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ABSTRACT: We assessed a scenario designed to mimic 
the imputation of full genome sequence data in White layer 
chickens, genotyped at medium (60K) density. Factors 
affecting accuracy were the size of the reference 
population, the level of the relationship between the 
reference and test populations and minor allele frequency of 
the SNP being imputed. Genotype imputation based on 22 
or 62 carefully selected reference animals resulted in 
accuracies between 0.78 and 0.87. So, a very small 
reference population already provided satisfactory results. 
These results suggest that full genome SNP imputation is 
possible in layer chicken when a suitable pool of key 
ancestors is sequenced. SNPs with low MAF were more 
difficult to impute. Accuracies did not reduce when test 
populations were 1, 2, or 3 generations away from the 
reference animals. 
Key words: layer chicken; imputation accuracy; whole 
genome sequence; key ancestors. 

 
INTRODUCTION 

Using dense SNP panels, genomic selection (GS) 
and genome-wide association studies (GWAS) have 
become common in animal and plant breeding programs. 
Although the cost of sequencing is decreasing, it is still 
costly to sequence a large number of animals. However, it 
may be possible to impute very dense SNP panel data or 
even whole genome sequence data from lower density 
panels by genotyping key ancestors at high density 
(Goddard and Hayes (2009)). Important factors affecting 
the accuracy of imputation are the size of the reference 
population, the genetic relationship between the animals in 
the reference and test populations, and minor allele 
frequency (MAF) of the SNP to be imputed (Huang et al. 
(2012); Ma et al. (2013)). Algorithms for imputation use 
either linkage disequilibrium (LD) information, such as 
Beagle (Browning and Browning (2009)) or pedigree 
information such as AlphaImpute (Hickey et al. (2012b)). 
With pedigree-free imputation, the size of the reference 
population and the relationship between the reference and 
test populations are the most important factors affecting 
accuracy. The objectives of this study were to investigate 
the prospects of imputing from 60K genotypes to whole 
genome sequence (by excluding a small number of 60K 
SNPs based on MAF) using a small reference population of 
sequenced layer chicken made up of key ancestors. We 
evaluated the impact on accuracy from 1) the size of the 
reference population, 2) the level of relationship between 
the reference and test populations, and 3) the MAF of the 
SNP being imputed. 

 

MATERIALS AND METHODS 
Data. Animals (n = 2,140) of a White commercial 

layer line were genotyped with the chicken 60K IIIumina 
Infinium iSelect Beadchip (Groenen et al. (2011)). Animals 
were from 4 generations of a reference population that 
preceded 3 generations of selection candidates (G0, G1, and 
G2) which were selected by GBLUP. 

Quality control. Data from the 8,623 SNPs on 
chromosome 1 was used. SNPs were removed if they had a 
MAF < 0.01, or a call rate < 0.9. Animals were removed 
with genotype call rate < 0.9. After filtering, 4,485 SNPs 
and 2,140 animals remained. Ancestors (n = 62) in this 
dataset were the sires and maternal grand sires (MGS) of 
selection candidates in G0. Of these 62 ancestors, 22 were 
selected as candidates for whole genome sequencing. The 
22 key ancestors capture the greatest proportion of genetic 
variation in the target population (Druet et al. (2013)). 

Reference and test populations. Imputation 
accuracy was assessed when using the 62 ancestors (Ref62), 
or the subset of 22 (Ref22) as the reference population. The 
three test populations consisted of the animals in G0 (n = 
367), G1 (n = 395), and G2 (n = 148), respectively. 
Accuracy of imputation was obtained for each test 
population (generation) separately to determine the impact 
of distance between reference and test populations on 
imputation accuracy. 

Imputation to whole genome sequence. We 
attempted to mimic imputation of whole genome sequence 
by setting a small proportion of the 60K panel SNPs to 
missing. The ability to impute low frequency SNPs is an 
important question when imputing to whole genome 
sequence, we therefore investigated the relationship 
between MAF and the imputation accuracy. Hence, MAF 
were calculated in the reference populations (Ref22 and 
Ref62) to group SNPs into 6 MAF classes: [0.008-0.05], 
[0.05-0.1], [0.1-0.2], [0.2-0.3], [0.3-0.4], [0.4-0.5] (Table 
1). In separate analyses, approximately 200 SNPs (4% from 
one class) were selected from one MAF class of which 
genotypes were masked for all animals in the test 
populations and imputed from the genotypes in the 
reference populations. The accuracies obtained are 
predictive for imputation accuracy from full genome 
sequence of key ancestors. 

Imputation method and accuracy. Masked SNP 
genotypes were imputed using Beagle version 3.3.2 
(Browning and Browning (2009)). Accuracy of imputation 
was low with the default Beagle parameters, but 
optimization of the parameters lead to using 50 iterations 
instead of the default of 10. Changes to the number of 
samples (number of haplotype pairs to sample for each 
individual during each iteration of the phasing algorithm), 
number of imputations (for averaging the posterior 



probabilities over multiple imputations), and seed (random 
number generator in each run of imputation) were tested but 
found to have little impact on imputation accuracy. 
Therefore, default settings were used for these parameters. 
Accuracy of imputation was computed as the correlation 
between the true and imputed genotypes for each masked 
SNP (genotypes coded as 0, 1 and 2 for genotypes AA, AB, 
and BB, respectively). Boxplots of individual SNP 
imputation accuracies, average accuracies for the different 
classes of MAFs and for the 3 test populations were 
interpreted for each of the 2 different reference populations. 

 
RESULTS 

The average correlation between true and imputed 
genotypes for masked SNPs ranged from 0.51 (low MAF) 
to 0.90 (high MAF) with the small reference (Ref22), and 
from 0.71 to 0.94 with the larger reference (Ref62) (Table 2, 
Figure 1). Average correlations did not decrease with more 
distant test generations. The average genomic relationships 
between the Ref22 and test generations were 0.038, 0.036, 
and 0.035 for G0, G1, and G2, respectively. From G0 to 
G1, the average imputation accuracies across all MAFs 
reduced from 0.76 to 0.75 for Ref22 and from 0.89 to 0.84 
for Ref62. From G1 to G2, the average accuracies increased 
slightly by 0.08 for Ref22, and by 0.04 for Ref62. As 
expected, the accuracy of imputation increased for the 
larger reference population, although the increase was 
small. Accuracies were higher for Ref62 by 0.12, 0.09, and 
0.04 for G0, G1, and G2, respectively. 

  
DISCUSSION 

Genotype imputation based on a small number of 
carefully selected reference animals (the 22 key ancestors) 
resulted in a good accuracy. Accuracy increased when 
increasing the size of reference population, but only from 
an average correlation of 0.78 to 0.87 in case the reference 
population was nearly tripled from 22 to 62 (Table 2). The 
pedigree-free imputation, as implemented in Beagle, 
yielded accurate imputation of higher density genotypes 
when the size of the reference population was small. 
However, accuracies with the default parameters were 
unacceptably low (results not shown). Two essential factors 
to achieve high accuracy were increase in the number of 
iterations from the default and to divide the test population 
into different generations. Without dividing the test 
population, number of iterations should have been much 
higher. A combined test population with all animals from 
G0, G1, and G2 and all 4 generations of the reference 
population was analyzed with 100 iterations with Ref62 and 
accuracies were found to be 0.23 and 0.12 lower compared 

to the optimized strategy for MAF classes 1 and 2, 
respectively. 

Size of reference population. As expected, the 
accuracy of imputation increased as the size of the 
reference population increased. The accuracy of imputation 
increased between 3.5 and 28% after increasing the size of 
the reference population. A larger reference population 
decreases the probability to miss a haplotype in the 
reference population (Hoze et al. (2013)), increasing the 
chance that enough copies of an allele are present to define 
the correct haplotypes. The small reference population, 
Ref22, was remarkably successful to impute from 60k to, 
potentially, full sequence information. The adjustments 
made to the imputation parameters and the splitting up of 
the test population were essential to obtain these accuracies. 
Since Beagle has been extensively applied to impute 
missing genotypes in human and animal genetics, an 
important question is whether optimizing the parameters of 
this program can improve the imputation accuracy in other 
species, especially when the reference population is very 
small, in absolute numbers and/or relative to the size of the 
test population. Another question is how to optimize 
splitting up the test populations. The optimal split, to 
maximize the accuracy, may depend on the number of 

Table 1. Total number of SNPs and number of SNPs 
masked for different classes of MAFs. 
Class MAF Ref22 (masked) Ref62 (masked) 

1 0.008-0.05 376 (188) 413 (207) 
2 0.05-0.1 396 (198) 424 (212) 
3 0.1-0.2 887 (222) 885 (222) 
4 0.2-0.3 1081 (217) 990 (198) 
5 0.3-0.4 835 (209) 850 (213) 
6 0.4-0.5 645 (215) 827 (207) 

 

Table 2. Average1 correlation between the true and 
imputed genotypes on chromosome 1 for different 
classes of MAF and different reference sizes. 

Class MAF Correlation Ref22 Correlation Ref62 
1 0.008-0.05 0.51 0.71 
2 0.05-0.1 0.72 0.82 
3 0.1-0.2 0.81 0.89 
4 0.2-0.3 0.87 0.93 
5 0.3-0.4 0.90 0.93 
6 0.4-0.5 0.89 0.94 
1Average across different test populations (G0, G1 and G2)  

 
Figure 1. Correlation between the true and imputed 
genotypes for different MAF classes and different 
reference sizes for G0, G1 and G2 test populations. 
 



iterations as well as the population structure. Further 
investigations are needed to answer these questions. 

Relationship between the reference and test 
population. The relationship between the reference and test 
populations has been shown to affect the imputation 
accuracy in different species; sheep (Hayes et al. (2012)), 
maize (Hickey et al. (2012a)) and dairy cattle (Khatkar et 
al. (2012); Ma et al. (2013)). All of these studies reported 
that the accuracy of imputation was greatest for individuals 
with the highest average genetic relationship to the 
reference population which was attributed to sharing more 
and longer haplotypes between the animals in the reference 
and test population with higher relationships. As the 
genomic relationship between the reference population and 
test population decreased from G0 to G1 (from 0.038 to 
0.036), the average imputation accuracies slightly 
decreased. However, from G1 to G2, the average accuracies 
slightly increased. Persistence of LD across generations was 
high with a correlation of 0.93 between the LD in G0 and 
G2. Animals in different generations still have common 
ancestors and therefore share haplotypes. Especially at short 
distances. For pedigree-free imputation algorithms such as 
Beagle, the LD pattern in the data is the only information 
explicitly available. With high LD between genotyped 
SNPs, the algorithm can identify the haplotypes correctly, 
which is easier with 60k data in the test population, 
compared to 1K and 3K in previously reported studies 
(Hayes et al. (2012); Vereijken et al. (2010)). 
 Our reason for imputing to higher density is to 
improve accuracy of genomic prediction. High persistency 
of imputation accuracy in later generations is required for 
accurate prediction of genomic breeding values in later 
generations. Wolc et al. (2011) did not use imputation, but 
they did investigate the accuracy of genomic breeding 
values (GEBV) across 5 successive generations in layer 
chickens and found accuracies of GEBV to be persistent 
after the first generation, indicating that if imputation 
accuracy is persistent, prediction accuracy is also expected 
to be persistent. 

Minor Allele Frequency (MAF). Accuracies of 
imputation were lower when MAF of the masked SNPs 
were lower. SNPs with low MAF were more difficult to 
impute correctly and there was more variation (larger SD) 
in accuracy of imputation. However, this reduction of the 
imputation accuracy with smaller MAF was less 
pronounced when the reference size was larger. It was 
essential to assess the efficiency of imputed SNPs with low 
MAF separately, because SNPs with low frequencies are 
thought to play an important role in complex traits and may 
have larger effects than common SNPs (Manolio et al. 
(2009)). SNPs on the 60K chip data have higher MAF and 
lower LD compared to SNPs from sequence data, while 
sequence data may have more genotype errors. Hence, 
imputation accuracy of rare SNPs from sequence data may 
be lower, compared to rare SNPs on the 60K chip. 
Therefore one should be cautious with imputed genotypes 
of rare SNPs from sequence data. 

CONCLUSION 
A very small number of animals in the reference 

population can result in high accuracies of imputation when 
key ancestors are used as reference. Accuracy of imputation 
for rare SNPs is however not good with very small 
reference populations. Increasing the reference population 
does help for these rare SNPs. The decrease in the 
relationship between the reference and test populations did 
not reduce the accuracy, possibly due to the consistency in 
the level of LD across generations in layers. Optimizing 
Beagle algorithm parameters, and breaking up the test 
population has a significant effect on improving the 
imputation accuracy, especially when the ratio of reference 
to test population is small. 
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