Vulnerability to salinization of thin fresh water lenses for different climatic and hydraulic conditions S.Eeman, S.E.A.T.M. van der Zee, A. Leijnse Wageningen UR, Sub-department of Soil Physics, Ecohydrology and Groundwater management WAGENINGEN UNIVERSITEIT WAGENINGEN UNIVERSITEIT WAGENINGEN UNIVERSITEIT

Steady state lens analysis

- Size of lens and transition zone under certain conditions
- Dimension analysis to group parameters together logically
- Sensitivity test on the resulting Dimensionless Groups

Seasonal variation and climate change

- Steady state not to be expected; quantification of lens response to weather/climate change relevant
- We are finally interested in damage occurring to crops or natural vegetation
- This is work-in-progress!!
 - SWAP (1D) to include crop-parameters
 - Relate back to lens using SUTRA (to be done)

Link to sensitivity analysis

- Inter-seasonal variations
- Sea level rise
- Climate change
 - Rayleigh number and Mass flux ratio may both change
 - Where/when should "critical" situations be expected (not limited to Dutch situations)

Analysis of simulation outcomes

- Response variable: Crop damage
 - Defined as a decrease in plant transpiration compared to the potential transpiration
 - Caused by oxygen stress, drought stress and salinity
- Regression and ANOVA used to
 - Define the most important variables
 - Differentiate between wet and dry conditions
- Attention: we do NOT irrigate in these simulations.
 - Saline water only comes from below

Some preliminary conclusions

- Sensitivity to oxygen and salinity stress seems to increase strongly when the climate gets warmer... to be quantified
- The relation between soil type and crop damage appears to be strong for all kinds of damage. This needs to be elaborated

Dimensionless groups steady state

Position

- Raleigh nr. $\frac{\kappa_{zz}\Delta\rho_{\xi}}{\mu P}$
- Recharge ratio $\frac{\rho_s S}{\rho_0 P}$

Others

- Anisotropy factor $\frac{\kappa_{zz}}{\kappa_{xx}}$
- Geometrical ratio $-\frac{h}{L}$
- Ditch resistance

Thickness

- Transverse Dispersivity $\frac{\alpha_{_{t}}}{L}$
- Dispersivity difference $\frac{a_i b}{L}$

See Eeman et al., subm.

Slide 18

deze slide is alleen om voor evt., vragen achter de hand te hebben. Eeman; 27/09/2010