humid conditions. We show that extrapolating air temperature to leaf
temperature avoids these unphysical values. However, this extrapolation based on
not-always well-defined surface fluxes introduces scatter in the WUE, additional to
the scatter caused by the extrapolation of observed H2O and CO2 concentrations.

Furthermore, we show that using the observed air temperature to derive the in-
ternal humidity, is not a problem for a surface with a Bowen ratio of ≈ 0.5 (based
on T = 293 K). We moreover found that the exact height for which the WUE is deter-
mined, i.e. towards which the observations are extrapolated, does not significantly
affect the WUE when evaluating somewhere between the canopy top and halfway
the canopy. We show that the scatter of WUE is reduced significantly by using the
observed temperature, humidity and CO2 concentration directly, without extrapo-
lating.

However, evaluating the WUE directly from the observations, without extrapola-
tions, leads to a bias in WUE of which the sign and the magnitude depend on the
Bowen ratio. At Bowen ratios representative for actively growing vegetation, the
WUE is underestimated when evaluated with observation-level values. To reduce
scatter and to prevent a bias, we propose to scale our robust method (no extrapola-
tion), with the daytime median WUE that is estimated for an extrapolated tempera-
ture, humidity and CO2 concentration. This hybrid method will more often lead to a
solution of the flux partitioning method, compared to the original method.

The method of SK10 furthermore assumes a fixed internal CO2 concentration.
We show the effect of including a dependence on the external concentrations of
humidity and CO2. Our parametrization that is based on the A-gs model generally
lowers theWUE, which leads to a relatively higher contribution of transpiration to the
observed evapotranspiration flux. The effect of the differentWUE determinations on
the flux partitioning is rather large. Taking into account the variations of the internal
CO2 concentration and an extrapolated leaf temperature, can change the fraction
of transpiration from 0.6 to 0.9.
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There is no theory of everything.

Stephen Hawking

6
Perspectives

6.1 Footprint modeling over complex terrain

In our studies on turbulent scalar transport between crops and the atmosphere, we
were confronted with the influence of the spatial and temporal distribution of the
scalar sources and sinks at the surface and at the top of the boundary layer. We
can confirm that the variability and scaling properties of turbulence change strongly
through surface heterogeneity and entrainment. These processes are however not
fully incorporated in (semi-) analytical flux-footprint models, since these footprint
models are based on Monin-Obukhov similarity theory. Such footprint models should
therefore actually not be applied to heterogeneous terrain. However, we cannot test
the accuracy of a footprint model on data obtained over a homogeneous terrain.

Our footprint-model study revealed that existing semi-analytical footprint mod-
els result in significantly different footprints for identical eddy-covariance measure-
ments. This is a problem when using these models for other purposes than as a
data quality check, e.g. for determining which part of the observed flux comes from
a specific surface. For our studies on relatively flat and homogeneous areas, we
selected a model configuration for which the estimated footprint was most similar
to the footprint derived from a composite of known fluxes from the FLUXPAT 2009
campaign in Germany. However, it is important to further improve footprint models
to make them applicable to more complex terrain (i.e. very heterogeneous, with
contrasting land-surfaces and topography). This would allow integrating a footprint
model into the FLUXNET database, that is collected within the global network of
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Figure 6.1: Locations of the three eddy-covariance stations (circles A, B and C) at the so-
called edge-site during the BLLAST campaign in 2011 in Lannemezan, France. The thick black
line indicates a ditch between the grass and the wheat field.

micro-meteorological flux measurement sites (Baldocchi et al., 2001). At several
FLUXNET sites, the flux measurements have a heterogeneous fetch. An integrated,
accurate but fast footprint model will lead to CO2 and water vapor fluxes that can
be upscaled, to verify remote sensing data, and to gain global insight in cycles and
storage of these natural resources.

6.2 Footprint modeling for a highly turbulent at-

mosphere

For an eddy-covariance data-based study on the performance of footprint models,
the exact location of the instruments at the border of different land-use types is very
important. The distance of 50 m like used for the data described in Chapter 2 is too
large, especially for unstable conditions when the footprint is respectively small. In
the BLLAST campaign in 2011 in France, we took this into account. We measured
surface fluxes in a wheat field, a grass field, and at the border between them, see
the set-up in Figure 6.1. We installed the edge-station B exactly at the edge, next to
a ditch. However, we found that this time, none of the footprint models we tested on
the previous dataset performed well for the convective conditions observed during
the BLLAST campaign.

In Figure 6.2 we present a comparison of the sensible heat fluxes observed at
station B, with fluxes observed at station A (grass) and C (wheat), colored by wind
direction. Because the measurement site was located 50 km north of the Pyrenees,
we often observed a northerly wind at daytime (katabatic flow), and a southerly wind
at nighttime. The estimated footprints of the daytime grass and wheat fluxes easily
fitted within the fields, such that we assumed that these fluxes were representative
for the two fields. From this, we could expect that the daytime flux that is observed
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at station B is similar to the wheat flux, in case the wind direction is between 315◦

and 45◦. These wind directions are colored dark red and dark blue in Figure 6.2. We
see that for those wind directions, the sensible heat flux observed at station B is
almost always larger than the grass flux, and clearly always smaller than the wheat
flux. This indicates that the border measurements always consisted of a combination
of the grass-related flux and the wheat-related flux, for all wind directions.

Footprint models generally predict an elongated ellipsoid upwind of the turbu-
lence measurement, mainly based on atmospheric stability (via the Obukhov length)
for the length, and the standard deviation of lateral horizontal wind speed (σ) for
the width of the ellipse. When the turbulence intensity is that high such that the fluc-
tuations in horizontal wind speed are as large as the mean wind speed itself, then
vertical motions are relatively important for the dispersion. This corresponds to a rel-
atively small circular footprint located around the instrument. This means that the
footprint models should also calculate a footprint contribution downwind from the
station, which is not possible with the current implementations. Kljun et al. (2004)
presented an analytical footprint model that is based on an ensemble average of a
3D Lagrangian backward model for varying stratifications and heterogeneous sur-
faces. Their model captures downwind contributions for convective conditions in
the alongwind direction, but unfortunately not yet in the crosswind direction. An
improved version of their footprint model could be tuned by performing a natural
tracer approach like described in Chapter 2, based on an eddy-covariance dataset
like used in Chapter 3. An edge-station installed exactly at the border between two
contrasting land-use types (like station B) is required, in combination with two sta-
tions with a homogeneous footprint for all wind directions in the two different fields
(like station A and C).

6.3 Effect of surface heterogeneity on Monin-

Obukhov similarity theory derived from obser-

vations

In Chapter 3 we quantify the effect of entrainment on Monin-Obukhov similarity
functions, for the above-mentioned observations over grass and wheat. The station
at the edge between the grass and wheat field was originally meant to quantify the
effect of surface heterogeneity on Monin-Obukhov similarity theory. To study the
influence of surface heterogeneity on atmospheric turbulence, we have to compare
turbulence observed over a homogeneous area (were Monin-Obukhov similarity the-
ory holds), with turbulence observed over a heterogeneous area. However, when do
we define a certain site heterogeneous?

The heterogeneity of a site depends on the contrast between the surface flux
of the scalar of interest. An area can be heterogeneous in terms of temperature,

115



6. PERSPECTIVES

−50 0 50 100 150 200 250−50

0

50

100

150

200

250

Hgrass

H
ed

ge

0 100 200 300 400−50

0

50

100

150

200

250

300

350

400

Hwheat

H
ed

ge

Udir

50

100

150

200

250

300

350

Figure 6.2: Comparisons between the sensible heat flux observed at the edge-station B (see
Figure 6.1), with left the flux observed at the grass (station A), and right the wheat flux (from
station C). Dark red and blue markers indicate northerly winds, observed during the BLLAST
campaign (14 June - 5 July 2011) in Lannemezan, France. The black line indicates perfect
equality between the fluxes.

and meanwhile homogeneous in terms of humidity. Considering the fetch of eddy-
covariance measurements, the heterogeneity furthermore depends on the location
of the footprint. We here define an index of heterogeneity (H), that can be used to
classify datasets. In case of two different land-use types, H can be expressed as a
function of both the contrast between the land-use types, and the contributions of
the fields to the observed scalar variances:

H =
�

�

�

�

F1 − F2
(F1 + F2)/2

�

�

�

�

min (C1, C2) , (6.1)

where F1 and F2 represent the fluxes of land-use type 1 and 2, for a certain period
(e.g. 30 min.), and C1 and C2 represent the contributions of the two fields to the
observations in fractions. The flux-contrast part will be close to zero if the fluxes
(e.g. H, CO2 or LvE) are similar, and will reach 2 for a maximum contrast (one of the
fluxes is zero). Note that this definition only holds when F1 and F2 have the same
sign. The contribution part will vary between 0 (the footprint is only located in one of
the two fields) and 0.5 (the footprint has equal contributions of both fields), leading
to a H between 0 and 1. A footprint model that is accurate for various conditions,
is essential for determining C1 and C2.

We expect a relation between H and the deviation from Monin-Obukhov sim-
ilarity theory, e.g. the difference between the observed scalar variance and the
variance expected from the flux-variance functions. This way, we are able to quan-
tify the effect of surface heterogeneity on Monin-Obukhov similarity functions for
several scalars (humidity and temperature). The fields observed during the BLLAST
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campaign were especially contrasting in the sensible heat flux (H), because the rel-
atively dry and high wheat canopy had a lower albedo than the growing grass. The
latent heat flux observed over grass was only one third higher than observed over
the ripening wheat, probably because the wheat field contained some other fodder
types, of which some were still green at the end of the measurement campaign.
If a whole range of wind directions would have occurred, we would have obtained
turbulence data with various flux footprints, with various different degrees of het-
erogeneity in terms of H.

The degree of heterogeneity can be determined using a footprint model that is
suitable for the observed atmospheric conditions (like discussed above). Until a foot-
print model is developed that performs well for a very unstable atmosphere, such a
heterogeneity study should be performed using eddy-covariance data obtained at a
station surrounded by two fields with contrasting heat fluxes in a not too convective
atmospheric boundary layer (z/L > −1/16). Often, structure parameters and vari-
ances are used as a measure of turbulence. However, current footprint models are
developed for fluxes (covariances). Therefore, differences between modeling the
source area of turbulence quantities like (co-)variances and structure parameters
should also be examined. Again, our natural tracer approach presented in Chapter
2 could be used for this, by examining whether a composite of structure parameters
observed over two contrasting land-use types, using a flux-footprint model, leads to
the structure parameter observed at a station at the edge between the fields.

6.4 Modeling deviations from Monin-Obukhov sim-

ilarity functions

In Chapter 3 we derived a term that accounts for humidity variance caused by en-
trainment, from the humidity-variance budget. However, we thereby did not take
any coupling between variances, covariances, dissipation, and TKE (turbulent ki-
netic energy) into account. We therefore recommend a more elaborated study
on Monin-Obukhov dissimilarity, by using a closed set of equations that are com-
bined by Vilà Guerau de Arellano et al. (1995). The equations consider the bal-
ancing production and dissipation of variances, covariances, and fluxes, that are
non-dimensionalized using Monin-Obukhov similarity theory-derived scales. All di-
agnostic equations depend on the atmospheric stability (z/L), such that the system
can be solved for certain similarity relationships for flux-gradients and variances of
momentum, temperature, and any other scalar (e.g. humidity or CO2).

We could compare observed similarity relationships (derived from e.g. eddy-
covariance data) with those that follow from the system of equations described by
Vilà Guerau de Arellano et al. (1995). Similar to our method described in Chapter
3, we could add justified terms in the equations within the system that has to be
solved, to capture the observed processes. If for example the observed humidity
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variance is higher than the model output, there is an indication that we need to add
an entrainment term to the budget equations in the model.

Turbulent transport of CO2 is different than that of humidity, because in contrast
to humidity and temperature, the surface is a sink for CO2. In addition to that,
the free atmosphere can be a source and a sink of CO2, depending on the season
(a source in summer). Furthermore, CO2 is a passive scalar, which means that
its presence does not affect buoyancy. CO2 transport is as relevant as humidity
transport for climate-change related studies, therefore it would be interesting to
apply our method presented in Chapter 3 to CO2. However, radiosonde CO2 data
is often not available, and it would be more feasible to apply the model by Vilà
Guerau de Arellano et al. (1995), discussed above, to study the influence of surface
heterogeneity and entrainment on Monin-Obukhov similarity theory for CO2.

Another method that is used to study the effect of surface heterogeneity and
entrainment is the Dutch Atmospheric Large-Eddy Simulation, DALES (Heus et al.,
2010). Using LES, various idealized cases can be simulated to obtain turbulence vari-
ables. Like for the method discussed above, spatial and temporal turbulence char-
acteristics that follow from the simulation can be compared with eddy-covariance
data. To study which processes influence the turbulence statistics for a certain
eddy-covariance dataset, various simulations can be performed to achieve similar
turbulence statistics for the LES and the observations. A surface consisting of two
fields with different surface fluxes can for example be prescribed as done by Ouw-
ersloot et al. (2011), who studied isoprene emissions over a land surface consisting
of alternating cool and wet patches (high emission) with warm and dry patches (low
emission).

The temperature variance that is caused by surface heterogeneity can be quan-
tified by comparing simulations with different prescribed surfaces. To relate the
amount of extra variance to a specific degree of surface heterogeneity, H could
be used as explained in the previous section. For studying surface-layer turbulence
with DALES, a very fine resolution is needed for the lowest part. In DALES, the small-
est turbulence scales are modeled within sub-grids, to save computing time. These
sub-grid schemes are partly based on empiricism such that the resulting mean wind
and temperature profiles do not follow Monin-Obukhov similarity theory. Because
the smallest eddies especially occur in the surface layer, a direct numerical simula-
tion (DNS) might be better than an LES to study surface-layer turbulence. However,
a DNS resolves every scale, and is therefore too expensive (time wise) to simulate
various cases.
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6.5 Applications to urban areas

As the main land-use type is changing from agriculture to urban areas in developed
countries, more and more research is performed on the urban climate. In urban
studies, sensible heat and CO2 fluxes and their source areas are of big interest.
However, the obstacles in urban terrain differ extremely in height compared to a
plant canopy. This is a problem for analytical footprint models, because they as-
sume a flat terrain over which the height-dependent turbulent characteristics are
calculated. A recent attempt of modeling CO2-flux footprints over an urban area has
been performed by Kotthaus and Grimmond (2012). The footprint-model validation
method that we described in Chapter 2 is not very suitable for urban terrain, because
the different surface types within a city are not as clearly defined as for agricultural
fields. Therefore, modeled footprints from eddy-covariance data obtained over a
well-defined urban area should be compared with the flux footprint within an LES
of a similar case. The comparison of an analytical footprint model applied to data
observed over a semi-arid shrub area, with an LES with a very high resolution close
to the surface, presented in Leclerc et al. (1997) and in Steinfeld et al. (2008), could
be taken as examples to study the feasibility of current footprint models for urban
areas. LES studies for urban areas are already performed since the study by Liu and
Barth (2002).

As discussed in Chapter 4, routinely observed surface-flux data are scarce. This
especially holds for data observed over urban terrain. Therefore, we propose to
make the scheme presented in Chapter 4 applicable to urban areas. Heat fluxes over
an urban area could then be estimated from single-level weather station data, pro-
vided that incoming shortwave radiation is measured somewhere close by. These pa-
rameters could be obtained from weather stations installed on roof tops of the high-
est buildings. Bicycle traverse measurements through a city, e.g. by Heusinkveld
et al. (2014), might be used as well. However, these measurements are taken within
the roughness sublayer, where the wind profile does not correspond with Monin-
Obukhov similarity theory. The aerodynamic resistance calculation should therefore
be adjusted for the vertical wind profile observed between the buildings as described
for vegetative canopies in Harman and Finnigan (2007). As a first test, weather data
observed over a non-green district from a dry period should be used, such that the
latent-heat flux can be neglected in the scheme. The only other required adjust-
ments to the scheme, are the ‘surface’ heat transfer coefficient Ag, which is much
higher compared to a well-watered soil, and the albedo , which is much lower com-
pared to a crop (Schubert and Grossman-Clarke, 2014). To validate the scheme for
urban areas, the heat fluxes obtained from the scheme should be compared with flux
data from an eddy-covariance station on top of a high building, or with scintillometer
data obtained over an urban area.
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6. PERSPECTIVES

6.6 Measurement campaigns

The BLLAST measurement campaign involved many different institutes. Thereby, we
came across different possibilities to install the gas analyzer in the eddy-covariance
mast, considering the orientation and the distance to the sonic anemometer. The
larger the distance between the anemometer and the gas analyzer, the longer an air
parcel needs to travel from one to the other (for the same wind speed and direction).
A longer travel time means a larger time lag between the anemometer signal and
the gas analyzer signal, and less accuracy in the derived flux. To minimize this time
lag, the gas analyzer can be installed right below, above, or next to the anemometer.
Furthermore, these configurations will have a different impact on the wind field that
is measured by the anemometer. A comparison of turbulence statistics obtained with
eddy-covariance stations with different configurations should be done, to investigate
the effect of the configuration of the sonic anemometer and the gas analyzer on
turbulence measurements. To avoid that small-scale surface heterogeneity causes
differences in the observations, an extremely homogeneous and flat area (e.g. a
salt plain) should be chosen for this comparison study. Also, identical instruments
should be used, and the gas analyzers should all be calibrated right before the start
of the comparison period.

When planning a campaign for studying atmospheric turbulence over a vegetated
area, we recommend to also study the vegetation in detail. In order to simulate or
explain observed atmospheric turbulence, the surroundings of the study site should
be mapped carefully. Especially in a heterogeneous area, the different land-use
types should be mapped at an accuracy of a few meters, for applying a footprint
model. Surface heterogeneity within one land-use type should be observed as well.
This could be done using an infra-red camera, installed in a mast or under a small un-
manned air craft or multicopter. In case of developing crops, weekly measurements
of the LA and the canopy height of the different land-use types should be taken.
Continuous observations of soil moisture content and soil respiration should be per-
formed as well. From our studies on the BLLAST data, we learned that a mountain
ridge within 50 km from the measurement site strongly influences the wind clima-
tology, which should be taken into account for studying atmospheric turbulence.

Furthermore, we recommend to further invest in obtaining surface fluxes without
the use of eddy-covariance. In many agricultural areas in the world there are no re-
sources available to install an eddy-covariance station, whereas it is especially nec-
essary for such areas to study for example the water usage of a certain crop. Also,
the more spatial flux estimates can be made, the better remote sensing products
(e.g. vegetation development) could be validated, for fine-tuning larger-scale mod-
els. The from-weather-to-fluxes approach discussed in this thesis would be suited
for estimating evapotranspiration in remote areas. Currently, the FAO (Food and
Agriculture Organization of the United Nations) estimates evapotranspiration from
meteorological data and empirical crop coefficients by a simplified version of the
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Penman-Monteith equation (Allen et al., 1998). Our approach requires the same in-
put, but works with less assumptions and generalizations to obtain the surface fluxes
over a certain crop. Furthermore, our approach is adjustable to distinguish the phys-
iology of C3 and C4 plants, as we use the canopy resistance, which is higher for a
C4 plant to limit the loss of water vapor.
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Samenvatting

Atmosferische turbulentie is het onregelmatig bewegen van lucht. In de grenslaag,
de luchtlaag die direct door het aardoppervlak beïnvloed wordt, ontstaat turbulentie
overdag door opwarming van lucht nabij het aardoppervlak en door wrijving van de
luchtstroom met het aardoppervlak. ‘s Nachts speelt alleen wrijving een rol. De
nachtelijke grenslaag is daardoor vele malen dunner. In Figuur 1.1 illustreren we
dat turbulente luchtwervels, eddies, zorgen voor het verspreiden van onder andere
vocht, warmte en CO2.

De mate van turbulent transport hangt vooral af van de vochtigheid en ruwheid
van het oppervlak en van de hoeveelheid niet-weerkaatste stralingsenergie. At-
mosferische turbulentie-gegevens bevatten dus informatie over de interacties en
processen die in de bodem en vegetatie plaatsvinden. Deze land-atmosfeer inter-
acties, en zo atmosferisch transport, hebben een grote invloed op onder andere het
weer en klimaat.

Turbulent transport is chaotisch, en daarom ingewikkeld na te bootsen in een
model. Vereenvoudigde modellen worden gebruikt voor het simuleren van vocht-,
warmte- en CO2-uitwisseling in de oppervlaktelaag, de onderste laag van de
grenslaag zoals weergegeven in Figuur 1.1. Daarbij worden de variabelen statistisch
uitgedrukt. De mate waarin bijvoorbeeld de vochtconcentratie op de tijdschaal van
secondes varieert, de vochtvariantie, zegt iets over hoe turbulent de atmosfeer
is. Maar in hoeverre zijn deze benaderingen voor de interacties tussen land en
atmosfeer geldig? En kunnen we bestaande theorieën uitbreiden zodat ze geldig
zijn voor meerdere situaties?

We hebben vier bestaande theorieën onderzocht die allen een gedeelte beschrij-
ven van de interactie tussen de bodem, vegetatie en atmosfeer. Door deze theo-
rieën te toetsen met waarnemingen van uitwisselingen van vocht, warmte en CO2

boven verscheidene gewassen, kunnen we iets zeggen over de toepasbaarheid. Ook
kunnen we de theorieën zo eventueel verbeteren. Dit helpt andere onderzoekers on-
der meer bij het simuleren van water-beschikbaarheid, gewasgroei, en het klimaat,
wat weer belangrijk is voor bijvoorbeeld voedselproductie en gezondheid wereldwijd.

De getoetste theorieën beschrijven, in volgorde van dit proefschrift:

• de grootte en vorm van het gebied dat invloed heeft op een puntmeting van
atmosferisch transport in de oppervlaktelaag
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• een verband tussen de hoeveelheid vochtuitwisseling aan het aardoppervlak,
en de vochtvariantie in de oppervlaktelaag

• een relatie tussen een aantal weer-parameters, en uitwisseling van warmte en
vocht aan het aardoppervlak

• samenhang tussen statistische vocht- en CO2-gegevens, en de aandelen bo-
demverdamping en plant-transpiratie in uitwisseling van vocht en CO2

Om de theorieën te testen en te verbeteren, hebben we ze toegepast, en de
uitkomsten vergeleken met transportmetingen. Deze waarnemingen zijn verzameld
door zogenoemde ‘eddycovariantiesystemen’. Zo’n systeem meet minstens 10 keer
per seconde de doorstroming van bijvoorbeeld CO2-deeltjes, in alle richtingen. Door
zo vaak te meten, kan men de turbulente luchtbewegingen statistisch benaderen en
bepalen wat het gemiddelde transport is. Een eddycovariantiemeting zegt daarmee
iets over de uitwisselingen op veldschaal.

Eddycovariantiesystemen zijn duur en onderhoudsgevoelig, waardoor ze niet
standaard op meteorologische stations staan. Toch stond in 2005 een systeem ge-
ïnstalleerd op het meteorologisch station ‘de Haarweg’ in Wageningen. Deze uit-
wisselingswaarnemingen hebben we gebruikt voor ons onderzoek naar een relatie
tussen weer-parameters en uitwisseling van warmte en vocht aan dit grasoppervlak.
Voor het onderzoeken van andere gewastypen en voor de andere onderzoeksvragen,
hebben wij metingen gebruikt van twee meetcampagnes, waarbij enkele eddycova-
riantiesystemen tijdelijk werden opgesteld.

In 2009 vond een intensieve meetcampagne plaats in een landbouwgebied tus-
sen Aken en Keulen, in Merken, Duitsland. Verscheidene onderzoekers hebben daar
gedurende het groeiseizoen vooral gemeten aan de bodems en de gewassen, maar
ook aan de atmosfeer. Er stond een eddycovariantiestation in een suikerbietenveld,
een aangrenzend graanveld, en in een aangrenzend gerstveld.

In juni 2011 hebben we deelgenomen aan een campagne in Zuid-Frankrijk, waar-
bij de nadruk op atmosferische metingen lag. Ongeveer 100 km ten zuidwesten
van Toulouse, bij een observatorium in Lannemezan, hadden we onder andere
eddycovariantiestations geïnstalleerd in een graanveld en in een aangrenzend gras-
veld. Vooral op zonnige dagen werden bovendien veel weerballonnen opgelaten en
vliegtuigvluchten gemaakt om temperatuur, vocht, en wind boven de grenslaag te
meten.

Wanneer de interacties tussen bodem, vegetatie en atmosfeer onderzocht wor-
den met behulp van gemeten luchtbewegingen vlak boven het oppervlak, is het zeer
belangrijk te weten welk deel van het oppervlak precies invloed had op de transport-
meting. Als bijvoorbeeld een groot opwaarts vochttransport gemeten wordt op 3
meter boven de grond, hoeft dat niet per se van de verdampende plant recht onder
het meetinstrument te komen.
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Met behulp van een zogenaamd ‘footprint’ model, kan berekend worden welk
gebied invloed had op de transportmeting van een bepaald moment. Dit model is
echter gebaseerd op een aantal aannames, die eigenlijk niet helemaal gelden boven
een gebied met verschillende bodemtypen of gewassen. Echter, juist boven zo’n
heterogeen gebied wil men weten waar de gemeten luchtwervels precies vandaan
kwamen.

Daarom hebben wij een aantal modellen geïmplementeerd, toegepast op eddy-
covariantiemetingen uit Duitsland, en de footprints met elkaar vergeleken. Ook
hebben we de footprints vergeleken met onze verwachting van de footprint naar
aanleiding van de transportmetingen van een aantal nabijgelegen velden. Daaruit
bleek dat alle geteste modellen een grotere footprint berekenen dan was afgeleid
uit de waarnemingen.

Bovendien hebben we gekeken naar de onzekerheid van de parameterwaarden
waarmee we het model aansturen. Door een gevoeligheidsanalyse uit te voeren
kwamen we er achter dat vooral opgepast moet worden het oppervlak niet te glad
in te schatten. Tevens moet de invloed van verticale luchtbewegingen niet onder-
schat worden. Maar de verschillen tussen de modellen zijn duidelijk groter dan de
verschillen die verkregen worden door de ingevoerde gegevens iets aan te passen.

In de ‘Perspectives’ hebben we uitgewerkt dat behalve de grootte, ook de vorm
van de footprint niet goed gemodelleerd wordt. Het model van Hsieh et al. (2000)
komt het dichtst bij de footprint die is afgeleid uit waarnemingen van meerdere
stations. Echter, wij raden aan het model van Kljun et al. (2002) aan te passen.
Dit model bevat namelijk al de eerste stappen om de vorm van de footprint aan te
passen aan verschillende maten van turbulentie.

Een aantal van de aannames die onder andere in footprint modellen gebruikt
worden, gaat over een verband tussen de hoeveelheid uitwisseling aan het aardop-
pervlak, en de transportwaarneming vlak daarboven. Dit is een verband dat volgt
uit de zogenoemde Monin-Obukhov gelijkvormigheidstheorie (Monin and Obukhov,
1954).

Volgens de Monin-Obukhov gelijkvormigheidstheorie, is een waarneming van tur-
bulentie in de onderste 100 m van de atmosfeer alleen maar gerelateerd aan wat
er aan het aardoppervlak gebeurt. In weer- en klimaatmodellen worden de lucht-
bewegingen voor de onderste luchtlaag dan ook berekend aan de hand van de
oppervlakte-eigenschappen. Verscheidene onderzoekers hebben de laatste jaren
aangetoond dat niet alleen het aardoppervlak, maar ook de lucht boven de grens-
laag invloed heeft op de luchtbewegingen en gasconcentraties in de oppervlakte-
laag.

Wij hebben onderzocht of ‘eddies’ die afkomstig zijn van de luchtlaag boven de
grenslaag, ons eddycovariantiesysteem op 3 m hoogte bereikten. Met behulp van
de weerballondata konden we aantonen dat dat in Zuid-Frankrijk inderdaad af en
toe zo was. Dit betekent dat de Monin-Obukhov gelijkvormigheidstheorie dan niet
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overeenkomt met de metingen, en daar dus niet altijd toepasbaar is.
Vervolgens hebben we geprobeerd de relaties, die afgeleid worden uit de theorie,

aan te passen. We hebben een methode ontwikkeld om te schatten hoeveel vari-
antie in het vochtsignaal niet veroorzaakt wordt door oppervlakteprocessen, maar
door inmenging van droge lucht van bovenaf. Behalve droger, zijn deze luchtbellen
ook nog eens veel groter dan luchtbellen die met het oppervlak te maken hebben,
waardoor we ze konden detecteren in onze waarnemingen.

De instrumenten die voor de nauwkeurige en zeer frequente waarneming van
wind, temperatuur, vocht en CO2 nodig zijn, zijn behalve duur ook ingewikkeld in het
gebruik. Er zijn dus wereldwijd maar weinig locaties waar de uitwisselingen tussen
land en atmosfeer gemeten worden. Daarom hebben wij een methode verbeterd
(de Rooy and Holtslag, 1999), waarmee het transport van waterdamp en warmte
geschat kan worden aan de hand van waarnemingen die wél op elk weerstation
uitgevoerd worden.

Voor deze studie hebben we temperatuur-, wind-, straling- en vochtwaarnemin-
gen van overdag van een aantal maanden gebruikt om de uitwisseling van warmte
en vocht te schatten. We hebben de geschatte uitkomsten met eddycovariantie-
metingen vergeleken voor twee verschillende gewassen en voor twee verschillende
regio’s. De hier gebruikte waarnemingen in Nederland en zuid-Frankrijk waren ver-
zameld boven gras, en de gebruikte waarnemingen in west-Duitsland waren boven
graan verzameld.

Vooral het schatten van vochttransport bleek lastig. De sleutelvariabele daarbij
was de weerstand voor het transport uit de bladeren, transpiratie. Door het schema
van de Rooy and Holtslag (1999) aan te passen, konden we het vocht- en warm-
tetransport boven gras en graan in Nederland en Duitsland goed nabootsen. De
schattingen voor zuid-Frankrijk verschilden echter van de waarnemingen. Dit komt
vermoedelijk door de aanwezigheid van grote droge luchtbellen zoals hierboven be-
schreven.

De mate van atmosferische turbulentie is belangrijk voor het gebruik van
bijvoorbeeld telescopen, radars, en zendmasten, omdat de hiervoor gebruikte
elektromagnetische stralen verstrooid worden door turbulente luchtbewegingen.
Hoe meer turbulentie, hoe meer problemen met deze apparatuur. We hebben
een bestaande methode toegepast om deze zogenaamde optische turbulentie te
kwantificeren aan de hand van het geschatte vocht- en warmtetransport dat volgt
uit bovengenoemde methode. Daarmee laten we zien dat de mate van atmos-
ferische turbulentie af te leiden is uit waarnemingen van een eenvoudig weerstation.

Voor bovenstaande studies hebben we eddycovariantiemetingen gebruikt, waar-
uit we transport van warmte, vocht en CO2 kunnen afleiden. Het vochttransport dat
gemeten wordt, wordt veroorzaakt door verdamping van water uit de bodem, en
door het uitademen van water door planten. Voor sommige onderzoeken is enkel
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bodemverdamping van belang, voor andere juist alleen de transpiratie van het ge-
was. Betreffende CO2-transport, moet een onderscheid gemaakt worden tussen uit-
geademd CO2 door bodemorganismen en plantenwortels, en ingeademd CO2 door
bovengrondse vegetatie.

We hebben een bestaande theorie getest, die gebruikt wordt om CO2- en vocht-
transport dat gemeten is met een eddycovariantiesysteem op te splitsen in bodem-
verdamping, bodemrespiratie, transpiratie en assimilatie. We hebben ontdekt dat
bij gebruik van deze methode, het heel belangrijk is wat de watergebruiksefficiën-
tie van het betreffende gewas is. Dat wil zeggen, hoeveel koolstof er kan worden
opgenomen bij een bepaald watergebruik van de plant.

De splitsingsmethode van Scanlon and Kustas (2010) kwam vaak niet tot een
oplossing voor de waarnemingen verkregen boven groeiend graan in Duitsland. We
hebben ons verdiept in de berekening van de watergebruiksefficiëntie van het gewas
en in de uitwisseling van CO2 en H2O op bladniveau. We hebben vervolgens de
berekening aangepast, waardoor de methode vaker leidt tot een oplossing voor onze
metingen.

Bovendien hebben we ontdekt dat het veel uitmaakt voor de fractie transpiratie
van het gemeten vochttransport, voor welke hoogte de watergebruiksefficiëntie
berekend wordt. Een vervolgstap zou zijn om de verbeterde methode te valideren
met verdampings- en transpiratiemetingen. Deze zijn op veldschaal niet beschik-
baar, maar op plantschaal kan de transpiratie bijvoorbeeld afgeleid worden uit
sapstroommetingen, en kan bodemverdamping gemeten worden met een zoge-
noemde kamermeting tussen de planten.

In dit proefschrift presenteren we de validatie van vier theorieën. Voor een aantal
methodes presenteren we verbeteringen. Ons onderzoek is relevant voor vele vak-
gebieden, variërend van astronomie tot hydrologie. Elementen van dit onderzoek
kunnen gebruikt worden om weer-, klimaat-, gewasgroei-, koolstof-, en hydrologi-
sche modellen te verbeteren, om zo te werken aan wereldproblemen als het voed-
seltekort en de opwarming van de aarde.
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