

Bridging the gap between science and policy

- Uncertainties with respect to climate change and extreme weather events; knowledge about future is based on models
- Need for adaptive governance and for methodology to assess policy options with different, even conflicting, outcomes
- Need for indicators of outcomes for evaluating policy options relevant for stakeholders and reliable for scientists

Bridging the Gap Building from two sides

- Social Sciences side (led by IVM)
 - > Interviews repertory grid
 - > Workshops including more than the usual suspects
 - > Find indicators / methods useful for 'societal actors'
 - > **Useful** ways to represent uncertainty

Building coordination: PBL

- Natural Sciences side (led by KNMI)
 - > Statistical analyses of uncertainties in extremes
 - > Search robust parameters
 - > How useful is downscaling?
 - > Faithful ways to represent uncertainty

4 October 2012 | Arthur Petersen

Three stages

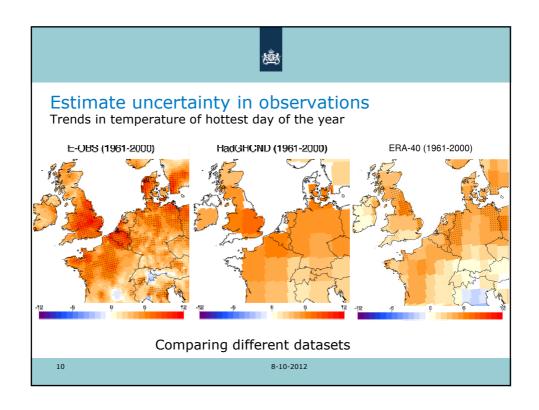
- Stage I: Identifying stakeholder perspectives and future scenarios (13 months)
- Stage II: Comparison and deliberation (6 months)
- Stage III: Improvement of scenarios / exploring options for adaptation governance

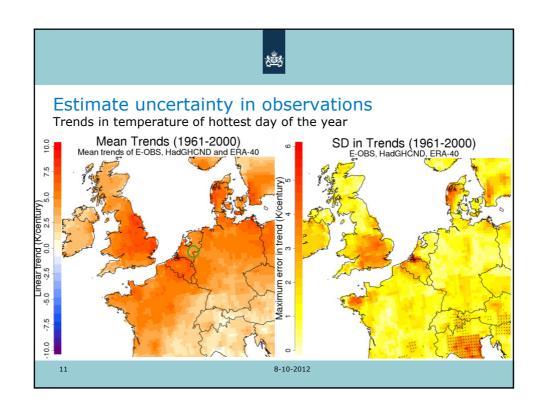
Component	Variance explained	Interpretation
Perspective 1	16%	Very disastrous, rescue needed
Perspective 2	15%	New versus old weather extremes
Perspective 3	12%	Prepare for (material) damage
Perspective 4	12%	People involved
Perspective 5	12%	Beyond imagination
Perspective 6	6%	Natural resources management

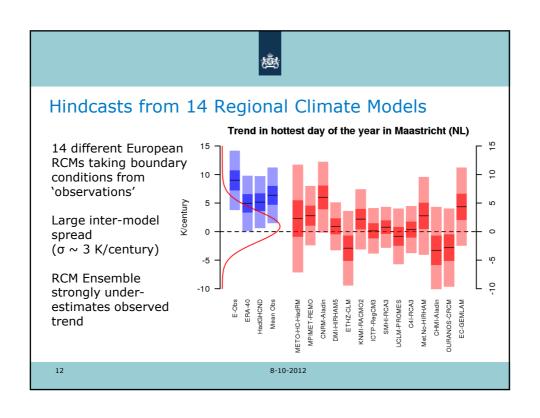
"Very disastrous, rescue needed!" (12 interviewees)

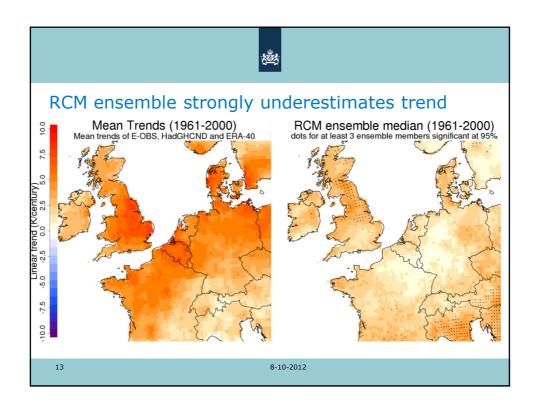
i.e. Very disastrous ------ least disastrous
Rescue needed fast ------ help can wait
Violent/ you can do little about ----- peaceful and calm

"New versus old weather extremes" (13 interviewees)


i.e. High temperatures ------ low temperatures


No impact on transportation----- Impacts on transportation


Happens in recent years------ happens since long



How do extremes change in the future? KNMI'06 scenarios for 2050

- Coldest winter day in the year: 1°C to 2.9°C warmer
- Hottest summer day in the year: 1°C to 3.8°C warmer

- Long periods of precipitation in winter: 4% to 12% increase
- Extreme storms in summer: 5% to 27% increase

• No insight for changes in wind extremes

14 8-10-2012

Stakeholder workshop 8 March 2012

4 October 2012 | Arthur Petersen

Project outputs (phases I and II)

- Four scientific articles (three submitted to Regional Environmental Change; Ecology and Society and Environmental Research Letters; one in preparation for Nature Climate Change)
- Six international conference presentations
- Stakeholder workshop March 2012
- Three MSc theses

Main results (phases I and II)

- Perspectives on extremes vary more within sectors than among sectors
- Raising concern about extreme events is difficult, since concern is mainly triggered by life-threatening personal experience
- Regional Climate Models (RCMs) are unable to reproduce trends in temperature extremes
- Stakeholders should be very careful in using projections from RCMs for local adaptation measures
- Use narratives based on physical reasoning, with simulated examples
- Stakeholders need integrated knowledge for the mediumterm future