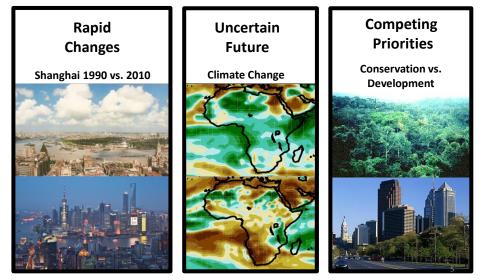


Making decisions in a changing world

Laura Bonzanigo Research Associate World Bank <u>Ibonzanigo @worldbank.org</u> Stéphane Hallegatte Senior Economist World Bank <u>shallegatte@worldbank.org</u> Julie Rozenberg Research Associate World Bank jrozenberg@worldbank.org

May 14, 2014

Many Policy Decisions Have Long-Term Consequences


Designing a dam requires information on future climate, economic development, seismic activity...

Traditional Planning Asks "What Will The Future Bring?"

Yet Good Decision Making Is Challenged By Uncertainty and Disagreement

Should we build a bigger dam?

Climate change may change rainfall patterns.

Future precipitations could increase during some months and decrease during others.

· Need to estimate the expected cost of different scenarios

	Rain stays as current	Rainfall patterns change
Optimized dam given current conditions	\$ 0	\$ -100
Bigger dam	\$ -10	\$ -50

6

Should we build a bigger dam?

Climate change may change rainfall patterns.

Future precipitations could increase during some months and decrease during others.

• Need to estimate the expected cost of different scenarios

	Rain stays as current	Rainfall patterns change
Optimized dam given current conditions	\$ 0	\$ -100
Bigger dam	\$ -10	\$ -50

When is it better to build a bigger dam? Cost(Action) \rightarrow Px50+(1-P)x10=10+40P Cost(NoAction) \rightarrow Px0+(1-P)x100=100P

If P > 16%, the investor should build a bigger dam

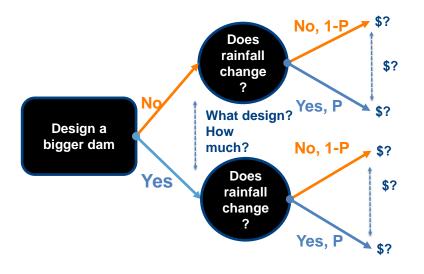
The best "prediction" depends on the cost of various actions

	Rain stays as current	Rainfall patterns change
Optimized dam given current conditions	\$ 0	\$ -100
Bigger dam	\$ -10	\$ -50

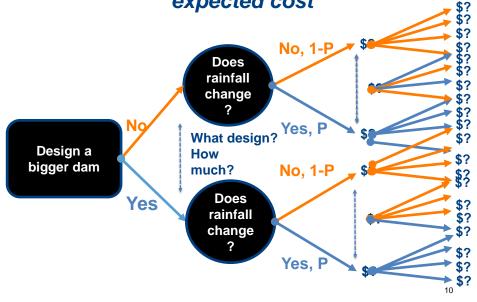
When is it better to build a bigger dam? Cost(Action) \rightarrow Px50+(1-P)x10=10+40P Cost(NoAction) \rightarrow Px0+(1-P)x100=100P

Warning if P > 16%

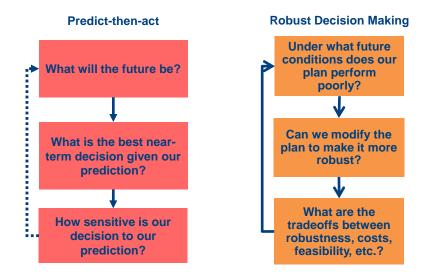
	Rain stays as current	Rainfall patterns change
Optimized dam given current conditions	\$ 0	\$ -100
Bigger dam	\$ -20	\$ -50

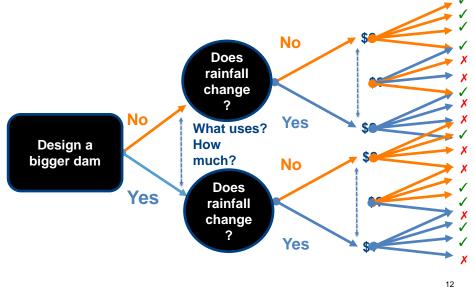

When is it better to build a bigger dam? Cost(Action) \rightarrow Px50+(1-P)x20=20+30P Cost(NoAction) \rightarrow Px0+(1-P)x100=100P

Warning if P > 29%


8

9


There Are Many Plausible Scenarios of Intervention and Cost

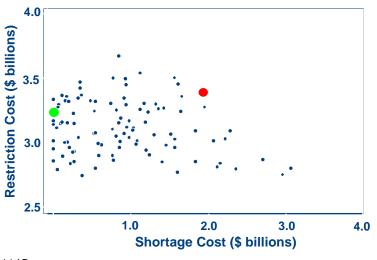

There are many possible scenarios of expected cost

Robust Decision Making Asks "What Are The Limitations of Our Plan and How Can We Improve It?

Some Costs Are More Acceptable Than Others

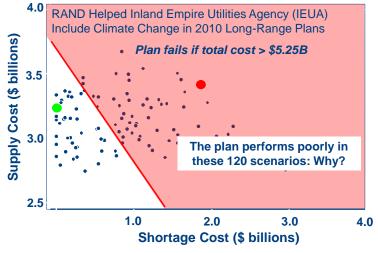
RAND Helped Inland Empire Utilities Agency (IEUA) Include Climate Change in 2010 Long-Range Plans

- Currently serves 800,000 people
- + 300,000 by 2025
- Few "traditional" sources of water

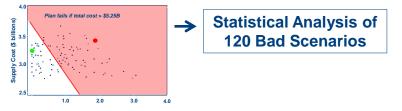


Current water sources include:

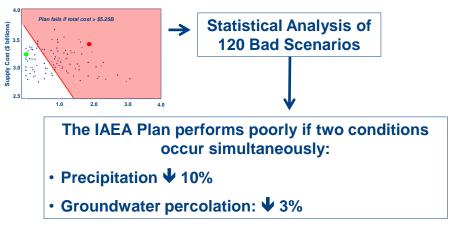
Groundwater	56%
Imports	32%
Recycled	1%
Surface	8%
Desalter	2%


RAND

We Identify Hundreds of Combinations of Cost and Drought Magnitude

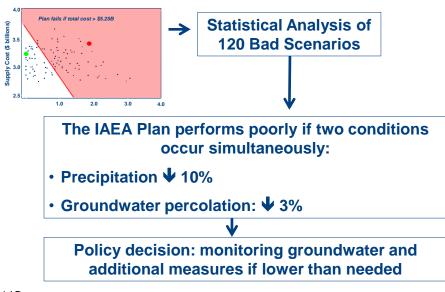

RAND

We Identify Scenarios Where Water Restrictions Lead To Unacceptably High Costs



rand

Why Does the Plan Perform Poorly in These 120 Scenarios?



Why Does the Plan Perform Poorly in These 120 Scenarios?

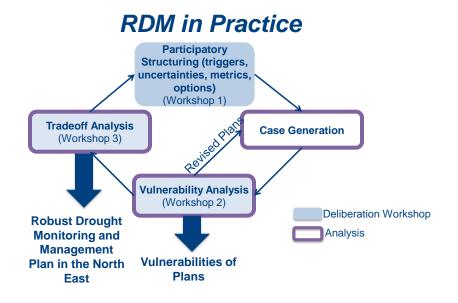
RAND

Why Does the Plan Perform Poorly in These 120 Scenarios?

For the design of dams, RDM can...

Assess threats without first needing to predict the future (weather, costs)

Examine the performance of possible (series of) actions in a very wide range of cases


Understand the risks concisely – as a set of undesirable outcomes

Consider tradeoffs between robustness, timeliness, costs, etc.

Build trust around the Plan and smoothening conflict via scenario exploration

Choose a Plan that you are confident it will serve your needs despite deep uncertainties and disagreements

19

Potential XLRM For Initial Analysis. Example of the Kunar Basin Dams (Afghanistan)

Exogenous Uncertainties and risks	Policy Levers for the construction of Shal dam
 Future electricity demand, Future irrigation demand, Glaciers melting and changes in precipitations (climate change), Unilateral vs bilateral agreement, Seismic risk Delays due to security issues Construction of transmission lines between AF and PK Technical uncertainties (length of construction time, capital cost,) 	 Taking into account potential construction of chitral in PK NOT taking into account potential construction of chitral in PK Focus on individual dams Focus on phased cascade development with several run-of-river downstream (sequential decision-making)
Data and models available	Metrics of interest
Hydrological analysis (90% completed) Geo-technical investigations for seismic risk quantification Socio-economic data (e.g. landscan) Current electricity demand	System costs (includes resettlement and compensation of affected people) Avoided flood losses Economic benefits linked to electricity generation (domestic supply+export revenues) Economic benefits linked to increased irrigation potential Reduced GHG emissions

RDM Helps Decision Makers Make Good Decisions Without Good Predictions

- · RDM is not a new model uses models differently
- · RDM is not "new"
 - · Framework and tools to implement best practices
 - · Increasingly used in developed countries in many sectors
- RDM lets decision makers drive by revealing assumptions and tradeoffs

For More Information....

Laura Bonzanigo Ibonzanigo@worldbank.org

Stéphane Hallegatte shallegatte@worldbank.org

Julie Rozenberg jrozenberg@worldbank.org

Current and Prospective Pilot Studies

Flood Risk in Ho Chi Minh City

Drought Management in Brazil

Water Resources Management in Lima

Water and Sanitation (Global)

Wetland Protection in Colombo

Energy Investments in Turkey ²⁴

At The World Bank's SDNCE* We Are...

Tailoring tools and methodologies

Undertaking several pilot applications

Developing creative learning experiences

* Office of the Chief Economist of the Sustainable Development Network 25