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Global mean sea level rise observed by satellite altimeter
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Observed global mean sea level rise
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Observed and simulated thermal expansion
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Observed changes in glaciers and ice caps (not ice sheets)

Length Mass
1500 - - 1 ! I {

1000 -

500-

500

Eurcpe

length wvariation relative to 19250 [m]
cumulative total mass balance [mm 5LE]

== Atlantic I 8 5
— flps — Andes
= i — A O
a000] — A&ﬁl:lemlspherel —— Asian High Mts. L 5
Ea N',;,Ia,\ i — NW USA+SW-Can.
ke Alaska+Coast Mis, | | L

P i
1500 o i

1700 1750 1800 1850 1900 1950 2000 1960 1870 1680 1650 2000
year
1700 il 1960

Observed recent ice-sheet thickness change

Pritchard et al. (2009)
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Flow speed has increased for some Greenland and Antarctic outlet glaciers, which
drain ice from the interior of the ice sheets, often following thinning, reduction or
loss of ice shelves or loss of floating glacier tongues.




Budget of global-mean sea-level rise

Domingues et al.
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IPCC AR4 (CMIP3) projections of thermal expansion
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AOGCMSs have large ranges of transient climate response, ocean
heat uptake efficiency and expansion efficiency of heat.

Canwe ¢

onstrain these observationally?




Global G&IC mass balance (SLE) (mm yr")

Glaciers and ice caps
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Marginal regions of Greenland and Antarctica should be included.

Sea level rise (m) relative to 1990
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Regional atmosphere models for ice sheet SMB

Box et al. (2

Can recent changes be simulated well? How does regional climate change relate
to global climate change?

Greenland dynamic change is mainly not caused
by surface meltwater lubricating the bed

Zwally

The effect is geographically restricted and rather small on average.




Ice-sheet processes
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To make projections, we need high-resolution models of ocean circulation and
melting/freezing adjacent to and under the ice, coupled to regional and global
ocean and atmospheric circulation, responding to external climate forcing.

Ice stream accelerates and thins and grounding line retreats
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To make projections of this, we need ice dynamic models with high resolution
at the grounding line and in ice streams, including relevant stresses.




IPCC AR4 SPM comments on projecting ice-sheet dynamics

Models used to date do not include the full effects of changes in ice sheet flow,
because a basis in published literature is lacking. Ice flow from Greenland and
Antarctica could increase or decrease in the future.

Understanding of these effects is too limited to assess their likelihood or to
provide a best estimate or an upper bound for sea level rise.

Dynamical processes related to ice flow not included in current models but
suggested by recent observations could increase the vulnerability of the ice
sheets to warming, increasing future sea level rise. Understanding of these
processes is limited and there is no consensus on their magnitude.

AR4 projections of 21st century global-mean sea level rise
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Time dependence is needed. Uncertainty ranges should be better characterised.




Geographical variation of trends 1993-2003

Sea level change from
TOPEX/Poseidon data
(Cazenave and Nerem,
2004)
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Projected sea level change is not globally uniform
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Sea level change due to ocean density and circulation change during 21st
century (2080-2099 relative to 1980-1999) under A1B, average of 16 AOGCMs,
shown relative to global mean. Spatial variation is about 25% of global mean.




Large uncertainty in projections of regional sea level change

Spread in projections has not been
reduced since the TAR.
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Geoid and solid Earth response should be included
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Sea-level change due to Greenland mass loss of 1 mm yr-', Milne et al. (2009)

Summary

Thermal expansion, glaciers and ice caps and ice sheets have all contributed
substantially to sea level in recent decades.

Observed sea level rise cannot be accounted for with full confidence. Decadal
variability and observational uncertainty are substantial.

Sea level rise in the 21st century will very likely be larger than in the 20th. For
scenario A1B, the IPCC AR4 projection is 0.21-0.48 m.

Future rapid changes in ice sheets cannot yet be projected.

We need to constrain and reduce the large systematic uncertainty in projections
of climate change, ocean heat uptake and ocean interior transport processes.

Spatial variation is substantial compared with the global average. Geoid and
solid Earth response should also be included regional SL projections.

Sea level rise due to thermal expansion and ice sheet changes would continue
for many centuries after stabilisation of climate. The Greenland ice sheet would
be eliminated for a global average warming exceeding 1.9-4.6°C. Partial loss
could become irreversible within 100s years.

Provide time-dependent projections with well-defined uncertainties. Planners
should keep options open.
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Sea-level contribution from ice sheets
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Mass losses from the ice
sheets of Greenland
(0.21£0.07 mm yr-') and
Antarctica (0.21+0.35 mm yr-')
have very likely contributed to
sea level rise over 1993 to
2003 (3.110.7 mm yr).
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Both ice sheets are losing mass at an increasing rate

—o0— Greenland -30+11 Gt/yr2  — [ 7o, Antarctica -26+14 Gt/yr?
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Velicogna, from GRACE

A quadratic function of time describes the observations well, but to make
projections we need physically based models.

A semi-empirical approach to predicting sea-level rise
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Why are semi-empirical > process-based projections?
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The impact of sea-level change comes from extreme events
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First approximation is to add a constant SL change to the existing return
period curve. Better is to use regional climate and storm surge model.
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Threshold for negative SMB of the Greenland ice sheet
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Greenland ice sheet evolution under 4xCO,
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Simulated using the HadCM3 AOGCM coupled to the ice sheet model of
Huybrechts and De Wolde (Ridley et al., 2005)




Irreversible loss of the Greenland ice sheet
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Greenland dynamic change is mainly not caused
by surface meltwater lubricating the bed

Zwally

» Weak seasonal reaction to meltwater (Rignot and Kanagaratnam, 2006; Joughin
et al., 2008).

» Annual velocity negatively correlated with melt (van der Wal et al., 2008).

Thinning of Pine Island Glacier, West Antarctica
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Blevation anomaly (i)

Jakobshavn Isbrae, West Greenland
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