

Trends in disaster losses?

Hazard	Location	Period	Normalization	Normalized loss	Reference
Bushfire	Australia	1925-2009	Dwellings	No trend	Crompton et al. submitted
Earthquake	USA	1900-2005	Wealth, population	No trend	Vranes and Pielke 2009
Flood	USA	1926-2000	Wealth, population	No trend	Downton et al. 2005
Flood	China	1950-2001	GDP	Increase since 1987	Fengqing et al. 2005
Flood	Europe	1970-2006	Wealth, population	No trend	Barredo 2009
Flood	Korea	1971-2005	Population	Increase since 1971	Chang et al. 2009
Flood and landslide	Switzerland	1972-2007	None	No trend	Hilker et al. 2009
Hail	USA	1951-2006	Property, insurance market values	Increase since 1992	Changnon 2009a
Windstorm	USA	1952-2006	Property, insurance market values	Increase since 1952	Changnon 2009b
Windstorm	Europe	1970-2008	Wealth, population	No trend	Barredo 2010
Thunderstorm	USA	1949-1998	Insurance coverage, population	Increase since 1974	Changnon 2001
Tornado	USA	1890-1999	Wealth	No trend	Brooks and Doswell 2001
Tornado	USA	1900-2000	None	No trend	Boruff et al. 2003
Tropical storm	Latin America	1944-1999	Wealth, population	No trend	Pielke et al. 2003
Tropical storm	India	1977-1998	Income, population	No trend	Raghavan and Rajesh 2003
Tropical storm	USA	1900-2005	Wealth, population	No trend since 1900	Pielke et al. 2008
Tropical storm	USA	1950-2005	GDP, population	Increase since 1970; No trend since 1950	Schmidt et al. 2009
Tropical storm	China	1983-2006	GDP	No trend	Zhang et al. 2009
Tropical storm	USA	1900-2008	GDP	Increase since 1900	Nordhaus 2010
Weather (flood, thunderstorms, hail, bushfires)	Australia	1967-2006	Dwellings, dwelling values	No trend	Crompton and McAneney 2008
Weather (hurricanes, floods)	USA	1951-1997	Wealth, population	No trend	Choi and Fisher 2003
Weather (hail, storm, flood, wildfire)	World	1950-2005	GDP, population	Increase since 1970; No trend since 1950	Miller et al. 2008

Source: Bouwer in press, BAMS

Case 1: Loss potential (river flood)

- · Flood loss modelling analysis
 - event probabilities
 - wealth increases (vulnerability)
 - land-use change (exposure)
- · Climate scenarios: G, W+
- · Socio-economic scenarios: RC, GE
- · Land-use model
- · Adaptation through dike improvement

Case 2: casualty potential (coast and river) Model of mortality rates (TU Delft), based on hurricane Katrina data Projected population increase Projected land-use change Climate change: Increased surge and river flood probability Sea-level rise Source: Maaskant et al. 2009, ESP

Limitations of socioeconomic scenarios

- Exposure
 - GDP as proxy for asset values
 - Population, national level
 - Land-use from simulation models
- · Vulnerability and Adaptation
 - Very little quantification

retis Universitalit is

Conclusions

- Future climate change will increase future disaster risk (especially flood risk)
- At least equal/larger effect from increasing population and asset values for large scale hazards
- Differences between types of weather hazards
- For small scale hazards: uncertain
- · Amplification of driving factors
- Need to better incorporate effects exposure and vulnerability change, and adaptation in impact studies.

evije Universiteit ansstandary 1880

Thank you for your attention!

Key references to this work:

- · Bouwer et al. 2007, Science http://dx.doi.org/10.1126/science.1149628
- · Bouwer in press, BAMS http://dx.doi.org/10.1175/2010BAMS3092.1
- · Maaskant et al. 2009, ESP http://dx.doi.org/10.1016/j.envsci.2008.11.004
- Bouwer et al. 2010, GEC http://dx.doi.org/10.1016/j.gloenvcha.2010.04.002

17