

Health Impact Study: Objectives

- Assess potential adverse health impacts of climate change in Cascais
 - Heatstress
 - Air pollution impacts
 - Vector-borne diseases

Study Area: Cascais Municipality

About Cascais

General Facts

- Coastal municipality
- Good infra-structures
- Population density
 - □ 1919 Hab/km²
- □ Population ≈ 190000
 - 17% < 14 years</p>
 - □ 17% > 65 years
- □ Tourism key economy
- Mild climate
- □ Private airport & marina

Health Indicators

- Life expectancy at birth
 - 79 years
- Main mortality causes
 - Cardiovascular (44%)
 - Cancer (24%)
 - Respiratory (9%)
- □ Birth rate = 13.1 ‰
- □ Death rate = 9.5 ‰
- □ Private health care $\approx 50\%$

Study Methods

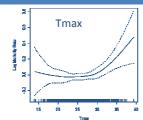
1- Identification of climate-sensitive health outcomes

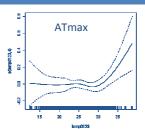
- A International & national expert judgment
- B Current population health status in region
- C Suitable data accessibility

2 - Assessment of climate change impact for each health outcome

- A Current/historical health burden
- B Climate-health relationship
- C Climate changes anticipate
 Resulting impacts
- 3 Suggestion of adaptation measures &4 Identification of knowledge gaps

HEATSTRESS

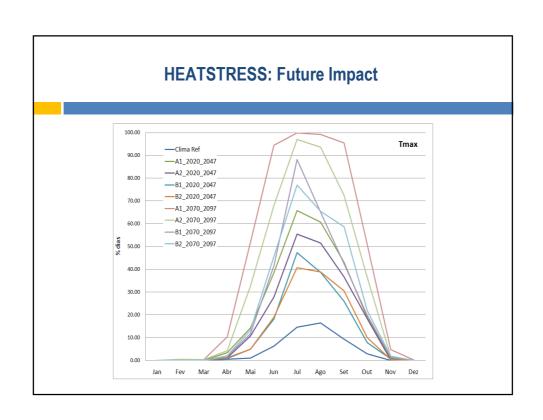

Heatwaves frequently recorded


Funeral homes in region gave the 1st alert of the usual number of extra deaths in the 1981 national heatwave

- Following 2003 heatwave, municipality set-up a local heathwave response action plan

	Portugal		Lisbon District	
	Excess			Excess
Heatwave	O/E	deaths (N°)	O/E	deaths (N°)
1981	1.9	1906	2.1	460
1991	1.4	1001	1.6	311
2003	1.43	1953	1.41	396

HEATSTRESS: Local mortality-climate dose-response


Apparent temperature °C (AT) = −2.653 + (0.994 x temperature °C) + 0.0153 x (dew point temperature °C)²

Index of an individual's perceived air temperature given the humidity.

	Threshold	IC 95%	% Increase per 1°C	IC 95%
T max	30.04	28.6, 31.5	4.74	2.28, 7.25
AT max	30.2	28.7, 31.6	5.35	1.98, 8.84

GEE (Generalized Estimating Equations) Models
Abril - September 2002-2007

	r European cities)
		Threshold (°C) (95% CrI/CI)
Cascais	Region	
Cascais	North-continental	23.3 (22.5 to 24.0)
	Mediterranean	29.4 ^b (25.7 to 32.4)
AT max = 30.3oC	City	
	Athens	32.7 (32.1 to 33.3)
	Barcelona	22.4° (20.7 to 24.2)
	Budapest	22.8 (21.9 to 23.7)
	Dublin	23.9 (20.7 to 27.1)
	Helsinki	23.6 (21.7 to 25.5)
	Ljubljana	21.5 (15.0 to 28.0)
	London	23.9 (22.6 to 25.1)
	Milan	31.8 (30.8 to 32.8)
	Paris	24.1 (23.4 to 24.8)
	Praha	22.0 (20.4 to 23.6)
	Rome	30.3 (29.8 to 30.8)
	Stockholm	21.7 (18.2 to 25.3)
	Turin	27.0 (25.2 to 28.9)
	Valencia	28.2 (23.7 to 32.7)
et al. 2008	Zurich	21.8 (16.5 to 27.0)

VECTOR-BORNE DISEASES

Vector-borne diseases significant public health problem in the region in the past

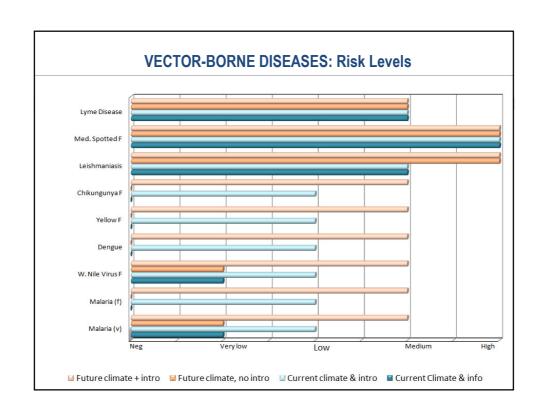
- Many vector & pest control programs
 - Often co-funded between health & tourism sectors
 - 1st vector control program in 1938/9 to control flies & mosquitoes

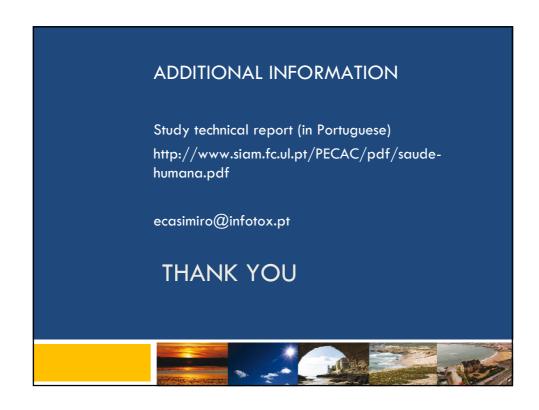
VECTOR-BORNE DISEASES: Concerns

	Reason for concern	
Mosquitos		
Malaria	• Endemic in past	
	Imported cases reported every year	
	Vector (Anopheles atroparvus) abundant in region (not infected)	
West Nile fever	Various vectors abundant in region (not infected)	
	• Region is a stop-over for some migratory birds (risk of introduction of	
	new vectors & virus)	
Dengue/Yellow Fever/	• Yellow fever endemic in past – currently no cases.	
Chikungunya	No information as to imported cases	
	No information on vectors	
	• Region has an airport & a marina (risk of introduction)	
Sandflies		
Leishmaniasis	Currently endemic in region	
Ticks		
Lyme Disease	Currently have reports of local sporadic cases	
Med. Tick-borne fever	Currently endemic in region	
	•Most important VBD in summer !!!	

VECTOR-BORNE DISEASES: Screening method

- □ Data very limited modeling not possible for all diseases of concern.
- □ Used screen method developed to assess the national impacts of VBDs in Portugal (Casimiro et al., Env. Health Perspectives 2006)
- Qualitative assessment based on:
 - Vector abundance
 - Pathogen prevalence
 - □ + how temperature can affect vector & pathogen survival
- Allows all VBD included in assessment to be evaluated equally


Vector	Pathogen			
	None present	Imported human	Low prevalence	High prevalence
		cases only	in vectors/hosts	in vector/hosts
None present	Negligible risk	Negligible risk	Negligible risk	Negligible risk
Focal distribution	Negligible risk	Very low risk	Low risk	Low risk
Regional distribution	Negligible risk	Very low risk	Low risk	Medium risk
Widespread distribution	Negligible risk	Very low risk	Medium risk	High risk


VECTOR-BORNE DISEASES: Screening method - Scenarios

- Problem many knowledge gaps regarding current vector & pathogen presence, distribution & abundance
- Various scenarios used to compensate this knowledge gap

Climate Scenario	Assuming current knowledge of	Assuming the introduction of	
	vector & pathogen prevalence	focal population of pathogen-	
	in Cascais	infected vectors into Cascais	
Current climate	Scenario 1	Scenario 2	
Climate change	Scenario 3	Scenario 4	

- Combine
 - All previous steps
 - Use risk criteria
 - Use all four scenarios
 - Get result = VBD transmission risk level

