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Foreword 

D. R. Nielsen, Chairman Working Group on Spatial and Temporal 
Variability of Field Soils, International Society of Soil Science 

J. Bouma, Secretary Working Group on Spatial and Temporal Variabil­
ity of Field Soils, International Society of Soil Science 

These proceedings refer to the first meeting of the Working Group 
on Spatial and Temporal Variability on Field Soils on behalf of 
Commissions I (Soil Physics) and V (Soil Genesis, Classification 
and Cartography), of the International Society of Soil Science. 
The meeting entitled "Workshop on Soil Spatial Variability", was 
sponsored by the International Society of Soil Science, The Soil 
Science Society of America and the U.S. Department of Agriculture. 
The objectives of the Workshop were to explore and discuss alter­
native statistical concepts and procedures of (1) enhancing the 
understanding and development of pedology, and (2) improving 
technology of soil survey, soil science and hydrology applied to 
present-day management of field soils. During the past decade, 
several national and international symposia have focused on the 
collection and analysis of soil and related environmental data as 
regards their spatial and temporal variations. Amongst these 
symposia, we consider the intellectual framework of this Workshop 
to be unique because it attempted to relate current efforts on 
statistical and mathematical interpretation of variability to 
contemporary soil classification programs with a viewpoint to 
future research. 

The Workshop consisted of invited papers and extended discussions 
in four general areas. The resulting one-half day sessions focused 
on general statistical concepts of quantifying variability and 
upon applications to hydrology, soil survey, and miscible displace­
ment and leaching. In each session two or three invited speakers 
presented 30 - 45 minute lectures designed as reviews of conceptual 
models, statistical approaches and experimental methods useful in 
studies of spatial variation. Each speaker's presentation was 
followed by an open discussion during which participants presented 
comments based upon their own experiences or questions directed 
towards the speaker or the audience. The contents of this book 
are the unabridged presentations of Workshop participants. Each 
gave a full measure of his knowledge and experience to contribute 
toward the objectives of the Workshop. 

On behalf of all participants, we wish to express our gratitude for 
the support of the three sponsoring organizations, and especially 
the effort of David M. Krai and his staff of the Headoffice of the 
Soil Science Society of America for providing the logistics 



necessary for the Workshop. We also wish to express, on behalf of 
the participants, our sincere appreciation to each of the invited 
speakers - every one of whom was articulate and erudite - for 
focusing our attention on the underlying principles of the Workshop. 

And, finally, the two of us are especially mindful and thankful 
for the participation of the more than 200 persons who attended 
and made the Workshop a successful event. We look forward to them 
and future readers of this book to continue to develop our under­
standing of soil variability and its application to soil management. 



The role of geostatistics in the design and 
analysis of field experiments with reference 
to the effect of soil properties on crop yield 

Alex B. McBratney, CSIRO Division of Soils, Cunningham Laboratory, 
St. Lucia, Queensland 4067, Australia 

"Soil isn't important for crop yield, it doesn't give a 
significant effect." 

A statement such as this or some close version of it has been 
heard by the author at various agronomic centers around the world. 
We, as soil scientists, find these expressions frustrating. My 
aim here is to discuss briefly why such statements are^ade and to 
suggest how geostatistical methods can lead to improved methods of 
field experimental design and analysis. 

The Effects of Fisherian Design 

There are two main reasons for statements of the kind made 
above. The first is Fisher's field experimental design and 
analysis. Fisher's great agronomic achievement in the 'twenties 
was to find a technological solution to the problem of soil varia­
tion in field experiments. Through randomisation and blocking he 
removed, without estimating, the effect of soil and other uncon­
trolled environmental variables. His approach was outstandingly 
successful and the methodology has largely stood the test of time. 
From this point of view, the statement above is an artifact of the 
method. Probably also as a result of the success of the method, 
the number of uniformity trials and studies of soil and crop yield 
covariation diminished markedly after the 1920's (cf Vieira 
et al., 1983). The second reason for the statement is that soil 
scientists, over a period of 60 years, have evidently not 
explained with sufficient clarity to statisticians and agronomists 
the importance of soil in crop growth and how it could be taken 
into account. 

Recent Developments in Field Experimental Design 

Recently, there have been some new ideas on field experi­
mental design and analysis which at least try to account for the 
spatial variation of the crop (Green et al., 1984; Wilkinson 
et al., 1983; Patterson and Hunter, 1984; and Williams and 
Patterson, in press). The first two methods assume a smooth trend 
plus independent errors model, which seems unrealistic. The 
method of Patterson and Hunter assumes an isotropic exponential 
semi-variogram and that of Williams and Patterson an isotropic 
linear semi-variogram. These latter two methods do not appear to 



be sufficiently general; my studies of uniformity trials, two of 
which are depicted in Fig. 1, show that the form of variation of 
crop yields may be non-stationary or periodic or anisotropic, or 
some combination thereof. Clearly, a method is required which 
allows the form of the semi-variogram to be estimated from the 
experiment, such a method is outlined below. 

The Role of Geostatistical Methods 

Briefly, geostatistics has a "part to play in field experi­
mental design because of its ability to describe quantitatively 
soil and crop variation and covariation..and to perform block pre­
dictions and co-predictions. I see the use of geostatistics in 
three, proceedingly more involved, applications. 

1. The use of soil property semi-variograms to design plot and 
block size and shape. 

Assuming that there are a few soil properties controlling the 
spatial yield variation of the crop and there is some proportional 
relation between these variances, then the anisotropy of the semi-
variogram will suggest plot (and Mock) shape. The smaller plot 
dimension should be in thé direction of maximum variation and the 
larger dimension perpendicular with the ratio of the sides equal 
to the geometric anisotropy ratio. The size of the plots and 
blocks will depend on the form of the variation and variances for 
them can be calculated using integrals of the semi-variogram. 
Qualitatively, if transitive behaviour is observed blocking will 
not be required if plots with dimensions similar to the range can 
be used. If the range is very large compared to the available 
experimental region then blocking will proably be required. (It 
appears that classical experimental designers assume a linear 
semi-variogram! ) 

2. Co-spatial soil and crop surveys 

If one does not wish to assume the form of the relationship 
between the variances of soil and crop attributes then a co-
spatial soil and crop survey should be carried out. This is a 
combination of a geostatistical soil survey and a uniformity 
trial. For this to be fruitful, the size of yield plots and soil 
grids should be less than the range of spatial dependence. This 
should allow the calculation of cross semi-variograms of the soil 
and crop attributes as well as the regression of yield on soil 
attributes (allowance should be made for spatial dependence and a 
method such as that described by Cook and Pocock (1983) should be 
used). 

3. Embedded field experimental designs 

In an attempt to account for spatial soil and crop variation 
in field experiments, it is possible to perform a co-spatial soil 



Fig. 1 Spatial analysis of two uniformity trials. 

Left upper The navel orange uniformity trial of Batchelor and 
Reed (1918). Surface showing the yield of oranges 
on 20 by 50 trees on a 22 ft. grid, 

middle Two dimensional autocorrelation surface to lag 10 
in both directions. The ridge from center back to 
center front of this surface is in the same 
direction as the yield surface from back to front. 
Note the slight anisotropy. 

lower Two dimensional spectral density surface smoothed 
with a two dimensional Barlett window to lag 10. 
Directions are the same as the autocorrelation 
surface. There is no significant periodic 
behavior; all the power is at low frequencies. 

Right upper The IR8 rice uniformity trial of Gomez and Gomez 
(1976). Surface showing the yield of rice on 18 
by 36, 1 meter square plots. Note the non 
stationarity from left to right, 

middle Two dimensional autocorrelation surface to lag 10 
in both directions. The ridge from center back to 
center front of this surface is in the same direc­
tion as the yield surface from back to front. 
Note the strong anisotropy probably caused by the 
non stationarity. 

lower Two dimensional spectral density surface smoothed 
with a two dimensional Barlett window to lag 10. 
Directions are the same as the autocorrelation 
surface. There is no significant periodic 
behavior; almost all the power is at low 
frequencies. 

For further discussion of the methods used to compute these 
diagrams, and for an example of periodic variation in a 
uniformity trial, see McBratney and Webster (1981). 
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Fig. 2 Embedded field experimental designs 

Left upper First order nearest neighbor (4 neighbors) 
embedded Latin square design with 2 replicates on 
a square grid, 

lower First, order nearest neighbo'r embedded Latin 
square design on an equilateral triangular grid. 

Right upper Second order nearest neighbor (8 neighbors) 
embedded Latin square design on a square grid, 

lower Second order nearest neighbor embedded 2 cubed 
factorial design with 4 replicates on a square 
grid. 

N.B. The grey plots need not necessarily be as large as 
the main treatment plots. 

http://fc._i__i._i


and crop survey as described above and follow it up in the next 
growing season with a classical field experiment on the same area. 
If spatial patterns vary from season to season then perhaps a 
better approach is to combine the co-spatial soil and crop survey 
and classical experimental designs - such a combination may be 
called an embedded design. Such schemes based on square and tri­
angular grids are shown in Fig. 2. These diagrams are diagram­
matic and are primarily intended to show the spatial nature of the 
designs. For example, in Fig. 2, it is questionable whether 
blocking of the replicates is required because of the local con­
trol afforded by these designs. The grey plots in each diagram 
are control plots and the named white plot is a treatment plot. 
The control plots can be measured for soil attributes and crop 
yield and a regression model obtained. These values can then be 
used to krige (or co-krige) the environmental yield on the treat­
ment plots. Further soil analyses on the treatment plots will 
allow detection of any deviation between predicted soil effects 
and those observed, suggesting some interaction between treatments 
and soil properties. 

Statisticians will eschew these embedded designs because 
relative to classical designs they will be regarded as ineffi­
cient. Presumably this inefficiency is measured by equating 
information gained with increased effort and area of the experi­
ment. It may not be a simple matter to estimate the information 
gained from an experiment and the formulation of an economic or 
scientific loss function seems difficult. Statisticians have been 
extremely parsimonious in their experimental designs, however this 
has not led to complete satisfaction with the users of such 
schemes. Inefficiency is refuted on the grounds that these 
designs allow realistic spatial models to be fitted explicitly. 
To the experimenter there is no real substitute for this. 

Conclusions 

(1) At present there is a lack of quantitative co-spatial soil 
and crop data. 

(2) The design, execution and analysis of spatially integrated 
soil and crop surveys and field experiments should become a 
joint research topic for agronomists, soil scientists and 
statisticians. 
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Spatial variability: geostatistical methods 

Allan Gutjahr, Department of Math and Statistical Research Center 
New Mexico Institute of Mining and Technology, Socorro, NM 87801,USA 

Introduction 

Recent research in the soil sciences (Byers and 
Stephens, 1983; Bresler and Dagan, 1983) and hydrology 
(Delhomme, 1978, 1979; Bakr et.al. 1978; Sutjahr 
et. al., 1978; Butjahr and Belhar, 1981) emphasize the 
concepts o-f spatial variability in the study of soil 
properties and flow problems. The papers cited 
emphasize the statistical and stochastic nature o-f the 
phenomena. x 

In this paper I will present some o-f the basic 
concepts o-f spatial variability and illustrate their 
meaning. I will also discuss the assumptions involved, 
the type o-f data needed, and the advantages and 
limitations of these procedures. 

Problems of variation in soil properties have 
certainly been recognized for many years. In fact 
much of the statistical work on design of experiments 
and analysis of variance originated in agricultural 
research. The main concern, however, was with 
differences between mean values and variation was often 
viewed as a nuisance to be controlled for in some 
manner. 

By contrast, the geostatistical study of spatial 
variability deals with data and problems that involve 
uncontrollable variation that still has some kind of 
structure. Thus the data in space (or time) is 
presumed to have some connectedness or continuity 
embedded within the randomness. The objectives of such 
a study vary and include attempts to explain variation, 
to build predictive models, to interpolate or 
extrapolate values, to design sampling plans and to 
interrelate variations of different properties (e.g. to 
relate the variability of conductivity and head in a 
hydrologie context). Thus this approach views 
variation as part of an overall problem which can 
convey vital information about the phenomena studied. 

Random Fields 

The starting point in the geostatistical study of 
spatial variability is the notion of a random field or 



random -function in space (x will designate a vector in 
1, 2, or 3, space. The Glossory contains a more 
complete de-finition of terms). Simply, put a random 
-field, V(x) or spatial stochastic process is a random 
variable -for any -fixed value o-f x. V(x) might 
represent quantities like hyraulic conductivity, grain 
size or head at location x. 

A complete description o-f V(x) would require the 
joint probability distribution at any set of locations, 
x., j = l ... n. In "practice this amount o-f 
information is virtually impossible to obtain and 
instead only descriptions o-f moments are used. These 
include the mean, V(x) = E<V(x)), the variance, 
Var(V(x)). and, most importantly, a measure o-f the 
statistical relationship between y<jj.) and V<x„) known 
as the covariance cov(V(x.), V<x_)). 

We start by examining the concept of statistical 
homogeneity or second—order stationary. V(x_) is 
statistically homogeneous (second-order stationary) if 
V(x) has constant .mean and if Cov<V<x,), V<x„>) only 
depends upon the vector difference x.. - x_. namely if 

(i) E<V<x)) ='m, a constant 

and (ii) Cov<V<x«), V(x„)) = R(x.-x„), or 

Cov(V<x+y), V(x)> = R<y). 

R(y) is the covariance function evaluated at lag y. 
"** The covariance condition states the statistical or 

probabilistic dependence, is only related to the 
separation between the points. The constant mean 
condition is not a controlling factor if m<x> = E<V(x)) 
is known. Note also that Var<V<x;)) = R<0) for the 
statistically homogeneous case. In'some applications 
the homogeneity assumption is further specialized by 
assuming R(y) only depends upon y = l%l * the length of 
the , separation vector in which case we say the process 
is statistically isotropic. 

How can R(y) be estimated? In the general 
statistically isotropic case we could first estimate 
the mean, V, based upon observations V<x.) ... V Çx ) 
and then estimate R<y) by grouping points. Thus if & 
is some fixed value, we could group those points (x., 
jx.) into the set A<y) where y-A 5 lx.-̂ < I $ y+A afîd 
then estimate R(y) as follows: 

R(y) = E CV<x .)-V3CV(x, )-VD/# pts in A(y) 
pts in A(y) J 

Some examples of possible one—dimensional or 
isotropic covariance functions are shown in Figure 1. 

10 



Fig. 1 Isotropie covariances 

Generally, we expect covariances to decrease as y 
increases — i.e. the "influence" of V<^<) dies out as we 
move -further away from that point. An average distance 
over which significant correlation <R<y)/R(0) = the 
correlation function) is called a scale. A common 
procedure is to take the scale X to be that value where 
R<X)/R<0> = e (e-fold drop). 

There are cases where, at least within the area 
studied, V(x) does not appear to be statistically 
homogeneous. To study these situations the French 
geostatistics school (Matheron, 1971; 1973) has 
introduced the notion of intrinsic random functions 
where the increments or changes are assumed to be 
statistically homogeneous. 

An intrinisic random function of order zero is a 
random field V<x) with 

(i) E<V<x>> = m 

(ii) -r(y) = E<CV(x+y)-V(x) 3^3/2 

± VarCV(x+y)-V<x)3 

11 
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Fig. 2 Isotropie variograms 

The function Y<^> only depends on the lag y and is 
called the semi-variogram or just variogram. Typical 
variograms are shown in Figure 2 -for 1—dimension. I-f 
V(#) is also statistically homogeneous, Y<y) = R<0) -
R(y) and as y increases, Y<y,) approaches^ Var(V<y>) 
which is also called the sill. Correspondingly, the 
scale X is sometimes called the range »of the variogram. 

If V(}0 is not statistically homogeneous Y<y) will 
not approach a sill value <e.g. Figure 2-b). Figure 
2—c shows a variogram with a jump at O — called a 
nugget effect.' Buch an effect isn't really possible if 
VCx,) is continuous but it may be observed in estimates 
because fine-scale estimates aren't available; it 
can also be used to model measurement error. 

Using the same set A(y) introduced for estimating 
R(y) an isotropic variogram can be estimated by 

Y<y) 
pts in A 

CV(x .)-V(x, )3 /C2. #pts in A<y)3 

In some cases non—isotropy can be detected by 
calculating Y<y> in different directions and possibly 
correcting for trends in the mean (see Figure 3) 

12 
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n-s 

Fig. 3 Non-isotropic variograms 

R<£> and -y(y) are thus used to characterize the 
variability that~can exist for a random field. What 
else can be done with these functions? 

Kriging 

If V<x,), V(x_) ... V(x ) are measurements at n 
'N'l ~ 2 "Tl 

locations we may want to use them to interpolate or 
predict V at some other location x,. 
done using either R<y) or ir(y)? 
procedure commonly used to do this. 

In kriging, linear estimators, 

How can this be 
Kriging is the 

V(x) = E X . V(x .) , 
j=l J ~ J 

are used for the unknown value V(x). 
chosen so that 

The 
J 

(1) the estimator is unbiased: 

E<V(x>) = E(V<x>> 

13 



2 
and <2) The mean squared error E<CV(x)-V(x)3 Î is 

minimum. 

In bath the statistically homogeneous and the 
intrinsic random -function case minimizing the mean 
square error while using linear unbiased estimators 
will lead to n+1 linear equations in n+1 unknowns: 
X. ... X and y a Langrange multiplier. Note that the 
X,s and M depend upon the location j< so that at each 
location we get different weights. Usually this 
dependence on x is not explicitly shown. 

The kriging variance, or 'minimum mean squared 
error is also usually obtained 

ff.2 = varEV(x)-V(x)1 = ECV(x)-V(x) I2 . 
k ~ ~ ~ ~ 

The kriging equations and kriging variances for the two 
cases discussed are given below. 

a. Statistically homogeneous case 

E X. R(x.-x.)-|i = R(x-x.); i = 1 

E X . = 1 

2 " 
ff. = R(0)- E X. R(x.-x)+|i. 

k j = 1 J ~ j ~ 

b. I n t r i n s i c Random Funct ion of order O 

14 

E X. Y < X . - X . ) + U = - r < x - x . ) ; i = 1 
. = 1 j ~ i •"* ~ ~ i ' 

E X . = 1 
j = l J 

2 " ff, = E X . T ( X . — x ) + j i 
k j ~ j ~ 



The equations in (b) can be obtained -formally -from 
those in (a) by taking R<Q) = 0, Y<y> = -R(^). 

The kriging estimators or "interpolators have 
several other interesting properties in addition to 
unbiasedness and minimum mean square error. 

(1) V(x) is an exact interpolator: V(x.) = V(x.) 
at the observation points 

(2) The weights X . and u depend on the covariance 
•function or variogram and the locations, but 
not on the actual values observed 

(3) m, the mean, is not needed to calculate the 
estimate V(x) 

2 
(4) a. yields a measure of the precision and 

again only depends on the X's, M , and the 
covariance -function or var iogram. / 

In a kriging study the above points are used in a 
variety of ways. For example, to validate a kriging 
model, an estimate is made at x. , an observation 

J 0 
point, by leaving out that point and using the 
remaining n—1 points to develop the kriging equations. 
This procedure is repeated with sucessively different 
points are excluded. The values CV . (x . >—V(x. )3 /<r. 

Jo ~Jo ~Jo k 

are calculated and averaged where the subscript j 0 

indicates the omitted point. This average value should 
be close to 1 if the model assumptions are true and the 
correct covariance function (variagram) are used. 

The fact that kriging variances only depend upon 
location and not actual V values can be used to see 
what effects added sampling can have on the estimates. 
Thus a fictitious point can be placed and the kriging 
weights and variances calculated for the changed 
situation. By moving the point one can decide on an 
"optimal" location for an added sample. 

Figure 4 shows schematically what kriging 
estimates would look like. The kriged path is smoother 
than the actual path, as one might suspect. In Figure 
5 the effect on c. of an added point is illustrated: 
note ar. = 0 at observations since values are exact at 
those points. 

Extensions and Modifications 

The kriging procedure can be extended to cases 

15 
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where mix) = E(V(>0) depends on x but the covariance or 
variogram assumptions still apply. 

One procedure is to approximate mix) by 
K 
E a, P. (x) where the P's are a set o-f "basis" 

k=l k k ~ 
-functions e.g polynomials). The unbiasedness conditions 
lead to K constraints and K Lagrange multipliers. The 
resulting kriging equations are called the universal 
kriging equations (Matheron, 1971). 

An alternative is to look at higher-order 
differences and assume some kind o-f stationarity or 
homogeneity for these differences. This leads to 
higher-order intrinsic random functions and generalized 
covariances (Matheron, 1973). Again kriging equations 
can be developed for this case. 

Another extension covers cases where we have more 
than one random field. This is an especially 
interesting case because one can speak/ of the 
"transfer" of information from one field to the other. 
In this case, for statistically homogeneous random 
fields U(x), V<x), the cross-covariance R (y) = 
cov<U(x+y), V(x)) is used as well as the auto-
covariance functions. The kriging question now becomes 
the following: Given U<x.,.) . .., U(x4 ) and V(x_.) ..., 

^11 '•'•'in ^21 
V(x_ ) find the prediction of V<x). The unbiasedness 
conditions can become more complicated. The use of 
this co-kriging procedure along with physical models 
that interlink the two fields is especially intriging 
because it can tell us something about the worth of 
different pieces of data. 

In Figures 6 and 7 I show some plots of kriging 
variance for a head/transmissivity model where the two 
quantities are related by a flow equation. The cross— 
covariances needed are found by using the flow equation 
and a spectral approach I will touch upon briefly and 
that I'm sure Lynn Gelhar will refer to in his talk. 
In the Figures kriging variance contours are shown for 
2 networks of observations in each case. The 
observations are taken at points separated by one or 
two correlation lengths of the jfnT random function 
where 0's denote transmissivity (T) measurements and 
crosses indicate head measurements. In Figure 6 the 
dashed contours correspond to the network with five 
head measurements (each one correlation scale apart) 
and 2 transmissivity measurements (2 correlation scales 
apart), while in Figure 7 the contours are for 
measurements on observations 2 correlation scales 
apart. The contours are only shown for the first 
quadrant and the networks are presumed to have their 
centers at the origin. This model contains within it 
the seeds for a kind of inverse procedure and a method 

17 



6 VarÜn. T)='.1 
Correlation Scäle = l Contour Map 

8 
7 

6 
5 

4 
3 
2 
1 

0 

: 1.35 
1.20 
1.05 

. 9 0 

. 7 5 
. 6 0 
. 4 5 
. 3 0 

. 1 5 

» £-

1 Var(ln T ) = 1 
Correlation Scale = 1 

Figs 6 and 7 Kriging variance contours. 
Co-kriging Transmissivity/Head 

Contour Map 

6 
5 
4 
3 
2 
1 
0 

1.05 
. 9 0 
. 7 5 
. 6 0 
. 4 5 

. 3 0 

. 1 5 



•for evaluating worth of different types of data. 
Kriging has also been used to study methods for 

creating what might be called possible realities or 
realizations of random fields. Recall the kriged paths 
(e.g. Figure 4) are smoother than the real paths. In 
some studies we want to re-create paths through the 
sampled data points (as a kriging estimator does) 
that exhibit the kinds of variation and correlation 
seen in reality. 

Thus we want a conditional random field V(j^), 
given observations V(x.) ... V(x ) . Delhomme (1978, 

^1 ~n 
1979) gives examples of such conditional simulations 
which use the kriging procedure. One need not use 
kriging to do this but it does lead to a rapid method 
for generating these realizations. 

The conditional simulation approach first finds 
the kriging weights for the given covariance function 
and data locations. Then an unconditional random field 
s (£) is generated with the desired covariance 
behaviour. Finally this field is kriged, using the 
previous weights to get s (x) and then the conditioned 
field, u 

s (x) = V(x) + Cs (x) - s (x)3 
c ~ ~ u ~ u ~ 

will have the desired properties. Conditional 
simulations are useful for studying input-output 
relationships in cases where two fields are related to 
each other. 

Kriging — uses, abuses, advantages and disadvantages 

The ready availability of computer codes makes 
kriging and its relatives good candidates for use and 
abuse in a variety of applications. In carrying out 
kriging studies there are things to be aware of and in 
this section some uses, warnings about misuses and 
problems that may be encountered will be discussed. 

First let me discuss advantages of kriging some of 
which I have already mentioned. 

(1) The X's depend on x, R(y) (or Y<y>) and the 
x . locations but not on 1:he V(x .) 's. This 
makes sample design studies possible and 
studies of where points should be placed to 
minimize variances. 

(2) V(x>) is an exact interpolator. If the 
V(x.)'s contain measurement error that can 
also be incorporated into the kriging 
equation. 
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<3) The mean m is not needed to get V(£). 

(4) The kriging variance yields a useful measure 
of accuracy. 

(5) The procedure is general and flexible if the 
assumption are valid. 

What are some disadvantages and things to watch 
out for? 

(1) The covariance (variogram) must be known. 
Very often the estimates of the 

. covariance (variogram), behave poorly and are 
difficult to interpret.,- In addition the same 
points used to estimate the 
covariance (variogram) are often used in the 
kriging procedure. To minimize the effects 
of correlation apd bias, standard 
functions are fit by eye to the 
experimentally observed functions. The 
effects on the kriging variance of using 
the same data for both the 
covariance (variogram) estimates and for 
obtaining the weights still needs 
exploration. 

(2) The mean must be constant or have a known 
form. One can get around some of the 
problems by using intrinsic random function 
theory and generalized differences or by 
using universal kriging. However both of 
these options are considerably harder to 
apply and interpret. Ip addition these 
procedures are not as readily implemented. 
An alternative is to fit a mean equation or 
trend and remove that mean from the data. 
This may, however, have an undesirable effect 
on the covariance (variogram) estimates. 

(3) The statistics of covariance (variogram) 
estimates are difficult to study and not well 
known. 

(4) In theory, kriging can handle anisotropic 
covariance functions or variograms but again 
in practice that is hard to do. Virtually 
all standard kriging packages don't include 
options for anisotropy. 

Kriging is not an automatic procedure. In carrying it 
out one should validate the model as much as possible 
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and be aware of the limitations. Used in that way, 
with thought, it can be a useful technique for studying 
spatial variability in space and time and its 
consequences. 

Spectral Methods and Representations 

Kriging is a kind o-f orthogonal projection 
procedure involving projection onto the data. It is 
similar in that respect to regression and other 
multivariate techniques. In carrying out analytical 
calculations that involve equations connecting 
statistically homogeneous random fields we often use 
yet another "orthogonalization" procedure. This is 
generally referred to as the spectral representation 
theorem (Lumley and Panofsky, 1964; Koopmans, 1974; 
Rosenblatt, 1973). I will state it and then discuss 
what is says and why it is so important. 

The Spectral Representation Theorem / 

If V<x) is a statistically homogeneous random 
field with mean 0 and R<^> = cov(V(x.+v), v(x)) 
continuous at 0, then there is a unique (with 
probability 1) complex process Z(k) and a positive non-
decreasing function F<k) with the following properties: 

(i) R<y) = S expîik-yîdF(y) 

» 
<ii) V(x) = S exp{ik-xîdZ(k) 

—» 

(iii) E(dZ(k)) = 0, E(dZ (k)dZ*(k' ) ) = O, k £ Jk' 

E<ldZ(k)I2) = dF(k) 

In the above the integrals are 1—2 or 3 
dimensional depending on the region, dF(k) = f(k>dk if 
a spectral density f (Jk) exists; F(k) is~the spectral 
distribution and * designates complex conjugate. 

Now what does this formidable expression mean? 
We can take the original process which involves 

correlation and inter—relationship and write it as an 
integral of a (complex) process that has uncorrelated 
components. It involves a disentangling of the V(x,) 
process into "independent" pieces in the Z(k) process. 
For many problems the spectral representation will 
allow us to study terms in isolation because they don't 
mix or interact. 
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This procedure is analoguous to decompositions of 
sums of squares encountered in analysis of variance. 
There one tries to split the sources of variability 
into different parts and assign them to different 
causes. Namely, (ss = sum of squares) 

ss total = ss between groups + ss within groups 
is a basic identity in one-way analysis of variance. 
The same kind of decomposition occurs in the spectral 
representation above. In fact, 

var(V<j«>> = ƒ f (k)dk 

S f<k )Ak. + f <k2>Ak. + ... 
With f<k.)Ak = variance associated with frequency k'., 
the décomposition of variance is like that in tMe 
analysis variance. 

The study of spatial variability by using 
stochastic methods is still being developed. It can 
yield insights into the variation that exists in the 
field, the continuity of the field and the uncertainty 
one can expect. ' With proper care the methods should 
help in interpretation *of data and in developing 
fundamental understanding of physical models. 
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A BLOSSARY OF TERMS AND SYMBOLS IN SPATIAL VARIABILITY 

Random -field or spatial stochastic process V(x): This 

means -for each fixed x (e.g. a location in space) 

V(x) is a random variable. 

Probability density o-f V<x); The -function g<v: x) such 

that the Probability v<x) is between a and b, 

denoted by P<a < V(x) $ b) ,. is given by 

b 
P(a < v(x> $ b) = S g<v: x)dv. 

-v. a « ~ 

Expected value or mean o-f^.V(x): The expected value or 

mean (denoted by E(V(x)) or V(x)) is the 

probability-weighted average, 

» 
E<V<x)> = S v g(vs x)dv. 

-» 

Covariance -function for a random field: This 

designated by cov(V(x,!, V(x„)) and is defined as 

tovtVfXj), V(x2>) = 

EC(v<x )-V<x ))<V(x )-V(x ))3 
"w* •*#•* *\#-^ » v ^ 

It measures statistical relationship between field 

values at two different locations. 

Statistical homogeneity or second—order stationarity: 

The random field V(x) is statistically homogeneous 

or second—order stationary if 
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(i) E<V(x)) = m, a constant, 

and <ii) covtVfx.), V(x^)) = R(x.—x„> only depends 

upon the separation vector x.-x_. 

y = x.-x7 is called the lag vector. 

Covariance -function for statistically homogeneous 

processes: R(y) = cov(V(x+y), V(x)), the covariance 

•function as a -function o-f the lag y. 

Statistically isotropic process: A statistically 

homogenous process where R(y) = R(lyl) = R(y) only 

depends on the separation distance, y = lyK 

Correlation -function: p(y) = R(y)/R(0). 

Scale: An average distance over which points are 

significantly correlated. For an isotropic 

covariance function this is sometimes taken as that 

value X where e = fl<M, an e-fold drop. 

Intrinsic random function of order 0: A random field 

2 
V(x> with constant mean where E(tV(x+y>—V(x)3 ) only 

depends on y. 

variogram or semi-variogram: The function 

Y<y) = E<CV(x+y>-v(x)32>/2 

for an intrinsic random function of order 0. 

Sill: If Y<y> has a limiting value as y increases, the 

limit is called the sill and equals var(Vtx)). 

Range: The scale in a variogram for a statistically 

homogeneous process. 
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Unbiasedness: Hf G(V<x.) ... V(x >) is some function 
r _ _ .vl ^.n 

o-f V(x.) ... V<x )) it is an unbiased estimator o-f 
,.1 ^n 

V(xQ) if 

E(B(V(x.) ... V(x )) = E(V(xrt>). 
^1 -v,n „0 

Mean squared errors If GlVlx.) ... V(x )) is an 
~1 ^n 

estimator of V(x_) the mean squared error of B is 

E<CG(V<x«) ... V(x ))-V(x,.)32) . 

It is a measure of how "close/1 the estimator B is to 

the quantity being estimated, Vtx ). 

Estimator, V: For estimators the notation 

V(xrt) = B(V<x,) ... V(x )) is often used. 
-v.0 -*.1 ^ n 

Linear Estimator: An estimator of the form 

V = X, V(x,)+X„ V<x„)+ ... X V<x ) 1 „,1 2 „,2 n ,̂n 

n 
= E X . V<x .)• 

J-l J ~J 

where the X's are constants., 

Kriging: The procedure that finds the best (minimum 

, mean square error) linear unbiased estimator of V<x) 

based upon observations V(x.) ... V(x ). For a 
„,1 „,n 

statistically homogeneous process with covariance 

function R<y), this yields a set of linear equations 

for the "weights" X.; 

E X. R(x.-x.)-ji = R(x.-x), i 
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n 
E X. = 1. 

j=l J 

li is a Lagrange multiplier. For an intrinsic random 

•function of order zero the covariance function R(y) 

can be replaced by — T<y>, the negative o-f the 

variogram, to get the kriging equations. 

Kriging variance: The variance associated with the 
2 

kriging estimator, designated by <r. . This is also 

the minimum mean squared error. For a second-order 

stationary process it is ^ 

~ 2 2 n 

E(CV(x)-V(«) 3 = ff = R(0) - E R(x-x,)+M 
•># «Li •*• ^ i = 1 ~ ** 

For an intrinsic random -function, again R is 

replaced by — y. 

Co-kriging: The extension o-f kriging to the case where 

V<x) is estimated using observations -from two random 

•fields where now the cross-covariance, cov(V(x+y), 

U(x)), also enters in. 

Spectral density -for a statistically homogeneous random 

-field: A Fourier transform of the covariance 

function (k = wave number or frequency), 

R(y) 

f(k) = X ... S exp<-ik-yîdy dy 

~ M <2n)p 

X R<y) exp£-ik-y> dy 
<2n)P 

where p = the dimension of the space. The 
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covariance -function can be recovered from the 

spectral density by an inverse Fourier trans-form. 

Spectral representation theorem -for a statistically 

homogeneous, mean zero, process: This states that 

i-f V<x) is statistically homogeneous random field 

with E(V<x)) = 0, covariance -function R(y), spectral 

density -f (k> then there is a unique (probability 1) 

complex process Z(k> with thev-f oil owing properties 

<i) V<x) = X e * 2 dZ(k) 
-» 

<ii) E(dZ(k)) = 0, E(dZ<k ) dZ*<k )) = 0, 
*\j *•»* n^ ™ ^u^^ 

k l = k 2 ' 

and E(ldZ<k)l2) = -f(k) dk 

(* = complex conjugate.) 

The spectral representation theorem resolves the 

original process into a "uncorrelated" complex 

process which greatly simplifies some calculations. 
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Discussion 
D. Go s e and 
L. Wilding: 

A. Gutj dhr: 

H. ten Berge: 

A. Gutjahr: 

H. ten Berge: 

A. Gutjahr: 

B. Luxmoore and 
B. Sahuhway: 

A. Gutjahr: 

What is meant by a constant mean and what are 
the requirements for a constant mean? 

The constant mean assumption means there is no 
trend within the range of study. It is not as 
crucial to the analysis if (i) the trends can be 
estimated and removed or (ii) one uses generali­
zations of kriging like universal kriging, 
where the trend can be estimated, or intrinsic 
random functions of higher order. 

Is the condition that the variance be constant 
across the field implied in second order 
stationarity and is it a severe condition? 

Yes. It is implied by the definition of second 
order stationarity and it , may be ß serious 
restriction in some applications. In such cases 
one might look at some transformed values (like 
logarithmic transformations) of the data, try 
multiplicative types of corrections or use 
variograms and the intrinsic random function 
approach. 

Is biasedness only a 
sampling procedure? 

characteristic of the 

No. It can also be a characteristic of the 
statistical procedures used in estimation and 
prediction. 

In the case of a linear variogram is there some 
of deciding between a trend in the data and a 
stationary process without a trend in the data? 

One can sometimes detect trends in the data by 
examining the variogram in different directions. 
For example, if there is a linear trend in a 
particular direction, the variogram in that 
direction will have a parabolic behavior and one 
can then remove the trend in that direction (see 
Delhomme, 1978). The question of a trend is 
often a difficult one to decide on the basis of 
the data and may again require higher order 
intrinsic random functions, or using subsidiary 
knowledge of the process to remove that trend. 
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C. Kirda: If a set of data has trends should the trend be 
removed before finding the correlation length 
from an auto-correlation analysis? 

A. Gutjahr: Yes. Often trends can be spotted from the 
covariance functions if they have shoulders or 
tend to remain high as the separation distance 
increases. Correlation lengths calculated from 
the data without the trend removed are then too 
large, and aiso tend to include a deterministic 
component in the random model. 

M. flash : Is there any test for the range or correlation 
distance in correlation functions? 

A. Gut jähr: There are tests for correlation distances 
(using, for example spectral analysis) and in 
the stationary case the tests would be the same 
for the range in the variogram. However these 
procedures often yield estimates with high 
variances and hence are not very precise. 

W. Jury : There have been several instances of an apparent 
correlation between sampling grid density and 
correlation scale on a given field or even on 
the same transect of a field. It has been 
postulated that this would always result from 
non-linear drifts which are difficult to remove. 
How does this affect the measurability of the 
correlation scale? 

A. Gutjahr: Yes, this can affect the measurement of the 
correlation scale. It can also occur that 
within the region of interest there may be 

-several scales. As Lynn feelhar indicated in his 
talk, the scale of the problem and the scale of 
the correlation function are interrelated. The 
region of study should be large enough to 

1 include several correlation scale lengths in 
which case the larger scale variation may be 
treated as a trend. In addition if there are 
significant non-linear trends one might again 
go to an intrinsic higher order function 
approach (using generalized differences) and 
estimate the generalized covariance. 

L. Wilding: How many couples of observation are needed at 
the greatest distance for statistical reliabil­
ity or validity? 

A. Gutjahr: Unfortunately the statistical behavior of the 
variogram is not a simple one and still deserves 

30 



more study. As a rule of thumb one should have 
about 50 data points to get reasonably reliable 
estimates and then perhaps a good second rule of 
thumb is not to place much reliance on variogram 
estimates beyond 20% of the maximum distance 
(this second rule of thumb is often used in time 
series analyses). Namely if the biggest pair-
wise separation is 100 meters only look at the 
variogram out to 20 meters as having reasonable 
reliability. This should be tempered, of 
course, by looking at the number of data pairs 
in the estimates. 

R. Horton: You have described two tools: correlogram and 
the semi-variogram. The correlogram requires 
second order stationarity in order to be valid 
while the semi-variogram requires less confining 
intrinsic assumption. Should one use the 
semi-variogram instead of the correlogram? 

A. Gutjahr: If non-stationarity is a possibility then I 
would examine the semi-variogram. If a sill is 
shown then I would use a correlation function 
because it is often easier to interpret and also 
treat statistically (especially if the data is 
equally spaced). 

S. Rao and Is there any implicit assumption made about the 
R. Cassel: distribution (e.g. normality) for data used in 

kriging. If not why do some researchers first 
transform the data? 

A. Gutjähr: In both variogram estimation and kriging the 
assumption of normality is not needed - only 
expected values or averages enter in. Transfor­
mation may be used however for a variety of 
reasons like stabilizing the variance, making 
probability statements about kriging estimates 
and for developing procedures for estimating 
variograms (e.g. via maximum likelihood proce­
dures) . However the kriging procedure itself 
doesn't require distributional assumptions. 

P. Nkedi-Kisza 
and 

L. Stroosnyder: 

What are the basic differences between classical 
agricultural statistics and geostatistics? At 
what stage should either be used? Can one use 
both? What about independent assumptions? 
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A. Gutjahr; Generally in classical agricultural statistics 
one is interested in estimating means and also, 
generally, the data are presumed to be indepen­
dent or contain independent random error. Of 
course situations do exist where variables are 
assumed to be related (like analysis of covari-
ance) but the main focus is on controlling for 
variability with appropriate designs and proce­
dures. 

In geostatistics the focus is on the inhomogene-
ities that exist and on the relationship between 
values - correlation occupies center stage. 
Thus if one wants., to estimate the variability 
and continuity that exists, geostatistics is one 
way to do that. 

The two (classical and geostatistical methods) 
can be used together. For example one might use 
geostatistics to estimate underlying variability 
within a fie!l.d and then classical statistics to 
compare treatments in different areas after 
correcting for, inherent variability. 

In addition if measurements are far enough apart 
(as judged by examining the variogram or covari-
ance function) observations become uncorrelated 
and again one might use classical procedures for 
widely separated points. 

R. Bruoe ; 

A. Gutjahr; 

C. Gantzon and 
M. Nash; 

A. Gutjahr; 

Kriging is 'tailed an "exact" interpolator. What 
happens if measurement errors exists? Is 
kriging as a predictor to be applied only within 
the domain of the original study? 

One can extend the kriging procedure to include 
measurement error by modifying the covariance or 
variogram function in which case we no longer 
have an exact interpolator. Kriging is an exact 
interpolator within the field of interest and I 
should not really have referred to it as a 
predictor. 

Can you discuss the difference in efficiency 
between taking samples randomly within the field 
versus ordered regularly spaced sampled? If the 
samples are placed randomly how is the semi-
variogram estimated? 

I don't know what the efficiency would be. I 
would prefer a regular grid or smaller grids 
superimposed on larger grids for estimating 
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variograms if there are many sample points 
because this would allow the use of spectral 
methods if needed. However in general this is 
not an easy question to answer. The estimation 
would proceed as if the samples were non-random 
by using grouping of data points as described in 
the paper. 

E. Bresler: To best estimate the variogram by a least 
squares procedure one needs a sufficient number 
of pairs to cover the whole range of lags from 
zero to the maximum. In cases where the number 
of data points is small (30-50 points) random 
sampling might be preferred over regular sampl­
ing to get estimates at larger lags. 

J. Hendriakx: 

A. Gutjahri 

B. Schuh; 

J. Allen; 

A. Gutjahr; 

C. Wang : 

For estimating variograms and the trend, maximum 
likelihood methods can be useful if the data is 
from a multivariate normal population, 

What is an appropriate method to validate 
kriging results? 

A method often used for this purpose is the 
"leave-out-one data point" or jackknife proce­
dure described in the paper. 

What are the effects of improper selection of 
the variogram in kriging?. 

A. Gutjahr: In the stationary case the important features 
are generally the sill and the scale or range 
One can also try different variogram models and 
see what effects occur on the kriging estimates 
and kriging variances. 

How can a priori patterns of spatial variability 
(like soil forming factors) be incorporated into 
geostatistical methods to account for spatial 
anisotropy? 

Here one might try to use modeling studies to 
account for known factors or try to put in 
features as added constraints. In general there 
is no all encompassing answer and one needs to 
study the specific situation. 

In a kriging study we did with 50 columns of 
soil samples (150 samples within each column) 
the semi-variogram for each column varied 
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greatly in shape. How can this information be 
used to study a similar land form outside the 
study area? 

A. Gutjähr: It is difficult to give an answer to this 
without looking at the data - kriging and 
semi-variogram studies are not always automatic. 
However it may be the case that you have a large 
degree of anisotropy in the region which yields 
widely differing semi-variograms. 

I. Muraka: Could you elaborate^ on the "size of landscape" 
to which geostatistical analysis techniques 
would be limited to? 

A. Gutjähr: Again I would refer to some later comments by 
Lynn Gelhar on problems of scales. There may be 
several scales and we need to take the scale of 
the problem into account when doing this kind of 
study - that often is information obtained not 
within the geostatistical study but from other 
sources. .̂ 

F. Whisler: When will someone write a book with underlying 
theory and detailed examples and with programs 
adaptable to P.CS.? 

A . Gutjahr: - Probably when someone has a lot of time and is 
assured they can make lots of money by doing so! 
Seriously, though, it is a subject still 
evolving - as more researchers use it and 
develop it Ï' suspect texts will be forthcoming 
that meet the desired objectives. I would be 
careful, though, in looking at texts to be sure 
that they emphasize both what can't be done as 
well as what can be done, and that include good 
doses of common sense and thought - the proce­
dures and methods aren't panaceas and can't be 

• applied without thought. They should not be 
considered as "methods looking for a problem." 
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Time series in the soil sciences: is there 
life after Kriging? 

R.H. Shumway, Division of Statistics, University of California, 
Davis, USA 

1. Introduction 

The development of statistical techniques for analyzing data in 
the soil sciences has traditionally followed along the lines laid 
out by early disciples of R.A. Fisher (e.g. , Snedecor and Cochran 
(1967)) who assumed that observations obtained in the field were 
independent and identically distributed. The recent shift away 
from this early methodology, termed "aggie statistics", for 
example, by Nielsen et al. (1983) has been fueled by the 
realization that data collected in agricultural field trials and 
in the soil sciences are inherently spatially correlated. It is 
physically more reasonable to expect that measurements of soil 
parameters such as temperature or electrical conductively should 
be correlated when they are measured at adjacent points in space 
or time. 

The resulting trend in the soil sciences has been to lean more 
heavily on geostatistics by which is meant the smoothing of 
experimental data using Kriging techniques developed by Matheron 
(1963). Such applications to the soil science are well documented 
in papers by Nielsen et al. (1982), (1983), Vieira et al. (1983) 
and Valdin et al. (1983) and by other participants in this 
workshop (see also Ripley (1981) or Journel and Huijbregts 
(1978)). The advantage of Kriging or CoKriging techniques is that 
one can do smoothing with a very sparse collection of observed 
data points whereas conventional time series techniques require 
that one collect relatively equally-spaced data from the random 
field. 

The continued development of remote sensing devices and other 
systems of instrumentation, however, will soon enable research 
workers to bring to bear a number of alternative techniques for 
analyzing multidimensional random fields. Early techniques 
proposed by Whittle (1953), (1954) can be used to develop 
approaches to the problems of modelling and fitting data using 
stochastic partial differential equations. The use of spectral 
methods, suggested by McBratney and Webster (1981), or Nielsen et 
al. (1983) can be extended to embrace old fashioned aggie concepts 
using spectral analysis of variance (cf. Shumway (1970), (1971), 
Brillinger (1979)). The use of lagged regression models (cf. 
Brillinger (1975), Priestley (1981)) can be considered in order to 
develop input-output models relating various measured soil 
parameters. Problems involving non-stationarity and missing data 
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in transects can now be approached using the state-space approach 
for smoothing and signal extraction (cf. Parzen (1984)). 

The purpose of the following discussion is to give some examples 
which demonstrate some of the kinds of questions which can be 
answered using the above techniques. The basic thrust of all of 
the methods is to identify models for the underlying processes and 
then to use standard statistical procedures based on maximum 
likelihood to estimate parameters and test hypotheses. In many 
cases, the models express the .original unobserved series as 
solutions to stochastic differential equations driven by white 
noise. This links the statistical approach to realistic physical 
models which have been used to describe the dynamic interactions 
of soil science parameters. The emphasis will be on signal 
extraction as opposed to the best linear unbiased criterion used 
by the Kriging method. ~ 

2. Signal Extraction 

A very versatile model can be developefl when it is suspected that 
some underlying phenomenon of interest satisfies a first or higher 
order differential equation. -The general form of the state-space 
model assumes that some unobserved underlying pxl vector signal of 
interest x(s) = (xj(s) ,... , x ( s » ' can only be observed through 
the qxl observation equation 

£(s) = M(s)x(s) + v(s) (1) 

for s=l,2,...,n where 2(s) = (y_i(s) > • • • »Zg(s)) ' denotes the 
observed vector at the spatial point s, Mfs) is a known qxp 
measurement matrix and v(s) is a qxl zero-mean vector noise 
process with qxq covariance matrix, cov(v(s)) = R. Although the 
signal process jc(s) is unobserved, it is assumed to satisfy the 

first-order difference•(differential) equation 
» 

x(s) = $ x( s _ 1 ) + w(s) (2) 

where « is a pxp transition matrix and w(s) = (w^(s),...,w_(s)) 
has zero-mean and covariance matrix Q. Equation (2) is called the 
state equation and describes the evolution of the state-vector 
3c(s) through space or time. The beginning value x(0) is assumed 
to have mean v_ and initial covariance T. The process x(s) can be 
stationary or non-stationary depending on the specification of the 
parameters $,Q,R,_p and E. 

The model in the above form is partially identified, but there is 
still the problem of estimating the parameters. This is usually 
accomplished using various nonlinear optimization techniques to 
maximize the likelihood function (see papers by Kohn & Ansley, 
Harvey, Jones and Shumway in Parzen volume (1984)). The model 
identification phase generally makes use of the Akaike 
Information Criterion, AIC, defined as (Akaike (1974)) 
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AIC = -2 log(Likelihood) + 2(no. of parameters) (3) 

where one chooses the model for which AIC is a minimum. 

A second important problem is that of extracting the signal x(s) 
from the data for given values of the parameters. The problems of 
developing the state-space model and estimating the state vector 
x(s) were solved in the landmark papers by Kalman (1960) and 
Kalman & Bucy (1961), who gave simple recursive 
solutions for the minimum mean square estimators; the procedure is 
now referred to as Kalman filtering and smoothing. Rather 
complete expositions of the basic principles involved can be found 
in Anderson & Moore (1979) or Jazwinski (1970). The advantage of 
the recursions is purely computational, since the ordinary linear 
minimum mean square estimator for x(s) involves inverting npxnp or 
nqxnq matrices whereas the Kalman filter-smoother procedure 
involves inverting n pxp or qxq matrices. 

Before turning to an example, it is useful to relate the model 
given above to the one used in Kriging. The ordinary Kriging 
model writes the univariate (p=q=l) version of equation (1) 
without the noise term, say as 

y(s) = x(s), 

where _x(s) is assumed to be stationary with constant mean value y 
(Universal Kriging assumes a general mean J3'^(s) where (3 and ̂ (s) 
are qxl vectors) and covariance function cov(x(s^),x(s2)) = 
CX(S]^-S2). The Kriging estimator at S = S Q is the linear unbiased 
estimator for y(sß) which has minimum variance. The form of the 
covariance is specified on a-priori grounds from a reasonable 
class of covariance functions using the variogram. 

Yx(m) = -| E(x(s-hn) - x(s))2 (4) 

= Cx(0) - Cx(m) 

as a guideline. The main differences between Kriging and Kalman 
filtering using the state-space model are as follows: 

1. Computational: Kriging requires inverting the (n+l)x(n+l) 
augmented covariance matrix. For p=q=l, Kalman filtering 
requires no matrix inversions. 

2. Modelling: Kriging chooses from a class of stationary 
covariance functions. The state-space model specifies the 
first order model (2) and may be non-stationary. 

3. Estimation: Kriging uses ad-hoc analysis of the variogram and 
noiseless prediction. The state-space procedure uses maximum 
likelihood estimation of the parameters and signal extraction 
under noise. 
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It should be noted that the signal extraction approach for the 
stationary signal plus noise model 

y.(s) = x(s) + v(s), (5) 

where all vectors are pxl, originated in the work of Kolmogoruv 
(1941) and Wiener (1949) who showed, using the spectral approach, 
that the optimal minimum mean square solution could be reduced to 
inverting pxp spectral matrices. This requires that one know the 
form of the spectra for the noise and signal processes. It would 
seem to be a promising direction in which to move if the series 
are multidimensional, that is, they depend on the vector parameter 
s = (si .So, • • • ,Sj) ' so that the Kalman recursions will not work. 
If the observations are regularly observed over a reasonably large 
grid, the 'spectral approximations are'valid and a considerable 
computational simplification results over direct brute force 
Kriging or CoKriging. We do not give details here but the reader 
is referred, for example, to Priestley (19f?l). An example in the 
one-dimensional case where the signal and noise spectra are 
estimated by maximum likelihood is given in Shumway (1984). 

As an example, of the state-spaee methodology, consider the data 
in Figure 1 taken from the study done by Morkoc et al. (1984) 
giving the mean values (over five transects) of yield and water 
and salt content at intervals of one five transects) of yield and 
water and salt content at intervals of one meter. The sprinkling 
system was arranged to distribute more salt (and more water) along 
the right-hand "side of the transect. Morkoc et al. (1984) 
consider jointly modelling salt and water content using a p=q=2 
dimensional version of (1) and (2). 

In order to illustrate the versatility of the state-space 
approach, we consider a simple smoothing model for a single series 
which is related to spline smoothing (cf. Erh (1972), Kimball 
(1974)), Wecker & Ansley (1983) and has been' proposed in another 
context by Kitagawa (1981) and Kitagawa & Gersch (1984). Assume 
for a single one of the series that we observe, say 

y(s) = x(s) + v(s) (6) 

2 
where v(s) has variance CTV, which can be interpreted as 
observation noise. The signal x(s) is assumed to satisfy a 

second-order difference (differential) equation of the form 

V2x(s) = wj(s) (7) 

where 

Vx(s) = x(s) - x(s-l) (8) 

so that 

V2x(s) = V(Vx(s)) = x(s) - 2x(s-l) + x(s-2) 
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HAX= 7.394 N!N= .688 

J I I L J L 
5 PÎS 

MEAN Y I E L D 

HAX= 19.824 MN= 3.666 

-L. 
5 PTS 

MEAN WATER CONTENT 

HAX= 5.736 MN= 1.714 

5 PTS 

MEAN SALT (EC 15--30 CM) CONTENT 

Fig . 1 Average over f ive t r a n s e c t s of y i e l d and a s soc ia ted 
water and s a l t content (1 p t = 1 m). (Morkoc e t a l . (1984)) 

39 



Now, by defining the the state vector as ̂ (s) = (x(s), x(s-l))', 
we may write the above model in the state-space form 

y(s) = (1, 0)(Js
(!j)J + v(S) (9) 

with 

/ x(s) | ,2 -1 wx(s-l) , /Wj(s) , 
lx(s-l) J ll 0^x(s-2) > l 0 ' (10) 

The identification allows us to use the maximum likelihood 

2 2 procedure for estimating the parameters ay and c^ ($ is known in 
this case) and the mean of x(0). 

The EM algorithm of Dempster et al. (1978) as developed in Shumway 
& Stoffer (1982) was used to estimate the parameters and gave the 
results shown in Table 1 below: 

Table i: Signal Extraction Parameters 
for Soy Data 

Yield 

Water 

Salt 

Observation 
2 

a 
v 

.109 

2.550 

.102 

Model 
2 a 
w 

.070 

.079 

.021 

Std. Dev. of 

Predicted Value 

.19 

.62 

, .16 

The values for the water content appear to have the largest 
observation error which leads to a larger standard error for the 
predicted value. 

The smoothed values as computed by the Kalman filtering-smoothing 
recursions (see Jazwinski (1970)) are shown in Figure 2, and they 
seem to do an excellent job of capturing the non-stationary trend 
behavior without smoothing out critical components. 

The special form considered here is obviously not the only model 
which can be treated under the state-space framework. One might 
want to add another component into the measurement equation which 
satisfies a first-order difference equation of the autoregressive 
moving average type (see Box and Jenkins (1970) or Harvey (1981)). 
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KAX= 6.89421 MIN= .646722 

JL L .J L. 
5 PTS 

SMOOTHED MEAN YIELD 

J. Li. 

HAX= 17.5956 WN= 4.13661 

..J L I L 1 L 
5 PTS 

SMOOTHED MEAN WATER CONTENT 

HAX= 5.5648 MN= 1.71331 

5 PTS 

SMOOTHED MEAN SALT CONTENT(EC 15-30CM) 

Fig . 2 S ignals ex t rac ted from Figure 1 us ing the s t a t e - space 
model in equat ions (9) and (10) with parameters as spec i f ied 
in Table 1. 
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3. Spectral Analysis of Variance, Lagged Regression 

The fact that data are autocorrelated over space does not preclude 
one from using analysis of variance or regression techniques as 
long as a collection of independent spatial series, say, along 
independent transects, can be identified. Then, a collection of 
transects with, say, characteristic A, can be compared with a 
collection of transects with characteristic B, keeping in mind the 
fact that observations made within a given transect are still 
highly autocorrelated. It is, well known that when the spatial 
series are stationary, the notion of variance is expressed in 
terms of the separate kinds of cyclical variation found in the 
series. The variance measured as "a function of spatial 
oscillations called frequencies is called the power spectrum. 
Nielsen et al. (1983) have identified furrows, tractor compaction 
and pre-plant irrigation as possible causes for cyclic variation 
in soil and have predicted the behavior to be expected in the 
power spectrum from such causes. •" 

In order to illustrate the possibilities along these lines, we 
consider some rather ancient and well-worn data on wheat yields 
due to Mercer & Hall (1911). ̂ . 

The data, shown as a rough contour plot in Figure 3, are grain 
yields in lbs. per plot, recorded over an acre which was divided 
into 500(20x25) plots 2.5m wide and 3.3m long (length corresponded 
to the East-West direction). The strongest characteristic of the 
observed yields is an apparent periodicity running down columns. 
The mean row profile averaged over the 25 columns is shown in 
Figure 1 and also exhibits this cyclical behavior. One way to 
analyze this periodic behavior over columns is to calculate the 
two dimensional wavenumber spectrum as in Ripley (1981) or 
McBratney & Webster (1981) who attributed the periodicity to an 
earlier plowing of the area into ridges and furrows. 

t 

We discuss here an approach that seems to be particularly 
appropriate for transect samples or for two-dimensional fields 
where the phenomenon of interest seems to be occurring parallel to 
or orthogonal to rows. Kunsch (1982) has compensated for this 
tendency in the Mercer-Hall data by adjusting all values for the 
column means. To be specific, assume that the s yield in the 
j row or transect satisfies the model 

y j(s) = g(s) +Vj(s) (11) 

j=l,...,N, s=0,...,n-l, where g(s) is an unknown fixed mean signal 
and v^(s) j=l,...,N are autocorrelated but mutually independent 
identically distributed stationary processes. 

The natural test to make in this case (cf. Shumway (1970), (1971)) 
is of the hypothesis that the mean signal g(s) is absent and this 
should be done on a frequency dependent (cycle by cycle) basis. 
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