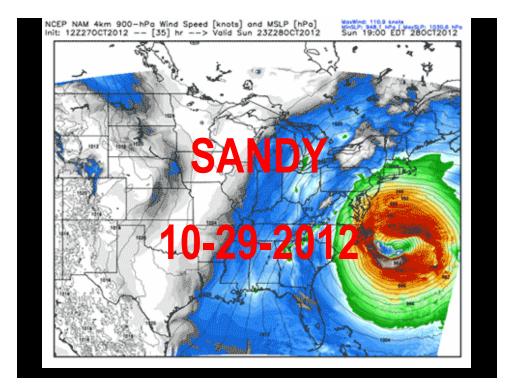

1993... costliest flood in US history



BASE REFLECTIVITY KLIX - NEW ORLEANS, LA 08/29/2005 00:02:28 GMT LAT: 30/20/13 N LON: 89/49/30 W ELEV: 138.0 FT MODE/VCP: A / 11

ELEV ANGLE: 0.50 ° MAX: 56 dBZ RANGE 248 NM

Legend: (Category) dBZ

CONVENORS College & Graduate School of Architecture & Urban Design Sam Fox School of Design & Visual Arts, Washington University in St. Louis

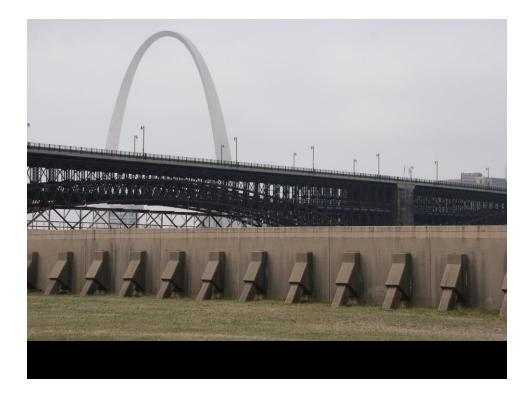
John Hoal, Associate Professor, Chair, Master of Urban Design Program

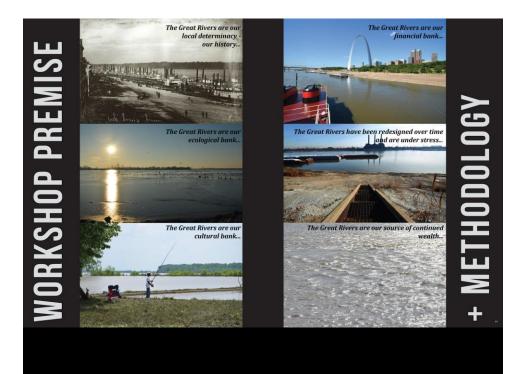
Derek Hoeferlin, Assistant Professor

Dale Morris, Senior Economist The Royal Netherlands Embassy, Washington D.C.

Washington University in St. Louis

PARTNERS American Rivers Southern Illinois University Carbondale Gephardt Institute for Public Service CGI U Programming Fund International Center for Advanced Renewable Energy and Sustainability




"MISI-ZIIBI"

OJIBWE NATIVE-AMERICAN NAME FOR THE MISSISSIPPI RIVER, MEANING

"GREAT RIVER"

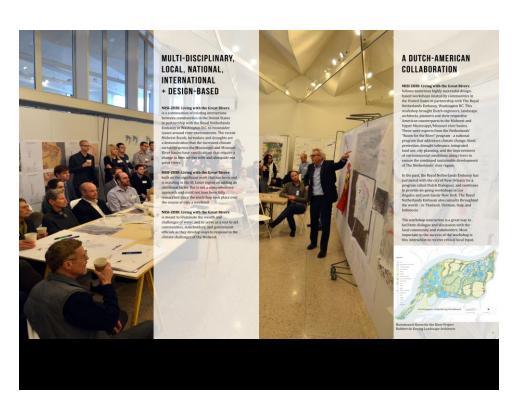
OVER THE LONGTERM...

It is anticipated that there will be continued change to weather patt the Midwest which will alter how with & alongside our Great Rivers

A NEW DESIGN Condition...

Challenges our current flood risk, drought and Requires us to rethin river and adjacent la

uires us to adapt


Impacts the economies, ecologi communities along the river

A PROACTIVE LONG-TERM INTEGRATIVE WATER-BASED APPROACH...

simultaneously impo ecology and quality

oped, studi

comes applicable to other ies and towns along the G Needs to build upon the pre-commitment of the commun

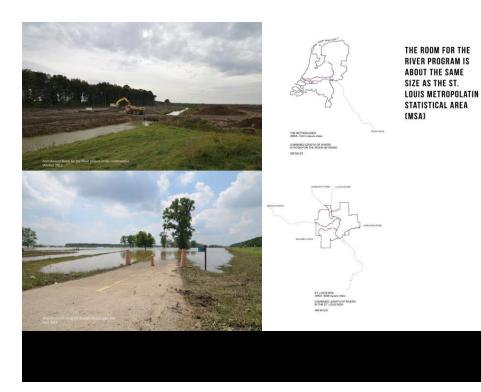
A BALANCED APPROACH

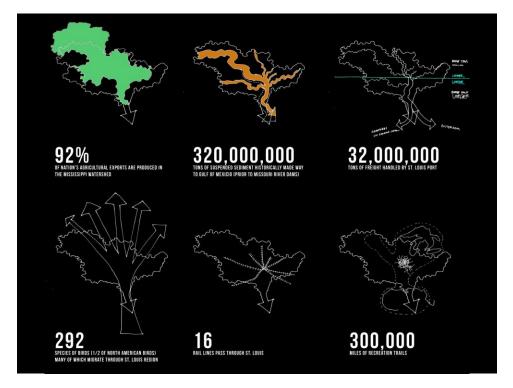
WE... LOOKED. LISTENED TO LOCAL EXPERTS WITH MULTIPLE VIEWPOINTS. LOOKED AGAIN. LISTENED TO MORE LOCAL EXPERTS. WERE INPIRED BY LOCAL, NATIONAL CASE STUDIES. DREW. CALCULATED. DISCUSSED. DREW. CALCULATED. DISCUSSED. DREW. WORKED DUT WHAT ARE CRITICAL QUESTIONS AND UNKNOWNS AT THIS STAGE AND DISCUSSED. AND DREW SOME MORE

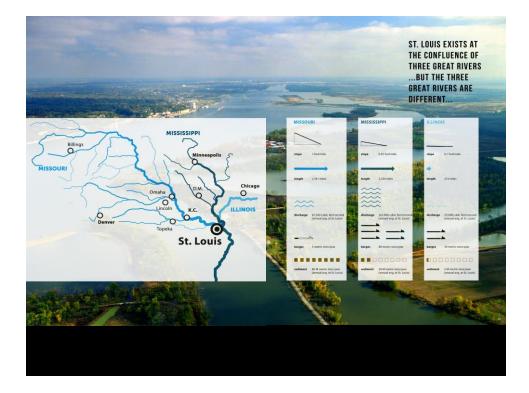
TO WORK OUT A PROPOSED RESEARCH AGENDA AND OPEN QUESTIONS RELEVANT TO MULTIPLE INTEREST GROUPS OF OUR OWN COMMUNITY AND COMMUNITIES ALONG OTHER GREAT RIVERS

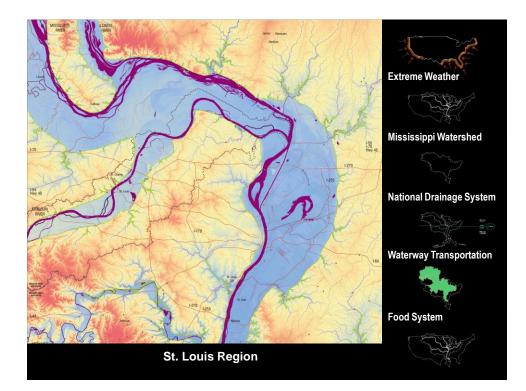
WORKSHOP LEADERS

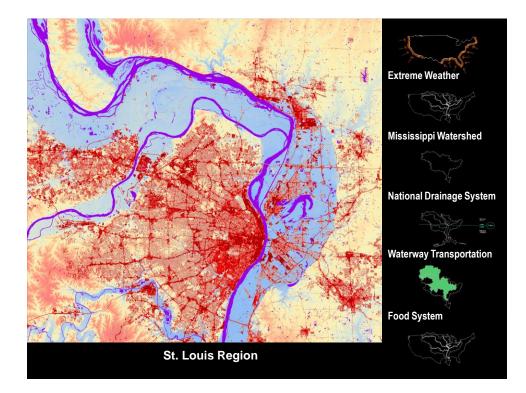
John Hoal, WUSTL (A) Derek Hoeferlin, WUSTL (A) Dale Morris, Embassy (A/D)

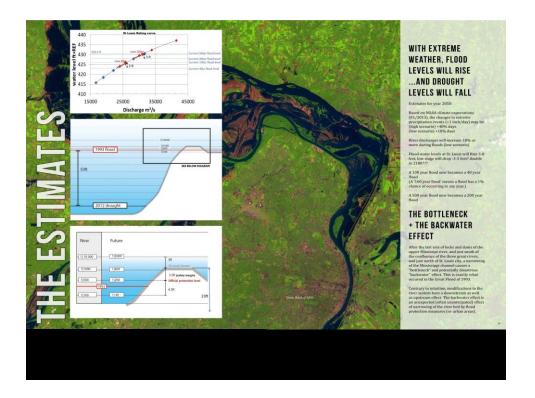

POLICY, ENGINEERING & REGIONAL

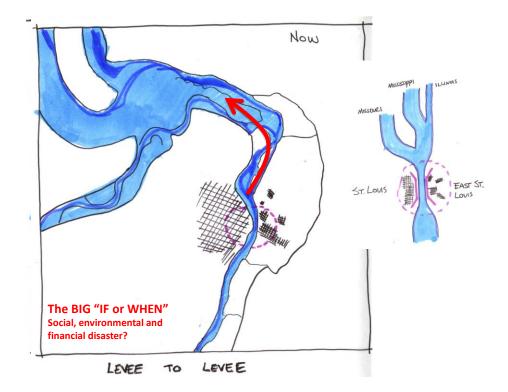

Hermjan Barneveld, HKV Consultants (D) Frans Klijn, Deltares (D) Frans Klijn, Deltares (D) Steven Slabbers, Bosch-Slabbers (D) Ralph Schielen, Rijkswaterstaat (D) John Hoal, WUSTL (A) Darek Hoeferlin, WUSTL (A) Dale Morris, Embassy (A/D) Fredrik Huthoff, HKV Consultants / SIUC (D) Eddie Brauer, USACE (A) On Duncan, USACE (A) John Kleinschmidt, Waggonner & Ball Architects (A) Eileen Fretz, American Rivers (A) Jon Rmo, SIUC (A) Jonathan Stitelman, WUSTL (A) Richard "Rip" Sparks, Illinois Water Resources Center (retired) (A) Todd Strole, TNC (A) Chuck Theiling, Great River IWRM (A) David Waggonner, Waggonner & Ball Architects, (A) Bill Winston, WUSTL Earth & Planetary Sciences GIS lab (A)


Fluvial Zone Type 01: Agricultural Land Use & Pooled River Mississippi River: Melvin Price Locks & Dam/Alton to Confluence of Illinois River Robbert de Koning, Robbert de Koning Landscape Architect (D) Chris van der Zwet (D) Philip Burkhardt, WUSTL alum. (A) Courtney Cushard, H3 Studio (A) Carolyn Gaidis, L.A.N.D., LLC + H3 Studio (A) Natalie Yates, WUSTL (A) Students (Sherlock, Emily, Dan, Bin) Fluvial Zone Type 02: Levee Protected Future Suburban Development & Free Flow River Missouri River: Howell Island State Wildlife Area to I-70 Peter Hermans (D) Marten Hillen, Royal Haskoning (D) Kees Lokman, WUSTL (D/A) Irene Compadre, WUSTL alum. (A) Bryan Robinson, H3 Studio (A) Brendan Wittstruck, WUSTL alum. (A) Students (Shinan, Deena, Sara) Fluvial Zone Type 03: Levee Protected Existing Urbanized Area & Free Flow River Mississippi River: Confluence to I-270/255 Stijn Koole (D) Anne Sietske Verburg (D) Craig Anz, SIUC (A) Jesse Vogler, WUSTL (A)


Jesse Vogler, WUSTL (A) Laura Lyon, H3 Studio (A) Allison Mendez, WUSTL (A) Mikey Naucus, WUSTL alum. (A) Students (Tiffin, Chad, Golie, Alice)



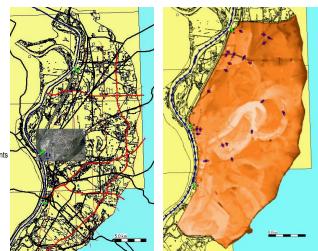




If things go wrong...

Levee breach scenarios Metro East Sanitary District Current protection level: 500yr

In animation 1sec = 2hrs


Direct flood damages 7 billion dollar structural damage

Indirect flood damages Loss of business profits (agriculture, navigation, etc)

Pollution: spreading of debris and toxicants (carried downstream)

Is the protection level economically optimal? and in 50 years?

IT'S A TOXIC TIMB BOMB! -Frans Klijn

We need to stop calling floods "100 year" or "500 year" events ... because "100 year" events seem to happen much more frequently ... rather, what if we calculate probabilities based on something people can relate to ... like the chances a flood occuring during a 30 year mortgage ... or one's lifetime ...

the chance of a flood occuring during a.

30 year mortgage

PROBABILITIES WILL Change

A '100 year fload' means a fload has a 1% chance of occurring in any year. If we calculate the chance of a home in the 100 year fload zone floading over the life of a 30 year mortgage it turns out there is 26% chance such a fload will occur. For a home in the 500 year floadplain there is a 6% chance of floading.

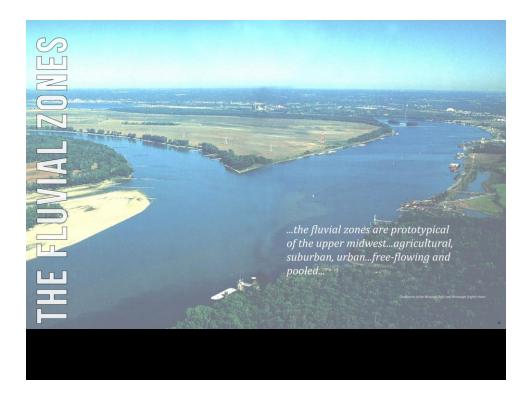
When re-calculated based on climate change expectations of a 10% increase in river discharges a previously 100 year flood increases in frequency to a 40 year flood. There is now a 53% chance of a home in the 100 year (now 40 year) flood zone flooding, and a 26% chance of a home

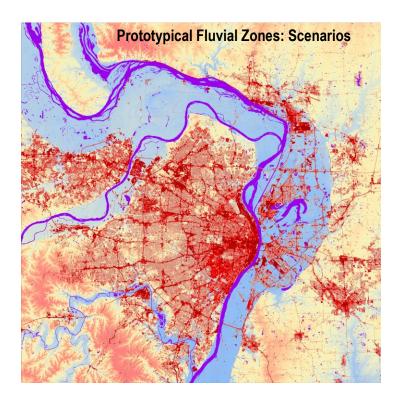
CONSEQUENCES OF FLOODING

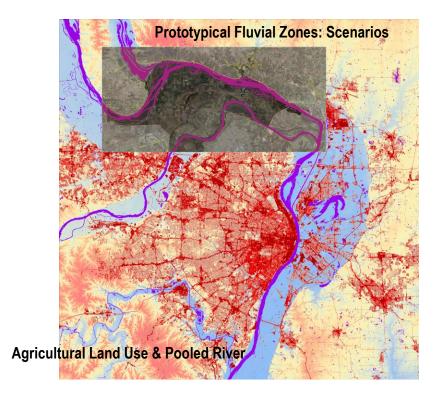
Taking the American Bottom (Metro East Sanitary District) in Illinois ("500 year" fined protection) as an example:

Direct Damages:

ss of life and affected popula

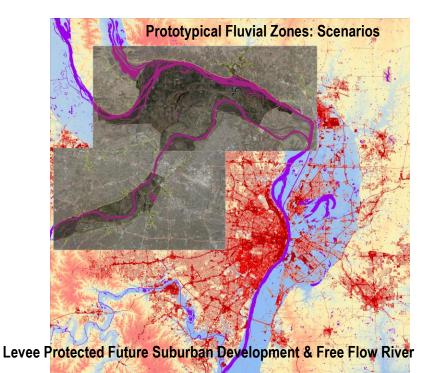

direct damages:

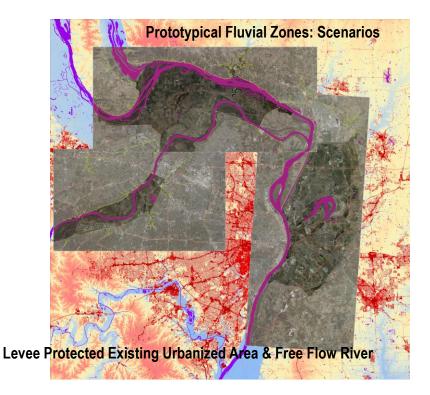

avigation, small businesses, etc.)


Pollution (spreading of toxins and debris locally and downstream)

Is the protection level economically optimal? and what about in 50 years?

19

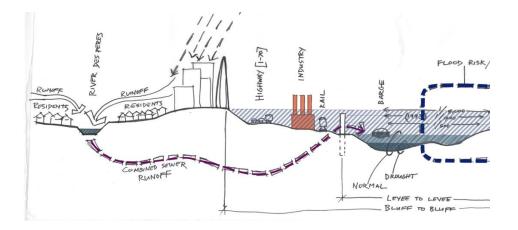


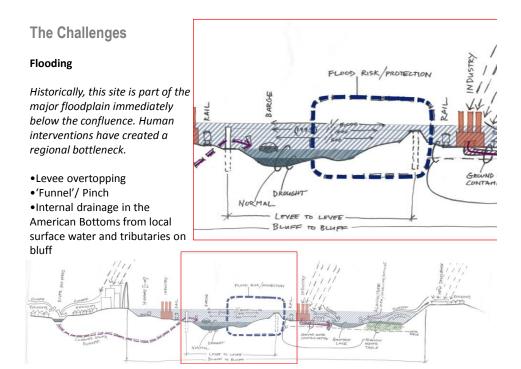


confluence flood plain (mississippi, missouri, illinois rivers)

missouri flood plain

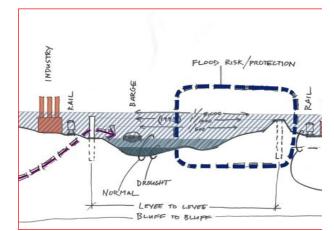
east st. louis flood plain (the american bottom)

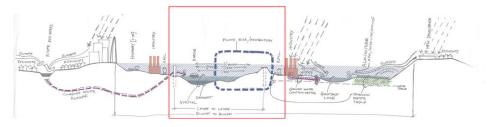

Fluvial Zone Type 03: Levee Protected Existing Urbanized Area & Free Flow River Mississippi River: the Confluence to I-270/255


Fluvial Zone Type 03: Levee Protected Existing Urbanized Area & Free Flow River Mississippi River: Confluence to 270/255

- Second most populated floodplain in US
- Regional Bottle-neck in Mississippi River
- Historically important communities and site of Mississippian cultures and UNESCO Historic Site
- Heavy industry—Steel, Chemical, and Petrochemical
- Crossroads of industry, multi modal transit, agriculture
- Fragmentation—spatially, socially, etc
- All or nothing single large levee system with zero redundancy

The Challenges

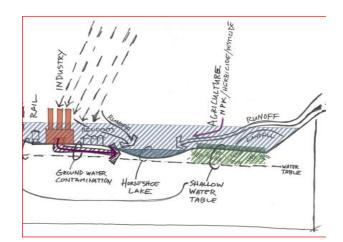


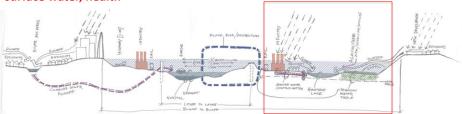

The Challenges

Drought

Poses specific problems to the barge industry and risks compromising water supply

Narrower channel due to sedimentation Reduced number of barges Impervious surfaces move water quickly Heat Island Effect Industry/ energy inlets? Sedimentation in creeks

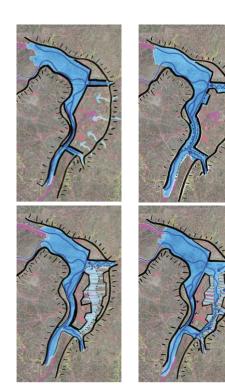

The Challenges


Contamination

A flood event risks contamination internally as well as the entire downstream watershed

Existing Industry Brownfield Superfund sites Water Supply Agriculture Sewage

Groundwater, soils, surface water, health

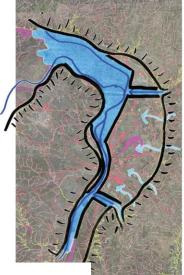

The Scenarios

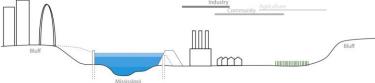
Scenario 1: Business as Usual

Scenario 2: Set Back

Scenario 3: Managed and Staged

Scenario 4: Blue Green Bypass

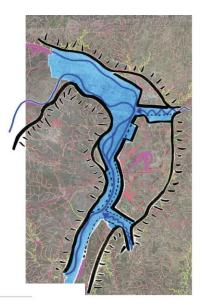

Scenario 1 *Business as usual*


+/Opportunities

- •Safety within total area is ensured
- •Contamination is contained within reinforced levee
- Least expensive

-/Challenges

- •The river remains constricted
- •Still an 'all-or-nothing' approach
- •Zero redundancy
- •Developed with East St. Louis's back to the riverdoes not add qualities to area


Scenario 2 Set Back

+/Opportunities

- •Addresses bottleneck by expanding floodway
- •Relieves larger system
- •Contains majority of contaminants
- Increases protection to local levee district
- •Opportunity for new waterfront/industry on Illinois side

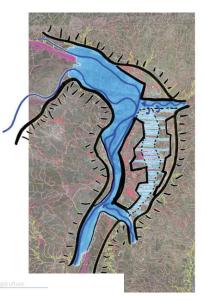
-/Challenges

- •Located in a historic area—must be sensitive to historic settlement patterns
- Industrial remediation along waterway
- •Expense

Scenario 3 Managed and staged floods

+/Opportunities

•Significant hydraulic relief for the entire system to have impacts on the national scale

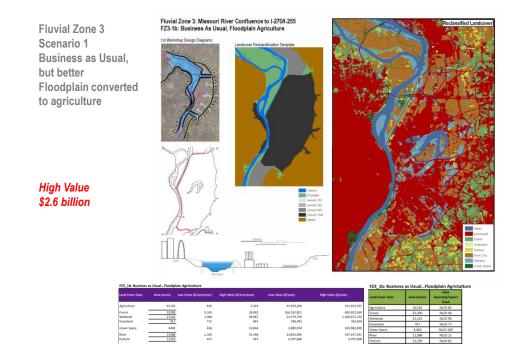

•Protection of industry and containment of contaminants •Bulk of the population protected by new levee

+/- Horseshoe Lake Remediation costly

-/Challenges

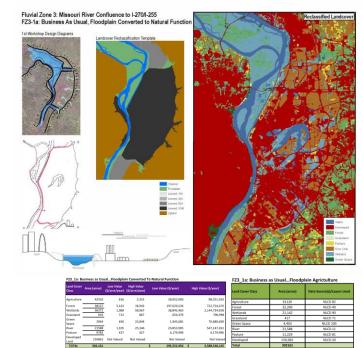
- •Expensive to build and maintain levees
- •Impacts majority of the agricultural community
- •Some need for temporary inundation of agricultural lands

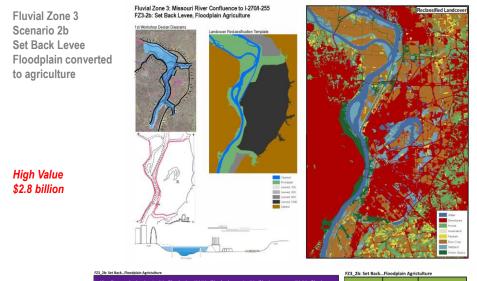
Mississippi


Bluff

Scenario 4 Blue green by-pass +/Opportunities •Hydraulic Relief that functions on the national scale •Major improvements to the local ecology, which will have positive impacts on the local area as well as the regional area •Strengthens navigation while limiting uncertain flood-stages •New development (port) opportunities along river -/Challenges ·Modifies land use from agricultural to ecological Infrastructural blockages •Cost/time mMississippi

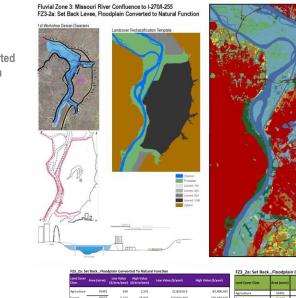
Continuing the Conversation...

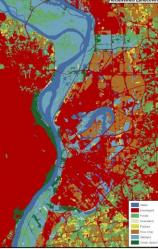



Eco-system Service Valuation Workshop Earth Economics & US Army Corps of Engineers September, 2013

Fluvial Zone 3 Scenario 1 Business as Usual, but better Floodplain converted to natural function

High Value \$3.5 billion

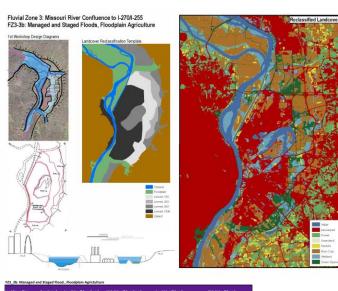




							TES_ED. Set DuckTroodplain Agrictature			
Land Cover Class		Low Value (\$/acre/year)	High Value (S/acre/year)	Low Value (5/year)	High Value (\$/year)	Land Cover Class	Area (acres)	Data Source(s)/Layers Used		
Agriculture	61120	616	2,322	37,629,246	141,913,531	Agriculture	61120	NLCD 82		
Forest	32200	5,163	18,942	166,262,821	609,922,369	Forest	32,200	NLCD 40		
Wetlands Grassland	21142 417	1,058	58,967 867	22,579,750 296,941	1,246,672,720 361.658	Wetlands	21,142	NLCD 90		
Green Space	11547	656	23,844	7,579,366	275,335,442	Grassland Green Space	417 11,547	NLCD 71 NLCD 100		
River	21588	1,105	25,346	23,853,995	547,147,261	Green Space River	21,588	NLCD 100		
Pasture	11229	427	427	4,797,608	4,797,608	Pasture	11,229	NLCD 81		
Developed Land	142917	Not Valued	Not Valued	Not Valued	Not Valued	Developed	142,917	NLCD 20		
TOTAL	302,161			262,999,727	\$ 2,826,150,589	Total	302161			

Fluvial Zone 3 Scenario 2a Set Back Levee Floodplain converted to natural function

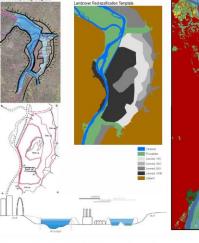
High Value \$4.1 billion



Land Cover Class		Low Value (\$/acre/year)	High Value (\$/acre/year)	Low Value (S/year)	High Value (5/year)	Land Cover Class	Area (acres)	Data Source(s)/Layers Used		
Agriculture	35491	616	2,322	21,850,613	82,406,587	Agriculture	35491	NLCD 82		
orest	40677	5,163	18,942	210,032,460	770,487,920	Forest	40,677	NLCD 40		
Netlands	42385	1,058	58,967	45,267,360	2,499,300,620	Wetlands	42,385	NLCD 90		
Grassland	1165	712	867	829,429	1,010,199	Grassland	1.165	NLCD 71		
Sreen Ipace	8919	656	23,844	5,854,494	212,676,075	Green Space	8,919	NLCD 100		
liver	21588	1,105	25,346	23,853,995	547,147,261	River	21.588	NLCD 11		
asture	9018	427	427	3,853,090	3,853,030	Pasture	9,018	NLCD 81		
Developed Land	142917	Not Valued	Not Valued	Not Valued	Not Valued	Developed	142,917	NLCD 20		
TOTAL	302,161			\$ 311.541.382	5 4.116.881.693	Total	302161			

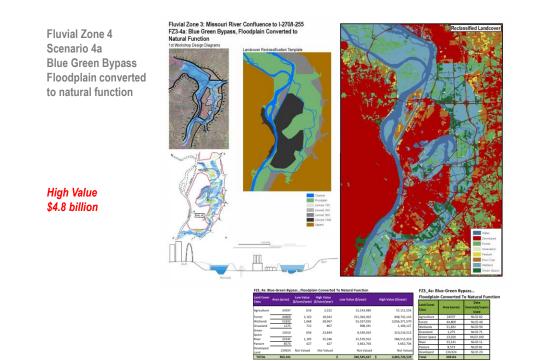
Fluvial Zone 3 Scenario 3b Managed and staged floods Floodplain converted to agriculture

High Value \$2.9 billion

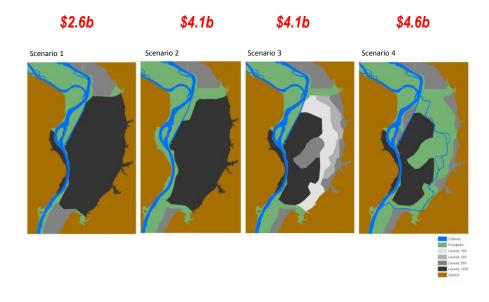


Land Cover Class	Area (acres)	Low Value (5/acre/year)	High Value (\$/acre/year)	Low Value (\$/year)	High Value (\$/year)
Agriculture	61120	616	2,322	37,629,246	141,913,531
Forest	32200	5,163	18,942	166,262,821	609,922,369
Wetlands	21142	1,068	58,967	22,579,750	1,246,672,720
Grassland	417	712	867	296,941	361,658
Green Space	14616	656	23,844	9,593,719	348,510,803
River	21588	1,105	25,346	23,853,995	547,147,261
Pasture	11229	427	427	4,797,608	4,797,608
Developed Land	139849	Not Valued	Not Valued	Not Valued	Not Valued
TOTAL	302,161			265,014,081 \$	2,899,325,949

Fluvial Zone 3 Scenario 3a Managed and staged floods Floodplain converted to natural function

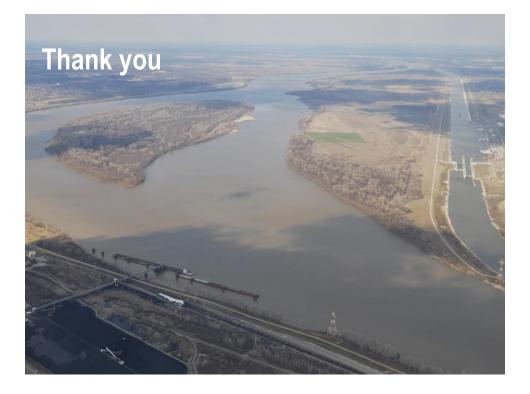

High Value \$4.1 billion

Fluvial Zone 3: Missouri River Confluence to I-270/I-255 FZ3-3a: Managed and Staged Floods, Floodplain Converted to Natural Function



FZ3_3a: Managed and Staged FloodFloodplain Converted To Natural Function							FZ3_3a: Managed and Staged Flood			
Land Cover Class	Area	Low Value (S/acre/year)	(\$/acre/year) (\$/	Low Value	High Value (\$/year)		To Natural Fu			
	(acres)			(\$/year)		Land Cover	Area (acres)	Source(s)/Laver		
Agriculture	37110	616	2,322	22,847,019	86,164,395	Class		Used		
Forest	40050	5,163	18,942	206,794,087	758,608,200	Agriculture	37110	NLCD 82		
Wetlands	40477	1,068	58,967	43,230,260	2,386,828,282	Forest	40,050	NLCD 40		
Grassland	1137	712	867	809,809	986,303	Wetlands	40,477	NLCD 90		
Green Space	12619	656	23,844	8,282,861	300,891,286	Grassland	1,137	NLCD 71		
River	21588	1.105	25,346	23.853.995	547.147.261	Green Space	12,619	NUCD 100		
Pasture	9331	427	427	3,986,724	3,986,724	River	21,588	NLCD 11		
Developed Land	139849	Not Valued	Not Valued	Not Valued		Pasture	9,331	NLCD 81		
		Not Valued	Not valued		Not Valued	Developed	139,849	NLCD 20		

Earth Economics Workshop Eco-System valuation September 2013


Working Rivers ...to... Rivers that Work

Working Rivers ...to... Rivers that Work

RESEARCH AGENDA ... CONTINUING THE CONVERSATION

- Validate the discharge and water level data, flood and drought impacts and establish future hydrological design conditions based upon climate change / extreme weather scenarios
- Evaluate options for risk management for flood and drought control, spatia planning, contaminants, and disaster management
 - Develop a more integrated vision for land-use and multi-layered and functional infrastructure
- Create new (sustainable) economic generators
- Continue building community capacity to foster dialogue around these issues
- Build a multi-disciplinary international "think tank" dedicated to the research and practice of long-term integrative water-based planning

