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Foreword

D, R. Nielsen, Chairman Working Group on Spatial and Temporal
Variability of Field Soils, Internaticnal Society of Soil Science

J. Bouma, Secretary Working Group on Spatial and Temporal Variabil-
ity of Pield Soils, International Society of Secil Science

These proceedings refer to the first meeting of the Working Group
on Spatial and Temporal Variability on Field Soils on behalf of
Commissions I (Soil Physics) and V {Soil Genesis, Classification
and Cartography), of the International Society of Scil Science.
The meeting entitled "Workshop on Scil Spatial Variability", was
sponsorad by the Internaticnal Society of Soil Science, The Soil
Science Society of America and the U.S. Department ¢f Xgriculture.
The objectives of the Workshop were to explore and discuss alter-
native statistical concepts and procedures of (1) enhancing the
understanding and development of pedology, and (2) improving
technology of soll survey, soil science and hydrology applied to
present-dayv management of field soils. During the past decade,
several national and international symposia have fococuzed on the
collection and analysis of scil and related environmental data as
regards their spatial and temporal wvariations. Amongst these
symposia, we consider the intellectual framework of this Workshop
to be unique because it attempted to relate current efforts on
statistical and mathematical interpretation of wvariability to
contemporary soll classification programs with a viewpoint to
future research.

The Workshop consisted of invited papers and extended discussions
in four general areas. The resulting one-half day sessicns focused
on general statistical concepts of quantifying variability and
upon applications to hydrolegy, scil survey, and miscible displace-
ment and leaching. In each session two or three invited speakers
presented 30 - 45 minute lectures designed as reviews of conceptual
models, statistical approaches and experimental methods useful in
studies of spatial variation. Each speaker's presentation was
followed by an open discussion during which participants presented
comments based upon their own experiences or questions directed
towards the speaker or the audience, The ccontents of this hock

are the unabridged presentaticns of Workshop participants, Each
gave a full measure of his knowledge and experience to contribute
toward the obijectives cof the Workshop.

On behalf of all participants, we wish to express our gratitude for
the support of the three sponsoring organizations, and especially
the effort of David M. Kral and his staff of the Headoffice of the
Soil Science Society of America for providing the logistics



necessary for the Workshop, We alsoc wish to express, on behalf of
the participants, our sincere appreciation tc each of the invited
speakers - every cne of whom was articulate and erudite - for
focusing our attention con the underlying principles of the Workshop.

and, finally, the twe of us are especially mindful and thankful

for the participation of the more than 200 perscns who attended

and made the Workshop a successful event, We lock forward to them
and future readers of this bock to continue to develop our under-—
standing of soil variability and 1t application to scil management.

an




The role of geostatistice in the design and
analysis of field experiments with reference
to the effect of gscil properties on crop yield

Alex B, McBratney, CSIRO Division of Soils, Cunningham Laboratory,
3t. Lucia, Queensland 4067, Australia

"Soil isn't Important for crop yleld, it doesn't give a
significant effect,”

A statement such as this or some close version of it has been
heard by the author at various agronomic centers arcund the world.
We, as soll scientists, find these expressions frustrating., My
aim here is to discuss briefly why such statements are made and to
suggest how geostatistical methods can lead to improved methods of
field experimental design and analysis.

The Effects of Fisherian Design

There are two maln reasons for statements of the kind made
above, The first is Fisher's field experimental design and
analysis. Fisher's great agronomic achievement in the 'twenties
wag to find a technological solution te the problem of soil varia-
ticen in field experiments. Through randomisation and blocking he
removed, without estimating, the effect of soll and other uncon-
trolled environmmental variables, His approach was outstandingly
successful and the methodology has largely stood the test of time.
From this point of view, the statement above is an artifact of the
method, Probably also as a result of the success of the method,
the number of vniformity trials and studies of soil and crop yield
covariation diminished markedly after the 1920's (cf Vieira
et al.,, 1983). The second reason for the statement ig that soil
scientists, over a period of 60 years, have evidently not
explained with sufficient clarity to statisticians and agromomists
the importance of soil in crop growth and how it could be taken
into account.

Recent Developments in Field Experimental Design

Recently, there have been some new ideas on field experi-
mental design and analysis which at least try to account for the
gpatial wvariation of the crop (Greer et al., 1984; Wilkinscn
et al., 1983; Patterson and Hunter, 1984; and Williams and
Patterson, in press)}. The first two methods assume a smooth trend
plus independent errors model, which seems unrealistic. The
method of Patterson and Hunter assumes an isotropic expomential
semi-variogram and that of Williams and Patterson an isotropilc
linear semi-variogram, These latter two methods do not appear to
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be sufficiently general; my studies of uniformity trials, two of
which are deplcted in Fig. 1, show that the form of variation of
crop ylelds may be non-stationary or periodiec or anisotropic, or
some combination thereof. Clearly, a method 1s required which
allows the form of the semi-variogram to be estimated from the
experiment, such & method is outlined below.

The Role of Geostatistical Methods

Briefly, geostatistics has a *part to play in field experi-
mental design because of its ability to describe quantitatively
s0il and crop variation and covariaticn.and to perform block pre~
dictions and co-predictions. I see the use of geostatistics in
three, proceedingly more invelved, applications. ’

1. The use of soil property semi—variogrﬁms to design plot and
block size and shape. .

Assuming that there are a few soil properties controlling the
spatial yield variation of the crop and there is some proportional
relation between these variances, then the anisotropy of the semi-
variogram will suggest plot (and ¥lock) shape. The smaller plot
dimension should be in the direction of maximum variation and the
larger dimension perpendicular with the ratio of the sides equal
to the geometric anisctropy ratio. The size of the plots and
blocks will depend on the form of the variation and variances for
them can be calculated using integrals of the semi-variogram.
Qualitatively, if transitive behaviour is observed blocking will
not be required if plots with dimensions similar to the range can
be used, TIf the range is wvery large compared to the available
experimental region then blocking will proably be regquired. (It
appears that classical experimental designers assume a linear
semi-variogram!)

2, Co-gpatial soil and crop surveys

If one does not wish to assume the form of the relationship
betweeny the variances of soll and crop attributes then a co-~
spatisl soil and crop survey should be carried ocut. This is a
combination of a pgeostatistical soil survey and a uniformity
trial. For this to be fruitful, the size of yleld plets and soil
grids should be less than the range of spatial dependence. This
should allow the calculation of cross semi-variograms of the soll
and crop attributes as well as the regression of yield on so0il
attributes (allowance should be made for spatial dependence and a
method such as that described by Cook and Pocock (1983) should be
used)}.

3. Embedded field experimental designs

In an attempt to account for spatial soil and crop variation
in field experiments, it is possible to perform a co-spatial soil



Fig, 1 Spatial analysis of twe uniformity trials. 4
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The navel orange uniformity trial of Batchelor and
Reed (1918). Surface showing the yield of oranges
on 20 by 50 trees on a 22 ft. grid.

Two dimensional autocerrelation surface to lag 10
in both directions., The ridge from center back to
center front of this surface 1s in the same
direction as the yield surface from back to front,
Note the slight anisotropy.

Two dimensional spectral density surface smoothed
with a2 two dimensional Barlett window to lag 10.
Directions are the same as the autocorrelation
surface. There is no significant periocdic
behavior; all the power is at low frequencies.

The IR8 rice uniformity trial of Gomez and Gomez
(1976). Surface showing the yield of rice on 18
by 36, 1 meter square plots. Note the non
stationarity from left to right.

Two dimensional autocorrelation surface to lag 10
in both directions. The ridge from center back to
center front of this surface is in the same direc-
tion as the yield surface from back to front.
Note the stromg anisotropy probably caused by the
non stationarity.

Two dimensional spectral density surface smoothed
with a two dimensional Barlett window to lag 10.
Directions are the same as the autocorrelation
surface. There is mno significant periodic
behavior; almost all the power is at Llow
frequencies.

For further discussion of the methods used to compute these

diagrams,

and for an example of periodic variation in a

uniformity trial, see McBratney and Webster (1981).
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Fig. 2 Embedded field experimental designs
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N.B.

First order nearest neighbor (4 neighbors)
embedded Latin square design with 2 replicates on
a square grid.

First. order nearest neighbot embedded Latin
square design on an equilateral triangular grid.
Second order nearest mneighbor (8 neighbors)
embedded Latin square design on a square grid.
Second order mnearest neighbor embedded 2 cubed
factorial design with 4 replicates on a square
grid,

The grey plots need not mecessarily be as large as
the main treatment plots.
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and crop survey as described above and follow it up in the next
growing season with a classical field experiment on the same area.
If spatial patterns vary from season to season then perhaps a
better approach is to combine the co-spatial scil and crep survey
ané classical experimental deslgns -~ such a combination may be
called an embedded design. Such schemes based on square and tri-
angular grids are shown in Fig. 2. These diagrams are diagram-
matlc and are primarily intended to show the spatial nature of the
designs. For example, in Fig, 2, it is questionable whether
blocking of the replicates is required bkecause of the local con-
trol afiforded by these designs. The grey plots in each diagram
are control plots and the named white plot is a treatment plot.
The control plots can be measured for soil attributes and crop
yield and a regression model obtained. These values can then be
used to krige (or co-krige) the environmental yield on the treat-
ment plots. Further soll analyses on the treatment plots will
allow detection of any deviation between predicted soll effects
and those observed, suggesting some interactlon between treatments
and goil properties.

Statisticians will eschew these embedded designs because
relative to classical desligns they will be regarded as ineffi-
cient. Presumably this inefficiency 1s wmeasured by equating
information gained with increased effort and area of the experi-
ment. 1t may not be a simple matter to estimate the information
gained from an experiment and the formulation of an economic or
sclentific loss function seems difficult. Statisticians have been
extremely parsimonious in their expetrimental designs, however this
has not led to complete satisfaction with the users of such
schemes. Inefficiency is refuted on the grounds that these
designs allow realistic spatial models to be fitted explicitly.
To the experimenter there is no real substitute for this.

Conclusions

(1) At present there is a lack of quantitative co-spatial soil
and crop data.

(2) The design, execution and analysis of spatially integrated
soil and crop surveys and field experiments should become a
jolnt research topic for agronomists, so0il scientists and
statisticians.
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Spatial variability: geostatistical methods

Allan Gutjahr, Department of Math and Statistical Research Center
New Mexicc Institute of Mining and Technoclogy, Socorro, NM 87801,Us8a

Introduction

Recent research in the soil sciences (Byers and
Stephens, 1983; Bresler and Dagan, 1983) and hydrology
{(Delhomme, 1978, 1979y Bakr et.al. 1978; GBGutjiahr
et.. al., 19783 Gutjiahr and Gelhar, 1981) emphasize the
concepts of spatial variability in the study of soil
propertiezs and flow problems. The papers cited
emphasize the statistical and stochastic nature of the
phenomenaa. : 4

In this paper I will present some of the basic
concepts of spatial variability and illustrate their
meaning. I will alsc discuss the assumptions involved,
the type of data needed, and the advantages and
limitations of these procedures.

Problems of variation in soil properties have
certainly been recognized for many vyears. In +Ffact
much of the statistical work on design of experiments
and analysis of variance originated in agricultural
research. The main concern, however, was with
differences between mean values and variation was often
viewed as a nuisance to be controlled for in some
manner.

By contrast, the geostatistical study of spatial
variability deals with data and problems that involve
uncontrollable variation that still has some kind of
structure. Thus the data in space f{or time) is
presumed to have some connectedness or continuity
embedded within the randommess. The objectives of such
a study vary and include attempts to explain variation,
to buiid predictive models, to interpolate ar
extrapolate values, to design sampling plans and to
interrelate variations of different properties (e.g. to
relate the variability of conductivity and head in a
hydrologic context). Thus this approach views
variation as part of an overall praoblem which can
convey vital information about the phenomena studied.

Random Fields

The starting point in the geostatistical study of
spatial variability is the notion of a random field or

9
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random function in space (3 will designate a vector in
1, 2, or .3, space. The Glossory contains a more
complete definition of terms). Simply, put a random
field, WV(x) or spatial stochastic process is a random
variable +For any Ffixed value of x. Vix} might
represent guantities like hyraulic conductivity, grain
size or head at location y.

A rcomplete description of V{x) would require the
Jnlnt probability distribution at any set of locations,

=1 ... n. In *practice this amount of
iﬂfurmatinn is virtually impossible to obtain and
instead only descriptions of moments are used. These
include the mean, Vixg) = EW(x})), the variance,

Var(Vi(x}}! and, mpst importantly, a measure of the

statistical relationship between ¥ix,) and V(xz) known

as the covariance coviVix ), Vix ¥,

We start by examining the Concept of statistical
homogeneity or second-order 'statiunary. Vig) is
statistically homogeneous (second-order stationary) if
Vix) has constant mean and if CoviVix,), WV(x._)} only
depends upon the vector difference x1 - xz aamely if

)

(i} E(V{x)) ='m, a constant
and (ii) Cnv(V{zl), V(ﬁz)) = R(ﬁlﬁgz), ar
CoviViz+y), Vix)) = Riy}.

Riy) is the covariance function evaluated at lag vy.

The covariance condition states the statistical or
probabilistic dependence is only related +o the
separation between the points. The - constant mean
condition is not a controlling factor if mix) = EWMV(x))
is known. Note also that Var(V(N)) = R(O) for the
statistically homogeneous case. n’some applxcat1uns
the homogeneity assumption is further specialized by
assuming R{y) only depends wpon y =-tyl, the length of
the separation vector in which case we say the process
is statistically isotropic.

How can Ry} be estimated? In the general
statistically isctropic case we tould +Ffirst estimate
the mean, V. based upon obsarvations ¥(x,) ... Vix )}
and then estimate R{y}) by grouping points. Thus if 'a
is some fixed value, we could group those points ({x._,
x into the set Aly) where y-a % Ix. ¥, 1 § vy+a add
tﬁen estimate Riy) as followss ]

Riy) = E [Vex ) -VIIV(x, ) -VI/# pts in Aly)
. ~j ~K
pts in Aly)

Some examples of possible one—dimensional or
isotropic covariance functions are shown in Figure 1.

10



R(y)

v N —

Fig. 1 Isotropic covariances

Benerally, we expect covariances to decrease as vy
ipcreases ~ i.e. the "influence” of V(yx) dies out as we
move further away from that point., An average distance
over which significant correlation (R(x)fﬂ(g) = the
correlation function) is called a scale. A common
procedure is tp take the scale ) to be that value where
R{NI/RIO) = e (e—fold drop).

There are cases where, at least within the area
studied, V(&) does not appear to be statistically
homogeneous. To study these situations the French
geostatistics school {(Matheron, 12713 19731 has
introduced the notion of intrinsic random functions
where the increments or changes are assumed to be
statistically homogeneous.

A intrinisic random function of order zero is a
random field V(x) with

(i} EVx)) =m

(i) vy = ECOVOehy) -Vix) 19172
= L vartvix+y) Vi 1
5 VariVix+y %,

11



¥iy)

Fig., 2 Isotropic varicgrams

The function ¥(y} only depends on the lag and is
called the zeai-—variogram or just variogram. Typical
variograms are shown in Figure 2 for 1-dimension. If
V(x) is also statistically homogeneous,; +¥{y) = R(Q) -
R(g) and -as y increases, Ti{y} approaches = Var(Viy))
which is also called the sill. Correspondingly, the
scale h is sometimes called the rangerof the variogram.

If Vig) is not statistically homogeneous y{y) will
not approacrh a sill value (e.g. Figure 2-bh). Figure
Z-c¢ shows a variagram with a jump at O - called a
nugget effect.’ Such an effect isn’'t really possible if
Vix) is continuous but it may be observed in estimates
because fine—-scale estimates aren’t available; it
can 2lso be used to model measurement error.

Using the same set A(y) introduced for estimating
R(y) an isotropic variogram can be estimated by

-~

yi{y) = Z [V(i{.)—\}(ﬁk)]
pts in A J

2702, #pts in Atly)]

In some cases nhon—isotropy can be detected by
calculating v(y}) in different directions and possibly
correcting for trends in the mean {(see Figure 3}

12




y(y)

Fig. 3 Non-igotroplc variograms

Riy) and 1(x) are thus used to characterize the
variability that can exist for a random field. What
else can be done with these functions?

Kriging

If Vix.), Vix} ... Vix ) are measurements at n
locations wé may want to use Phem to interpclate aor
predict V at some other location x. How can this be
done using either R(x) or 1{3)? Kriging is the
procedure commonly used to do this.

In kriging, linear estimators,

s

n
Vi) = I ». Vix.),
j=1 3 3
are used for the unknown value V(i)' The 'kj's are

chosen so that

(1) the estimator is unbiased:

~

E{Vix)) = E{V{xn))
A~ ~t

13
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and (2) The mean squared error ECIVOO-V(x) 123 is
minimum.

In both the statistically homogeneous and the
intrinsic random function case minimizing the mean
sgquare error while using linear unbiased estimators
will lead to n+1l linear equations in n+l unknowns:
ANy e A and 4 a Langrange multiplier. Note that the
X.s and u depend upon the location x so that at esach
location we get different weights. Usually this
dependence on x is not explicitly shown.

The kriging variance, or ‘minimum mean squared
error is also usually obtained

..
-~ N

2

Tk

= varlVig)-vix)l = EEV{E)lvgﬁ)]z.
The kriging equations and krigibg variances for the two
cases discussed are given below. |

.

a. GEBtatistically humugeneq&s case

n
E Xx. R(ﬁiwg.)-u = R{g—gi); i=1...n

=1 3 3
n
E ». =1
j=1 .
.2 3
' = R(O)= L X, Rix _—x)+u.
K o 4 ~ER

’

b. Intrinsic Random Function of order O

n
— -+ = s s f .ew
Rz kj 1ix, 5i} no=ylgex.dy 1= 1 n

i=1
n
T x.=1
=1 1
2 n
L =j§1 kj 7(5j75)+u

14




The squations in (b) can be obtained formally from
those in (a) by taking R(Q) = 0, v(y) = -Riy).

The kriging estimators or interpolators have
several other interesting properties in addition to
unbiasedness and minimum mean square error.

~ Fas

(1) WVi(x) is an exact interpolator: Vix.) = V(é.)
at the observation points 3 3

(2 The weights A, and p depend on the caovariance
function or ariogram and the locations, but
not on the actual values observed

(3 m, the mean, is not needed to calculate the
estimate Vix)

(4 o 2 yields a measure of the precision and
again only depends on the A's, apn, and the
covariance function or variogram.

In a kriging study the above points are used in a
variety of ways. For example, to validate a kriging
model, an estimate is made at 5j sy an ohservation

o

point, by 1leaving out that point and using the
remaining n—1 points to develop the kriging eguations.
Thizs procedure is repeated with sucessively diff&ren§
‘points are excluded. The values [V  (x. Y-Vix. »17/s

30 ~Jo *JO k
are calculated and averaged where the subscript 3j
indicates the omitted point. This average value shuulg
be cloze to 1 if the model assumptions are true and the
correct covariance function {(variogram) are used.

The fact that kriging variances only depend uwpon
location and not actual V values can be used to see
what effects added sampling €an have on the estimates.
Thus a fictitious point can be placed and the kriging
weights and variances calculated for the changed
situation. By moving the point one can decide on an
"optimal" location for an added sample.

Figure 4 shows schematically what kriging
estimates would look like. The kriged path is smoother
than the actual path, as one might suspect. In Figure
S the effect on & of an added point is illustrated:
note ¢, = 0 at observations since values are exact at
those points.

Extensions and Modifications

The kriging procedure can be extended to cases

15
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where mix) = E(V{yx)) depends on x but the covariance or
variogram assumptions still apply.

One procedure is to approximate mix) by
K
£ a, Pktz) where the P’'s are a set of "basis*
k=1
functions e.g polynomials). The unbiasedness conditions
lead to K constraints and K Lagrange multipliers. The
resulting kriging equations are called the universal
kriging eguations (Matheron, 1971:.

An alternative is to look at higher—order
differences and assume some kind of stationarity or
homogeneity for these differences. This leads to

higher—-order intrinsic random functions and generalized
covariances (Matheron, 1?73). Again kriging equations
can be developed for this case.

Another extension covers cases where we have nore
than one random field. This iz an especially
interesting case because one can speak, of the
"transfer" of information from one field to the other.
In this case, for statistically homogeneous random
fields Ulx), Vix), the cross—covariance Ruv(z) =
cnv(U(§+x), Vixllr is used as well as the auto-
covariance functions. The kriging gquestion now becomes
the following: Given U(x,,} ..., U§§1n) and V(z ) I
Vix_ ) find the prediction of Vix). The unhiasedness
conditions can become more complicated. The use of
this co-kriging procedure along with physical models
that interlink the two fields is especially intriging
because it can tell us something about the worth of
different pieces of data.

} In Figures & and 7 I show same plots of kriging
variance +For a head/transmissivity model where the two
gquantities are related by a flow equation. The cross—
covariances needed are found by using the flow equation
and a spectral approach I will touch wpon briefly and
that I'm sure Lynn Gelhar will refer to in his talk.
In the Figures kriging variance contours are shown for
2 networks of observations in each case. The
cbservations are taken at points s=separated by one aor
two correlation lengths of the T random function
where 0's denote transmissivity (T) measurements and
crosses indicate head measurements. In Figure & the
dashed contours correspond to the network with five
head measurements {(each one correlation scale apart)
and 2 transmissivity measurements (2 correlation scales
apart}, while in Figure 7 the contours are for
" measurements on observations 2 - correlation  scales
apart. The contours are only shown for the first
quadrant and the networks are presumed to have their
centers at the origin. This model contains within it
the seeds for a kind of inverse procedure and a method

17
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for evaluating worth of different types of data.

Kriging has also been used to study methods for
creating what might be called possible realities or
realizations of random fields. Recall the kriged paths
{e.g. Figure 4) are smoother than the real paths. In
some studies we want to re—create paths through the
sampled data points (as a kriging estimator does)
that exhibit the kinds of variation and correlation
seen in reality.

Thus we want a conditional random field V(x),
given observations V(x,) ... Vi(x ). Delhomme (1978,
197%9) gives examples n* such conditional simulations
which use the kriging procedure. One need not use
kriging to do this but it does lead tn a rapid method
for generating these realizations.

The conditional simulation approach first finds
the kriging weights for the given covariance function
and data locations. Then an uvwnconditional random field
s (%) iz generated with the desired covariance
behaviour. Finally +this field is kriged, using the
previous weights to get su(x) and then the conditioned
field,

s et
g () = Viu) + s (x) — 5 (x)1
will have the desired properties. Conditional
simulations are useful for studving input-output

relationgships in cases where two fields are related to
each other.

Kriging — uses, abuses, advantages and disadvantages

The ready availability of computer codes makes
kriging and its relatives good candidates for use and
abuse in a variety of applications. In carrying out
kriging studies there are things to be aware of and in
this section some uses, warnings about misuses and
problems that may be encountered will be discussed.

First let me discuss advantages of kriging some of
which 1 have already mentioned.

{1 The X’'s depend on X Riy) {or ¥{(y)) and the
% . locations but not on the V(x. 7 's. This
makes sample design studies pﬂsaible and
studies of where points should be placed to
minimize variances.

-~

(2) Wy) is an exact interpalator. If the
Vix.)'s contain measurement error that can
als be incaorporated inta the kriging
equation.

19



(3}

(4}

(3)

What

out for?

(1)

e

The mean m is not needed to get VIx).

The kriging variance vyields a useful measure
of accuracy.

The procedure is general and flexible if the
assumption are valid.

are some disadvantages and things to watch

The covariance (variogram) must be known.
Very often the estimates of the

. covariance (variogram), behave poorly and are

(2)

(3)

(4)

difficult to interpret.. In addition the same
points used to estimate the
covariance {(variogram) are often used in the
kriging procedure. To minimize the effects
of correlation and bias, standard
functions are fit by aye to the
experimentally wubserved functions. The
effects on the kriging wvariance of using
the same data for both the
covariance {(variogram} estimates and for
abtaining the weights still needs
exploration.

The mean must be constant or have a known
form. ne can get around some of the
problems by using intrinsic random function
theory and generalized differences or by

uging uwniversal kriging. However both of

these options are considerably harder to
apply and interpret. In addition these
procedures are not as readily implemented.
An alternative is to fit a mean eguation or
trend and remove that mean from the data.
This may, however, have an undesirable effect
on the covariance (variogram) estimates.

The statistics of covariance (variogram?
estimates are difficult to study and not well
known.

In theory, kriging can handle anisotropic
covariance functiens or wvariograms but again
in practice that is hard to do. Virtually
all standard kriging packages don't include
options for anisotropy.

Kriging is not an automatic procedure. In carrying it
out one should validate the model as much as possible
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and be aware of the limitations. Used in that way,
with thought, it can be a useful technique for studying
spatial variability in space and time and its
consequences.

Spectral Methods and Representations

Kriging is a kind of oarthogonal prajection
procedure involving projection onto the data. It is
similar in that respect to regression and other
multivariate techniques. In carrying out analytical
calculations that involve equations connecting
statistically homageneous random fields we often use
yet another "orthogonalization" procedure. This is

generally referred to as the spectral representation
theorem (Lumley and Panofsky, 175843 Koopmans, 19743
Rosenblatt, 1973). I will state it and then discuss
what is says and why it is so imsportant.

The Spectral Representation Theorem p

If Vix) is a statistically homogeneous random
field with mean O and Ri{y) = coviVig+yl, Vi)
contipuous at @, then there is a unique (with
probability 1) complex process Z{k) and a positive non-
decreasing function F(b) with the following properties:

L]

(i) Rty) =1 expiik-y}dFiy)
~ o
()

(ii} Wiy} = f explik-x3dZk)
-0

(ii1i) EWI(k)) = 0, E(dI(k}dZ#{k’)) = 0, k ¥ k'

EC1dZk) 19y = dF (g

In the above - the integrals are 1-2 or 3
dimensional depending on the region, aF (k) = f(kidk if
a spectral density f(k) exists; F(k) is the spectral
distribution and * designates complex conjugate.

Now what does this formidable expression mean?

We can take the original process which involves
correlation and inter-relationship and write it as an
integral of a {(complex) process that has uncorrelated
components. It dinvolves a disentargling of the V(x)
process into "independent” pieces in the Z(k) process.
For many problems the spectral representation will
allow us to study terms in isolation because they don't
mix or interact.
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This procedure is analoguous to decompositions of
sums of squares encountered in analysis of variance.
There one tries to split the sources of wvariability
into different parts and assign them to different
cCauses. Mamely, (ss = sum of sqguares)

55 total = ss between groups + ss5 within groups
is a basic identity in pne-way analysis of variance.
The same kind of decomposition occurs in the spectral
representation above. In fact,

-

var(Vix)) = § fik)dk

Fll, YAk + Fik Jak + ...
With F(k.)ak = variance assoclated with frequency k.,
the decnﬂpnsitinn of wvariance.is like that in tﬂa
analysis variance. <

The study of spatial variability by  using
stochastic methods is still being developed. It can
yield insights into the variation that exists in  the
field, the continuity of the fidld and the uncertainty
one can expect. ~ With proper care the methods should
help in interpretation of data and in developing
fundamental understanding of physical models.
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A GLOSSARY OF TERMS AND SYMBOLS IN SPATIAL VARIABILITY

Random field or spatial stochastic process Yix)i: This

“

means for each fixed x (e.g. a location in space)

Vix) is a random variable.

~

Frobability density of V(;)= The function giv: x) such
N N 'l

that the Probahility V(%) is between a and b,

denoted by FP{a < V(x) = b), is given by
" .

5

b . N
Pfa < Vix) € b) = f giv: xddv.
LY a M et
Expected value or mean of Vix): The expected value or
b7

mean (denoted by E(M(x)) or Vix)) is the

probability—weighted average,

L]
E{Vi{x)) = v gilv: x)dv.
- T -0 i N
Covariance Ffunction for a random field: This is

designated by cnv(V(xl), Vix,)) and is defined as
* L™ e

2

tDV(Y(il)’ V(iz)) =

E[(V(ii)—V(il))(V(iz)_V(£2))}
It measures statistical relationship between field
values at two different locations.

Statistical homogeneity or second—-order stationarity:

The random field V(x} is statistically hemogenegus

or second—order stationary if
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(i} E(Vix)) = m, a constant.
and (ii) covi(Vix,}, Vi )} = Ri{x_—%,) only depends
upon the separation vector X Ky

y = ¥,-%, is called the lag vector.

Covariance function Ffor statistically homogeneous

processes: Riy) = cov{Vix+y), V{x)), the covariance

L")

function as a function of the lag vy.
o

Statistically isotropic processs A statistically

homogenous process whaere Riy) = R{lyl) = R{y}) only
depends on the separation distance, vy = lyl.
A
Correlation function: ply) = Ri{y}/R{O).
N "N "N

Scale: An average distance over which points are

significantliy correlated. For an isatrupic;
covariance function this is smometimes taken as that
value h whers e—l = pih), an e—fold drop.

Intrinsic random function of order 0O: A random field

Vix) with constant mean where El[le+y)—Vix)]2) only
~r e W "y
depends on vy.

Variogram or semi—variogram: The function

vly) = E€IV(x+y) -V (x) 12372
M N A “
for an intrinsic random function of order 0.

5ill: If ¥{(y) has a limiting value as vy increases, the

limit is called the sill and equals var{Vix)}.

LY

Range: The scale in a variogram for a statistically

homogeneous process.
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Unbiasednecs: 1f G(V(xl) - U(xn)) is some function
e e Y

of V(xl} - V(xn)) it is an unbiased estimator of

n

V‘io’ if
E(BI{VIx,) o Vix 3) = E(VIx ).
Mean squared error: If E(V(xl) . vtxn)) is an
.o " EW
estimator of V(MO! the mean sguared error of G is
A ™

E{LG{VIx_ ) o.. Vix 2I-Vix 112).
~1 an 20

It i; a measure of haow “cla;é? the estimator 8 is tao

the quantity being estimated, Vtxo).
o
o~ L)
Estimator, V: For estimators the notation
- : an

Vix )
¢

1]

sivcxia .va Vix 1)) is often used.

e

Linear Estimator: An estimator of the form

By

V-

hl V(i1)+h2 V(i2J+ - kn V(in)

5]
A, Vi, )

PR ~3

j=1
where the \'s are constants.,
Kriging: The procedure that finds the best (minimum
, mean square error) linear unbiased sstimator of Vix)
hased uvpon observations Vix,? ... Wix ). Far a
-1 AR
statistically homogeneous process with covariance

function R{y), this yvields a set of linear equations
or

for the “weights” Aj;

n
j£1 xj R(i'—ii)—u = R(ii-i), i=1.,..n
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u is a Lagrange multiplier. For an intrinsic random

function of order zero the covariance function R(y)

can be replaced by —v(y), the negative of the
LY

1 variogram, to get the kriging equations.

1 Kriging variance: The variance associated with the

kriging estimator, designated by skz. This is also

the minimum mean squared error. For a second-order

stationary process it is

-

ECIVGO VG012 = 6,2 = R(O) - I Rix—x d+n
~ LY 4 a j=1 o ned
For an intrinsic random function, again R is

repiaced by — ¥.
Co—~kriging: The extension aof kriging to the case where

Vi(x) is estimated using abservations from two random

e

fields where now the cross-covariance, coviVix+y),

" o

Uix)}, alsoc enters in.

Spectral density for a statistically homogeneous random

field: A Fourier trancform of the covariance

function (k = wave number or frequency),

~

Riy}
[ © n
k) = f i.. f expi-ik:-y3idy, ... dy
~ — bt} ™o 1 P
zmP
1 L]
2 ———— | Ry} exp{-ik-y} dy
where p = the dimension of the space. The
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covariance function can be recovered from the
spectral density by an inverse Fourier transform.

Spectral representation thearem for a statistically

homogeneous, mean zero, process:  This states that

if WVi{x}) is statistically homogeneous random field

with E(V(x)) = 0, covariance function R({y}, spectral
b o

density f{(k) then there is a unique (probability 1)

cnmpfax process Z{k) with tﬁe;+n110wing properties

"

® ik ~
(i) V) =§ e tET¥ gz
T -0 s

tiiy» EWMZIK)) = @, E{DZk
et b

1, l) dZ*(Ez}) = 0,
ky = ko»

and E(IdZ(k)lz) = f{k) dk
o~ -~ a

(¥ = complex conjugate.)
The spectral representation theorem resolves the
uriginél process into a “uncorrelated” complex

‘prncess which greatly simplifies some calculations.

’
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Discussion

D. Goss and
L. Wtiazng:

A, Gutjahr:

., ten Berge:

A, Gutjahr:

H. ten Berge:

A. Gutjahr:

B, Luamoore and

B. Senuhway :

A. Gutjahr:

What is meant by a constant mean and what are
the requirements for a censtant mean?

The constant mean assumption means there is no
trend within the range of study. It is not as
crucial to the analysis 1f (i) the trends can be
egtimated and removed or (ii) one uses generali-
zations of kriging 1like universal kriging,
where the trend can be estimated, or intrinsic
random functions of higher crder.

Is the condition that the variance be constant
acress the field dimplied 4in second order
stationarity and is it a severe condition?

Yes. It is implied by the definition of second
order stationarity and it. may be a sericus
restriction in some applications. In such cases
one might lock at some transformed values (like
logarithmic transformations} of the data, try
multiplicative types of corrections ot use
variograms and the intrinsic random function
approach,

Is blasedness only a characteristic o¢of the
sampling procedure?

Ne. It can also be a characteristic of the
statistical procedures used in estimation and
prediction.

In the case of a linear variogram is there some
of deciding between a trend in the data and a
stationary process without & trend in the data?

One can sometimes detect trends in the data by
exanining the variogram in different directions.
For example, if there is a linear trend in a
particular direction, the variogram in that
direction will have a parabolic behavior and one
can then remove the trend in that direction (see
Delhomme, 1978). The question of a trend 1is
often a difficult one to decide on the basis of
the data and may again require higher order
intrinsic randem functions, or using subsidiary
knowledge of the process to remove that trend,
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C. Kirda:

A. Gutjahr:

M. Nash:

A. Gutjahr:

W. Jury:

A. Gutjahr:

L. Wilding:

A. Gutjahr:
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If a set of data has trends should the trend be
removed before finding the correlation Iength
from an auto-correlation analysis?

Yes. Often trends can be spotted frem the
covariance functions if they have shoulders or
tend to remain high as the separation distance
increases. Correlation lengths calculated from
the data without the trend removed are them too
large, and atso tend to include a deterministic
component in the random model.
N

Is there any test for the range or correlation
distance in correlation functions?
There are tests for correlation distances
(using, for example spectral, analysis) and in
the stationary case the tests would be the same
for the range in the variogram. However these
prqcedures often yleld estimates with thigh
variances and hence are not very precige.

o
Thete have been several instances of an apparent
correlation beétween sampling grid density and
correlation scale on a glven field or even on
the same transect of a field. It has been
postulated that this would always result from
non-linear drifts which are difficult to remove.
How doesg this affect the measurability of the
correlation scale?
Yes, this can affect the measurement of the
correlation scale. It can also occur that
within the region of interest there may be

.several scales. As Lynn Gelhar indicated in his

talk, the scale of the problem and the scale of
the correlation function are interrelated. The
region of study should be large enough to

" include several correlation scale lengths in

which case the larger scale variation may be
treated as a trend., In addition 1f there are
significant non~linear trends one might again
go to an intrinsie Thigher order function
approach (using generalized differences) and
estimate the generalized covariance.

How many couples of observation are needed at
the greatest distance for statistical reliabil-
ity or validity?

Unfortunately the statistical behavior of the
variogram is not a simple one and still deserves



k. Horion:

A. Gutjahr:
S. Rao and
K. Casse

A, Gutjahr:

P. Bkedi-Kizza
an

L. Stroosnyder:

more study. As a rule of thumb one should have
about 50 data points to get reasonably reliable
estimates and then perhaps a good secend rule of
thumb is not to place much reliance on variogram
estimates beyond 20% of the maximum distance
(this second rule of thumb is often used in time
series analyses). Namely if the biggest pair-
wlse separation is 100 meters only look at the
variogram out to 20 meters as having reasonable
reliability. This should be tempered, of
course, by looking at the number of data pairs
in the estimates.

You have described two tools: correlogram and
the semi-variogram. The correlogram requires
second order staticnarity in order te be valid
while the semi-variogram requires less confining
intrinsic assumption. Should one wuse the
semi-variogram instead of the correlog;am?

If non-stationarity is a possibility then I
would examine the semi-variogram. If a sill is
shown then I would use a correlation function
because it is often easier to interpret and also
treat statistically (especially if the data is
equally spaced}.

Is there any implicit assumption made about the
distribution (e.g. normality) for data used in
kriging. If not why do some researchers first
transform the data?

In both variogram estimation and kriging the
assumption of normality is not needed - only
expected values or averages enter in. Transfor-
mation may be used however for a wvariety of
reasons like stablilizing the variance, making
probability statements about kriging estimates
and for developing procedures for estimating
variograms f{(e.g. vla maximum likelihood proce-
dures). However the kriging procedure itself
doesn't require distributional assumptions.

What are the basic differences between classical
agricultural statistlcs and geostatistics? At
what stage should either be used? <Can ome use
bath? What about independent assumptions?
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A, Gutjahr.

R, Bruce:

A, Gutjahr:

C. Gantzon and
. Hlgsn;

4, Gutjahr;
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Generally in classical agricultural statistics
one is interested in estimating means and also,
generally, the data are presumed to be indepen—
dent or contain independent random error. Of
course situvations do exlst where variazbles are
assumed to be related (like analysis of covari-
ance} but the main focus is on controlling for
varlability with appropriate designs and proce-
dures. .

In geostatistics the focus is on the inhomogene-
ities that exist and on the relationship between
values - cotrelation occupies center stage.
Thug if one wants, to estimate the variability
and continuity that exists, geostatistics is one
way te do that.

The two {(classical and geostatistical methods)
can be used together, For example cne might use
geostatistics to estimate underlying variability
within a field and then classical statistics to
compare treatments in different areas after
correcting for inherent variability.

In addition if measurements are far enough apart
(as judged by examining the varicgram or covari-
ance function) observations become uncorrelated
and again one might use classical procedures for
widely separated points.

Kriging 1is ‘talled an "exact" interpolator. What
happens if measurement errors exists? Is
kriging as a predictor to be applied only within

the domain of the original study?

One can extend the kriging procedure to include
measurement error by modifying the covariance or

.- variogram fuaction 1In which case we no longer

have an exact interpolator. Kriging is an exact
interpolator within the field of interest and I
should not really have referved to 1t as a
predictor.

Can you discuss the difference in efficiency
between taking samples randemly within the field
versus ordered regularly spaced sampled? If the
samples are placed randomly how is the semi-
variogram estimated?

I don't know what the efficiency would be, I
would prefer a regular grid or smaller grids
superimposed omn larger grids for estimating




E. Bresler:

J. Hendricke;

A. Gutjahr:

B. Sehuh:

A, Gutjahr:

J. Allen:

A. Gutjahr:

C. Wang:

variograms if there are many sample points
because this would allow the use of spectral
methods if needed. However in general this is
not an easy question to answer. The estimation
would proceed as if the samples were non-random
by using grouping of data points as described in
the paper.

To best estimate the wvariogram by a least
squares procedure one needs a sufficient number
of pairs to cover the whole range ¢f lags from
zero to the maximum. In cases where the number
of data points is small (30-50 points) random
sampling might be preferred over regular sampl-~
ing teo get estimates at larger lags.

For estimating variograms and the trend, maximum
likelihood methods can be useful if the data is
from a multivariate normal population,

What is an appropriate method to validate
kriging results?

A wethod often used for this purpose 1is the
Yleave-out-one data point" or jackknife proce-
dure described in the paper.

What are the effects of improper selection of
the variogram in kriging?,

In the statlonary case the important features
are generally the sill and the scale or range
One can also try different variogram models and
see what effects occur on the kriging estimates
and kriging variances.

How can a priori patterns of spatial variabillty
{(like soil forming factors) be incorporated into
geostatistical methods to account for spatial
anisotropy?

Here one might try to use modeling studies te
account for known facters or try to put in
features as added constraints. In general there
iz no all encompassing answer and one needs to
study the specific situation.

In a kriging study we did with 50 columns of

gsoll samples (150 samples within each column)
the semi-variogram for each column varied
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. Gutjahr:

. Muraka:

. Gutjahr:

. Whigler:

. Gutjahr:

greatly in shape. How can this information be
used te study a similar land form outside the
study area?

It is difficult to give an answer to this
wilthout looking at the data - kriging and
semi-variogram studies are not always automatic,
However it may be the case that you have a large
degree of anisotropy in the region which yields
widely differjng semi-variograms.

Gould you elaborate on the "size of landscape"
to which geostatistical analysis techniques
would be limited to? :
Again I would refer %o some later comments by
Lynn Gelhar on problems of scales. There may be
several scales and we nead to take the scale of
the problem into account when doing this kind of
study - that often is information obtained not
within the geostatistical study but from other
sources. -

When will someone write a beok with underlying
theory and detailed examples and with programs
adaptable to P,C,S.°%

Probably when someone has a lot of time and is
assured they can make lots of momey by doing so!
Sericusly, though, 1t 1is a subject still
evolving - as more researchers wuse it and
develop it I’ suspect texts will be fortheoming
that meet the desired objectives. I would be
careful, though, in looking at texts to be sure
that they emphasize both what can't be done as
well as what can be done, and that include good
doses of common sense and thought - the proce-
dures and methods aren't panaceas and can't be

- applied without thought. They should not be

considered as "methods looking for a problem."
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Time series in the soil sciences: is there
life after Kriging?

R.H. Shumway, Division of Statistics, University of California,
pavis, USa

1, Introduction

The development of statistical techniques for analyzing data in
the soil sciences has traditionally followed along the linea laid
out by early disciples of R.A. Fisher (e.g., Snedecor and Cochran
(1967)) who assumed that observations obtained in the field were
independent and identically distributed., The recent shift away
from this early methodology, termed "aggle statisties™, for
example, by Nielsen et al. (1983) has been fueled by the
realization that data collected in agricultural field vtials and
in the soil sciences are inherently spatially correlated. It 1s
physically more reasonable to expect that measurements of soil
parameters such as temperature or electrical conductively should
be correlated when they are measured at adjacent points in space
or time.

The resulting trend in the soll sciences has been to lean more
heavily on geostatistics by which is meant the smoothing of
experimental data using Xriging techniques developed by Matheron
(1963). Such applications to the soil science are well documented
in papers by Nielsen et al. (1982), (1983), Vielra et al. (1983)
and Valdin et al., (1983) and by other participants in this
workshop (see also Ripley (1981) or Journel and Huljbregts
(1978)). The advantage of Kriging or CoKriging techniques is that
one can do smoothing with a very sparse collection of observed
data points whereas conventional time series techniques require
that one collect relatively equally-spaced data from the random
field.

The continued development of remote sensing devices and other
aystems of Instrumentation, however, will soon enable research
workers to bring to bear a number of alternative techniques for
analyzing multidimensional random fields., Early techniques
proposed by Whittle (1953), (1954) can be used to develop
approaches to the problems of modelling and fitting data using
stochastic partial differential equations. The use of gpectral
methods, suggested by McBratney and Webster (1981), or Nielsen et
al. (1983) can be extended to embrace old fashioned aggie concepts
using spectral analysis of wvariance (cf. Shumway (1970), (1971},
Brillinger (1979)). The use of lagped regression models (cf.
Brillinger (1975), Priestley (1981;; can be considered in order to
develop input-output models relating various measured soil
parameters. Problems Involving non-stationarity and missing data
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in transects can now be approached using the state—space approach
for smoothing and signal extraction (cf. Parzen {1984}).

The purpose of the following discussion is to give some examples
which demonstrate gsome of the kinds of questicns which can be
answered using the above techniques. The basic thrust of all of
the methods is to identlfy models for the underlying processes and
then to use standard statistical procedures based on maximum
likelihood to estimate parameters and test hypotheses. In maony
cases, the models expresa the griginal unobserved series as
solutions to stochastic differential equations driven by white
nolse. This links the statistical approach to realistic physical
models which have been used to deseribe the dynamic interactions
of soil science parameters. The emphasis will be on signal
extraction as opposed to the best linear unbiased criterion used
by the Kriging method, a

2, Signal Extraction . ."

A very versatile model can be developefl when it is suspected that
some underlying phendmenon of interest satisfies a first or higher
order differential equation, Fhe general form of the state-space
model assumes that some unohserved underlying pxl vector signal of
interest x(s) = le(s),...,x (s))' can only be observed through
the gqxl obaervation equation

y(s) = M(a)x(s) + v(s) (1)

for 8=1,2,...,n where y(8} = (y1(8),...,7,(s))' denotes the
observed vector at the spatial point s, M(s) is a known qxp
measurement matrix and lr_(s) is a gxl zero—mean vector moise
process with qxq covariance matrix, cov(v(s}) = R. Although the
signal process x(s) is uncbserved, it is assumed to satisfy the
first-order difference (differential} equation

!

x(s} = ¢ x(s-1) + w(s) (2)

where & {8 a pxp transition matrix and w(s) = (w;(8),...,w,(5})
has zero—mean and covariance matrix Q. FEquation (2) 1s called the
state equation and describes the evolution of the state-vector
x(s) through space or time. The beginning value x{0) is assumed
to have mean i and initial covarlance I. The process x(s) can be
stationary or non-stationary depending on the specification of the
parameters ¢,0,R,: and E,

The model in the above form is partially identified, but there is
gtill the problem of estimating the parameters. This 13 usually
accomplished using various nonlinear optimization techniques to
maximize the likelihood function {see papers by ¥ohn & Ansley,
Harvey, Jones and Shumway in Parzen volume (1984))}, The model
identification phase generally makes use of the Akaike
Information Criterion, AIC, defined as (Akatke (19754))
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AIC = =2 log{Likelihood) + 2(no. of parameters) (3
whare one. chooses the model for which AIC is a minimum,

A second important problem is that of extracting the signal x(s)
from the data for given values of the parameters. The problems of
developing the state-space model and estimating the state vector
%«{s) were solved in the landmark papers by Kalman (1960) and
Kalman & Bucy (1961), who gave simple recursive

solutions for the minimum mean square estimators; the procedure is
now referred to as Kalman filtering and smoothing. Rather
complete expositions of the basic principles involved can be found
in Anderson & Moore (1979) or Jazwinski (1970). The advantage of
the recursions is purely computational, since the ordinary linear
minlmum mean square estimator for x(s) involves inverting npxnp or
nqxng matrices whereas the Kalman filter-smoother procedure
involves inverting n pxp or gxq matrices,

Before turning to an example, it is useful to relate the model
given above to the one used in Kriging. The ordinary Kriging
model writes the univariate {p=q=1) version of equation (1)
without the noise term, say as

v(s) = x(s),

where x(s) is assumed to be stationary with constant mean value
(Universal Kriging assumes a general mean R'z(s) where £ and z(s)
are qxl vectors) and covariance funetion cov{x(sy),x(s5)) =
Cx(s1=83). The Kriging estimator at s=s; is the linear unbiased
estimator for y(sp) which has minimum variance. The form of the
covariance is specified on a-priori grounds from a reasonable
class of covariance functions using the variogram,

Yk(m) = é—E(x(s+m) - x(s))2 (4)

= x(0) = Cy(m)

as a guideline. The maln differences between Kriging and Xalman
filtering using the state-space model are as follows:

l. Computational: Kriging requires inverting the (ntl)x(n+l)
augmented covariance matrix. For p=q=1, Kalman filtering
requires no matrix inversions.

2, Modelling: Kriging chooses from a class of stationary
covariance functions. The state—-space mcdel specifies the
first order model (2) and may be non—stationary.,

3. Estimation: Kriging uses ad-hoc analysis of the varfogram and
noiseless prediction. The state-space procedure uses maximum
likelihood estimation of the parameters and signal extraction
under noise.
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It should be noted that the signal extraction approach for the
stationary signal plus noise model

¥(8) = x(s) + v(=), (5)

where all vectors are pxl, originated in the work of Kolmogoruv
(1941) and Wiener (1949) who showed, using the spectral approach,
that the optimal minimum mean square solution could be reduced to
inverting pxp spectral matrices. - This requires that one know the
form of the spectra for the noiee and signal processes. It would
seem to be a promising direction in which to move if the series
are multidimensional, that is, they depend on the vector parameter
8 = (sl,sz,...,sd)' go that the Kalman recursions will not work,
If the observations are regularly ohserved over a reasonably large
grid, the "spectral approximations are”valid and a comsiderable
computational simplification results ovér direct brute force
Kriging or CoXrilging, We do not give detalls here but the reader
is referred, for example, to Priestley (1981). An example in the
one—-dimensional case where the signal and noise spectra are
estimated by maximum likelihood is giveh in Shumway (1984).

As an example, of the state—space methodology, consider the data
in Figure 1 taken from the study done by Morkoc et al., (1984)
giving the mean values (over five transects) of yield and water
and salt content at intervals of one five transects) of yield and
water and salt content at intervals of one meter. The sprinkling
system was arranged to distribute more salt {(and more water) along
the right—hand ‘side of the transect. Morkoc et al, (1984)
congider jolntly modelling salt and water content using a p=q=2
dimensional version of (1) and (2).

In order to illustrate the versatility of the state—space
approach, wie consider a simple smoothing model for a single series
which is related to spline smoothing (cf. Erh (1972), Kimball
{1974)), Wecker & Ansley (1983) and has beed proposed in another
context by Kitagawa (1981) and Kitagawa & Gersch (1984). Assume
for a single one of the serlies that we observe, say

y(s) = x(8) + v{s} (6)

where v(s) has variance c%, which can be interpreted as
observation nolse. The signal x(s) is assumed to satisfy a
second-order difference (differential) equation of the form

Vx(s) = wi(s) o (7N
where
w(s) = x(s) - x(s-1) (8)
s0 that
Vix(s) = W(¥(s)) = x(s) = 2x(s-1) + x(a~2)
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Now, by defining the the state vector as x(s) = (x{(=), x(s-1})',
we may write the above model in the state—space form

y(e) = (1, 0 (320 )+ ves) 9
with
2 -1 -1
(o= ¢ I ) (1) (109

The identification allows us to use the maximum likelihood

procedure for estimating the parameters 0% and qwz(a is known in
this case) and the mean of x(0). .

The EM algorithm of Dempster et al. (1978) as developed in Shumway
& Stoffer (1982) was used to estimate the parameters and gave the
results shown in Table 1 below:
Table F: Signal Extraction Parameters
for Soi]l Data

Observation Model Std. Dev. of
02 02 Predicted Value
\i’ w
Yield | .109 070 .19
Water 2.550 .079 .62
Salt 102 .021 , L6

The values for the water content appear to have the largest
observation error which leads to a larger standard error for the
predicted value,.

The smoothed values as computed by the Kalman filtering—smoothing
recursions (see Jazwinski (1970)) are shown in Flgure 2, and they
seem to do an excellent job of capturing the non—stationary trend
behavior without smoothing out critical components,

The special form considered here is obviously not the only model
which can be treated under the state-space framework. One might
want to add another component into the measurement egquation which
satisfies a first-order difference equation of the autoregressive
moving average type (see Box and Jenkins (1970) or Harvey {1981))},
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