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ABSTRACT. Agricultural systems are complex and dynamic, being made up of inter-
acting bio-physical and human sub-systems. Moreover, agricultural systems are re-
markably diverse, both within geographic regions and across regions. Accordingly, this
paper focuses on dynamics and heterogeneity in coupled, multi-disciplinary simulation
models of agricultural systems. We begin with a discussion of the principal features
of agricultural production systems. We then present an example of a ‘loosely coupled’
model, the type of model most researchers have used to represent agricultural systems.
We discuss the loosely coupled model’s features and limitations, and show how it can
be modified to incorporate feedbacks among sub-models. Finally, we use a case study of
a hillside production system in Ecuador to illustrate the importance of model coupling,
dynamics and heterogeneity in the analysis of production systems. This example shows
that feedbacks and threshold effects are most important at sites most vulnerable to tillage
erosion.

Introduction
There is growing evidence that rural poverty and resource degradation are
interrelated phenomena, both being the result of a complex set of physical,
biological, and human systems. Each component system is complex, and
needs to be understood before we can hope to understand the dynamics of
the larger system. This paper reports on advances in modeling agricultural
systems so that they can be used to assess agricultural sustainability and its
role in poverty and resource degradation.

We begin with the view that agro-ecosystems are complex, dynamic
systems with spatially and temporally varying inputs and outputs that
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are the result of interrelated physical, biological, and human decision-
making processes (Antle et al., 2001). This view is consistent with the rich
literature on bio-economic models in which economic decisions of farmers,
foresters, and fishers are modeled as economic optimization, subject to
economic and bio-physical constraints. However, much of the literature
focuses on stylized theoretical models that abstract from empirical details
needed to understand and predict the behavior of these systems (for reviews
of relevant literatures, see Sanchirico and Wilen, 1999; and Antle et al.,
2001). The complexity of these systems means that quantitative analysis of
agricultural systems is required to generate information to support policy
decision making or to address the issue of rural resource degradation and
its linkages to poverty.

The contribution of this paper is to propose methods that can be used
to implement the analysis of agricultural production systems as complex
systems, and to investigate the properties of one such system to illustrate
these methods. We begin with an example of the most widely used type of
model that we describe as ‘loosely coupled’, we discuss this model’s features
and limitations, and show how the loosely coupled modeling approach
can be modified to incorporate feedbacks among sub-models. Finally, we
present a case study of hillside agriculture in Ecuador to illustrate the
importance of model coupling, dynamics, and heterogeneity in the analysis
of production systems. This case study shows that feedbacks and threshold
effects are most important at sites most vulnerable to tillage erosion. In the
concluding section we relate these findings to the broader challenges of
modeling linkages between poverty and resource degradation.

Modular simulation models of agricultural systems
Our goal is to study the behavior of an agricultural system by simulating
a model of the system under a set of specified bio-physical and behavioral
conditions. To achieve this objective, the models describing the bio-physical
and economic decision-making components of the systems must be able to
communicate with each other on compatible spatial and temporal scales.
The modeling strategy we propose is a modular one, in which disciplinary
model components are developed so that they can interact through standard
communications protocols, similar to the ‘plug and play’ concept used in
modern software development. The modular approach typically maintains
each disciplinary model in its original form, although simplified versions
may also be used that are more computationally efficient. Typically, this
approach is implemented by executing each model in turn, and by using a
subset of state variables from one sub-system as inputs into another sub-
system. Most models in the literature have been developed using this ‘loose
coupling’ strategy (e.g., Kaiser et al., 1993; Bouman et al., 1996; Rappoldt
and van Kraalingen, 1996; Alig et al., 1997; Shepherd and Soule, 1998). To
illustrate, figure 1 presents a stylized example of an economic decision
model and a crop ecosystem model. In a loosely coupled model, outcomes
from one model are used as inputs into another model, but processes within
each model are not linked.

The modular model-coupling approach has several advantages. First, it is
adaptable to different production systems, and allows different researchers
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Figure 1. Examples of loose coupling (heavy dashed lines) and close coupling (light
dashed lines) of economic decision models and crop ecosystem models

to develop different components for different applications independently.
A key element that has been lacking in efforts to model coupled bio-
physical and economic systems is a set of data standards for communication
between models. With data standards for inputs and outputs, data exchange
and replication of results are possible at relatively low cost. This can
be illustrated by the data standards for crop growth simulation models
as developed by the International Consortium for Agricultural Systems
Analysis for the DSSAT family of crop growth models (Hunt et al., 2000).
In the modular modeling approach described below, the DSSAT data
standards for crop models are utilized along with a set of data standards
for economic models. Second, the modular approach leads to improved
transparency of models and it is easier for researchers to test models and
replicate results. A common problem with many models is that they are
large, complicated, and poorly documented ‘black boxes’, and consequently
few if any researchers beyond the developers are able to use them. A third
advantage of the modular approach is that it provides the capability to
represent each disciplinary component of the system, including key features
such as non-linearities and discontinuities, at the level of detail deemed
suitable for each type of process. One of the alternative approaches is to
utilize systems of reduced-form equations to represent a ‘response surface’
for a complex system (Morgan and Henrion, 1992). A disadvantage of
the reduced-form approach is that it may fail to represent important non-
linearities and other features outside the range of behavior represented in
the simulations used to parameterize the reduced form.

One downside of the modular approach is that it may limit the ability
to couple processes in the disciplinary sub-models of a system. One of our
goals is to assess the effects of loose coupling on model behavior.

Implementing the modular approach with the Tradeoff Analysis software
In this section we outline how we have implemented the modular
modeling approach using the Tradeoff Analysis (TOA) software (Stoorvogel
et al., 2001, 2004). Version 3 of the Tradeoff Analysis software (TOA3) is
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designed to analyze economic and environmental tradeoffs in agricultural
production systems. The TOA3 implements the concept of loose coupling
of disciplinary models; that is, each disciplinary model is executed
independently, and outputs of one model are used as inputs into another
disciplinary model. Also, in this system there are no dynamic feedbacks
between disciplinary models. The TOA3 structure is presented in figure 2.

Two types of bio-physical simulation model are used in TOA3, crop
growth models (specifically, models from the Decision Support System for
Agrotechnology Transfer or DSSAT; Jones et al., 1998) using the ICASA input
and output format (see Hunt et al., 2000) and environmental process models
such as LEACHM (Wagenet and Hutson, 1986), WEPP (Water Erosion
Prediction Project, 2004), Century (Parton et al., 1994), and NUTMON
(Nutrient Monitoring for Tropical Farming Systems, 2004). First, the crop
models are used to characterize spatial variability in productivity across
sites, as discussed in further detail below. Second, outputs from the
econometric-process simulation model (land use, input use) are passed
to environmental process models to simulate environmental impacts of
management decisions. The TOA3 system documentation and example
applications are available at www.tradeoffs.nl.

Econometric-process simulation models
The TOA3 software is designed to implement econometric-process
simulation models (Antle and Capalbo, 2001). The econometric-process
approach represents economic decisions on a site-specific basis, at spatial
and temporal scales compatible with bio-physical crop simulation models
and environmental process models, so that the bio-physical and economic
models can be coupled at compatible spatial and temporal scales. In the
econometric-process approach, farmers make discrete land-use decisions
for each management unit (i.e., each parcel of land), and, given their land-
use decisions, farmers make continuous input decisions for variable inputs
(e.g., labor, fertilizer application rates).

To illustrate the econometric-process model approach, we consider a
general production problem in which each producer makes management
decisions on a land unit indexed by s. This land unit could be an individual
field, a set of fields, or a whole farm, or even a collection of farms; the
distinguishing feature is that the same management decisions will be
applied to the entire land unit. Management decisions for this land unit are
made for a specified decision period indexed by t, which typically would
be a growing season or multiple growing seasons. Each decision period, the
farmer has to choose between a finite, discrete set of activities indexed by
a. For example, the farmer could be making the relatively short-run choice
among alternative crops within an already determined crop rotation, or the
farmer could be making the longer-run choice of a production system and
the associated fixed capital. Each activity returns a value v(p, w, z, e) where p
is an output price, w is a vector of variable input prices (hired labor, fertilizer,
etc.), z is a vector of fixed human and physical capital and any other fixed
factors affecting production (family labor, animal and mechanical assets,
other physical assets, size of the land unit, etc.), and e is a vector of bio-
physical characteristics of the site. Here we will interpret this value function
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as expected net returns, but more generally it may be expected utility of
income or wealth, or some other objective function. We define δast = 1 if
the ath activity is selected on land unit s for period t and equal to zero
otherwise. The farmer then chooses the activity that maximizes value

max
{δast}

∑

a

v(past, wast, zast, est) (1)

The solution to this problem takes the form of a discrete step function

δ∗
ast = δa (pst, wst, zst, est) (2)

where pst is a vector of the expected output prices and the other vectors are
defined similarly.

Assuming the value functions are expected profit functions, using
Hotelling’s lemma the corresponding output supply function and the ith
input demand function are given by

qast = δ∗
ast∂v(past, wast, zast, est)/∂past (3)

xiast = −δ∗
ast∂v(past, wast, zast, est)/∂wiast (4)

Antle and Capalbo (2001) show how this theoretical decision-making
framework can be transformed into a stochastic simulation model, by
specifying systems of supply functions and factor demand functions
(empirical analogs of equations (3) and (4)) that can be estimated
econometrically and then used to simulate the discrete choice of activity
(equation 2) and the input use decision and supply decisions. The input
demand equations could be derived from either a conventional static
problem, such as single-period profit maximization, or from a dynamic,
intra-seasonal problem, such as the one discussed by Antle et al. (1994).
Risk can be incorporated formally into this type of model as well (Antle
and Capalbo, 2002).

Using bio-physical models to simulate spatial variability in productivity
An important feature of the TOA3 system is the loose coupling of bio-
physical crop and livestock models with econometric production models.
This linkage is designed to address a problem that has long plagued
empirical production economics research; namely, how to incorporate the
effects of soil, climate and the genetic characteristics of crops and livestock
in a way that is consistent with the process-based knowledge that is
embedded in crop and livestock simulation models. Process-based models
are particularly important for simulating out-of-sample phenomena, such
as climate change or adoption of new technologies and management
practices.

Production economists often specify production functions in the general
form q = f(x, z, e), where x is a vector of variable inputs, z is a vector of fixed
inputs, and e is a vector of bio-physical factors. In practice the bio-physical
factors e are represented in econometric production models by using ad hoc
indicators of soil quality and climate such as dummy variables for soil types
and average rainfall during the growing season.
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The TOA3 software provides the capability to take an alternative
approach to econometric modeling that exploits the scientific knowledge
embodied in bio-physical process models. Theoretically, soil and climate
conditions define the potential productivity of a location that, combined
with a plant type, management practices, and weather conditions, leads
to a realized output. Crop growth simulation models can be represented
in stylized form as q = g(x, e). Defining average or expected input use in
the population as x*, we can use the crop growth simulation to calculate a
yield q* for a specific location on the basis of soil and weather data as q* =
g(x*, e). Stoorvogel et al. (2001) refer to this yield estimate as the inherent
productivity of the site, to distinguish it from an estimate of actual yield, and
interpret this quantity as representing what the farmer knows about the
productivity of the site based on its soils and climate. As an alternative to
the general model q = f(x, z, e), we can specify the production function q =
h(x, z, q*). Substituting for q* we obtain q = h(x, z, g(x*, e)), showing that this
procedure yields a special case of the production function q = f(x, z, e) in
which the bio-physical variables e are weakly separable from the variable
and fixed inputs x and z. In this way we use the bio-physical crop models to
systematically transform site-specific bio-physical data into an estimate of
the spatial or temporal variation in inherent productivity, and then use this
variation in productivity to help explain observed behavior. This form of
the production function implies that the behavioral equations (2), (3), and
(4) depend on inherent productivity.

This linkage from crop models to economic models represents an example
of loose coupling without feedback: the output of the crop model (crop
yield) is used as an input into the economic simulation model to represent
spatial variation in productivity. However, in the TOA3 software, there is
no mechanism for management decisions taken by farmers to feedback to
the estimated inherent productivity derived from the crop models. This
limitation is discussed further in the following example.

Loose coupling example: Tradeoff Analysis of Ecuador’s potato-pasture system
We now illustrate the loosely coupled model using a study of economic,
environmental, and human health tradeoffs in Ecuador’s potato-pasture
production system (Crissman et al., 1998). This study utilized a detailed
econometric-process model of the potato production system with intra-
seasonal dynamics of pest management decision making, and with inter-
seasonal dynamics associated with the potato-pasture crop rotation. The
original study also included a pesticide leaching component and a human
health component. Subsequent research showed that erosion associated
with tillage on steeply sloped hillsides was also likely to be a significant
environmental and productivity issue, so that component was added
(Veen, 1999; Hoogerwerf, 2002). Here, we will focus on the economic and
environmental processes, recognizing that the health model component
could be added. We will also abstract from the intra-seasonal dynamics of
the original model, and focus on the inter-seasonal dynamics of the crop
rotation.

Carchi Province in northern Ecuador is typical of the northern humid
páramo Andes. The agricultural system on the steep Andean hillsides is
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dominated by the production of potatoes and milk. The research focused
on two watersheds corresponding to the San Gabriel and Chitan rivers
encompassing a total area of 95 km2 ranging in altitude between 2,700 and
3,800 m above sea level. Being located close to the equator there is virtually
no change in average monthly temperature ranging from 9 to 12◦C. Average
rainfall varies between 950 to 1300 mm/yr with significant year-to-year
variation. Volcanic ash soils with their typical thick, black A-horizon, high
organic matter content and high infiltration capacity have developed in
relatively young volcanic ash deposits. Crissman et al. (1998) give a full
description of the Carchi study site.

Here we focus on the spatial and temporal behavior of the economic
and environmental properties of the potato-pasture system. The key
indicators of the status of the system will be farm income, water quality,
and sustaining productivity of the system. Farmers choose to produce
potatoes, a high-value crop, but to do so they must use large quantities
of potentially hazardous pesticides (insecticides and fungicides) on steeply
sloped hillsides. The activities of preparing fields, planting and managing
the potato crop, and harvesting, lead to soil being displaced down the
steeply sloped hillsides (tillage erosion). The result is that topsoil becomes
progressively thinner on the upper sections of each field, and accumulates
in the lower section of each field. Because this area has deep volcanic soils,
the accumulation on the lower part of the field does not raise productivity,
but the loss on the upper part of the field lowers productivity when the
topsoil reaches a critical depth, as illustrated in figure 3. As topsoil becomes
thinner, larger quantities of pesticides leach below the topsoil layer and are
transported into ground water and into down-slope surface water.

The economic problem faced by the farmer is to choose which crop to
grow, potato (p) or pasture for grazing (g) each period on each field, given
what was grown in the previous period. Farmers generally grow potatoes
for two six-month periods, and then rotate them with pasture, to control
diseases and pests, particularly the soil insect pest commonly known as
the Andean weevil. If farmers knew that potato production also led to
soil erosion and lost future productivity, they would have an incentive to
choose the crop rotation that maximized the present value of present and
future production. However, for the moment we assume either farmers are
myopic or they are not aware of the long-term impacts of crop choice on
productivity, as might be the case when erosion impacts productivity only
after soil depth crosses a critical threshold as in figure 3, and thus base
decisions on current-period expected returns. We assume expected returns
from each activity in period t are v(past, wast, zast, δst-1, qa(es0)), for a = [p, g].
Here the term δst-1 represents the effect of previous crop choice, and qa(es0)
represents the inherent or expected productivity of the field, given baseline
site characteristics es0. The single-period choice problem is

max
δst

vst = δstv(ppst, wpst, zpst, δst-1, q p(es0))

+ (1 − δst)v(pgst, wgst, zgst, δst-1, qg(es0)) (5)

The solution to the crop choice is δst = δ(ppst, wpst, zpst, qp(es0), pgst, wgst,
zgst, qg(es0), δst-1). Corresponding to the crop choice is the pesticide input
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decision xpst = − ∂v(ppst, wpst, zpst, δst-1, q∗
p)/∂wpst if the crop chosen is potato,

and is xpst = 0 if the crop choice is pasture. To simplify, we represent
pesticide use as a single application, although the simulation model actually
uses a system of dynamic factor demand equations to represent multiple,
sequential applications of pesticides as described in Antle et al. (1994).

Two models are used to simulate environmental processes in this analysis.
The first is a leaching model that translates the quantity of pesticide applied
into a quantity leached below the crop root zone. In a highly stylized
form, this model can be written as estimating the fraction leached as
λst = λ(est), so that the total quantity leached can be calculated as Lst =
λst xpst. The second environmental model expresses the difference in topsoil
depth (in centimeters) between the upper and lower part of the field as a
result of tillage erosion as a function of site characteristics (e.g., soil depth
at the beginning of the production period, soil type, slope, climate) and
management practices (in this case, which crop is grown). Thus tillage
erosion can be expressed as εst = ε(est, δst-1). Included in the vector est of site
characteristics is the amount of tillage erosion as a function of the cumulated
past soil losses, thus est(εst-1 + εst-2 + . . . ).

To summarize, the loosely coupled model without feedback is comprised
of the following system of equations

q ∗
p = q p(es0), q ∗

g = qg(es0) (6)

δst = δ(ppst, wpst, zpst, q ∗
p, pgst, wgst, zgst, q ∗

g , δst-1) (7)

xpst = −δst∂v(ppst, wpst, zpst, δst-1, q ∗
p)/∂wpst (8)

Lst = λ(est)xpst (9)

εst = ε(est(εst-1 + εst-2 + . . .), δst-1) (10)

Because the system is loosely coupled, it can be simulated recursively in the
order indicated in figure 2: first, the crop models are simulated for each crop
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Figure 3. The effect of differences in the thickness of the fertile A-horizon on the dry
matter production of potatoes as simulated with DSSAT

and site to produce the estimates of inherent productivity (equation (6));
second, the crop choice and input use decisions (7) and (8) are simulated
over whatever time horizon is chosen by the analyst, using the inherent
productivities as inputs; third, the leaching (9) and erosion (10) outcomes
are simulated, using the sequences of crop choice and input use derived
from equations (7) and (8).

Loose coupling and feedback
The model presented in the preceding section (equations (6)–(10)) is
based on the assumption that land use and input decisions are based on
the farmer’s estimation of site-specific productivities, and these inherent
productivities do not change over time in response to soil erosion. As we
noted earlier, this assumption might indeed make sense when productivity
exhibits a threshold with respect to soil depth, as in figure 3. Nevertheless,
even without foresight, farmers are likely to observe that erosion is
impacting productivity, thus soil erosion’s impacts on productivity are
likely to feedback to management decisions. Moreover, it is also possible
that, as farmers begin to understand the dynamics of the production system,
they will begin to anticipate impacts of their current decisions on future
productivity and future expected economic returns; that is, they will begin
to exhibit foresight. We now consider these two cases in greater detail.

Feedback without foresight
In this case the farmer’s decision problem has the same structure as before,
with the simple modification of the model by replacing equation (6) with

q ∗
p = q p(est-1), q ∗

g = qg(est-1) (6’)

Thus, in each period the farmer’s estimation of inherent productivity of
each crop at each site is a function of the actual site conditions, including
soil depth. It is now possible to simulate the system in the same sequence
as described in the previous case of loose coupling without feedback, except
that this sequence must be followed for each time step. However, the system
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remains loosely coupled in the sense that each model can be operated
independently of the others, in the specified sequence, using only the
appropriate outputs from one model as inputs into another model.

Feedback with foresight
Suppose a farmer has a rolling time horizon of T growing seasons. Given
knowledge of the dynamics of the system, the farmer chooses the sequence
of crops (i.e., the crop rotation) expected to maximize the present discounted
value of the system for these T growing seasons. Thus, following equation
(5), each period the farmer solves the problem

max
{δst}

T∑

t=1

vst/(1 + r )t (5’)

Each period the farmer implements the current-period optimal decision,
conditional on expected future decisions. This problem can be solved using
the well-known Bellman method. To simplify, we assume that the farmer
considers two management options, either to continue the conventional
potato-pasture crop rotation (i.e., two seasons of potato followed by two
seasons of pasture) or to switch to permanent pasture. To implement this
model, the farmer must form expectations about the future path of soils and
productivity (as well as prices). Expectations about future productivity can
be estimated by running the erosion model (10) over a given time horizon,
assuming typical management of each system, and then using that sequence
of soils to simulate the crop, economic, and leaching models (equations 6′,
7, 8, 9) using the procedure for the loosely coupled model with feedback.
After performing this for one time period, time is advanced one period, and
the sequence is repeated. In each time step the soil simulation is initialized
with values from the previous period.

Close coupling
Processes in the sub-models of a complex coupled system typically operate
on various time steps. For example, daily or even shorter time steps are
used in many bio-physical crop growth models, whereas some other crop
ecosystem models such as the Century model operate on a monthly time
step. While most economic models use a single seasonal or annual time
step, some economic models incorporate intra-seasonal sequential decision
making and operate on time steps determined by management operations,
such as planting, applying fertilizers and pesticides, and harvest (Antle
and Hatchett, 1986; Antle et al., 1994). When researchers design a system
of coupled sub-models, they must decide what time step will be used
for the communication of information between sub-models. In order to
model the dynamic interactions between bio-physical processes, such as
climate and pest population dynamics and decision-making processes such
as pest management, the crop growth and pest population sub-models
would need to interact with the economic decision-making sub-model on
a time step much shorter than the whole growing season, perhaps on a
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daily basis.1 This is the situation when models will need to be closely
coupled.

Recall that the concept of inherent productivity utilized in the loosely
coupled model was based on the assumption that inherent productivity
was calculated for an average input vector x*. One way to introduce a closer
coupling of crop growth and economic simulation models in the system of
equations (6)–(10) is to specify that inherent productivity (equation (6) or
(6’)) depends on the current, site-specific management decisions, such as
pesticide or fertilizer use. Under this specification, the system of equations
(6), (7), and (8) is simultaneous in the input vector. While it is beyond the
scope of this paper to discuss the use of closely coupled models in detail,
we observe that at least two strategies are available. One approach is to
decompose each of the models into a sequence of sub-processes that can
be loosely coupled. Once that has been achieved, the loose coupling with
feedback approach can be applied. Another approach is to simulate the two
models sequentially, once for each of the shorter time steps, each time using
data from one model to initialize the other model up to that point in time.

Application: the Ecuador potato–pasture system
TOA3 was applied to study the potato–pasture system in Carchi province
described above. The setup of TOA3 is that the different models are loosely
coupled, i.e. the models run sequentially and the output of one model is
the input of the next model. The process is illustrated in figure 4 with
actual model results. A range of different models are available for the area,
including calibrated crop growth simulation models (Bowen et al., 1999),
an economic simulation model based on a two-year dynamic farm survey
(Crissman et al., 1998), a calibrated model for the estimation of pesticide
leaching (Stoorvogel et al., 2003), and a statistical model for the estimation
of tillage erosion (Veen, 1999; Dercon, 2001).

Figure 4 follows the structure of figure 2. First the inherent productivity
is calculated using the crop growth simulation models (equation (6)) on
the basis of soil and climatic variability and average crop management as
observed in the farm survey. The inherent productivities are then input into
the economic simulation model. In this example, the economic simulation
model simulates crop choice (equation (7)) and input use (equation (8)).
Crop choice and input use can then be used in combination with the
environmental characteristics to simulate pesticide leaching (equation (9))
and tillage erosion (equation (10)). The analysis finally leads to the
construction of the tradeoff curve between, for example, pesticide leaching
and tillage erosion. Tradeoff curves are typically constructed by varying
parameters in the production system that affect the economic incentives
perceived by farmers in their land-use and input-use decisions. As farmers
respond to changing economic incentives through changes in land use
and input use, the sustainability properties of the production systems
change. For example, in the potato–pasture production system, as potato

1 But also note that when processes do not interact directly but can be characterized
through the loose-coupling approach, each sub-model can operate on its own
independent time step.
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Figure 4. An example from the Carchi study area with loosely coupled models (In the
maps darker colors represent high values for inherent productivity, carbofuran use and
leaching, potato intensity in the rotation and tillage erosion)

prices increase relative to milk, farmers shift land use towards potato
production, and also apply more inputs linked to potato management.
The effect of these behavioral changes is increased pesticide use and the
environmental and human health effects associated with pesticide use. In
this paper, we focus on the potential environmental impacts of the system.
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Figure 4 shows graphically how erosion and leaching outcomes are derived
using the loosely coupled system, where the tradeoff between these
outcomes is generated by varying the potato prices. Alternative policy,
technology, and resource change scenarios can also be evaluated.

Feedback without foresight
Tillage erosion and pesticide leaching have very different effects on the
agricultural production systems in the region. Tillage erosion directly affects
the production system through a reduced future productivity, particularly
for potatoes. However, pesticide leaching has off-farm effects in terms of
contamination of ground and surface waters but does not influence the
productivity of the system. This means that, if we talk about feedback
effects, tillage erosion will be the dominating process that results in
feedbacks and in changes in the inherent productivity. We should note
that these feedbacks result in production changes but also in changes in
pesticide leaching. The example illustrates the importance of feedbacks and
the limitations of using the previously described loosely coupled models
without feedbacks.

As we noted earlier, the model also exhibits threshold effects due to the
relationship between productivity and soil depth (figure 3). Soil depth also is
importantly related to leaching. The spatial correlations between features,
such as slope and depth of the A horizon, on the one hand, and tillage
erosion, on the other hand, will jointly determine the extent of productivity
loss and leaching.

The model was run for 30 cropping cycles with a fixed inherent
productivity. Afterwards tillage erosion was modeled and the effects of
changes in soil properties were evaluated in terms of inherent productivity
and pesticide leaching. The average inherent productivity for potatoes
was 5,600 kg dry weight per ha per year. Potatoes were grown six out
of ten years, average tillage erosion was 1.8 cm per year and carbofuran
leaching was 254 g per ha per year. The results are indicated in figure 5 and
referred to as the base run. Next we assessed the effects of tillage erosion
rates on inherent productivity and pesticide leaching without feedbacks.
Over the 30-year time period, tillage erosion would result, on average, in a
4.6 per cent decrease in inherent productivity due to the decline in topsoil
in the upper parts of the fields. The impacts on leaching were much more
important. As the topsoil was removed, leaching increased by 40 per cent,
on average, over the 30-year time horizon.

The bottom of figure 4 shows the results of this analysis in terms of
leaching and erosion outcomes. Each point in the figure is an average
outcome for the watershed derived from replications of the stochastic
models under a range of different output prices. The line fitted through
these points shows that there is a tendency for leaching to increase faster
than erosion, indicating a non-linearity in these relationships in space. At
low levels of erosion, there is little if any leaching. As erosion increases, the
chance of a high rate of leaching increases. This behavior is consistent with
the threshold phenomenon discussed earlier.

The economic simulation model shows that changes in inherent
productivity feed back to the farmer’s choice of crop and inputs. This
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Figure 5. The dynamics in inherent productivity and carbofuran leaching as a result of
tillage erosion under different model definitions

was implemented in the Tradeoff Analysis model by adapting the soil
descriptions after each time step on the basis of the modeled rates for
tillage erosion. The new soil descriptions are then the basis for new inherent
productivities and the simulation of crop choices and input use. On average,
inherent productivity of potatoes declined relatively little, thus producing
small effects on crop choice and input choice (some substitution from potato
to pasture). As a result there is no visible difference between the curves
for inherent productivity with and without feedbacks (figure 5). Average
carbofuran leaching decreased as a result of the reduction in carbofuran
use which resulted from the decrease in inherent productivities. However,
the average data in figure 5 mask the spatial variability of erosion and its
impacts. Figure 6 shows that ‘hot spots’ emerge because of site-specific
conditions favorable to tillage erosion. At sites that cross the soil-depth
threshold from high to low productivity, crop choice and pesticide use are
significantly impacted, as are economic returns to the system.

The threshold response of leaching is shown in figure 7 for four fields that
represent the range of possible responses. In fields with low erosion rates,
there is little increase in leaching. However, in fields with high erosion rates
and shallow topsoil, the transition to high erosion rates occurs very quickly,
from five to ten years after the erosion process (cultivation) begins. In fields
with deep topsoils, the transitional period occurs between years 25 and 30.

Figure 8 shows that land use responds non-linearly to inherent
productivity as well. It follows that in those sites where productivity crosses
a significant threshold, land use also changes substantially. Figure 3 shows
that for topsoil depth greater than 50 cm, inherent productivity is in the
range of 4,000 kg of dry matter per ha. When topsoil depth declines to
25 cm, productivity falls by about 75 per cent. Figure 8 shows that farmers
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Figure 6. The spatial variability in the increase of carbofuran leaching over a 30 year
period as a result of tillage erosion and management changess
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Figure 7. The temporal dynamics in carbofuran leaching for 4 different fields as a result
of tillage erosion and management changes
Source: Stoorvogel, Antle, and Crissman (2004).

with a normal productivity level near 4,000 kg rotate potato with pasture in
roughly 50–50 proportions (a fact confirmed by the survey data). However,
when productivity declines to 1000 kg, the rotation shifts so that potatoes
are grown only about 20 per cent of the time. Economic returns at these
sites also decline by 53 per cent.

This example illustrates the important interactions between spatial
properties of the system, and the interactions between management
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decisions (crop choice), tillage erosion, and leaching. This particular
example shows that the loosely coupled model without feedbacks is a
reasonably good first-order approximation. The introduction of feedbacks
with productivity is important for predicting the behavior of the system
where the signal being fed back is relatively strong; otherwise, the loosely
coupled model without feedback provides a good approximation.

We would expect only minor differences if we introduced foresight
into this model, for several reasons. First of all, the changes in inherent
productivity are minor (figure 5), so these changes have only a small effect
on farmers’ decisions. Second, we would expect these farmers to discount
future income at relatively high rates, with the result that the model without
foresight should be a good approximation. However, we know that in cases
where investment decisions are being made, models with foresight are
relevant; for example, in the analysis of terracing investment decisions
studied by Valdivia (2002).

Poverty linkages at the farm and regional levels
The spatial and temporal interactions identified in the preceding example
are likely to have important implications for linkages to the welfare of farm
households and the broader rural population. One could, for example,
overlay the map of carbofuran leaching (figure 6) with a map of household
income or poverty incidence, where one component of income is the farm
income derived from crop production. Policy or technology strategies
devised to mitigate environmental impacts of pesticide use would have
implications for incomes and poverty. While it is beyond the scope of this
paper to solve the methodological challenges that would arise in linking
models of the production system to analysis of poverty and related social
welfare indicators, we can identify some of the issues that need to be
addressed.
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At the level of the farm household, the production system will link to
welfare through farm income if production decisions can be reasonably
viewed as separable from other household decisions. Under the assumption
of separability between production and other household decisions, the
production system can be used to derive income from the household’s
agricultural activities, and this component can be combined with other
income components such as off-farm income and asset income to jointly
assess the household’s poverty status and the impact that changes in the
production system may have on poverty and resource degradation. In
addition, linkages from poverty to farmers’ behavior, and its implications
for resource degradation, can be explored with these models. For example,
it has been widely assumed that poor, resource-limited farmers have
higher rates of risk aversion and time preference than wealthier farmers.
If separability is not assumed, then the analyst is confronted with the
problem of modeling both production and other household decisions as
an integrated system. While the data requirements and model complexity
are increased in implementing an integrated household model, the issues
we have discussed in this paper regarding the design of production systems
models remain relevant.

To link site-specific production models to welfare at the regional level we
must address the aggregation problem. Exact aggregation is not possible
with complex non-linear models, but research on statistical aggregation
shows that the aggregated outcomes from these site-specific models can be
defined as functions of the parameters of the underlying distributions of the
models’ exogenous variables (Stoker, 1982; Antle et al., 1998). Noting that a
model of a production system can be thought of as a model of the farm firm’s
supply function, it follows that it is possible to simulate the response of
output to changes in output and input prices for a statistically representative
sample of farms. These simulations can be used to characterize the regional
supply function as well as tradeoff curves representing the corresponding
changes in regional environmental indicators. For example, the tradeoff
curve illustrated in figure 4 shows the combinations of tillage erosion and
leaching that correspond to different output prices. The regional supply
function could be combined with demand functions in partial or general
equilibrium regional models to determine equilibrium prices and output,
and thus provide analysts with the ability to correlate equilibrium welfare
and resource indicators. In this way, it would be possible to map changes in
welfare indicators such as poverty as well as economic and environmental
outcomes for policy analysis. Making these linkages from spatially explicit
production system models to market equilibrium models is an important
topic for future research.

Conclusions
In this paper we discuss how loosely coupled and more closely coupled
models of agricultural systems can be implemented using a modular
modeling approach. We used the case of the Ecuador potato–pasture
system to illustrate the importance of spatial heterogeneity and dynamics in
production systems models. The case study showed that, whereas a system
based on loose coupling of models gave a reasonable representation of the
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population mean, the system with closer coupling (feedbacks from bio-
physical processes to economic decision making) provided substantially
different estimates of impacts at sites where the feedbacks were strongest,
in this case at sites that were most vulnerable to soil erosion. This
finding suggests, first, that dynamics and heterogeneity are important to
understanding the behavior of the system, and, second, that the insights
afforded by models that capture system dynamics and heterogeneity
may have important implications for understanding the linkages between
poverty and resource degradation.

To exploit the value of site-specific, dynamic production system models
for policy and welfare analysis, a number of additional linkages need
to be made at the level of the farm household and at the regional
level. The agricultural system models we discussed in this paper do not
include other household decision-making processes, such as the labor
supply, food consumption, or healthcare decisions of the household that
may be important to farm household welfare. Such generalizations are
conceptually straightforward, however they may substantially increase
data requirements and model complexity. Also these models may involve
important behavioral parameters such as discount rates and risk aversion
that may be related to wealth and other socio-economic factors. The most
significant conceptual and methodological challenge is to link spatially
explicit, dynamic production system models with market models so as to
jointly determine equilibrium welfare and environmental outcomes.
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