

Content

- Study Area
- Problem description and research goals
- Current flood damage potential and risk
 - Method and results
- Future drivers of flood risk in the Rhine Basin
 - · Methods and results
- Evaluation of current adaptation strategies
 - Flood Action Plan of the International Commission for the protection of the Rhine (ICPR)

Problem description

- Rhine is a very important traffic route and economically important
- ~10 million people live in areas at risk from extreme flooding (ICPR)
- Flood events in 1993 and 1995 caused considerable damage / evacuation
- Increase in flood risk is expected
 - Socio-economic development / Global warming
 - → Requires better understanding of potential flood risk developments
 - → Need to evaluate effectiveness of adaptation strategies

IVM Institute for Environmental Studies

Research Goals

- Develop a flood risk model for the entire Rhine channel
 - · Estimate potential flood damage
 - Estimate flood risk
 - > Probability x damage
- Estimate the developments in future flood risk
 - What is the main driving factor
- Assess different adaptation strategies (Flood Action Plan, ICPR)

5

Current flood risk - Method Land Use Map Depth-damage Functions Damage grid 2 Mi 1 Meter 1,5 Meter INM Institute for Environmental Studies 6

Current flood risk - Method

- Land Use
 - CORINE
 - Switzerland 1990
 - Population density
- Inundation
 - Rhine Atlas (ICPR, 2001)
 - NL: Provincial "Risikokaart"

IVM Institute 101
Environmental Studies IVM Institute for

Current flood risk - Method

- Damage Functions (Klijn et al., 2007)
 - High uncertainty of DF in terms of absolute values
 - Relative changes are of interest
 - > Results more robust
 - > Factor 1.3 (Bubeck et al. (in prep.) / De Moel and Aerts, 2009)
- Return periods
 - ICPR
 - Report No. 153d (Hval)

Current probabilities

	Return periods
Alpine	1/200
Upper Rhine(st)	1/1000
Upper Rhine (d)	1/200
Middle Rhine	1/200
Lower Rhine	1/200
Lower Rhine	1/500
Rhine delta	1/1250

IVM Institute for Environmental Studies

Mana sang sakar saka		
<u>Country</u>	Risk (Mill. Euro / year)	
Switzerland	1	
France	9	
Netherlands	99	
Germany	810	

Content

- Study Area
- Problem description and research goals
- Current flood damage potential and risk
 - Method and results
- Future drivers of flood risk in the Rhine Basin
 - · Methods and results
- Evaluation of current adaptation strategies
 - Flood Action Plan of the International Commission for the protection of the Rhine (ICPR)

13

Development of Future Flood Risk

"It is difficult to make predictions, especially about the future"

Development of Future Flood Risk – Method

Assumption: No flood control measures

	RACMO	Wp
Region	p incr.	p incr.
Alpine A	1.4	3.1
Upper Rhine B	1.5	3.9
Upper Rhine C	1.3	2.6
Middle Rhine D	1.3	2.5
Lower Rhine E	1.5	2.5
Lower Rhine F	1.5	3.1
Delta G	1.9	2.9

- Taken from Te Linde et al. (2010)
- Long time series (weather generator)
- 'low' and 'high' scenario

IVM Institute for Environmental Studies

17

Development of future flood risk - Results

2000 - 2030: 30 Mill. € = 1 Mill. € / year 1990 - 2000: 19,2 Mill. € = 1,92 Mill. € / year

IVM Institute for Environmental Studies

18

Content

- Study Area
- Problem description and research goals
- Current flood damage potential and risk
 - Method and results
- Future drivers of flood risk in the Rhine Basin
 - Methods and results
- Evaluation of current adaptation strategies
 - Flood Action Plan of the International Commission for the protection of the Rhine (ICPR)

19

Evaluation Flood Action Plan (ICPR)

Flood Action Plan

- Adopted 22nd January 1998 by the ICPR

Source: ICPR

Goals

- Reduce flood risk by 10% in 2005 and 25% in 2025
- Reduce peak water level
- Improve flood awareness
- Improve early warning system

Conclusions and recommendations

- 2000-2030: 53-230% increase in basin-wide flood risk
 - About three quarters can be attributed to climate change
- Probabilities of extremes are very uncertain, impact of climate change even more
 - → damage reduction seems robust adaptation measure

Method needs improvement:

- Inundation simulation
- Estimates of safety levels
- Damage estimates

23

Thank you!

For more questions: philip.bubeck@ivm.vu.nl

For more information: http://www.ivm.vu.nl http://www.adaptation.nl

