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1. General introduction  
 

 

C.A.M. van Swaay 

 

 

Biodiversity and conservation 

The world’s biodiversity is overwhelming. The total number of species is estimated 

at around 8.7 million, of which only 1.2 million are already catalogued (Mora et al., 

2011). Most of this biodiversity is concentrated in the tropics, but even a small 

country in the temperate climate zone of Western Europe, the Netherlands, still 

holds approximately 47800 species (Noordijk et al., 2010). And although this little 

part of the world is one of the best investigated in the world, every year is good for 

newly discovered species. A thorough investigation of a small nature reserve near 

Tilburg in the province of Noord Brabant revealed 50 new species for the 

Netherlands and one for science (Van Wielink, 2011). 

 

 

Nature is dynamic and species have always 

come and gone. As the human population 

grew, the impact of mankind on 

biodiversity has also grown. The Dutch 

landscape changed from forest dominated 

before the Roman Age to agriculture 

dominated from the Middle Ages onwards. 

This has led to a huge shift in the 

accompanying species, including the 

butterfly fauna (WallisDeVries & Van 

Swaay, 2009). From the 1950s onwards 

another large shift happened turning the 

semi-natural grasslands that dominated 

the countryside into intensively used 

Lolium perenne monocultures with no 

suitable habitat for any butterfly-species. 

This has led to a fear for a biodiversity crisis 

leading to the extinction of many species. 

Although there are many signs that such a 

crisis is well on the way (Conrad et al., 

2006; Thomas et al., 2008), it is hard to 

measure it and even harder to halt and 

reverse this trend.  

 

Where a complete description of the 

biodiversity at a national scale is almost 

impossible, we can try to monitor the 

changes in biodiversity using indicators. 

Many indicators have been proposed, but 

Pereira et al. (2013) give an overview of the 

Essential Biodiversity Variables (EBV’s) that could form the basis of monitoring 

programs worldwide. One of them is ´Abundances and distributions of species 

populations: counts or presence surveys for groups of species´, e.g. those that are 

easy to  monitor or of special importance for ecosystem services, over an extensive 

network of sites, complemented with incidental data. Butterfly Monitoring 

In a few decades Dutch grasslands changed from species-rich 
semi-natural grasslands to Lolium perenne monocultures. 
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Schemes provide such data making butterflies very useful indicator species for 

measuring changes in biodiversity (Van Swaay et al., 2008).  

 

At the Convention on Biological Diversity (CBD) meeting in Nagoya (Japan, 18 to 

29 October 2010) the Strategic Plan for Biodiversity 2011–2020 was adopted. It 

proposed five goals and 20 so-called Aichi targets. In line with this a new EU 

biodiversity strategy was adopted by the European Commission in May 2011. This 

provided a framework for the EU to meet its own biodiversity objectives and its 

global commitments as a party to the CBD. One of the main targets is to halt the 

loss of biodiversity and the degradation of ecosystem services in the EU by 2020, 

and restoring them as far as feasible, while stepping up the EU contribution to 

averting global biodiversity loss (EEA, 2012). 

The strategy includes the development of a coherent framework for monitoring, 

assessing and reporting on progress in implementing actions. Such a framework is 

needed to link existing biodiversity data and knowledge systems with the strategy 

and to streamline EU and global monitoring, reporting and review obligations. 

Some indicators provide specific measurements and trends on genetic, species 

and ecosystem/landscape diversity, but many have a more indirect link to 

biodiversity. Very few were established specifically to assess biodiversity. The 

status indicators on species only cover birds and butterflies, since these are the 

only taxa/species groups for which harmonized European monitoring data are 

available (EEA, 2012) 

 

It is important that one of the indicator species groups represents the insects. 

Insects are by far the most species-rich group of animals, representing over 50% of 

terrestrial biodiversity (Mora et al., 2011; Noordijk et al., 2010). Contrary to most 

other groups of insects, butterflies are well-documented, easy to recognize and 

popular with the general public. Thomas (2005) shows how well four different 

schemes, used successfully to assess changes in British butterflies (as well as Dutch 

butterflies), may be representative of other taxa. The four schemes include Red 

Lists, mapping schemes (atlases), Butterfly Monitoring Schemes and occasional 

surveys. Thomas (2005) also demonstrated that extinction rates in British 

butterflies are similar to those in a range of other insect groups over 100 years 

once recording bias is accounted for, although probably lower than in aquatic or 

parasitic taxa. It is concluded that butterflies represent adequate indicators of 

change for many terrestrial insect groups, but recommended that similar schemes 

be extended to other popular groups, especially dragonflies, bumblebees, 

hoverflies and ants. Comparisons with similarly measured changes in native bird 

and plant species suggest that butterflies have declined more rapidly than these 

other groups (Thomas et al. 2004).  

 

 
  

Mountains can have a high butterfly diversity. 
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Butterfly research in the Netherlands 

Butterflies have been popular in the Netherlands already for a long time. In the 

Golden Age (17th century) people like Johannes Goedaert, Stephen Blankaart and 

Maria Sybilla Merian studied butterflies and their metamorphosis (Bos et al., 

2006). A major step forward was the publication of the first overview of Dutch 

butterflies by De Graaf (1853), soon followed by more studies (e.g. Snellen, 1867; 

Ter Haar, 1904). 

Another landmark was set by the publication of the Catalogue of Dutch 

Macrolepidoptera that Lempke (1936) started and produced supplements until the 

late 1950s. Ten years later Frits Bink, from the Rijksinstituut voor Natuurbeheer 

(Research Institute for Nature Management) was one of the first scientists in 

Europe working in the field of nature conservation with a focus on butterflies. 

With the start of the Landelijk Dagvlinder Project (Dutch National Butterfly 

Project) by Jan van der Made and Wim Geraedts in 1980 the way of observing and 

recording of butterflies changed drastically. Up to that moment a relatively small 

number of butterfly collectors had been active. From that year onwards a growing 

group of butterfly amateurs brought together a large amount of butterfly field 

records. In the six years of the Landelijk Dagvlinder Project the number of butterfly 

records (120,000) equalled that of the whole period up to 1980.  

1983 marks the founding of De Vlinderstichting (Dutch Butterfly Conservation) and 

a following strong growth of the attention for butterfly conservation among the 

general public. Important other milestones were the publication of the first 

distribution atlas (Tax, 1989), a protection plan for Dutch butterflies (Ministerie 

van Landbouw, Natuurbeheer en Visserij, 1990), the re-introduction of two 

Maculinea species (Wynhoff, 2001) and the revised distribution atlas of butterflies 

in the Netherlands (Bos et al., 2006). 
  

In the Catalogue of Dutch Macrolepidoptera (1936) 
Lempke gives a description for each species, with a 
focus on the variation. Here he mentions Boloria 
selene to be common and widespread (see figure 2.1 
for distribution maps of this species).  
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Butterfly conservation essentials: what do we need to know? 

In itself, butterfly conservation is a relatively new development. Especially birds 

have long generated numerous, popular and large organisations for the targeted 

conservation of this species group. For decades the conservation of butterflies was 

only treated from a general nature conservation perspective.  

However in the 1970s it became more and more clear that the conservation of 

plants and birds was certainly not always beneficial for butterflies (Bink 1980).  

Butterfly conservation needs good quality data and a scientific approach to answer 

questions on planning and management, in what now is called evidence-based 

conservation (Pullin & Knight 2009; Thomas et al. 2011). Following a similar and 

earlier approach in the United Kingdom (Heath et al. 1984), the first step in the 

Netherlands was the Landelijk Dagvlinder Project, which delivered the first 

distribution atlas of butterflies in the Netherlands (Geraedts 1986; Tax 1989). It 

was the first attempt not only to get an overview of the distribution of butterflies, 

but also of their habitat use, ecology and conservation status. This book was soon 

followed by an overview of the ecological traits and habitat requirements of 

Northwestern European butterflies (Bink 1992). 

From that moment the number of papers and books on butterfly conservation in 

Europe and other parts of the world has rocketed. 

 

Effective species conservation is based on five pillars: 

1. Distribution: where are they? Information on distribution, habitat 

preference and behaviour, including different life stages as well as 

migratory habits, is vital in order to organize conservation in an effective 

way. Only when we know where to find butterflies can we protect them or 

improve their habitat. 

2. Trend: how are they doing? Species conservation is all about making 

choices: which species should be saved first. One of the essential 

parameters is the trend, both in population size as in distribution (see also 

in the IUCN Red List criteria (IUCN 2001) as well as in the reports for the 

reports on article 17 of the Habitats Directive (Evans and Arvela 2011)). 

For further analysis information on the trend in habitat quality and -

availability can be necessary additional information. 

3. Drivers of change: what are the causes? Knowing where the species can 

be found, how many species there are and what trend there is in their 

abundance, helps in focussing and may generate explanatory hypotheses, 

but does not, in itself, tell anything about the underlying causes. Scientific 

research on the ecology of species is then needed. Targeted indicators of 

ecologically relevant species groups can be effective and helpful tools to 

monitor changes, but the criteria for the choice of indicators also include  

items like policy relevance, public acceptance and affordability (Biała et al 

2012). However, in many cases only detailed and long-term autecological 

research can reveal underlying mechanisms (e.g. Wynhoff, 2001). 

4. Conservation: what can be done? Once the underlying causes for decline 

in species abundance have been identified, practical measures to 

overcome or mitigate the threats can be developed and tested. It is 

absolutely vital that these conservation measures are followed closely by 

long-term monitoring and regular evaluation. If necessary, they should be 

adapted according to the insights provided by monitoring data. Although 

there are many good examples of detailed research leading to successful 

changes in management (e.g. Brereton et al 2007; Thomas et al. 2009), 

this is not the case for the majority of declining butterflies, let alone for 

the multitude of other insect species whose distribution, population 

status and ecology remain poorly known. For an effective conservation of 
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biodiversity a sound scientific basis for evidence-based conservation 

should be extended to many more species. 

5. Communication: how to raise awareness aiming at the general public? 

Only detailed reporting of the successes and failures of species 

conservation does really help us to learn from each other, not waste 

money and time and work toward an effective conservation. But there is 

more to it than writing a paper in a scientific journal. It is equally 

important to get this knowledge to the wardens and managers in the field 

in their own language as well as bringing it to the general public.     

For the conservation of butterflies the five pillars are connected as the links of a 

chain or supporting a building: if we miss out on one of the pillars, the whole 

system might fail to achieve its conservation objective.  

This thesis concentrates on pillars 1 and 2 in analysing the changes in distribution 

(Part I) and population trends obtained from butterfly monitoring (Part II) as well 

as pillar 3 via the development of indicators (chapter 7). Pillar 4 is discussed in more 

detail in Part III. Pillar 5 falls outside the scope of this thesis. 

 

Below, these pillars will be briefly reviewed as an introduction to the following 

chapters. 

  

Distribution 

Although the number of people studying butterflies has always been much lower 

than for birds (compare the 150,089 members in 2013 for Vogelbescherming, the 

Dutch partner of Birdlife, with the 5,813 for De Vlinderstichting/Dutch Butterfly 

Conservation, Vroege Vogels Parade 2013, vroegevogels.vara.nl), there is still a 

remarkable amount of information available. The first lepidopterologists were 

mainly interested in extending their collection for taxonomic purposes. Already in 

the middle of the 19th century the first overviews were published, which also 

included the first attempts to give an overview of the distribution of all species as 

well as an indication of their rarity (De Graaf 1853). As time progressed, more and 

more of such data became available and in the 1930s Lempke (1936) could already 

give distribution lists consisting of Dutch butterfly communities.  

However, not until the Dutch National Butterfly Project (Landelijk Dagvlinder 

Project) started in the early 1980s, accurate and up-to-date distribution maps, 

based on a 5 by 5 km grid, could be produced (Geraedts 1986; Tax 1989). For that 

project all known sources of old butterfly data were brought together and entered 

as records into a database. A total number of more than 120 000 pre-1980 

butterfly records could be collected. This large dataset is not only the basis for our 

present knowledge on the potential distribution of Dutch butterflies, but also 

proved a valuable dataset for occupancy models. 
  

Figure 1.1: Number of records of 
butterflies per year in the Dutch 
National Database Flora and Fauna. 
Observations in the Dutch Butterfly 
Monitoring Scheme (Dutch BMS) are 
marked separately. 
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Since the beginning of the 1990s the number of butterfly records has risen 

considerably, resulting in a new distribution atlas (Bos et al. 2006). And not only 

the number of records is high, more and more data became available on a 1 km 

grid scale and even more detail representing the real observations in the field in 

Landkaartje (www.vlindernet.nl/landkaartje), Telmee.nl and waarneming.nl. At 

present, Dutch butterfly distribution data are gathered in large numbers in these 

online portals. Also, the validation of these observations now follows standard 

procedures. Figure 1.1 shows the development of the number of records of 

butterflies per year in the National Database Flora and Fauna (NDFF). 

In a well-investigated country like the Netherlands a distribution trend is not a 

change in the range or ‘Extent of occurrence’ as defined by IUCN (2008), but the 

change in the number of occupied squares (defined as the ‘Area of occupancy’ by 

IUCN, 2008). This can be both a range extension (figure 1.2 shows the range 

expansion of Polygonia c-album during its colonisation of the Netherlands) or filling 

up the gaps (figure 1.3 shows how Pararge aegeria expanded from its ‘distribution 

islands’ in the last twenty years to more or less cover the whole country).  

However, size matters: large squares and long-time-periods reduce the sensitivity 

up to a point where a clear change is not detected anymore. But on the other 

hand: small squares and short time periods lead to a lot of missing values, as by far 

not every square in the Netherlands is visited a few times every year for a butterfly 

survey. Occupancy modelling (chapter 4) can be a way out of this dilemma. 
  

Figure 1.2: Distribution on a 5x5km scale of Polygonia c-album in the Netherlands between 1981-1990 (left), 1991-2000 (middle)  and 
2001-2010 (right). Source: NDFF. 

Figure 1.3: Distribution on a 
5x5km scale of Pararge aegeria 
in the Netherlands between 
1980-1985 (left) and 2005-2010 
(right). Source: NDFF. 
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Distribution data on a national level have been collected for the purpose of the Red 

Data Book of European Butterflies (Van Swaay and Warren 1999) and the Red List 

(Van Swaay et al. 2010). This proved to be an effective and relatively easy and 

accurate way to collect information for the assessment of the Red List status. The 

network that was built for this purpose was also very helpful to produce the first 

overview of Prime Butterfly Areas in Europe (Van Swaay and Warren 1999). This 

also was one of the basic elements for the first overview on High Nature Value 

Farmland (Paracchini et al. 2008).  

 

In most European countries the number of lepidopterologists, both professionals 

and volunteers, is lower than in the Netherlands (with the United Kingdom as the 

big exception). As a consequence, there are not many countries with distribution 

atlases comparable with the ones in the Netherlands, although in some regions a 

lot of data have been brought together. On a larger, European scale, two 

distribution atlases have been produced by Kudrna (2002; 2011). These have been 

very valuable in the assessment of the expected changes in butterfly distribution in 

the coming decades as a consequence of future climate change (Settele et al. 

2008). In chapters 2 and 3 of this thesis a few methods to establish distribution 

trends with only limited data available are described and discussed. 

 

Trend 

By nature, populations are not stable (Thomas 1990; Traill et al. 2007). And this is 

certainly true for butterfly populations in a temperate climate, where all species 

have to go through some kind of hibernation and the weather can show large 

differences from year to year and even from day to day. After diapause all 

butterflies have to produce at least one generation of adults before the next winter 

– and some species produce even two or three, with the second and third 

generation generally larger than the previous one.  

There are many hazards in the development from one generation to the other, 

besides environmental factors also predators, parasitoids and pathogens that will 

all influence the number of butterflies in the next generation. This necessitates a 

large reproductive potential. As a consequence of the combination of short 

generation times, large reproductive capacities and high variation in survival, the 

annual variability in butterfly population size is high compared to, for example, 

vertebrates.. 

 

Estimates of the real population size over time (e.g. the number of wild tigers in 

the world has dropped from 5000-7000 in 1998 to 3200 in 2009 as indicated by 

Chundawat et al. 2012), but this is already an unrealistic goal for vertebrates in 

most of the world, let alone for insects or even smaller and more abundant 

creatures. However, sampling for trends can offer a fairly easy way out, and the 

present Butterfly Monitoring Schemes in Europe all have followed this approach 

after the start of the first scheme in the United Kingdom in 1976 (Pollard & Yates, 

1993). Figure 1.4 shows the population trends of Polygonia c-album and Pararge 

aegeria in the Netherlands as compared to the maps in figures 1.2 and 1.3. 

Sampling – in most cases on transects – provides no information on the exact 

population size, but can give reliable information on population trends. However, 

there are some possible sources of bias to overcome – most of these are discussed 

in chapters 5 and 6. 
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The estimation of population trends based on transects requires a large number of 

such transects to obtain a reasonable statistical power. Van Strien et al. (1997) 

showed that, for many species, a minimum number of twenty transects is needed. 

Of course, when there are not enough populations to come up with twenty 

transects, it is best to try to count all sites. Another important phenomenon 

revealed by Van Strien et al. (1997) is that the variance of the first generation 

generally is much lower than in the second generation (although the numbers are 

usually lower in the first generation), making it important to focus on the first 

generations for an effective butterfly monitoring.  

 

In many countries outside Northern and Western Europe, the number of 

volunteers needed for an effective Butterfly Monitoring Scheme is too low. This 

also applies to looking back in history. In the Netherlands the period between 1950 

and 1980 regarding the number of volunteers and data, can be compared to the 

present situation in some Eastern and Southern European countries. If systematic 

data are available (e.g. from collections or literature) and have been brought 

together in a database, occupancy modelling (chapter 4) can offer a technique to 

establish reliable distribution trends per species. Nevertheless this method is also 

quite ‘data-hungry’, and that is when other methods can become more applicable 

(see chapters 2 and 3).  
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The second part of this thesis addresses pillars 2 (monitoring of abundance) and 3 

(drivers of change). It focuses on the scientific basis of the monitoring population 

trends of butterflies in the Netherlands and Europe and using this information to 

build reliable indicators of changes in biodiversity. 

 

Drivers of change 

Butterflies live in a hazardous environment and are under a constant threat to get 

attacked by predators, parasitoids or pathogens, die of food shortage or poor 

quality food, cold or dry weather, and suffer from adverse effects of human land 

use by the application of pesticides, and direct mortality from mowing or grazing. 

As most butterflies only live as adults for a few weeks, most of this applies to one 

of the other, less mobile phases in the life of a butterfly:  the egg, larvae or pupae.  

It is vital to find the bottlenecks in the life of a butterfly, as well as of populations 

as a whole, as this is the only way in which effective conservation measures can be 

developed. There are remarkable examples of successful conservation 

programmes, especially from the United Kingdom, and the long work of Jeremy 

Thomas on Maculinea’s (now Phengaris) and other butterflies should be mentioned 

as an example for many others (Thomas et al. 2009; 2011). In the Netherlands, this 

type of vital research has been taken up by Irma Wynhoff in the context of the 

reintroduction of Phengaris teleius and P. nausithous (Wynhoff, 2001; Wynhoff et 

al. 2011). 

 

If we want to consider broader environmental threats like climate change or 

nitrogen deposition to a wider array of butterfly species, linking the results of 

trend analyses to other on-going changes can be a more effective way to move on. 

For example, WallisDeVries and Van Swaay (2006) showed that the combination 

of climate change and nitrogen deposition can explain the difference between the 

predominantly declining trends of early emerging spring butterflies (hibernating as 

adult or pupae) and the stable or increasing trends of later emerging species 

(hibernating as larvae or egg). In this approach, species are grouped according to 

species traits, with the potential to use the relevant species as indicators of a 

certain life history type. In a similar line, but from a habitat perspective, Brereton 

et al. (2009) (chapter 7) developed a butterfly indicator to record changes in 

grassland biodiversity. 

Such an approach may also be followed in using species as indicators of 

environmental conditions. Thus, Oostermeijer and Van Swaay (1998, chapter 10) 

investigated a tool to study the underlying effects of changes in the species 

composition of butterfly communities in relation to environmental indicators of 

soil nitrogen, acidity and moisture. Devictor et al. (2012; chapter 9) took this 

indicator development one step further by integrating temperature indicator 

values for individual species into a community temperature index. They showed 

that it is possible to track the changes in composition of bird and butterfly 

communities as a function of climatic warming, thus providing an indicator to 

measure the synchronisation of these species groups to climate change. 
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Conservation 

Although society wants to have evidence-based conservation relying on scientific 

research, the way to build this evidence is long and difficult and only seldom 

coincides with short-term project funding opportunities. The third part of this 

thesis provides first steps on which future scientists can build further. 

Conservation is the translation from the former three pillars (distribution – trend – 

drivers of change) to real measures in the field. Typically, these are small-scale and 

often local changes in the management – a change in mowing or grazing regime, 

small scale sod cutting, etc. (e.g. WallisDeVries, 2004). On the other hand Butterfly 

Conservation Europe wants to make a difference in the large-scale changes with 

climate change and agricultural policy as the main items.  

A  Red List can bring together these items and show what species are most in need 

of conservation. Although efforts have been made to make the method to produce 

Red Lists more suitable for invertebrates, there are still species in need of urgent 

conservation which are missed by the IUCN rules (see chapter 12 for a discussion). 

 

There are roughly two approaches for conservation: 

 A species-based approach. 

In this approach the species is the point from which we start. For a long 

time this was the general way for nature conservation in large parts of the 

world. In Europe, the basis was often birds, in Africa large mammals and 

in the Arctic seas whales, so mostly large and attractive animals or plants 

like orchids. As butterflies are attractive as well, butterfly conservation 

organisations have managed to bring butterflies to the attention of 

nature conservation organisations more and more. Butterfly Conservation 

UK even went one step further and owns and manages its own nature 

reserves. In the Netherlands, butterfly-based conservation is an important 

way to preserve the last remaining population of some our most 

threatened butterflies (e.g. Wynhoff 2001; WallisDeVries 2004). 

 A habitat-based approach. 

The last decade’s habitat-based approaches for nature conservation have 

become more and more popular. And indeed, there is much in favour of 

preserving landscapes and habitats to ensure a firm basis for the survival 

of all characteristic species. However, the assumption that habitat 

management benefits all characteristic species is almost never tested. 

And with the economic incentive to minimize the costs of management, 

the preservation of rare species may be seriously jeopardized. Chapters 10 

and 11 provide information for the development of habitat-based 

conservation of butterflies, in presenting both the habitat preferences for 

butterflies and a first approach to identify the most important areas in 

Europe to focus conservation policies on.    

 
  

Should conservation of this calcareous grassland be based on its characteristic flora and fauna 
(here including species like Phengaris arion) or solely on best habitat management for this type of 
grassland? 
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Communication 

Collecting data and researching butterfly ecology is vitally important for the 

conservation of butterflies, but it only remains paperwork without proper 

communication of the results back to the general public and to the people 

responsible for the management of butterfly habitats, from policy makers at 

European, national and local level down to farmers and nature wardens working in 

the field. Only with the emergence of butterfly conservation organisations in the 

UK and the Netherlands did this issue get the attention it deserved. Since 2004 

Butterfly Conservation Europe and its partners try to canalise communication at 

the European level, by co-ordinating European research and conservation projects 

on butterflies, by communication on its website www.bc-europe.eu, facebook 

(www.facebook.com/ButterflyConservationEurope; see figure 1.5 for an example 

of the facebook page of De Vlinderstichting), Twitter (@europebutterfly) and its 

European Policy Advisor, Sue Collins, also together with other NGO’s in the 

European Habitats Forum (www.eurosite.org/en-UK/content/european-habitats-

forum).  

Communication is important, but not a major focus of this thesis. Still it would be 

great if this thesis will also prove to be a valuable means of communicating the 

importance of butterfly conservation to conservation professionals as well as the 

general public.  

 

 

 

Outline of this thesis 

This thesis consists of three parts. The first part (chapters 2-4) shows several 

methods to track changes in the distribution of butterflies. The second part 

(chapters 5-8) focusses on trends in butterfly abundance. The third part (chapters 

9-12) shows how data gathered by volunteers and experts from all over Europe – 

and the Netherlands especially – can be used for the conservation of butterflies. 

The synthesis (chapter 13) will show that butterflies and the indicators developed 

with them, are excellent to follow the most important challenges for biodiversity in 

Europe in the next decades: climate change, agricultural intensification and 

abandonment.  

Figure 1.5: Social media, like 
Facebook, can be an 
effective way to 
communicate with the 
public. This shows the 
Facebook page of De 
Vlinderstichting/Dutch 
Butterfly Conservation. 
Every message has the 
potential of reaching more 
than 7500 people directly 
(situation April 2014) and 
many more when a message 
is shared. 

 

http://www.facebook.com/ButterflyConservationEurope
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2. An assessment of the changes in 

butterfly abundance in the Netherlands 

during the 20th century 
 

 

Slightly modified from: Van Swaay, C.A.M. (1990)  

Biological Conservation 52, 287-302 

 

 

Abstract 

Three methods of describing the changes in abundance of butterflies in The 

Netherlands are presented and discussed. The best proved to be the 

calculation of the percentage of the total number of investigated squares 

where the species was reported in a five-year period. Using this method six 

groups of species with a similar change in abundance are distinguished. Of the 

63 species analysed, 29 (46%) have decreased or have become extinct, 17 (22%) 

have hardly changed their range and only 7 species (11%) seem to have 

expanded their range. Apart from this, 10 species (16%) fluctuate in range. 

 
  

Until the middle of the 20th century 
Araschnia levana was a rare and 
local butterfly. Nowadays it can be 
found all over the Netherlands. 
Figure 2.2 shows the expansion over 
the country. 
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Introduction 

Butterflies have been collected and studied by amateur and professional 

entomologists over many years. These historical data make butterflies an almost 

ideal group for studies on changes in the status of the different species. Recent 

investigations in The Netherlands showed that the distribution and abundance of 

many Dutch species of butterflies has decreased sharply (Geraedts, 1986). Of 71 

native species, 15 have become extinct. A large proportion of the remainder is 

assumed to have declined. A serious problem in investigating the increase and 

decrease of species is the difference in the method and intensity used to collect 

the data. Up to the 1970s butterflies were only collected by a few entomologists, 

who were especially interested in rare species. Common butterflies were seldom 

reported. Many field observations are now made by a large group of people who 

have an interest in nature, and whose mobility and spare time are also much 

greater.  

In this chapter different methods of describing changes in the abundance of 

butterflies are presented and discussed, followed by a survey of the abundance of 

species during this century by means of the most satisfactory method. After 

clustering, groups of species with a similar change of abundance are distinguished. 

Finally, predictions of future changes to be expected are made. 

 

Material and methods 

The basic material for this study consists of data from collections, literature and 

fieldwork, brought together for the Dutch Butterfly Mapping Scheme (Geraedts, 

1986). At present almost 230 000 records of butterflies are available. This study 

uses only the data from the 71 native species, i.e. butterflies that have been 

present during the whole year in The Netherlands over a period of at least ten 

years.  

The first problem in trying to quantify the abundance of a butterfly species is the 

enormous difference in the number of observations from year to year. There are 

several ways of tackling this problem: 

1. Compare the numbers or range (e.g. the number of 5-km or 10-km 

squares) of a species before and after a certain date. This comparison is 

used in many atlas projects (e.g. Geraedts, 1986). Mostly two maps are 

presented, one with the old and one with the new distribution. Figure 2.1 

shows this comparison for Boloria selene. This method does not include 

data on the length and intensity of investigations. In most cases a short, 

intensively investigated period is compared with a long, less intensively 

investigated period. For species that alternate periods of decline in 

distribution with ones of increase, the range as estimated in the longer 

period is overrated. The problem here is that the range is often taken 

from the peak distribution, even though this range may have been 

occupied for only a relatively short time. 

2. Calculate for every year the running average of the number of butterflies 

or their distribution over a period of five or ten years. The running average 

over five years of a year n is the average of the value for the years n-2 to 

n+2. 

3. Summarise the data in periods of five or ten years. 

 

Method 3 is used for the data in this chapter. It is the easiest and includes the 

possibility of comparing different methods to estimate abundance in relation to 

time. The numbers are summarised over periods of five years. In this way the 

greatest precision can be reached. The relatively few data available for the 

beginning of this century did not allow a shorter period than five years.  
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The following methods can be used to estimate the variation of abundance of a 

butterfly species in time: 

1. Calculate the total number of butterflies of a particular species observed 

over a five-year period. Disadvantage: No attention is paid to the changes 

in investigation intensity. 

2. Calculate the percentage given by the numbers of a species recorded 

compared to the total number of butterflies observed in that period (see 

Meerman, 1987). It is based on the assumption that in every period each 

species is observed in relatively equal numbers. Disadvantages: Species 

which are temporarily relatively rare or abundant will give a distorted 

view. This can happen in two ways: 

a. For example, Araschnia levana was very rare until the beginning 

of the 1940s, when it expanded its range from the southeast. In 

the 1950s this butterfly could be seen in many places in The 

Netherlands and many observations were made. After a short 

decline A.levana became more and more common in the 1970s 

and can now be seen throughout the whole country. While this 

species is now regarded as common, it is relatively less reported 

by observers than it was in the 1950s. 

b. In earlier days, very common species were seldom caught, 

because they did not interest collectors. In more recent times 

naturalists have been encouraged to record all species, so that 

common species appear to have become relatively more 

numerous, which is not correct. 

3. Calculate the percentage given by the number of squares in which a 

certain species was reported compared to the total number of 

investigated squares per period (see Turin & Den Boer, 1988). 

Advantages: (i) This method provides an opportunity to correct for 

investigation method and investigation intensity. (ii) Because this method 

is based on grid squares instead of numbers, the effect of a temporary 

Figure 2.1: Distribution of Boloria selene in the Netherlands. a) Up to 1980 and b) 1981-1986. 
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change in interest is less strong than in method 2. Disadvantages: (i) The 

period between 1981 and 1986 was intensively investigated for the Dutch 

Butterfly Mapping Scheme. This means that common species will be 

relatively overrated in this period. (ii) Rare, poorly dispersing species 

recorded from only a few localities and which were investigated very well 

in the past (e.g. Boloria aquilonaris) will score too highly during those 

periods which were less intensively investigated in the rest of the country. 

(iii) Since this method is based on grid squares, a decrease in the density 

of populations in the squares is not noticed. Therefore, the decrease of 

many species is noticed later than the actual start of that decrease. 

 

In Figure 2.2 an example is given of these three 

methods using Araschnia levana. This shows that the 

peak in the 1950s for the recorded number of 

individuals (method 1, Figure 2.2a) and the 

percentage of the total number of recorded 

butterflies (method 2, Figure 2.2b) is earlier than the 

peak for the percentage of the total number of 

investigated squares (method 3, Figure 2.2c). This 

means that in the early years of the increase, when 

they attracted attention, many butterflies were 

recorded. Five years later the distribution in The 

Netherlands appeared larger, because observations 

were recorded for more squares, but there was less 

interest in catching or recording this species. 

 

The last method combines the greatest accuracy 

with the fewest disadvantages and was chosen for 

this study. All data from native species between 1901 

and 1980 are divided in five-year periods. After this 

the percentage of the total number of investigated 

squares where the species is reported in each period 

is divided into exponential classes (Table 2.1). This 

classification was developed by Geraedts (1986) as 

‘Square Frequency Class’ (SFC) and was preferred to 

the classification of Van der Maarel (1971) and 

Westhoff & Weeda (1984), developed for botanical 

use. The fact that there are many more historical 

records for plants than for butterflies meant that 

their highest classes were seldom reached. The SFC 

is exponential, i.e. if a species sinks from class 7 to 

class 6, it is only observed in approximately half of 

the original number of squares. Eight native species 

could not be included in the analysis because of lack 

of data: Heteropterus morpheus, Spialia sertorius, 

Satyrium pruni, Plebejus optilete, Phengaris alcon, 

Brenthis ino, Coenonympha hero and Hipparchia 

statilinus. They are mainly species with a low 

dispersal rate, which were not observed for a long time 

and were suddenly ‘rediscovered’ on their old sites. 

These are considered to have been there all the time but 

not recorded. 
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Figure 2.2: Abundance of Araschnia levana in five-year 
periods. Dates covered by the 16 periods in table 2.  
(a) Recorded number per period (method 1); (b) 
percentage of the total number of observed butterflies 
per period (method 2); percentage of the total number of 
investigated squares per period (method 3). 
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Table 2.1: Exponential Classification of the percentage of the total number of 
investigated squares where a species was reported (Square Frequency Class, SFC). 

SFC Upper limit (%) Description 

1 0.39 Extremely rare 

2 0.78 Very rare 

3 1.56 Rare 

4 3.13  

5 6.25  

6 12.5  

7 25 Common 

8 50 Very common 

9 100  

 

 

Results 

Dividing species into groups by means of their change in distribution and 

abundance in the 20th century is not easy since all species have their own history 

and ecological requirements. Six groups of species were identified with similar 

changes of abundance in time (Table 2.2). For each species the percentage of the 

total number of investigated squares in periods, where the species was reported 

between 1901 and 1980, is divided into SFC’s. The measured SFC is only given for 

period 17 (1981-86). 

1. Species which have declined continuously since the beginning of the 20th 

century, most of which are now extinct or have only one or two local 

populations. Most of these species live on nutrient-poor grasslands. They 

all hibernate as larvae and have only one generation a year. 

2. Species which have declined rapidly since the 1950s. Compared with this 

decade, only 10-50% of the squares are occupied today. Under normal 

circumstances most of these species have only one generation a year. 

3. Species which have always been rare and declined slowly during the 20th 

century. Under normal circumstances they only have one generation per 

year in The Netherlands.  

4. Species of which the distribution appears to fluctuate regularly. These 

species alternate periods of range expansion and reduction.  

5. Species whose distribution has changed little or not at all. They are as 

common now as they were at the beginning of the 20th century.  

6. Species which seem to have expanded their range. For some species this 

may be due to the fact that at the beginning of the 20th century they 

were seldom reported. They all hibernate as adult butterflies or as 

chrysalises. Except for Gonepteryx  rhamni these species have two or more 

generations a year. 

Figure 2.3 illustrates the first five groups with specific examples. Here the exact 

percentage of the total number of investigated squares is given for each period. 

Figure 2.2c provides an example for group 6. 
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  Five year period 

 Species 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Group 1 
                 

 Lycaena hippothoe 5 4 2 4 5 2 4 2 3 1 1 
 

1 
    

 Phengaris arion 4 2 2 
 

2 2 2 1 1 1 
  

1 
    

 Boloria euphrosyne 5 5 5 5 5 3 3 1 2 1 3 1 
 

1 
   

 Melitaea diamina 5 3 2 3 3 3 2 1 1 2 1 2 
     

 Phengaris teleius 5 5 4 4 3 3 3 3 3 4 3 4 2 2 
   

 Phengaris nausithous 4 4 3 4 4 3 3 2 3 4 4 3 2 2 
   

 Thymelicus acteon 3 2 2 3 4 4 3 3 3 3 3 2 2 1 1 1 1 

 Euphydryas aurinia 6 6 5 5 5 5 4 5 5 4 3 3 2 2 1 1 1 

 Erynnis tages 6 6 5 5 5 5 4 4 4 5 5 4 3 2 2 1 1 

 Cyaniris semiargus 5 6 5 6 5 4 5 4 4 5 4 1 2 3 3 1 1 

 Melitaea cinxia 6 7 6 4 4 3 3 3 5 4 5 2 1 3 3 1 1 

Group 2 
                 

 Aporia crataegi 5 7 5 6 6 5 5 6 6 6 5 5 4 3 3 1 3 

 Nymphalis antiopa 6 6 5 5 6 6 5 6 6 5 5 5 3 3 3 4 3 

 Melitaea athalia 6 6 5 5 6 5 6 4 5 5 5 5 5 3 4 3 3 

 Argynnis paphia 5 4 4 4 5 5 5 4 5 5 4 4 5 4 3 4 3 

 Argynnis aglaja 6 6 5 4 6 6 5 5 6 5 5 5 4 4 4 2 4 

 Boloria selene 7 7 6 6 6 6 7 6 6 6 6 6 5 6 5 4 5 

 Pyrgus malvae 6 6 6 6 6 6 5 6 6 5 6 6 5 5 4 4 4 

 Coenonympha tullia 5 6 5 5 5 5 5 5 5 5 4 5 5 5 4 4 4 

 Argynnis niobe 5 5 3 5 5 5 5 5 5 5 5 6 4 5 4 4 4 

 Nymphalis polychloros 6 7 6 6 6 6 5 7 6 6 6 4 5 3 4 5 3 

 Satyrium ilicis 7 6 6 6 6 6 6 6 6 5 6 5 6 5 5 6 5 

 Lycaena tityrus 7 7 6 7 5 6 6 6 7 7 7 6 6 5 6 5 7 

Group 3 
                 

 Limenitis populi 
 

2 4 2 2 4 4 2 2 1 1 1 
 

1 1 1 1 

 Satyrium w-album 2 3 
 

2 3 4 2 2 1 1 1 1 2 
 

2 3 1 

 Cupido minimus 2 2 
  

4 2 3 
 

2 1 1 
 

3 1 
 

2 1 

 Plebejus idas 4 2 2 2 
 

3 2 2 2 1 1 2 2 1 2 1 1 

 Coenonympha arcania 4 4 4 3 
  

2 3 1 3 3 3 3 2 2 2 1 

 Boloria aquilonaris 4 3 2 3 2 2 3 
 

3 1 1 3 2 3 2 3 2 

Group 4 
                 

 Apatura iris 5 
 

3 3 3 4 4 4 4 4 3 3 3 3 2 4 4 

 Carterocephalus palaemon 5 5 5 5 5 4 4 3 4 4 4 5 5 5 4 3 5 

 Thecla betulae 5 6 4 5 5 4 5 5 4 4 5 3 4 4 4 3 4 

 Lycaena dispar 
  

3 3 4 4 4 4 3 4 4 4 4 4 4 3 3 

 Aricia agestis 6 6 6 6 5 5 5 5 6 6 6 6 5 5 5 5 6 

 Hesperia comma 6 6 6 6 5 5 6 5 5 6 6 5 6 5 5 5 5 

 Limenitis camilla 6 5 4 4 5 6 6 6 6 5 6 5 5 5 5 5 6 

 Papilio machaon 6 6 7 7 5 5 7 7 7 7 6 5 5 6 6 6 5 

 Issoria lathonia 6 6 7 6 7 6 6 6 7 7 7 7 7 6 6 5 5 

 Polygonia c-album 6 4 3 4 5 6 6 6 6 7 7 6 6 6 6 6 7 

Group 5 
                 

 Plebejus argus 6 5 6 5 5 6 6 6 5 6 6 6 6 6 6 6 6 

 Callophrys rubi 6 6 6 6 5 6 6 6 6 6 6 6 6 6 6 6 7 

 Favonius quercus 6 6 5 6 6 6 6 6 5 5 6 6 6 6 6 6 7 

 Pyronia tithonus 6 6 6 6 6 5 6 6 6 6 6 7 6 6 6 6 8 

 Thymelicus sylvestris 6 6 6 6 6 6 6 6 6 6 6 6 6 5 6 6 7 

Table 2.2: Changes in the percentage of the total number of investigated squares where a species was 
reported in the period 1901-1985. This percentage is divided into the Square Frequency Classes (SFC; table 
2.1). This table was recalculated in 2011 and some figures can differ slightly from the original paper. Species 
names follow the 2011 version of the Fauna Europaea. Periods: 1=1901-1905, 2=1906-1910, etc. 
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  Five year period 

 Species 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

 Thymelicus lineola 6 6 5 6 5 6 6 6 6 6 6 7 6 6 7 6 8 

 Pararge aegeria 5 5 6 6 5 5 6 6 6 7 7 7 6 6 7 7 8 

 Aphantopus hyperantus 6 6 5 6 5 6 6 6 6 6 6 7 7 6 6 6 8 

 Celastrina argiolus 6 7 6 7 6 7 7 7 6 6 7 7 6 7 6 7 8 

 Hipparchia semele 6 6 6 6 6 7 7 7 7 6 6 7 7 6 6 6 7 

 Anthocharis cardamines 7 7 6 6 6 6 7 6 6 6 6 6 6 7 7 7 8 

 Lasiommata megera 6 6 6 7 6 6 7 7 7 6 7 7 7 7 7 7 9 

 Ochlodes sylvanus 7 6 6 6 6 6 7 6 7 6 6 7 7 7 7 7 8 

 Maniola jurtina 7 7 6 6 7 7 7 7 7 7 7 7 7 7 7 7 9 

 Polyommatus icarus 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 9 

 Coenonympha pamphilus 7 7 7 7 7 7 7 7 7 7 7 8 7 7 8 7 9 

 Lycaena phlaeas 7 7 7 7 7 7 7 7 7 7 7 8 7 7 7 7 9 

Group 6 
                 

 Pieris brassicae 3 4 3 4 5 5 5 5 6 6 6 7 7 7 7 7 9 

 Pieris napi 4 5 3 5 5 5 5 6 6 6 6 7 7 7 7 7 9 

 Pieris rapae 4 3 3 5 6 5 5 5 6 6 7 7 7 7 8 7 9 

 Aglais io 4 5 5 5 2 4 5 6 5 6 6 7 6 7 8 8 9 

 Gonepteryx rhamni 6 5 6 6 6 7 7 6 6 7 6 7 7 7 7 8 9 

 Aglais urticae 2 4 5 5 5 5 5 6 6 6 6 7 7 7 8 8 9 

 Araschnia levana 4 
 

2 3 2 3 3 4 5 6 8 6 6 7 7 7 8 
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Figure 2.3: Percentage of the total number investigated squares per 
period for which the speces is reported. (a) Euphydryas aurinia (group 
1); Clossiana selene (group 2); Coenonympha arcania (group 3); 
Carterocephalus palaemon (group 4); Lycaena phlaeas (group 5). 
Figure 2.2c gives an example for group 6 (Araschnia levana). 
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Discussion 

Of the 63 species investigated, 29 (46%) have declined or have become extinct 

(groups 1, 2 and 3). Seventeen species (27%) hardly changed their range (group 5) 

and only seven species (11%) seem to have expanded their range (group 6). In 

addition, ten species (16%) fluctuate in range (group 4). For some of the last group, 

the peaks seem to become lower and the troughs deeper. These species might 

become endangered in the future. 

 

In Table 2.3 the observed decline of the Dutch butterfly fauna is compared with 

plants and other groups of animals. This illustrates that butterflies and Orthoptera, 

as many other insects, are very vulnerable to changes in their environment 

because of their specialised lifecycles. All their requirements must be fulfilled every 

year, without fail, otherwise local populations will decline very rapidly, especially 

compared to birds. This stresses the value of insects such as butterflies as early 

warning indicators of environmental problems.  

 

 
Table 2.3: The decline of butterflies in the Netherlands compared to plants and other 
groups of animals (Logemann, 1989). 

Group Number of species 
Percentage of declining 

species 

Bryophytes 535 36 

Lichens 665 40 

Vascular plants ±1450 34-54 

Birds 155 26 

Mammals 59 49 

Butterflies 71 46 

Orthoptera 39 49 

 

 

For most of the species in group 1, which are now very rare or extinct, the decrease 

had already started at the beginning of the 20th century. As in the United 

Kingdom (Heath et al., 1984), loss of habitat is thought to be responsible for this 

major decline, which became stronger after the 1950s for most species. Figure 2.4 

gives a short view on the changes in some semi-natural habitats in The 

Netherlands (CBS, 1976-78). During this century heathlands especially were 

cultivated, and today only about 20% is left compared to 1905. The total area of 

agricultural land in The Netherlands did not change very much, but at the 

beginning of this century almost all agricultural land maintained many butterfly 

species. Today the nutrient-poor, unimproved grasslands are restricted to small 

nature reserves, scattered all over the country. The rest of the arable land and 

pastures are unfit for butterflies. Isolation and poor management of the nature 

reserves have subsequently affected many of these isolated populations. Although 

isolated butterfly populations can survive very well for a long time (for example, 

Maniola jurtina on the Isles of Scilly (Dowdeswell et al., 1949)), a change in the 

management regime can lead to the lowering of the carrying capacity to a point 

where local extinction is very likely as a result of natural fluctuations caused by 

environmental changes. After this local extinction, isolation will reduce the chance 

of natural recolonisation. For example, in 1959 some 2000 specimens of 

Euphydryas aurinia were counted in its last population. Year after year the whole 

grassland was mown in the autumn and almost all the larval nests were removed. 

In 1975 only 50 specimens were left and in 1982 the last few were seen (Geraedts, 

1986). It is clear that because the next population of this highly resident species is 

at least 300 km away, natural recolonisation is impossible. 
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The distribution of the species in group 2 changed little until the end of the 1950s. 

Since then the decrease has been substantial and only 10-50% of the original range 

is still occupied in the 1980 s. Habitat destruction outside nature reserves, and poor 

management inside, are the most important reasons for this sudden decline. Many 

of these species lived in a small-scale, not very intensively used agricultural 

landscape which has almost disappeared in The Netherlands since the spread of 

modern intensive agriculture. Also in England there was a sharp decline of many 

woodland and grassland species in the late 1950s and 1960s (Heath et al., 1984). 

Here, apart from habitat destruction, the disappearance of rabbits by 

myxomatosis was another important factor, stopping intense rabbit-grazing 

leading to higher vegetation and shrub invasion. In The Netherlands only the 

coastal dunes were temporarily influenced by myxomatosis.  

The cause of the strong fluctuations of the species in group 4 is not precisely 

known and is presumed to be climatic. In the relatively warm period between 1930 

and 1955, species like Papílio machaon and Issoria lathonia, which breed only in 

warm habitats, showed a clear peak in distribution. After this a period of decline 

began. In contrast, species such as Carterocephalus palaemon and Lycaena dispar, 

which favour relatively cool and moist breeding habitats, show a clear dip in the 

1930s and 1940s and a peak in the wet 1960s. 

 

It is striking that the species in group 1, which all show the strongest and longest 

decrease, hibernate as larvae and have only one generation per year. On the other 

hand none of the species in group 6 hibernate as larvae, but all as adult or as 

pupae. Bink & Siepel (1986) also established this fact. All species of group 6 except 

for Gonepteryx rhamni, have more than one generation per year. Without a change 

in agricultural use and management of nature reserves, it may be expected that all 

the remaining species of group 1 will soon become extinct. Their surviving 

populations are so small that any deterioration in the environmental situation will 

be fatal. Natural recolonisation is impossible when the nearest populations are too 

far away. Of the three species Thymelicus acteon, Cyaniris semiargus and Melitaea 

cinxia, not more than five adults were seen between 1980 and 1989. The last 

population of Euphydryas aurinia disappeared in 1982. Since then no butterflies of 

this species have been reported. To maintain these remaining species in The 

Netherlands biotope management will have to be adapted to the special demands 

of butterflies. The Protection Plan of the Ministry of Agriculture and Fisheries 

(Ministerie van Landbouw en Visserij, 1989) gives detailed information about this. 

For extinct species which are not able to colonise former sites where the 

management has been improved, reintroduction will be necessary. In the United 

Kingdom reintroductions have been carried out several times and proved to be 

successful under certain circumstances (Thomas, 1984). In 1990 Phengaris teleius 
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and P. nausithous were reintroduced in a nature reserve in the south of The 

Netherlands, where P. teleius is still present but P. nausithous disappeared. Most 

species of group 2 are threatened by extinction in the near future. In less than 30 

years their habitat has almost vanished from the Dutch countryside. Without any 

measures to protect and enlarge their habitats, the remaining populations will be 

prone to chance extinctions. This will lead to national declines as the chances of 

natural recolonísation are now much reduced due to the fragmentation and 

isolation of their habitats. How fast such a decline can occur is illustrated by the 

disappearance of Carterocephalus palaemon in England (Heath et al., 1984). By the 

time entomologists realised it was in danger, it had already disappeared from 

virtually all its sites. For these species a direct change of biotope management in 

favour of butterflies, as suggested in Ministerie van Landbouw en Visserij (1989), 

will be necessary. But more knowledge of the autecology of these species is also 

required. In addition, some of the fluctuating species in group 4 may become 

threatened, as the periods of decline became longer and deeper.  

 

It is expected that the species in the groups 5 and 6 will be able to maintain 

themselves in The Netherlands, but their status must be watched carefully as a 

sudden fall in numbers may occur. 
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Abstract 

The compilation of the Red List of butterflies in Flanders and the Netherlands 

was based on two criteria: a trend criterion (degree of decline) and a rarity 

criterion (actual distribution area). However, due to the large difference in 

mapping intensity in the two compared periods, a straightforward comparison 

of the number of grid cells in which each species was recorded appeared 

inappropriate. To correct for mapping intensity, we used reference species that 

are homogeneously distributed over the country, that have always been fairly 

common and that did not fluctuate in abundance too much during the 20th 

century. For all resident species a relative presence in two compared periods 

was calculated, using the average number of grid cells in which these reference 

species were recorded as a correction factor. The use of a standardized method 

and well-defined quantitative criteria makes national Red Lists more objective 

and easier to re-evaluate in the future and facilitates the comparison of Red 

Lists among countries and among different organisms. The technique applied 

to correct for mapping intensity could be useful to other organisms when there 

is a large difference in mapping intensity between tw0 periods. 

 
  

Lycaena phlaeas, the only reference species in both Flanders and in the Netherlands. 
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Introduction 

Since their conception in 1963 by Sir Peter Scott, Red Lists have been increasingly 

used as nature conservation tools (Collar, 1996). Red Lists or Red Data Books may 

have several uses: (i) to set up research programmes for conservation, (ii) to derive 

conservation priorities, and (iii) to propose protection for sites that are inhabited 

by threatened species (Mace, 1994; Collar, 1996). Their usage stresses that 

categorization of the different species should be based on reliable and objective 

criteria. ln the past, almost all Red Lists were compiled on the basis of a best 

professional judgement by a group of experts. With their introduction for use in 

the compilation of international Red Lists by the International Union for the 

Conservation of Nature and Natural Resources (IUCN) (IUCN, 1994; Mace and 

Stuart, 1994), quantitative criteria have made their way into national Red Lists as 

well (e.g. Schnittler et al. (1994) in Germany). However, since many more data are 

available on vertebrates and on vascular plants, the proposed IUCN criteria are 

more easily applicable to these groups than to lower organisms, such as 

invertebrates or lower plants (Hallingbäck et al., 1995). 

The method proposed by Strool and Depiereux (1989) for compiling the Red List of 

the Trichoptera in Belgium, which is based on the Chi2-distributi0n, cannot be 

applied to the data set of the butterflies in Flanders and the Netherlands as, in 

order to use their method, the chance of finding a species should be equal in both 

compared periods: this condition is certainly not fulfilled since in the past more 

emphasis was on recording rare species while nowadays the common species 

represent the majority of the records. Recently, Avery at al. (1995) proposed 

another method for compiling the national Red List of British birds. The 

combination of three axes (axis 1 = the national threat status, axis 2 = the 

international importance and axis 3 = the European / global conservation status) 

was used as the basis for setting UK conservation priorities. However, due to lack 

of sufficient data, their method is difficult to use for invertebrates and in that case, 

they propose the use of qualitative information. Since the IUCN proposed a new 

approach for compiling Red Lists, it is recommended to develop methods that use 

quantitative criteria, even for invertebrates or other lower organisms. 

 

ln Flanders (N-Belgium) and the Netherlands, Maes et al. (1995) and Van 

Ommering (1994) recently proposed categories and criteria for the compilation of 

the respective national Red Lists. Although it is only a region of Belgium, we apply 

the terms ‘country’ and ’nati0naI' for Flanders for simplicity. The principal idea in 

this new method for compiling national Red Lists is that the present rarity of a 

species is compared with its rarity in a reference period. The distribution area in 

the reference period is considered as being the more or less natural distribution of 

most species. In the Netherlands, a lot of butterfly species showed a marked and 

strong decrease in the period 1950-1980 (van Swaay, 1990; chapter 1). In this 

period the Dutch landscape lost many suitable butterfly habitats due to the 

intensification of agriculture, acidification, etc. Therefore, the year 1950 marks the 

end of the reference period in the Netherlands. The start in 1901 was chosen 

arbitrarily. The number of butterfly records before this year was very low. 

The method proposed for the compilation of the Red Lists in Flanders and the 

Netherlands uses a combination of the actual rarity and the degree of decline in 

distribution area to assign all resident species to a Red List category. The actual 

rarity is expressed as the extent of the present day distribution area and is 

measured as the number of grid cells in which a species was recorded in the period 

1981-1995 in Flanders and the period 1986-1993 in the Netherlands (= period 2). 

The second criterion compares the present day distribution area with that in the 

period 1901-1980 in Flanders and 1901-1950 in the Netherlands (= period 1). Due to 

the large difference in mapping intensity between the two compared periods, we 
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had to design a way to compensate for this difference. In this paper we describe 

the general methodology for compiling the Red Lists in Flanders and the 

Netherlands. In particular, we introduce a technique that corrects for differences in 

mapping intensity among sampling periods. This technique may also be used to 

compare distribution areas of other groups of organisms when there is a large 

difference in mapping intensity between two sampling periods. The use of a 

standardized method with well-defined quantitative criteria, such as the one we 

propose in this paper, makes national Red Lists more objective and easier to re-

evaluate in the future and facilitates the comparison of Red Lists among countries 

as well as among different groups of organisms. 

 

 
Table 3.1: Red List categories and criteria used in Flanders and the Netherlands based on 
the IUCN criteria (IUCN, 1994); modified after Van Ommering (1994). Very rare species: 
presence <1% of grid cells; rare species: 1-5% of grid cells; fairly rare species: 5-12.5% of 
grid cells; common species: presence >12.5% of grid cells. 

Red List category Description 

Extinct in the wild in 
Flanders/the Netherlands 
(EXF/EXN) 

Species that did not have reproducing populations in Flanders/the 
Netherlands in the last ten years but have been recorded as such 
before. Some of these species are still observed as vagrants. 

Critically endangered (CE) Very rare species that decreased by at least 75% in distribution area 
between the two compared periods. In Flanders, species that have 
only a few isolated populations also qualify for this category. 

Endangered (EN) Very rare species that have decreased in distribution area by 50–
75% between the two compared periods or rare species that have 
decreased by at least 50% in distribution area between the two 
compared periods. 

Vulnerable (VU) Very rare or rare species that have decreased in distribution area by 
25–50% between the two compared periods or fairly rare species 
that have decreased in distribution area by at least 25% between 
the two compared periods. 

Susceptible (SU) Very rare species that have decreased in distribution area by less 
than 25% between the two compared periods (subcategory ‘Rare’ 
in Flanders) or common species that have decreased in distribution 
area by at least 50% between the two compared periods 
(subcategory ‘Near-threatened’ in Flanders). 

Data deficient (DD) Species for which there are insufficient data to place them in a Red 
List category. 

Safe/Low risk (S/LR) Rare and fairly rare species that have decreased in distribution area 
by less than 25% between the two compared periods or common 
species that have decreased in distribution area by less than 50% 
between the two compared periods. 
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Methods 

The data for compiling the Red Lists of Flanders and the Netherlands were 

gathered by the Flemish Butterfly Study Group and by Dutch Butterfly 

Conservation respectively. At first, we gathered data from the literature and from 

museum and private collections. These data mainly date from before 1980 and 

comprise about 16 000 records in Flanders and about 125 000 in the Netherlands. 

Afterwards, both countries organized intensive campaigns with the help of 

numerous volunteers which greatly increased the data set. In Flanders, this 

butterfly mapping scheme started in 1991 and the complete data set now 

comprises about 145 000 records of 69 resident species. In the Netherlands, the 

mapping project started in 1981 and the complete data set now contains about  

430 000 records of 70 resident species (Wynhoff and van Swaay, 1995). As the basis 

for mapping the distribution of each species, we used grid cells of 5x5 km both in 

Flanders (UTM projection, n=636) and the Netherlands (Amersfoort projection, 

n=1677). 

 

Red list categories in Flanders and the Netherlands 

The Red List categories in Flanders and the Netherlands are based on those of the 

IUCN (1994) and are given in Table 3.1. Both national Red Lists only refer to 

resident species, present in the country throughout the year and known to 

reproduce in the wild over a period of at least ten years. Thus, we excluded 

migratory species such as Vanessa atalanta (red admiral), Cynthia cardui (painted 

lady), Colias hyale (pale clouded yellow) and Colias crocea (clouded yellow). We 

used two criteria to classify species into the Red Lists of Flanders and the 

Netherlands: a rarity criterion and a trend criterion (Table 3.2). 

 

 
Table 3.2: Classification scheme for the Red Lists of Flanders and the Netherlands; the 
number of grid cells that determine rarity are arbitrarily chosen. 
Period 1: 1901-1980 in Flanders and 1901-1950 in the Netherlands. 
Period 2: 1981-1995 in Flanders and 1986-1993 in the Netherlands. 

Decline in distribution 
area between the two 
compared periods (%) 

Presence and percentage of grid cells  

<1% 1-5% 5-12.5% >12.5% 

Number of grid cells Flanders   

1-6 7-32 33-80 >80 

Number of grid cells the Netherlands  

1-17 18-83 84-209 >209 

76-100 Critically 
endangered 

Endangered Vulnerable Susceptible 

51-75 Endangered Endangered Vulnerable Susceptible 

26-50 Vulnerable Vulnerable Vulnerable Safe/Low 
risk 

≤ 25 Susceptible Safe/Low 
risk 

Safe/Low 
risk 

Safe/Low 
risk 

 

 

The rarity criterion is defined by the number of grid cells in which a species was 

recorded in period 2. The limits that determine rarity are arbitrarily chosen. For 

rare but fairly mobile species (e.g. Aporia crataegi (black-veined white), Argynnis 

paphia (silver-washed fritillary), Issoria Iathonia (Queen of Spain fritillary), Leptidea 

sinapis (wood white), Nymphalis polychloros (large tortoiseshell) and N. antiopa 

(Camberwell beauty)), grid cells with single, vagrant individuals were excluded for 

compiling the Red Lists since they do not relate to populations. 

The trend criterion is derived from the comparison between the actual rarity of a 

species and the extent of its distribution area in the past, expressed as the number 

of grid cells in which a species was recorded in period 1. However, due to the large 
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difference in mapping intensity between past and present, a simple comparison of 

the number of grid cells in the two periods is inappropriate. In Flanders there are 

about 13 000 records from the first period and about 130 000 from the second 

period, while in the Netherlands respectively 42 000 and 260 000 records are 

available. Furthermore, in the first period, mostly rare butterflies were collected or 

reported in literature, while after 1981 all species were recorded. To tackle the 

problem of the large difference in mapping intensity in the two compared periods, 

we use reference species to calculate a relative presence for each species in both 

periods. The decline in distribution area, calculated with the relative presences, will 

then be used as a trend criterion. 

 

Determining reference species 

For determining reference species, we used a method proposed by Latour and van 

Swaay (1992) that was already applied to determine the changes in butterfly 

abundances in the Netherlands (van Swaay, 1995). 

First, for each resident species, the number of grid cells in which it was observed 

was counted per pentad (= period of five years; pentad 1 = 1901-1905, pentad 

2=1906-1910, etc.). We subsequently expressed the number of grid cells in which a 

species was observed per pentad as a percentage of the total number of mapped 

grid cells in that pentad by 

 

  

 

where ppi,p is the presence in percentage of species i in pentad p, xi,p is the number 

of grid cells in which species i was recorded in pentad p and np is the total number 

of mapped grid cells (i.e. grid cells wherein at least one species was recorded) in 

pentad p. Secondly, we regressed the presence in percentage against pentad 

number for those species that are presently common, i.e. that were recorded in at 

least half of the total number of grid cells, and that are homogeneously distributed 

over the country. We applied this linear regression only for the periods before 

which the intensive mapping schemes started: up to and including pentad 18 

(1986-1990) in Flanders and up to and including pentad 16 (1976-1980) in the 

Netherlands. Mapping intensity was considered more or less equal before the 

beginning of the intensive mapping schemes in both countries. 

Reference species should then fulfill the following criteria: (i) the species should 

not have fluctuated too much during this century (i.e. the coefficient of 

determination R2 ≥ 0.20), (ii) the species should have been observed in at least 10% 

of the mapped grid cells at the beginning of this century (i.e. the intercept on the 

Yaxis a ≥ 10), and (iii) the species should not have increased or decreased too 

strongly during the 20th century (i.e. -1 < regression slope b < 1). The habitat in 

which the reference species occur is not taken into account. 

 

Using reference species to compile the Red List 

As a measure of the mapping intensity during the periods 1 and 2, the average 

number of grid cells in which the reference species were recorded in these two 

periods, was calculated as 

 

 

 

 

 

Where      is the average number of grid cells in which all reference species were 

recorded in period j, xt,j is the number of grid cells in which reference species t was 

recorded in period j and nr is the total number of reference species. Using the 
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average number of grid cells in which the reference species were recorded, we 

corrected for mapping intensity in both periods by calculating a relative presence 

for each species by  

 

 

 

where rpi,j is the relative presence of species i in period j, xi,j is the number of grid 

cells in which species i was recorded in period j and      is the average number of grid 

cells in which the reference species were recorded in period j. By using the relative 

presences in both periods, the decline in distribution area for all resident species 

was estimated by 

 

 

 

 

where di  is the decline in distribution area of species i, rpi,1 is the relative presence 

of species i in period 1 and rpi,2 is the relative presence of species i in period 2. 

Using the number of grid cells in which a species was recorded in period 2 (xi,2) as a 

rarity criterion and the decline in distribution area (di) as a trend criterion, we 

classified all resident butterfly species into the Red List of Flanders and the 

Netherlands according to the scheme in table 3.2. 

 

 
Table 3.3: Results of the linear regression on the species presence in percentage per 
pentad. 
R2=coefficient of determination, a=intercept on the y-axis, b=regression slope. When 
figures are in bold they fulfil the criterion for reference species. 

 Flanders   the Netherlands  

 R2 a b R2 a b 

Aglais urticae 0.56 -1.1 2.13 0.78 -5.3 1.67 

Araschnia levana 0.67 -7.6 2.02 0.51 -5.1 1.55 

Celastrina argiolus 0.22 8.9 0.71 0.09 11.8 0.18 

Coenonympha pamphilus 0.61 4.7 1.22 0.57 11.9 0.71 

Gonepteryx rhamni 0.48 2.2 1.33 0.75 4.3 1.03 

Inachis io 0.60 -2.4 2.06 0.71 -3.5 1.42 

Lasiommata megera 0.26 9.7 0.77 0.57 6.29 0.78 

Lycaena phlaeas 0.30 12.1 0.86 0.29 14.9 0.39 

Maniola jurtina 0.34 8.3 0.83 0.28 13.7 0.30 

Pararge aegeria 0.42 3.7 1.62 – – – 

Pieris brassicae 0.48 1.6 1.43 0.93 -2.9 1.27 

Pieris napi 0.31 11.5 1.26 0.90 -1.9 1.29 

Pieris rapae 0.43 3.5 1.70 0.89 -3.7 1.51 

Polygonia c-album 0.56 -2.5 1.51 – – – 

Polyommatus icarus 0.20 14.3 0.69 0.05 17.7 0.15 

Thymelicus lineola 0.74 -1.4 1.08 0.43 6.0 0.35 
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Results 

The results of the linear regression analyses applied on the species presence in 

percentage per pentad are shown in Table 3.3. We determined three reference 

species in both countries: Lasiommata megera (wall brown), Lycaena phlaeas (small 

copper) and Polyommatus icarus (common blue) in Flanders and Coenonympha 

pamphilus (small heath), L. phlaeas (small copper) and Maniola jurtina (meadow 

brown) in the Netherlands. 

With Equation (2), we calculated the average number of grid cells in which the 

reference species were recorded in the first and second period: in Flanders      is 154 

and       is 379, and in the Netherlands      and      are 238 and 750 respectively. With 

equations (3) and (4) we subsequently calculated the relative presences and the 

declines in distribution area of all resident butterfly species (Appendix 1). 

According to the scheme in Table 3.2, we then assigned all species to a Red List 

category (Appendix 3.1). 

The use of these criteria results in 20 (29%) and 17 (24%) species in the ‘Extinct’ 

category and a further 25 (36%) and 30 (43%) species considered threatened 

(categories ‘Critically endangered’, 'Endangered’, ‘Vulnerable’ and ‘Susceptible’) 

on the Red Lists in Flanders (Maes and Van Dyck, 1996) and the Netherlands 

(Wynhoff and van Swaay, 1995) respectively. In both countries, 23 species are 

presently considered as not threatened (Table 3.4). 

 
 
Table 3.4: Number of species and percentage (in parentheses) per Red List category in 
Flanders and the Netherlands. 

 Flanders the Netherlands 

Extinct 20 (29) 17 (24) 

Critically endangered 8 (12) 7 (10) 

Endangered 6 (9) 11 (16) 

Vulnerable 7 (10) 10 (14) 

Susceptible 4 (6) 2 (3) 

Data deficiënt 1 (1) –  

Safe/Low risk 23 (33) 23 (33) 

 

 

Discussion 

The classification of the resident butterfly species in Flanders and the Netherlands 

into the national Red Lists, using the proposed method, has led to useful results for 

national nature conservation purposes. All butterflies listed as threatened on both 

Red Lists are indeed specialists of typical habitats that need urgent protection in 

Flanders and the Netherlands. The same classification method has already been 

successfully applied for compiling national Red Lists of a wide variety of other 

organisms like carabid beetles (Desender at aI., 1995), amphibians and reptiles 

(Bauwens and Claus, 1996) and dragonflies (De Knijf and Anselin, 1996) in 

Flanders, and mammals (Hollander and van der Reest, 1994), birds (Osieck and 

Hustings, 1994) and grasshoppers (Ode, 1999) in the Netherlands. 

Criteria like rarity and decline are used in most Red Lists, such as the British Red 

Data Books (Shirt, 1987; Bratton, 1991), but decline is usually described in a 

qualitative way (‘rapid', ‘continuous’, etc.). In the newly proposed IUCN criteria 

(Mace and Stuart, 1994), the decline and the rarity criterion are used 

independently from one another; a species that has either declined in distribution 

area by at least 80% or that is very rare, is categorized as being ‘Critically 

endangered'. Adopting the IUCN criteria for the national Red Lists of Flanders and 

the Netherlands would have placed respectively 14 and 15 species in the ‘critically 

endangered’ category, 7 and 12 species in the ’endangered' category and 1 and 6 

species in the ‘vulnerable’ category. The additional criteria (the degree of potential 



 

38 

immigration to counteract the decline) that the IUCN proposed for applying Red 

List categories at the national level (agreed at the National Red List Workshop in 

Gland, Switzerland, 23-24 March 1995) are difficult to apply to butterflies. 

Although some of the threatened or extinct butterflies are potentially fairly 

mobile, they do not seem to be able to found new populations in our countries. In 

Flanders and the Netherlands (but also in Germany (Schnittler at al., 1994)), the 

combined usage of the decline and rarity criteria, resulted in a classification into 

Red List categories on a national level that corresponded better with our 

judgements on butterfly threats in both countries than if IUCN criteria had been 

used. 

 

Method for correcting for mapping intensity 

Our method first identifies reference species which will consequently be used to 

calculate a decline in distribution area. Since reference species should be 

homogenously distributed over the country, it is not surprising that only grassland 

species qualify, since grasslands are the only habitats that are homogeneously 

distributed over both countries. Furthermore, these species are best represented 

in the family Lycaenidae and subfamily Satyrinae. The fact that the reference 

species are only found among grassland species strictly means that this method 

should only be used to evaluate the change in distribution area of grassland 

species. For species from other habitats, this method requires the additional 

assumption that butterflies in other habitats (e.g. forests, heathlands, etc.) were 

mapped with a similar effort as those in grasslands during both compared periods. 

ln most European countries, 10 x 10 km grid cells are used for mapping 

invertebrates (e.g. Geijskens and van Tol, 1983; Desender, 1986; Emmet and 

Heath, 1989). The large amount of data in Flanders and the Netherlands made 

mapping possible on a 5 x 5 km scale. The imprecision of the older data (where 

often only the name of a town or an approximate location is given) did not allow 

the use of a finer scale. In Flanders, species that declined in distribution area on the 

basis of 5 x 5 km grid cells also did so when 10 x 10 km grid cells were used (r=0.951, 

n=67, p<0.001). The use of 5 x 5 km grid cells, instead of the usual 10 x 10 km grid 

cells, certainly allowed a better estimation of the decline in distribution area, but 

for most species we still underestimated the decline, since declines on distribution 

maps are only detected when all populations have disappeared from a grid cell 

(Thomas and Abery, 1995). The use of 10 x 10 km grid cells in Flanders instead of 

the 5 x 5 km grid cells, would have underestimated the decline of the rare species 

for 4% on average and for 36% on average for the intermediately rare species (see 

Thomas and Abery, 1995). 

The method applied here to correct for mapping intensity, yielded informative 

results for the butterflies in Flanders and the Netherlands and proved to be useful 

for other groups of organisms that have been relatively well recorded throughout 

this century. This technique allowed a fairly good estimation of the decline in 

distribution area of rare and intermediately rare species, but not for the very 

common species. This is due to the fact that the latter were largely underrecorded 

in the past. Since we were compiling a list of threatened species, used to set 

conservation priorities in Flanders and the Netherlands, the presently common 

species were of a lesser concern for this purpose. For species with a very localized 

distribution area within both countries and which were recorded very well in the 

past, this method calculated a large decline in distribution area by correcting for 

mapping intensity (e.g. a decline of 73% and 59% for Cupido minimus and 

Heteropterus morpheus respectively in Flanders or 75% and 68% for Boloria 

aquilonaris and Vacciniina optilete respectively in the Netherlands). Most of these 

species inhabit typical and very localized habitats (chalk grasslands, peat bogs, 

etc.) and data suggest that their distribution area did not undergo changes. 
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Species in such cases are classified in the subcategory 'rare’ of the Red List 

category ‘susceptible’ in Flanders because of their restricted distribution area in 

both the past and present. 

 

Comparing the Red lists of Flanders and the Netherlands 

The method we used to compile our Red Lists is repeatable and fairly objective. 

Furthermore, by using the same classification technique in Flanders and the 

Netherlands, their respective Red Lists become more easily comparable. However, 

the category ‘Susceptible’ has to be interpreted differently in the two countries. 

The four species in this category in Flanders have always had a restricted and 

localized distribution and are therefore put in the subcategory ‘Rare’. The two 

species in the category 'Susceptible' in the Netherlands on the other hand, are still 

common but have decreased in distribution area by at least 50%. A second 

difference between both Red Lists is that the reference periods are not identical 

(1901-1980 vs. 1981-1995 in Flanders and 1901-1950 vs. 1986-1993 in the 

Netherlands). However, this does not affect the composition of the Red Lists: by 

applying the reference periods from the Netherlands to the data of Flanders, we 

obtained exactly the same Red List for Flanders as with the presently used periods. 

Since national Red Lists are used for shaping national public policy (Bean, 1987), 

each country can set different but appropriate reference periods. 

Comparing the Red Lists of Flanders and the Netherlands shows that the group of 

threatened species is almost identical in both countries. Only two species were 

categorized differently: Callophrys rubi is categorized as ‘Vulnerable’ in Flanders 

but ‘Safe/Low Risk’ in the Netherlands, while Papilio machaon is ‘Susceptible’ in 

the Netherlands but 'Safe/ Low Risk‘ in Flanders. For the species that both 

countries have in common, the degree of decline is very similar (decline in 

distribution area in Flanders vs. the Netherlands, r = 0.809, n = 63, p<0.001). This 

fact is not surprising since both countries have a similar landscape and have 

undergone similar declines in the number of suitable butterfly habitats 

(heathlands, forest, nutrient-poor unimproved grasslands) through changes in 

agricultural management and building activities. Fragmentation of suitable 

habitats can strongly decrease or even stop the exchange of individuals between 

populations leading to a higher risk of extinction (e.g. Thomas and lones, 1993). 

Furthermore, a lot of butterfly habitats have deteriorated qualitatively through 

bad management or lack of management. A management plan for threatened 

butterflies, both on the population and on the landscape level, has already been 

produced in the Netherlands (Ministerie voor Landbouw, Visserij en Natuurbeheer, 

1990) and is being prepared for Flanders (Maes and van Dyck, 2001). 

A comparison of our Red Lists of butterflies with those in other Northwestern 

European countries or regions (not compiled with the new IUCN criteria) reveals 

that the group of extinct and threatened species varies from 51% (91 species) in 

Germany (Pretscher et al., 1984), over 63% (80 species) in Baden-Württemberg 

(Ebert, 1991) to 66% (51 species) in Wallonia, S0uth-Belgium (Goffart et al., 1992). 

In Great Britain only 18% (10 species) of the species are extinct or threatened 

(Shirt, 1987). Although the global figures are alike (except for Great Britain) the 

proportion of extinct species is clearly higher in Flanders (29%) and in the 

Netherlands (24%) than in the other countries or regions. With 16 extinct species 

(16%), Wallonia (Southern Belgium) is intermediate between our countries and the 

other European countries or regions; Germany with only two (1%), Baden-

Wiirttemberg with only four (3%) and Great Britain with only three extinct species 

(5%) do much better on this point. A comparison of threatened butterflies 

between countries is difficult due to different techniques used for compiling the 

national Red Lists. It would therefore be interesting to apply our technique to 

existing data sets in other countries or regions. Only by using the same technique 
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will national Red Lists become comparable. Since a European Red List is being 

prepared, an objective and repeatable method, like the one proposed here, would 

be recommended. 

 

Future Red Lists 

Since butterfly distribution and threats are variable, Red Lists will have to be 

updated regularly (e.g. every ten years). Thanks to the large number of records 

that are gathered annually by numerous volunteers, the distribution of butterflies 

in Flanders and the Netherlands can now be easily monitored. The next Red Lists 

in both countries could, for example, compare the distribution of the species in the 

period 1991-2000 with that in the period 2001-2010. Due to the similar collecting 

technique (direct observations) and probably fairly similar mapping intensities, the 

number of grid cells of each species in both periods will be more easily 

comparable. Harmonization of the change-over date in future Red Lists should be 

aimed for throughout Europe and the year 2000 could be ideal for this purpose. 

In the future, the Butterfly Monitoring Schemes in Flanders and the Netherlands, 

based on transect counts (Pollard and Yates, 1993) might be used in addition to 

the method proposed in this article, in order to take the trends in the numbers of 

individuals in the monitored populations of threatened butterfly species into 

account (van Swaay et al., 1997). 

 

Acknowledgements 

Many thanks to all the volunteers in Flanders and the Netherlands for their co-

operation in the respective mapping schemes. Ariane Godeau gave useful 

suggestions on the writing of the equations. We are grateful to Alex Verlinden, 

Hans Van Dyck and especially Dirk Bauwens for their helpful advice and for the 

critical reading of earlier versions of the manuscript. We also thank Alan Stubbs 

and an anonymous referee for useful comments. 

 
  



 

 

41 

Appendix 3.1 
Number of grid cells in which the species was recorded in the periods 1901–1980 in 
Flanders and 1901–1950 in the Netherlands (x1) and 1981–1995 in Flanders and 1986–
1993 in the Netherlands (x2) and their relative presence in both periods (rp1, 100%=154 
in Flanders and 238 in the Netherlands; rp2, 100%=379 in Flanders and 750 in the 
Netherlands), the decline in distribution area (d, in percentage points) and the Red List 
category (RLC). 
 –=the species is not indigenous;  
vall observations concern vagrant individuals;  
(x)the number of grid cells with reproducing populations is given in brackets, the major 
part of the observations concern vagrant individuals;  
ire-introduced species.  
For the abbreviations of the Red List categories refer to Table 3.1. 

 
Species 

 
x1 

 
x2 

Flanders 
rp1 

 
rp2 

 
d 

 
RLC 

 
x1 

 
x2 

Netherlands 
rp1 

 
rp2 

 
d 

 
RLC 

Aglais urticae 149 542 96.8 143.0 –48 S/LR 101 1008 42.4 134.4 –217 S/LR 

Anthocharis cardamines 111 381 72.1 100.5 –40 S/LR 161 518 67.7 69.1 –2 S/LR 

Apatura ilia 0 1 0 0.3 – CE – – – – – – 

Apatura iris 14 12 9.1 3.2 65 EN 31 28 13.0 3.7 71 EN 

Aphantopus hyperantus 92 239 59.7 63.1 –6 S/LR 149 428 62.6 57.1 9 S/LR 

Aporia crataegi 30 19v 19.5 5.0 74 EXF 98 16v 41.2 2.1 95 EXN 

Araschnia levana 101 434 65.6 114.5 –75 S/LR 73 694 30.7 92.5 –202 S/LR 

Argynnis paphia 30 21(1) 19.5 5.5 72 CE 59 28v 24.8 3.7 85 EXN 

Aricia agestis 35 59 22.7 15.6 32 VU 107 149 45.0 19.9 56 VU 

Boloria aquilonaris – – – – – – 9 7 3.8 0.9 75 CE 

Brenthis ino – – – – – – 5 0 2.1 0 100 EXN 

Callophrys rubi 53 56 34.4 14.8 57 VU 115 212 48.3 28.3 42 S/LR 

Carcharodus alceae 14 0 9.1 0 100 EXF – – – – – – 

Carterocephalus 
palaemon 

38 64 24.7 16.9 32 VU 44 65 18.5 8.7 53 EN 

Celastrina argiolus 115 366 74.7 96.6 –29 S/LR 166 707 69.8 94.3 –35 S/LR 

Clossiana euphrosyne 13 0 8.4 0 100 EXF 31 0 13.0 0 100 EXN 

Clossiana selene 51 1 33.1 0.3 99 CE 175 53 73.5 7.1 90 EN 

Coenonympha arcania 3 0 2.0 0 100 EXF 14 2 5.9 0.3 95 CE 

Coenonympha hero 4 0 2.6 0 100 EXF 4 0 1.7 0 100 EXN 

Coenonympha 
pamphilus 

156 328 101.3 86.5 15 S/LR 245 742 102.9 98.9 4 S/LR 

Coenonympha tullia 16 5 10.4 1.3 87 CE 73 18 30.7 2.4 92 EN 

Cupido minimus 6 4 3.9 1.1 73 SU 8 0 3.4 0 100 EXN 

Cyaniris semiargus 64 2(1) 41.6 0.5 99 CE 57 1v 24.0 0.1 99 EXN 

Erynnis tages 29 2v 18.8 0.5 97 EXF 64 2 26.9 0.3 99 CE 

Eurodryas aurinia 20 0 13.0 0 100 EXF 64 0 26.9 0 100 EXN 

Fabriciana adippe 9 0 5.8 0 100 EXF – – – – – – 

Fabriciana niobe 7 0 4.6 0 100 EXF 76 41 31.9 5.5 83 EN 

Gonepteryx rhamni 129 444 83.8 117.2 –40 S/LR 174 892 73.1 118.9 –63 S/LR 

Heodes tityrus 91 4v 59.1 1.1 98 EXF 191 146 80.3 19.5 76 VU 

Hesperia comma 29 22 18.8 5.8 69 EN 101 98 42.4 13.1 69 VU 

Heteropterus morpheus 5 5 3.3 1.3 59 SU 6 14 2.5 1.9 26 VU 

Hipparchia semele 82 79 53.3 20.8 61 VU 179 270 75.2 36.0 52 SU 

Hipparchia statilinus 5 0 3.3 0 100 EXF 10 16 4.2 2.1 49 VU 

Inachis io 144 543 93.5 143.3 –53 S/LR 87 1003 36.6 133.7 –266 S/LR 

Issoria lathonia 69 25(2) 44.8 6.6 85 EXF 199 90 83.6 12.0 86 VU 

Ladoga camilla 50 55 32.5 14.5 55 VU 104 95 43.7 12.7 71 VU 

Lasiommata megera 146 347 94.8 91.6 3 S/LR 188 825 79.0 110.0 –39 S/LR 

Leptidea sinapis 12 8(1) 7.8 2.1 73 CE – – – – – – 

Limenitis populi 8 0 5.2 0 100 EXF 9 3 3.8 0.4 89 CE 

Lycaeides idas 4 0 2.6 0 100 EXF 14 0 5.9 0 100 EXN 
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Species 

 
x1 

 
x2 

Flanders 
rp1 

 
rp2 

 
d 

 
RLC 

 
x1 

 
x2 

Netherlands 
rp1 

 
rp2 

 
d 

 
RLC 

Lycaena dispar – – – – – – 15 6 6.3 0.8 87 CE 

Lycaena phlaeas 150 388 97.4 102.4 –5 S/LR 237 742 99.6 98.9 1 S/LR 

Maculinea alcon 25 23 16.2 6.1 63 EN 58 89 24.4 11.9 51 VU 

Maculinea arion – – – – – – 9 0 3.8 0 100 EXN 

Maculinea nausithous – – – – – – 14 2i 5.9 0.3 95 EXN1 

Maculinea teleius 9 0 5.8 0 100 EXF 17 2i 7.1 0.3 96 EXN1 

Maniola jurtina 133 414 86.4 109.2 –27 S/LR 233 765 97.9 102.0 –4 S/LR 

Melanargia galathea 7 18(1) 4.6 4.8 –5 SU – – – – – – 

Melitaea cinxia 37 6(4) 24.0 1.6 93 CE 63 1 26.5 0.1 99 CE 

Melitaea diamina 6 0 3.9 0 100 EXF 18 0 7.6 0 100 EXN 

Mellicta athalia 21 0 13.6 0 100 EXF 84 20 35.3 2.7 92 EN 

Mesoacidalia aglaja 25 6v 16.2 1.6 90 EXF 97 27 40.8 3.6 91 EN 

Normannia ilicis 53 40 34.4 10.6 69 VU 115 96 48.3 12.8 74 VU 

Nymphalis antiopa 34 18v 22.1 4.8 79 EXF 94 15v 39.5 2.0 95 EXN 

Nymphalis polychloros 65 40(10?) 42.2 10.6 75 EN 139 30 58.4 4.0 93 EN 

Ochlodes venatus 122 312 79.2 82.3 –4 S/LR 174 503 73.1 67.1 8 S/LR 

Palaeochrysophanus 
hippothoe 

0 1 0 0.3 – CE 22 0 9.2 0 100 EXN 

Papilio machaon 126 310 81.8 81.8 0 S/LR 204 248 85.7 33.1 61 SU 

Pararge aegeria 134 493 87.0 130.1 –50 S/LR 135 513 56.7 68.4 –21 S/LR 

Pieris brassicae 138 493 89.6 130.1 –45 S/LR 88 873 37.0 116.4 –215 S/LR 

Pieris napi 165 525 107.1 138.5 –29 S/LR 102 965 42.9 128.7 –200 S/LR 

Pieris rapae 153 558 99.4 147.2 –48 S/LR 81 1011 34.0 134.8 –296 S/LR 

Plebejus argus 63 40 40.9 10.6 74 VU 111 191 46.6 25.5 45 VU 

Polygonia c-album 110 439 71.4 115.8 –62 S/LR 141 576 59.2 76.8 –30 S/LR 

Polyommatus icarus 167 402 108.4 106.1 2 S/LR 267 651 112.2 86.8 23 S/LR 

Pyrgus armoricanus 3 0 2.0 0 100 EXF – – – – – – 

Pyrgus malvae 42 11 27.3 2.9 89 EN 132 38 55.5 5.1 91 EN 

Pyronia tithonus 99 358 64.3 94.5 –47 S/LR 146 451 61.3 60.1 2 S/LR 

Quercusia quercus 52 102 33.8 26.9 20 S/LR 108 306 45.4 40.8 10 S/LR 

Satyrium w-album 17 1 11.0 0.3 98 DD 11 1 4.6 0.1 97 CE 

Spialia sertorius 3 1 2.0 0.3 87 SU 7 1v 2.9 0.1 95 EXN 

Thecla betulae 25 22 16.2 5.8 64 EN 54 28 22.7 3.7 84 EN 

Thymelicus acteon – – – – – S/LR 4 4 1.7 0.5 68 EN 

Thymelicus lineola 87 359 56.5 94.7 –68 SL/R 136 628 57.1 83.7 –47 S/LR 

Thymelicus sylvestris 52 165 33.8 43.5 –29 S/LR 137 288 57.6 38.4 33 S/LR 

Vacciniina optilete – – – – – – 4 4 1.7 0.5 68 EN 
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4. Metapopulation dynamics in the 

butterfly Hipparchia semele changed 

decades before occupancy declined in 

the Netherlands.  
 
 
Slightly modified from: Van Strien, A.J., Van Swaay, C.A.M. & Kéry, M. (2011)  

Ecological Applications 21(7)  2510–2520 

 

 

Abstract 

The survival of many species in human-dominated, fragmented landscapes 

depends on metapopulation dynamics, i.e., on a dynamic equilibrium of 

extinctions and colonisations in patches of suitable habitats. To understand 

and predict distributional changes, knowledge of these dynamics can be 

essential and for this, metapopulation studies are preferably based on long-

time series data from many sites, but alas, such data are very scarce. An 

alternative is to use opportunistic data, i.e. collected without applying 

standardized field methods, but these data suffer from large variations in field 

methods and search intensity between sites and years. Dynamic site-

occupancy models offer a general approach to adjust for variable survey effort. 

These models extend classical metapopulation models to account for 

imperfect detection of species and yield estimates of the probabilities of 

occupancy, colonisation and survival of species at sites. By accounting for 

detection, they fully correct for among-year variability in search effort. 

As an illustration, we fitted a dynamic site-occupancy model to 60 years of 

presence-absence data (more precisely, detection-nondetection) of the 

heathland butterfly Hipparchia semele in the Netherlands. Detection records 

were obtained from a database containing volunteer-based data from 1950-

2009 and nondetection records were deduced from database records of other 

butterfly species. Our model revealed that metapopulation dynamics of  

H. semele had changed decades before the species’ distribution began to 

contract. Colonisation probability had already started to decline from 1950 

onwards, but this was counterbalanced by an increase in the survival of 

existing populations, the result of which was a stable distribution. Only from 

1990 onwards survival was not sufficient to compensate for the further 

decrease in colonisation, and occupancy started to decline. Hence, it appears 

that factors acting many decades ago triggered a change in the 

metapopulation dynamics of this species, which ultimately led to a severe 

decline in occupancy that only became apparent much later. Our study 

emphasizes the importance of knowledge of changes in survival and 

colonisation of species in modern landscapes over a very long time scale. It also 

demonstrates the power of site-occupancy modeling to obtain important 

population dynamics information from databases containing opportunistic 

sighting records. 
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Introduction  

Many species in human-dominated landscapes are restricted to subpopulations in 

patches of suitable habitat surrounded by unsuitable habitat. Finite populations 

may go extinct for a number of purely random causes, such as inclement weather 

or other stochastic effects. Only if there is inter-patch movement, unoccupied 

patches can be recolonised. The populations in the collection of habitat patches 

may thus form a metapopulation, where long-term survival is the result of a 

dynamic equilibrium of colonisation and extinction events (Hanski 1991). Habitat 

quality is one of the factors governing colonisation and extinction rates (Fleishman 

et al. 2002), e.g., by setting the within-patch carrying capacity or by determining 

the permeability of the matrix habitat surrounding the patches. 

The dynamic metapopulation parameters, patch colonisation and extinction rates, 

are of vital importance for the long-term persistence of a species; hence, they have 

often been the subject of investigations. Butterflies are perhaps the classical group 

where a metapopulation structuring of the subpopulations in collections of habitat 

patches has been studied (e.g., Harrison et al. 1988, Hanski et al. 1994, Thomas et 

al. 1996, Wahlberg et al. 1996, Saccheri et al. 1998, Hanski et al. 2000, Hanski and 

Singer 2001, Baguette and Schtickzelle 2003, Davies et al. 2005, Schtickzelle et al. 

2006, Bulman et al. 2007, Pellet et al. 2007, Dover and Settle 2009, Hodgson et al. 

2009). 

However, two serious challenges for any metapopulation study are the presence of 

detection error and sparse data. First, metapopulation studies hardly ever take 

into account the difference between real absences and nondetections. That is, in 

the presence of detection error, observed absences are ambiguous with respect to 

the occurrence status of a site and one should speak of detection/nondetection, 

rather than of presence/absence data (Kéry et al. 2010b). Failure to account for 

detection errors may lead to biased inferences on metapopulation dynamics 

(Moilanen 2002, MacKenzie et al. 2006) and related species distribution studies 

(Kéry et al. 2010b). Site-occupancy models offer the possibility to correct for this 

bias. They extend the classical metapopulation model to account for imperfect 

detection of species and yield estimates of the probabilities of occupancy, 

colonisation and extinction (= 1- survival; MacKenzie et al. 2006). Second, most 

metapopulation studies are based on data from just a few field seasons and this 

may corrupt estimates of metapopulation parameters (Thomas and Wilson 2002). 

However, long time series of standardised records of detection/nondetection data 

of species at many sites are very scarce.  

One solution to the challenge of sparse data might be the use of opportunistic 

data collected in faunal and floral databases (e.g. the Dutch Butterfly Recording 

Database). For instance, in the Netherlands, butterflies have been studied by 

amateur and professional entomologists over a number of decades and many 

records on the occurrence of species have been collected, but often without 

applying standardized field protocols. Such opportunistic data suffer from large 

variability in field methods and search intensity among sites, which hampers 

deriving reliable estimates of metapopulation parameters. Recently, dynamic site-

occupancy models (MacKenzie et al. 2006, Royle and Kéry 2007) have also proven 

useful to estimate metapopulation parameters from opportunistic data (Kéry et al. 

2010a, Van Strien et al. 2010). The basic idea is that a higher observation effort 

implies a higher probability to detect a species, so variation in observation effort 

over the years can be directly translated into variation in species detectability. 

Records from replicate visits to a site allow estimating detection probability 

separately from the probability of occurrence (Kéry et al. 2010a, Van Strien et al. 

2010).  

If annual detection probabilities are estimated, the annual true proportion of 

occupied sites (occupancy) may be estimated along with annual estimates of 
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colonisation and extinction of species at sites, corrected for all effects of changing 

observation effort. Hence, they appear an ideal framework for inference based on 

opportunistic data about the occurrence dynamics of species in fragmented 

landscapes.  

Here we applied the dynamic site-occupancy model (MacKenzie et al. 2006, Royle 

and Kéry 2007) to historic data of the butterfly species Hipparchia semele in the 

Netherlands. We explored whether the model was useful to detect changes in 

distribution using data sampled over a time span of 60 years with greatly varying 

observation effort, and whether it gave insights in population dynamical processes 

underlying distributional changes. We tested whether the occupancy trajectory 

after 1990 derived from the opportunistic data was similar to that derived from an 

independent dataset, the Dutch butterfly monitoring scheme (Van Swaay 2005). 

We also produced distribution maps by plotting predicted occurrence probabilities. 

 

Material and methods 

Study species 

We chose as study species Hipparchia semele, a 

typical heathland butterfly species.  

Heathland is heavily fragmented in the 

Netherlands (see Dutch Environmental Data 

Compendium 2010). Because our study species is 

still widely distributed in patches of heathland on 

higher sandy soils in the eastern part of the 

Netherlands, we believe that the patches are 

linked by dispersal, thus together form a 

metapopulation in heathland areas. H. semele 

also occurs in the coastal dunes and to a much 

lesser extent in grasslands in other regions. 

Larvae feed on grasses (Festuca and Agrostis 

species); the adults’ favourite nectar plant is 

Calluna vulgaris. H. semele flies late in the season 

compared to other butterfly species and so far no 

shifts in its flight period associated with climate 

change have been found (Van Strien et al. 2008). 

 

Data sets analysed 

To assess changes in the distribution of the species, we used two sources of data: 

the Dutch Butterfly Recording Database and the Dutch Butterfly Monitoring 

Scheme. The first scheme is a huge collection of opportunistic data, while the 

second scheme is a designed survey with a standardized field method. 

 Dutch Butterfly Recording Database (filled with opportunistic data). 

This database comprises all historical records found in scientific journals 

including local ‘grey’ literature. In addition, records of butterfly specimens 

in all Dutch natural history museums and private collections were 

collated. Until several decades ago butterflies in the Netherlands were 

mainly caught for collections by a small group of entomologists. From 

1980 onwards, copious new field data were collected by volunteer field 

workers with the aim to produce a butterfly distribution atlas (Tax 1989). 

In recent years sightings are made by a large group of volunteers covering 

many sites. The recent facilities for easy data entry on the internet have 

led to a new rise in the number of records, mainly through the sites 

www.vlindernet.nl/landkaartje, www.telmee.nl and www.waarneming.nl. 

All database records are validated by butterfly experts. 

Hipparchia semele. 
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 Dutch Butterfly Monitoring Scheme (filled with monitoring data)  

This scheme runs from 1990 onwards and applies the method developed 

for the British Butterfly Monitoring Scheme (Pollard and Yates 1993). 

Counts are conducted along fixed transects of about 1 km, consisting of 

smaller sections, each within a homogeneous habitat type. Transects 

were mainly chosen by free choice of observers. Volunteers record all 

butterflies 2.5 m on both sides and 5 m ahead of and above them. Weekly 

surveys are conducted between 1 April and 30 September when weather 

conditions meet specified criteria (Van Swaay 2005). Most transects are 

recorded by skilled volunteers, and their sightings are validated by 

experts.  

 

Definition of occupancy  

Occupancy is a species’ probability to occur at a site during the species-specific 

flight period. Many old records in the databank were stored at a 5 x 5 km resolution 

and hence, we use 5 x 5 km squares as our definition of a site. We estimated annual 

occupancy, i.e., the proportion of occupied sites in the statistical population 

represented by our sampled squares. We restricted the analysis to the potential 

range of H. semele, defined here as those 566 sites in which observations had ever 

been made since 1950. Given the sampling intensity over the years and the 

dependence of the species on specific habitat types, we believe it unlikely that the 

species has ever occurred at a site from which it had never been reported. All 

records from the database (typically counts) were aggregated to detection records 

per site. Counts derived from the monitoring scheme were also quantized into 

detection/nondetection data at a 5 x 5 km resolution.  

 

Deducing nondetection records 

Nondetection data for H. semele were easily extracted from the Dutch Butterfly 

Monitoring Scheme; they were simply all visits made without any recorded 

sightings of H. semele within the sites of its range. It was less straightforward for 

the Recording Database, because that was not based on a standardized field 

protocol. We deduced nondetection records from the sightings of all other 

butterfly species in the database (Kéry et al. 2010a): any observation of H. semele 

on a particular day and site (5 x 5 km square) was taken as a detection (1) in the 

dataset, and an observation of any other species within the flight period of H. 

semele was taken as a nondetection (0). Fieldworkers may not record all species 

observed, hence like in Van Strien et al. (2010), we distinguished three categories 

of data quality in these data, and accordingly, extracted three data sets from the 

database containing opportunistic data: (1) single-records data, (2) short daily 

species lists and (3) comprehensive daily species lists. Single records data formed 

the lowest-quality data and were defined as records of one species made by a 

single observer on a single day at a single site. Such data are usually coincidental 

observations and are predominant in museum collection data (McCarthy 1998). 

We called all reports of 2 or 3 species at one site and day by one observer short 

daily species lists because in the Netherlands, > 3 species are generally seen during 

field trips within the flight period of H. semele (Van Swaay, pers. obs.). Reports of 

more than 3 species formed the dataset of comprehensive lists. Obviously, in the 

first two data-quality categories, many zeroes are in fact nonreported 

observations of the study species. But most comprehensive species lists (87%) 

contained records of one or several of the most common (‘uninteresting’) butterfly 

species such as Pieris rapae, Pieris napi, Maniola jurtina or Coenonympha pamphilus. 

Because H. semele is generally regarded as a more ‘interesting’ species by 

observers, we believe that in comprehensive species lists H. semele would have 

been recorded when detected.  
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The set of opportunistic detection/nondetection data extracted from the Dutch 

Butterfly Recording Database for H. semele contained about 9 000 detections and 

106,000 nondetections for all three data quality categories and all 566 sites 

together. The nondetection records are a mixture of real absences, nondetections 

and detected presences that failed to be reported. During 1950-1980 about 100 

sites were annually visited during the flight period and within the range of this 

species with on average a 2-3-fold replication of visits (Figure 4.1). Many of these 

data were single-records while comprehensive daily species lists were few in this 

period. The number of records in the database with opportunistic data increased 

after 1980, and especially after 1990. Nowadays, around 6,000 records are 

collected each year with up to 30 replicate visits per site and year, including many 

comprehensive daily species lists. The number of sites in the Dutch Butterfly 

Monitoring Scheme was considerably lower: annually about 60 5 x 5 km sites were 

surveyed within the range of this species, with on average 6.6 replicated visits 

within the flight period of H. semele.  

To use these data for inferences about the species in the Netherlands, trends must 

be representative for the entire range of the species across the whole study period. 

In the opportunistic data, the main regions of the country in which the species 

occurs appeared to have been surveyed every year more or less in proportion to 

their occupied areas, with little variation among years. On average (1950–2009), 

61.8 ± 0.4% of all squares surveyed per year were on sandy soils, 3.9 ± 0.2% in 

coastal dunes and 34.2 ± 0.3% in other areas. These values are close to the 

distribution of all 566 sites from which the species had ever been reported (60.8%, 

6.5% and 32.6% for these three regions respectively), hence we assume that the 

annual surveys do not deviate substantially from random sampling. In the 

monitoring scheme,  the free choice of observers to select transects have led to 

oversampling of coastal dunes as compared to the other regions, thus trends in 

occupancy were not representative for the Netherlands as a whole. For higher 

sandy soils only however, the monitoring data do not deviate much from random 

sampling. Comparison of trends in occupancy between monitoring data and 

opportunistic data were therefore limited to higher sandy soils.  

 

 

 

 

 

 

 

 

Figure 4.1: Number of opportunistic detection/nondetection observations per 
year at all 566 5 x 5 km2 sites within the Dutch range of Hipparchia semele. Dark 
bars represent first observations and light bars represent replicate visits 
observations. Dark bars thereby also represent the number of sites surveyed 
annually, ranging from 15% in 1956 to 95% in 2006.  
The amount of data in 2009 is lower because not all collected data were already 
available. 

 

0

1000

2000

3000

4000

5000

6000

7000

1950 1960 1970 1980 1990 2000 2010

N
u

m
b

e
r 

o
f 

o
b

se
rv

a
ti

o
n

s

Year



 

48 

 

Statistical analysis  

We used the dynamic site-occupancy model (MacKenzie et al. 2006) as described 

in WinBUGS code by Royle and Kéry (2007) and Royle and Dorazio (2008, p. 309) 

and as applied to opportunistic data by Kéry et al. (2010a) and Van Strien et al. 

(2010), to estimate annual occupancy probability (ψ) and its dynamic components 

(survival probability (φ) and colonisation probability (γ)), adjusted for detection 

probability p. Estimating p is only possible if repeated visits are available for at 

least some sites within a season (MacKenzie et al. 2006). Site-occupancy models 

therefore require replicated detection/nondetection data collected on a number of 

sites that are arranged in so-called detection histories per site during a single 

season. An example is “010” for a study species detected during the second visit, 

but not during the first and third visit to a site in a single period. The replicated 

surveys need to be done within a period of closure. Closure means that a site must 

stay either occupied or not but must not become permanently abandoned or 

colonised during the period of surveys within a ‘season’ (usually, a year). To meet 

the closure assumption, we restricted the data to the known flight period of H. 

semele, Julian dates 176 – 263 (25 June and 20 September), and discarded some 

more extreme dates with sightings (Bos et al. 2006).  

Both components of the model (i.e., occupancy/colonisation/extinction and 

detection probability p) may be formulated as a function of covariates, but here we 

only used covariates for detection. Detection of butterflies varies over the season 

mainly due to a changing number of adult butterflies over the course of a flight 

period (Pellet 2008). Hence, we used the Julian date as a covariate for p. In 

addition, data quality was used as a categorical covariate for p in the opportunistic 

data set. Effects of both covariates were included in the model via a logit link: 

  

logit(pijk) = αk + β1 * dateij + β2 * dateij
2 

+ δ1 * (data quality category 2)ij 

+ δ2 * (data quality category 3)ij 

 

where pijk is the probability to detect the species at site i during visit j in year k, αk is 

the annual intercept, β1 and β2  are the linear and quadratic effects of the date of 

visit j at site i and δ1 and δ2 are the effects of data quality category 2 and 3, relative 

to data quality 1. The intercept αk was estimated as a random year effect (see Kéry 

2010 for examples of WinBUGS code for random effects).  

We fitted the models in a Bayesian mode of inference using JAGS (Plummer 2009) 

on the computer cluster LISA (https://subtrac.sara.nl), with essentially the same 

WinBUGS code as described by Royle and Dorazio (2008). We chose conventional 

vague priors for all parameters, i.e., uniform distributions between 0 and 1 for all 

parameters except αk (U(-5, 5)) and β1, β2, δ1 and δ2 (U(-10, 10)). Parameter 

estimates (posterior means) were robust to changes in prior specifications, except 

for the effects of date, β1 and β2, which had some influence on the estimated 

relation between detection probability and Julian date. However, there was hardly 

any influence on the estimates of all other parameters, such as occupancy.  

For each analysis, we ran three Markov chains with 6,000 iterations each and 

discarded the first half as burn-in. These specifications were sufficient to achieve 

convergence based on the Gelman-Rubin Rhat statistic (Rhat <1.1). We were 

interested in the actual set of studied sites; hence, we used the finite-population 

occupancy estimate, which is estimated more precisely than the occupancy in an 

infinite population of sites (Royle and Kéry 2007). Linear trends in occupancy ψ, 

colonisation γ, survival φ and detection probability p across years were estimated 

as derived parameters within the model, both for the entire 60-year period as for 

https://subtrac.sara.nl/
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1950-1969, 1970-1989 and 1990-2009. These 20-year periods were chosen to 

enable comparison with monitoring data (1990-2009).  

We report posterior means and standard deviations as point and uncertainty 

estimators of a parameter. For comparison, we also computed the naïve 

occupancy estimates, i.e., without taking into account p using a simple logistic 

regression analysis on observed occurrence per site per year. Our model predicted 

the probability of occurrence of the study species for each site and year, including 

years without visits to a site. When plotting these values in annual distribution 

maps, we treated probabilities ≥ 0.5 as presences and < 0.5 as absences.  
 

 

Results 

Naïve occupancy estimates based on opportunistic data, without taking into 

account p, increased between 1950 and 2009 (logistic regression trend: 0.003 ± 

0.0015; P<0.05). In sharp contrast, the site-occupancy model showed no change in 

occupancy until 1990, whereafter a considerable decline occurred (Figure 4.2; 

Table 4.1). The decline since 1990 was confirmed by the independent monitoring 

data (for sandy soils only: trend in ψ -0.016 ± 0.003 and -0.017 ± 0.001 for 

monitoring and opportunistic data respectively). Our model suggests that the 

downward trend in occupancy since 1990 was due to a decline in the colonization 

probability of unoccupied sites (Table 4.1), a finding which was again confirmed by 

the monitoring data (for sandy soils only: trend in γ -0.013 ± 0.004 and -0.006 ± 

0.002 for monitoring and opportunistic data respectively). Survival rates after 1990 

have not changed significantly (Table 4.1) (for sandy soils only: trend in φ 0.004 ± 

0.005 and -0.003 ± 0.002 for monitoring and opportunistic data respectively). 

Remarkably, however, the trajectories of colonisation and survival probabilities 

indicated that metapopulation dynamics of this species in the Netherlands has 

started to change long before 1990 (Figure 4.3; Table 4.1). Colonisation rates 

appeared to have declined steadily from the 1960s onwards. Interestingly, there 

was an increase in survival in 1970-1989, but survival did not grow thereafter and 

stabilized at a level slightly lower than in 1970-1989 (Table 4.1). Thus, until 1990 

the decline in colonisation was counterbalanced by a rising annual survival of 

populations, resulting in a dynamic equilibrium of occupancy (MacKenzie et al. 

2006). The rise in survival until 1990 is not merely the consequence of the 

contraction of the species range to better sites, because then occupancy would 

have declined too. Instead, at some sites survival must have improved in 1970-

1989. 
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Figure 2. Annual site occupancy 
probability (± se) of Hipparchia 
semele based on the dynamic 
site-occupancy model using 
opportunistic data. Sites are  
5 x 5 km squares. 
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This idea was confirmed in a further analysis in which we separately estimated 
colonisation and survival rates for subsets of sites differing in the area of suitable 
habitat. For all sites in higher sandy soils we derived the area of heathland from 
Anonymus (1987), reflecting the situation in ca. 1980. In the subset with the largest 
area of suitable habitat i.e. with > 200 ha of heathland per site, survival has indeed 
increased prior to 1990 (Table 4.2). The same has happened in the subset of sites 
with 20-200 ha of heathland, whereas in less suitable sites with < 20 ha of 
heathland survival has not improved before 1990. After 1990 survival did not 
increase in any of the three subsets and even declined significantly in the subset 
with sites containing 20-200 ha heathland (Table 4.2). Colonisation has declined in 
1950-2009 in sites with <20 and 20-200 ha heathland, but not in sites with > 200 ha 
heathland. There were no differences in occupancy between the subsets in 1960-
1970 (presumably because at that time the area of heathland differed not as much 
between the subsets as in ca. 1980), but occupancy has declined strongly in sites 
with < 20 ha heathland and increased in sites with > 200 ha heathland (Figure 4.4).  

 

 

 

 

Table 4.1: Parameter estimates (posterior means and standard deviations) under a dynamic site-occupancy model 
fitted to Hipparchia semele opportunistic data from the Netherlands. No estimates of Julian date and data quality 
are available for the separate 20-year periods, because model run was for the entire 60-year period. Trend is 
detection pj refers to trend in annual detection probability per 5 x 5 km2 site in mid August (day 225) for the highest 
data quality category (see also Figure 6). * P<0.05 as derived from Bayesian credibility intervals. 

  1950-1969   1970-1989   1990-2009   1950-2009 

trend in occupancy ψj 0.001 ± 0.005 
 

0.005 ± 0.003 
 

-0.014 ± 0.001  * 0.001 ± 0.005 

trend in colonisation γj -0.006 ± 0.006 
 

-0.006 ± 0.003 * -0.006 ± 0.001  * -0.006 ± 0.006 

trend in survival φj 0.004 ± 0.007 
 

0.009 ± 0.005  * -0.001 ± 0.002 
 

0.004 ± 0.007 

trend in detection pj 0.000 ± 0.001 
 

-0.004 ± 0.001 * 0.003 ± 0.003  
 

-0.001 ± 0.001 

Julian date effect β1 not available 
 

not available 
 

not available 
 

9.521 ± 0.345 

Julian date effect β2 not available 
 

not available 
 

not available 
 

-9.626 ± 0.343 

data quality effect δ1 not available 
 

not available 
 

not available 
 

1.120 ± 0.126 

data quality effect δ2 not available   not available   not available   2.536 ± 0.185 
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Figure 4.3: Annual rates of site 
colonization (triangles) and site 
persistence (squares) (+ se) of 
Hipparchia semele analyzed 
with a dynamic site-occupancy 
model using opportunistic 
data. Sites are 5x 5 km squares. 
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We expected changes in metapopulation dynamics to happen more frequently in 

areas outside the core areas that the species inhabits (Hanski 1991, Dover and 

Settele 2009). Indeed, the distribution of H. semele in 2009 was much more 

concentrated in several core areas than in 1990; hence, the decline seemed to have 

occurred to a considerable extent in areas outside core areas (Figure 4.5a-b). 

Summarizing, over the entire period, the distribution of H. semele in the 

Netherlands is getting more and more concentrated in a few core areas with large 

areas with suitable habitat, while the species has disappeared from many areas 

with marginally suitable habitat. Until 1990, however, this process remained 

obscure, because the increased survival of the species in more suitable sites 

compensated for the loss of marginal sites.  

All metapopulation parameters estimated in this study were adjusted for detection 

probability. The detection probability p of H. semele was lower at the start and the 

end of the flight period and had a peak around day 225. Detection probability was 

especially low in single-records data (Figure 4.6), which indicates considerable 

underreporting of the species after detection during these visits. Detection 

probability was higher in short daily species lists and considerable higher in 

comprehensive species lists. The probability to detect H. semele dropped slightly 

after 1970 and increased again after 1990 (Table 4.1; figure 4.6).  
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Table 4.2: Trends in occupancy, colonization, and survival (±SE) for three subsets of opportunistic data with different 
surface areas of heathland. 
Notes: All sites were 5x5 km squares situated in the region with higher sandy soils. The results were based on  
separate analyses for each data set. 
* P < 0.05 as derived from Bayesian credibility intervals. 

Heathland sites and 
trends 

1950-1969   1970-1989   1990-2009   1950-2009  

Heathland <20 ha (n=55 sites)        

 trend in occupancy ψj -0.001 ± 0.008  -0.003 ± 0.008  -0.021 ± 0.005 * -0.007 ± 0.001 * 

 trend in colonisation γj -0.004 ± 0.010  -0.004 ± 0.010  -0.013 ± 0.006 * -0.008 ± 0.002 * 

 trend in survival φj -0.001 ± 0.011  -0.004 ± 0.010  -0.006 ± 0.009  -0.001 ± 0.002  

Heathland 20–200 ha (n=90 sites)        

 trend in occupancy ψj -0.004 ± 0.007  0.003 ± 0.006  -0.019 ± 0.003 * -0.003 ± 0.001 * 

 trend in colonisation γj 0.000 ± 0.010  -0.018 ± 0.009 * -0.002 ± 0.004  -0.010 ± 0.001 * 

 trend in survival φj 0.000 ± 0.011  0.023 ± 0.008 * -0.011 ± 0.005 * 0.006 ± 0.002 * 

Heathland >200 ha (n=49 sites)        

 trend in occupancy ψj 0.014 ± 0.007 * 0.019 ± 0.007 * -0.008 ± 0.002 * 0.005 ± 0.001 * 

 trend in colonisation γj 0.005 ± 0.010  0.013 ± 0.009  -0.008 ± 0.009  -0.002 ± 0.002  

 trend in survival φj 0.011 ± 0.010  0.023 ± 0.009 * -0.003 ± 0.003  0.007 ± 0.002 * 

 

Figure 4.4: Mean annual 
occupancy (± se) per decade of 
Hipparchia semele in 5 x 5 km 
sites on sandy soils with 
different surface areas of 
heathland based on 
opportunistic data. 
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Discussion 

Metapopulation dynamics  

We found that the metapopulation dynamics in the butterfly H. semele in the 

Netherlands had changed several decades before a decline became visible in the 

proportion of occupied sites. Though a reduced colonisation rate in later years was 

not unexpected, the steady and strong decline of the colonisation rate during a 

period of 50-60 years has not been reported in earlier studies of this species (Van 

Swaay 1990, Bos et al. 2006). The decline in colonisation is probably due the loss of 

suitable habitat in heathland areas as well as a decline in connectivity of these 

patches. Because sheep grazing intensity was lowered and nitrogen load from the 

air has increased after 1950, the succession rate has been speeding up, leading to 

many heathlands overgrown with grasses and shrubs which no longer had a 

structure appropriate for H. semele (Bos et al. 2006). The ongoing succession also 

led to the conversion of many heathlands into woodland (Diemont 1996, Dutch 

Environmental Data Compendium 2010). In sites with large areas of heathland, 

suitable habitat will not easily disappear completely as in areas with small and 

scattered patches of heathland, also because management is usually better 

maintained in larger heath patches (Van Swaay, pers. obs.). The bigger decline in 

occupancy in recent years in sites further away from core areas suggests that 

increased isolation of heathland contributed to reduced colonisation rate, as 

expected in metapopulation theory (Hanski 1991). Dennis et al. (1998) also 

reported that both area and isolation were associated with patterns of presence 

and absence of H. semele on British and Irish offshore islands. The increased 

survival of the species in 1970-1990 has completely escaped previous attention and 

we can only speculate why survival has improved. Survival is best predicted as a 

function of local population size (Pellet et al. 2007), so it is likely that population 

Figure 4.5: Distribution of Hipparchia semele in (A) 1990 and(B) 2009 estimated under a dynamic site-occupancy model, all 
based on opportunistic data. The symbols denote different levels of occupancy probability per site. Recorded sightings result in 
an estimate of occupancy probability of 1. Areas without a symbol were never occupied in 1950–2009. Note that the percentage 
of occupied sites in 1990 and 2009 is similar to the occupancy in these years as presented in Figure 2. 



 

 

53 

size has increased in that period. Perhaps the species has benefitted from the cool 

and rainy weather in this period, or the rising nitrogen deposition temporarily 

increased the survival of the larvae on these extremely poor soils. It requires more 

extended models to elucidate this further. In future modelling efforts, area of 

suitable habitat, distance to core area, management and other variables may be 

applied as covariates for first-year occupancy or for the colonisation and survival 

parameters (Royle and Dorazio 2008). This enables to examine the effects of 

covariates on colonisation and survival rates directly.  

Our results also provide a direct, mechanistic evidence for an extinction debt 

(Kuussaari et al. 2009). Arguably, land use changes have been depressing patch 

colonisation probabilities as early as in the 1960s, and yet, the results of this only 

became evident many decades afterwards. There are very few examples of direct 

measurements of extinction debts over such long time spans (e.g. Polus et al. 

2007) and most assessments of extinction debts have so far been implied indirectly 

(Kuussaari et al. 2009), e.g., by regressing current patterns of occurrence of single 

species, or of species counts, on past values of land use and patch characteristics 

(Findlay and Bourdages 2000, Hawbaker et al. 2006, Piha et al. 2007, Sang et al. 

2010). The general lack of appropriate high-quality historical data is considered a 

key limiting factor for studying extinction debt (Kuussaari et al. 2009), but here we 

have shown that opportunistic data can be a useful surrogate.  

 

 

 

 

 

 

Estimation of trend and distribution 

The finding of a peak in detection probability around day 225 corresponds to the 

literature (e.g. Bos et al. 2006) and reflects the peak in the seasonal abundance in 

sites. The drop in probability around 1980 to detect H. semele is perhaps caused by 

the recruitment of a large number of relatively inexperienced field observers for 

the atlas project that started in that period (Tax, 1989). Although the trend in p is 

not significant in 1990-2009, we see an apparent increase in recent years (Figure 

4.7), probably from the fact that observers collecting opportunistic data 

increasingly use information available on the internet to direct them to sites where 

interesting species such as H. semele have been spotted recently. Naïve occupancy 
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Figure 4.6: Annual detection probability (+ se) per 5x 5 km site of Hipparchia 
semele in mid-August (day 225) per data qualitycategory in opportunistic data. 
The lower line refers to the lowest data quality and the top line to the highest 
quality category. 
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estimates, without taking into account p, may therefore be expected to decline 

even more than based on the site-occupancy model. Yet, we found the contrary: 

the naïve trend increased, rather than declined, between 1950 and 2009. This is 

because the consequences of p < 1 for occupancy estimation do not only depend 

on the value of p for a single visit, but also on the number of visits (Kéry et al. 

2010a). The number of replicated visits has increased much after 1980 (Figure 4.1) 

and this not only counterbalanced lower detection probabilities, but even led to an 

artefactual increase in occupancy because of the increased probability to detect a 

species at least once during the season. An artefactual increase in naïve occupancy 

estimates is typically found in most collections of opportunistic data, where not 

only the number of sites surveyed has increased over time, but sites were also 

investigated more frequently and often more thoroughly. This makes it difficult to 

separate changes in distribution from changes in observation effort (Dennis et al. 

1999, Dennis and Thomas 2000). Many attempts have been made to adjust the 

opportunistic data for differences in observation effort (for an overview see Telfer 

et al. 2002), but these were merely ad hoc approaches. Dynamic site-occupancy 

models offer a more general and comprehensive approach to adjust for unequal 

observation effort that is firmly based on sampling theory. These models achieve a 

“mechanistic” correction for the effects of varying observation effort (MacKenzie 

et al. 2006, Royle and Kéry 2007, Royle and Dorazio 2008), unlike some other 

approaches that fit proxies for observation effort as a covariate, e.g. based on the 

number of records of abundant species that are assumed not to have declined.  

In addition, site-occupancy models may produce annual distribution maps from 

opportunistic data. Though the making of distribution maps has much improved in 

recent years (see e.g. Elith et al. 2006), extremely few maps are adjusted for 

differences in detection probabilities between sites (Royle et al. 2005, Kéry et al. 

2010b). Estimates of distributional changes are easily corrupted if all sites without 

sighting are treated as real absences, because almost certainly a part of these 

absences are in fact non-detections of real presences (Kéry et al. 2010b). Site-

occupancy models enable to take this into account in a subtle way. For our annual 

maps of H. semele, our model predicted presences and absences per site per year 

from the detection probability estimated per visit and year, the number of visits to 

the site, taking into account Julian date and data quality of the visit, the presence 

or absence in the preceding year as well as the annual colonisation and survival 

rates.  

 

Perspectives  

Dynamic site-occupancy models act like a “currency-converter” for the data when 

comparing opportunistic data over time and enable to produce reliable occupancy 

trend estimates from databases containing opportunistic observation data 

(Altwegg et al. 2008, Kéry et al. 2010a, b, Van Strien et al. 2010). Consequently, as 

demonstrated here, site-occupancy models offer new perspectives to derive 

inferences on trends and distribution from old detection/nondetection data 

(Tingley and Beissinger 2009). That will be particularly beneficial for species that 

like butterflies have been much recorded in former days and which have been 

collected as species lists rather than as single records data (Van Strien et al. 2010). 

The perspectives of site-occupancy models are even higher for future data, 

because a rapidly increasing amount of detection/nondetection data is currently 

being collected in the framework of citizen science projects.  

Nevertheless, occupancy models may suffer from biases if their assumptions are 

violated. We discuss several of the key assumptions here and refer to MacKenzie 

et al. (2006) for a more extensive discussion of occupancy model assumptions. 

Firstly, although we restricted the data to meet the closure assumption (see 

methods), we cannot be sure that all sites were permanently occupied during the 
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period selected. But some lack of closure is not fatal, for instance, when animals 

randomly move in or out of occupied sites. Such random lack-of-closure will simply 

reduce the detection probability and does not bias the occupancy parameter, 

although the latter must be interpreted as probability of use rather than 

probability of permanent occurrence (MacKenzie et al. 2006). A related problem 

may reside in the fact that different records in the same spatial sample unit (i.e., 5 

x 5 km in our study) may refer to vastly different sites, so that the non-detection of 

species A may not be informative about detection probability of that species 

because a different place was surveyed from the one that may have produced a 

positive detection of A at some other time. Kendall & White (2009) demonstrated 

that especially sampling of spatial subunits within a site leads to bias in occupancy 

estimates, but not sampling with replacement. We believe that the collection of 

opportunistic data by many observers is comparable to sampling with replacement 

rather than to sampling without replacement.  

Furthermore, our method depends on the definition of a nondetection event. We 

deduced nondetection records from the sightings of other butterfly species (see 

methods). Our procedure generated many nondetection records for every single 

detection record, but these records may not be as informative about 

nondetections of other species as we supposed. To a lesser degree this also holds 

for the short and comprehensive daily species lists. Van Strien et al. (2010) tested 

the same procedure using dragonflies and found similar occupancy trends in 

opportunistic data as in independent monitoring data, thereby suggesting that the 

procedure worked appropriately. But the robustness of the procedure to deduce 

nondetection data requires further investigation, possibly by simulation studies, In 

addition, surveys without the detection of any species at all, or only of common 

and therefore less 'interesting' ones, are most probably under reported in the data. 

This might lead to a proportion of zeroes that go missing. If this proportion of 

"missing zeroes" changes over time, one might fear that biases are introduced into 

the estimates of occupancy, colonisation and extinction. However, simulations 

reported in Kery et al. (2010a) suggest that the method is surprisingly robust to the 

latter kind of error. Finally, site-occupancy-models assumed the absence of any 

site-dependent heterogeneity in detection (MacKenzie et al. 2006). Unmodelled 

detection heterogeneity leads to underestimation of occupancy in these types of 

models (Dorazio 2007). Moreover, if there is detection heterogeneity and its 

magnitude varies by year, this bias could vary by year also. A main source of 

heterogeneity in detection is site-specific abundance. Therefore, this type of bias 

can be reduced by taking into account site-specific covariates related to site-

specific abundance, in our case e.g. the area of heathland per site.  

In conclusion, we believe that the fact that the parameters of metapopulation 

dynamics can now be directly studied over long time periods using opportunistic 

faunal or floral data and using dynamic site-occupancy models opens up new 

opportunities in ecological research and applications. But addressing assumptions 

of occupancy models remains essential to drawing valid inferences.  
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Part II: Monitoring trends in 
butterfly abundance 
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5. Butterfly monitoring in Europe: 

Methods, applications and perspectives 
 

 

Slightly modified from:  

Van Swaay, C.A.M., Nowicki, P., Settele, J., Van Strien, A.J. (2008)  

Biodiversity and Conservation, 17 (14), 3455-3469. 

 

 

Abstract 

Since the first Butterfly Monitoring Scheme in the UK started in the mid-1970s, 

butterfly monitoring in Europe has developed in more than 10 European 

countries. These schemes are aimed to assess regional and national trends in 

butterfly abundance per species. We discuss strengths and weaknesses of 

methods used in these schemes and give examples of applications of the data. 

A new development is to establish supra-national trends per species and 

multispecies indicators. Such indicators enable to report against the target to 

halt biodiversity loss by 2010. Our preliminary European Grassland Butterfly 

Indicator shows a decline of 50% of the population indexes of the characteristic 

indicator species between 1990-2005. We expect to develop a Grassland 

Butterfly Indicator with an improved coverage across European countries. We 

see also good perspectives to develop a supra-national indicator for climate 

change as well as an indicator for woodland butterflies.  

 
  

Lycaena dispar is a species 
mentioned on the annexes of the 
Habitats Directive. The population 
trend of this species has to be 
reported in every Member State to 
the European Union. 
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Introduction 

Insects are by far the most species-rich group of animals, representing over 50% of 

the world's biodiversity (May 1988; Gaston 1991; Groombridge 1992). Contrary to 

most other groups of insects, butterflies are well-documented, easy to recognize 

and popular with the general public (De Heer et al. 2005; Thomas 2005). Many 

European butterflies have decreased considerably in abundance in recent years 

(Van Swaay et al. 2006). As a result, nowadays 71 out of the 576 European butterfly 

species are considered as threatened in Europe (Van Swaay and Warren 1999). The 

decline in abundance of butterfly species has largely been assessed by using 

distributional data to examine the change in their 

area of distribution (Van Swaay 1990, Maes and 

Van Swaay 1997; Telfer et al 2002). But this 

approach has several shortcomings. First, it 

underestimates the rate of population decline 

because generally species decrease in population 

numbers first before they disappear locally and 

regionally (Thomas and Abery 1995). Secondly, 

most available distributional data suffer from 

differences in sampling effort over time, which 

makes it difficult to separate changes in 

distribution from changes in sampling effort 

(Dennis et al. 1999). Reliable estimates of trends 

can only be based on long series of distributional 

data, because only then correction for sampling 

effort is possible (Van Swaay et al. 1990, Maes and 

Van Swaay 1997; Telfer 2002), but even then the 

results should be treated with caution. In order to 

get early warning signals, it is better to assess 

trends in population numbers based on monitoring 

schemes with standardized sampling efforts.  

These were the reasons for setting up a national 

butterfly monitoring scheme in the UK in 1976 (Pollard  1977). This has inspired 

many others and the number of schemes has gradually increased in Europe (Table 

5.1; Figure 5.1; see Kühn et al. 2005, and contributions therein). New schemes are 

being planned, e.g. in Denmark and Sweden. The number of transects differs 

much between the current schemes, ranging from just a few transects per country 

to several hundreds in the UK and the Netherlands. In 2004 Butterfly Conservation 

Europe (www.bc-europe.eu) was founded and had an important role in bringing 

together and co-ordinating work on butterfly monitoring in Europe. 

In this chapter we describe the main methods used in the current schemes and 

give a few examples of applications of the data. We discuss the use of butterflies in 

biodiversity indicators and the perspectives of European butterfly monitoring and 

indicators.  

 

 

 
  

Figure 5.1: Location of Butterfly Monitoring 
Schemes in Europe in 2007 (green shading - active 
schemes, blue – planned schemes). 
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Table 5.1: Active Butterfly Monitoring Schemes in Europe in 2007. 
The data from countries or regions marked by * were used for the Grassland Indicator (the 
first European Butterfly Indicator). 
1  only for Maculinea nausithous, M. teleius and Lycaena dispar (Settele 1998) 
2  including Northrhine-Westfalia (Kühn et al. 2008; but excluding the Pfalz region, from 
where Maculinea nausithous monitoring data of Settele (1998) were used specifically for 
the grassland indicator) 

Butterfly Monitoring Scheme Year established No. sites in recent years 

United Kingdom* 1976 600 

Transcarpathia (Ukraine)* 1983 20-30 

Germany (Pfalz region)*1 1989 100 

The Netherlands* 1990 700 

Belgium (Flanders)* 1991 10-20 

Spain (Catalunya)* 1994 50-60 

Switzerland (Aargau)* 1998 100+ 

Finland* 1999 100 

Switzerland 2000 100+ 

Germany (Northrhine-Westfalia)* 2001 100 

France (Doubs and Dordogne)* 2001 10 

Jersey (Channel Islands) 2004 25 

Estonia 2004 7 

Germany (entire country) 2005 4502 

France (entire country) 2005 75 

Slovenia 2006 30 

Ireland 2007 Not clear yet 

 

 

In many countries in Europe, 
Maniola jurtina is the most 
abundant butterfly on the 
monitoring transects. 
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Table 5.2: The main characteristics of the ‘Traditional’ and ‘Reduced effort’ Butterfly 
Monitoring Schemes (based on Roy et al. 2005, 2007; Heliölä & Kuussaari 2005; Van 
Swaay 2007) 

 Traditional BMS Reduced effort BMS 

Characteristics Based on weekly counts, mostly with 
free choice of site 

Based on a higher number of 
transects, counted only a few times a 
year, on random or pre-selected sites 

Objectives  National, regional and local 
indices and trends 

 Possibility to compare local 
indices and trends with regional 
or local trends 

 Can be used to evaluate nature 
conservation measures 

 Research e.g. climate change 

 National indices and trends for 
widespread species or targeted 
at individual rare species  

Common features  Transects should be as far as possible representative for the sampling unit 
(e.g. of a site, species flight area)  

 Transects should preferably be in one ‘rough’ habitat type (like grassland, 
woodland, heathland, etc.), to enable trends by habitat to be more easily 
assessed  - relevant to potential future EU analyses. 

 Length of transect: no prescribed limit but for practical reasons it is best if 
a transect walk takes 15-60 minutes, and travel time to the site is not 
more than 15-30 minutes. That will reduce the length of a transect mostly 
to a maximum of two kilometres. 

 Length of sections: can vary or be fixed. In case of a fixed length, 50m has 
proven to be a practical length. 

 Transect width: preferably 2.5 m on each side (5 m width). 

 Sections should  preferably be homogeneous according to habitat type, 
because this allows for weighting by habitat type when calculating 
indices and trends. Weighting improves the quality of the results. 
However, because of succession, urbanisation, etc, sections may become 
heterogeneous in time. This may lead to a situation where a section 
contains several habitat types. Therefore the habitat type of a section 
should be established regularly (at 5 or 10 yearly intervals). 

 Habitat classification: preferably cross referenced to EUNIS. 

 Time frame during the day. General between 10 h and 17 h, preferably 
always during the same part of the day, sticking to this over the years.  

 Transects should only be walked when butterflies are fully active (i.e. 
under suitable weather conditions: temperature above 17°C, or 13–17 °C 
in sunny weather, wind less than 6 Beaufort and no rain).  

 Lumping of species (e.g. Blues). In some cases there is no alternative. But 
take care that if the recorder starts to discriminate between the species, 
you should put all earlier years to ‘missing value’. 

 Should each transect be recorded each year? This is not necessary, 
although trend calculations will improve if some transects are counted 
annually. 

 In case of a lack in volunteers/resources, it is more effective and gives 
better trends, if many transects are counted (though not each year), than 
a few transects which are counted annually (e.g.: if 30 transects can be 
counted each year, it is better to count these every three years, so in total 
90 transects are counted on a three year basis, than the 30 identical 
transects counted each year). However, trend calculations improve even 
more if a few of these transects are counted annually. 

Differences  Number of counts: preferably 
each week covering the flight 
periods of all species being 
monitored. Weekly counts offer 
the opportunity for extra 
assessments, but if the 
objective is only to produce 
national trends then the effort 
can be reduced, but never to 
less than twice a month. 

 Number of counts: 3-5 annually 
(e.g. one each month, like in 
France, or three visits in 
July/August, like in the proposed 
wider-countryside BMS in UK) 
but with more transects. Visits 
should be targeted to the period 
in which you expect to collect 
most information. Maintain a 
level of flexibility. 
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 Traditional BMS Reduced effort BMS 

 Distribution of the samples over 
the region (sampling design): 
Preferably random/systematic 
sampling (e.g. as in France or 
with wider-countryside BMS in 
UK). But the number of 
volunteers willing to participate 
in counting sometimes 
unattractive sites might limit 
the possibilities for random or 
systematic sampling. 

 Time frame during the season: 
weekly or two-weekly counts. 

 Fully tested, success proven. 

 Distribution of the samples over 
the region (sampling design): 
Preferably random/systematic 
sampling (e.g. as in France or 
with wider-countryside BMS in 
UK).  

 Time frame during the season: 
UK: three visits within nine 
weeks with a one week gap. 
F: four visits in four months, with 
15 days in between. 

 Some full traditional BMS sites 
will likely be needed in a reduced 
effort scheme - to calibrate data 
and help analyse the results. 

 The reduced effort BMS is work 
ongoing and has not been fully 
tested.  

 

 

Butterfly Monitoring Methodology  

Field methods 

All schemes apply the method developed for the British Butterfly Monitoring 

Scheme (Pollard and Yates 1993). The counts are conducted along fixed transects 

of about 1 kilometre, consisting of smaller sections, each with a homogeneous 

habitat type. The fieldworkers record all butterflies 2.5 metres to their right, 2.5 

metres to their left, 5 metres ahead of them and 5 metres above them (Van Swaay 

et al. 2002). Butterfly counts are conducted between March-April to September-

October. Visits are only conducted when weather conditions meet specified 

criteria. In the Dutch (and German) scheme this means temperature above 17°C, or 

13–17 °C in sunny weather, windspeed less than 6 on the scale of Beaufort and no 

rain (Van Swaay et al. 2002). Most of the transects are recorded by skilled 

volunteers, but their results are usually checked by butterfly experts.  

The number of visits varies from every week in the UK and the Netherlands to 3-5 

visits annually in France. In the Netherlands, transects dedicated to rare species 

can be visited only during the expected flight period of the species. In normal 

transects, weekly counts cover the entire flight period of species and thereby offer 

the opportunity for assessing temporal population trends per transect, but the 

precision of the trend estimates may be limited (Harker and Shreeve 2008). 

Weekly visits may however also be demanding for observers. If the objective is 

only to produce large scale (e.g. national) trends, the efforts may be reduced to 

much fewer visits (Heliölä and Kuussaari 2005; Roy et al. 2007). Such a reduced-

effort scheme is planned in the UK for the wider countryside where mainly 

common butterflies occur and few volunteers can be recruited. This proposed 

reduced-effort scheme is based on only a few annual visits, targeted to the period 

when most information can be gathered, i.e. three visits in July–August plus in 

some cases an additional one in May (Roy et al. 2005; 2007). Yet a problem with 

the reduced effort schemes can be that it will often not be possible to compare 

different regions, habitats or management regimes to find the underlying drivers 

for population changes. Furthermore much more transects will be needed in a 

reduced effort scheme than in a traditional scheme. The main characteristics of 

the ‘Traditional’ and ‘Reduced effort’ schemes are summarized in Table 5.2.  

Observers never detect all butterfly individuals present during their visit in the 

study area (Dennis et al. 2006; Kéry and Plattner 2007). Therefore, transect counts 

do not provide information on absolute butterfly numbers but rather yield species-

specific relative abundance indices that are assumed to reflect year-to-year 
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population changes over the entire study area. The assumption of constant 

detection probability has been underpinned by the demonstration of close 

correlations between transect counts and population estimates based on mark-

recapture data (Pollard 1977; Thomas  1983). However, if for some reasons the 

detection probability for a given species varies over time then trends inferred from 

transect count results uncorrected for this probability may be biased (Kéry and 

Plattner 2007). 

The likely sources of between-year variation in detection probability are e.g. 

weather, time of day, observer experience, and vegetation height changing due to 

succession or more generally any habitat changes (Pollard et al. 1986; Harker and 

Shreeve 2008; Pellet 2008). Variation due to weather and time of day can be 

reduced by standardisation of the conditions in which transect counts are 

conducted (Pollard 1977; Pollard et al. 1986). In addition, in the case of large-scale 

and long-term monitoring such variation may be assumed to be random only, 

thereby decreasing the precision of the results, without inducing any bias. Still, any 

systematic changes in observer experience, vegetation height or even the 

behaviour of species cannot be ruled out completely. We therefore suggest to test 

any long-term changes in detection probabilities using capture-recapture methods 

as applied for butterflies by Kery and Plattner (2007) and Pellet (2008) or distance-

sampling methods (Pollock et al. 2002). Distance sampling has already been 

applied in butterfly population studies in Northern America (Brown and Boyce 

1998), and there are currently attempts to incorporate it in the UK Butterfly 

Monitoring Scheme (K. Cruickshanks, pers. comm.). 

A related problem is that of the variable longevity in adult butterflies and its effect 

on transect count reliability. Since adult butterflies typically eclose in daily cohorts, 

their numbers recorded on transects depend not only on seasonal population sizes, 

but also on longevities, and consequently transect count results do not necessarily 

follow year-to-year population changes precisely (Zonneveld 1991; Nowicki et al. 

2005; 2008). Nevertheless, the effect of between-season variation in butterfly 

longevity is likely to become random with extensive data sets.  

 

Transect selection  

To be able to draw proper inferences on the temporal population trends at 

national or regional level, transects should best be selected in a random or 

stratified random manner (Sutherland 2006). Several recent schemes, e.g. in 

Switzerland and France, have been designed in this manner (Henry et al. 2005). 

Unfortunately, such a procedure would yield many data for common butterflies, 

but few data for rare butterflies, unless an unrealistically high number of transects 

is selected. If a scheme aims to monitor rare species, scheme coordinators 

preferably locate transects in areas where rare species occur, leading to an 

overrepresentation of special protected areas. In the older schemes, such as in the 

UK and the Netherlands, but also in the recently established scheme in Germany, 

transects were selected by free choice of observers, which in some cases has led to 

the overrepresentation of protected sites in natural areas and the undersampling 

of the wider countryside and urban areas (Pollard and Yates 1993); while in 

Germany this effect was not that pronounced (Kühn et al. 2008). Obviously, in 

such a case the trends detected may be only representative for the areas sampled, 

while their extrapolation to national trends may produce biased results. Such bias 

can however be minimized by post-stratification of transects. This implies an a 

posteriori division of transects by e.g. habitat type, protection status and region, 

where counts per transect are weighted according to their stratum (Van Swaay et 

al. 2002, see also Henry et al. (2008) for the principles of weighting).  
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Calculating indices and population trends 

The traditional way of testing temporal population trends in yearly count data is to 

apply ordinary linear regression. But linear regression assumes the data to be 

normally distributed, which does not hold for most count data especially if the 

data contain many zero values. Also log transformation does not work properly in 

such cases. Generalized Linear Models (GLM; McCullagh and Nelder 1989) offer an 

alternative to analyse count data. In GLM models, the normality assumption is 

replaced by the assumption of a distribution of the user's choice. For count data 

this distribution is often the Poisson distribution. To apply these models 

transformation of raw data is no longer required. Poisson (or loglinear) regression 

is implemented in the widely used program TRIM (TRends and Indices for 

Monitoring data - Pannekoek and van Strien 2005). Regarding butterflies, this 

program is used in the UK and the Netherlands and new schemes plan to use it as 

well (Kühn et al. 2008). Based on a model with year effects and site effects, TRIM 

produces yearly indices as well as overall trend estimates and is particularly useful 

if the data contain missing counts due to the coming and going of the voluntary 

observers in a scheme. TRIM has also options to incorporate serial correlation 

between counts in consecutive years, testing of covariates and testing of 

changepoints. An important feature of TRIM is the possibility to incorporate 

weight factors per transect in order to adjust for oversampling and undersampling 

of particular habitat types, regions or other characteristics of transects. These 

weights may be based on e.g. the surface area of heathland in different regions for 

heath butterflies, or the population shares of species per region (Van Swaay et al. 

2002). One might also consider to apply detection probabilities as weights in 

TRIM, if these probabilities appear to change over time.  

A weakness of TRIM is that the model does not include week effects. The counts 

per week need to be combined first into a yearly sum and only this sum enters the 

TRIM model. Rothery and Roy (2001) explored the possibilities to apply 

Generalized Additive Models (GAM) to butterfly monitoring data. A GAM is an 

extension of GLM methods and allows the smoothing of yearly indices.  

 

Applications  

National and regional trends  

The main objective of most butterfly monitoring schemes is the production of 

regional and/or national population trends. These trends are being produced on a 

routine basis every year in e.g. the UK and the Netherlands, and are meant to 

evaluate at a large scale the need for or the progress made in butterfly 

conservation.   

 

Figure 5.2: Mean Julian date of the 
first 10% of all observed individuals 
of 19 spring butterfly species in 
1992-2004 (January 1 = day 1 etc.).    
For each species the date was 
assessed per year of the first 10% of 
all observed individuals 
in the entire flight period on all 
transects together. For details see 
Van Strien et al. (2008). Trends and 
confidence intervals were assessed 
by structural time-series analysis 
and the Kalman Filter using the 
program Trendspotter (Soldaat et 
al. 2007).  
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Relationships with environmental factors 

The transect counts can be used to study the relationships with environmental 

factors, such as climate change, nutrient load, heavy metals, drainage, land use, 

fragmentation and management practice. Pollard and Yates (1993) describe 

detailed studies based on monitoring data. Here we mention only a few examples: 

 Climate change. Several schemes were used to examine the changes in 

phenology (Roy and Sparks 2000; Stefanescu et al. 2003; Kühn et al. 2008; 

Van Strien et al. 2008, see figure 5.2). WallisDeVries and Van Swaay 

(2006) used transect data to study the effects of the combination of 

nitrogen deposition and climate change on the abundance of butterflies.  

 Nutrient load and heavy metals. Oostermeijer and Van Swaay (1998) 

examined relationships between butterfly absence/presence data 

obtained from monitoring transect and Ellenberg indicator values for 

nutrients, acidity and moisture (figure 5.3). Mulder et al. (2005) examined 

the effects of heavy metals on butterflies on a particular transect.   

 Management practice. Brereton and Warren (2005) found the trend of 

Lysandra coridon on calcareous grasslands with butterfly friendly 

management to be more positive than on other grasslands.  

 Multiple environmental factors. Other perspectives for the application of 

monitoring data are by testing predictions or expectations from envelope 

approaches, which form the basis of many biodiversity impact and risk 

assessments (as e.g. in the ALARM project; Settele et al. 2005). This may 

in particular be relevant to large scale predictions/expectation of changes 

and trends derived from the combined effects of a multitude of pressures 

(compare Schweiger et al., in rev.) and to extrapolations of historically 

reconstructed trends (Settele et al. 1992).  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Butterflies as indicators 

Government representatives at the 2002 World Summit of Sustainable 

Development pledged ‘a significant reduction in the current rate of biodiversity 

loss by 2010’. The commitment of the EU to protecting biodiversity is even 

stronger by aiming at halting biodiversity loss by 2010 (Balmford et al. 2005; 

Gregory et al. 2005). Butterflies may be useful as biodiversity indicators for 

reporting on the development towards the EU 2010 target. Contrary to most other 

groups of insects, butterflies have considerable resonance with both the general 

public as decision-makers (Kühn et al. 2008). Butterflies are also relatively easy to 

recognize and data on butterflies has been collected for a long time and by many 

voluntary observers. The method is well described, extensively tested and 

scientifically sound (Pollard 1977; Pollard and Yates, 1993) As a result butterflies 

Figure 5.3: Relationships 
between the probability of 
occurrence obtained from 
monitoring transect data and 
Ellenberg indicator values for 
nutrients (from Oostermeijer 
and Van Swaay 1998).  
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are the only invertebrate taxon for which it is currently possible to estimate rates 

of decline among terrestrial insects in many parts of the world (de Heer et al. 2005; 

Thomas 2005). However, butterflies can only be regarded as good biodiversity 

indicators if it is possible to generalise their trends to a broader set of species 

groups (Gregory et al. 2005). Admittedly, there is currently a heated debate on 

how well butterflies meet this criterion. Hambler and Speight (1996; 2004) claimed 

that this group is likely to experience greater declines than other organisms due to 

their herbivorous life strategies and thermophily, but Thomas and Clarke (2004) 

convincingly rejected both arguments. Based on a comprehensive review of 

studies into their life-history traits, relative sensitivity to climate change, and 

adjusted extinction rates Thomas (2005) concluded that butterflies may be 

considered representative indicators of trends observed in most other terrestrial 

insects, which together form a major fraction of biodiversity. 

Trends per butterfly species can be combined into a unified measure of 

biodiversity. We followed Gregory et al. (2005) in averaging indices of species 

rather than abundances in order to give each species an equal weight in the 

resulting indicators. When positive and negative changes of indices are in balance, 

then we would expect their mean to remain stable. If more species decline than 

increase, the mean should go down and vice versa. Thus, the index mean is 

considered a measure of biodiversity change. We used geometric means rather 

than arithmetic means, because we consider an index change from 100 to 200 

equivalent, but opposite, to a decrease from 100 to 50. Buckland et al. (2005) 

discussed a number of possible composite indicators and found the geometric 

mean of indices a useful approach.  

The results of national butterfly monitoring schemes may be combined to create 

an indicator at a supra-national level (see also Henry et al., 2008). Based on the 

procedure described for European birds (see Gregory et al., 2005), a preliminary 

grassland butterfly indicator has been developed (Van Swaay and Van Strien 

2005). The procedure was as follows: 

1. National level. The indices for each species were produced for each 

individual country with a butterfly monitoring scheme, using TRIM 

(Pannekoek and Van Strien 2005). Figure 5.4 shows the national indices as 

an example for three countries for the grassland species Lasiommata 

megera. 

 

 

  

Figure 5.4: National abundance indices (± standard error) for 
Lasiommata megera in three European countries. In the first year 
the index can be calculated it is set to 100 (1992 for The 
Netherlands, 1994 for Catalunya, 1976 for the United Kingdom). 
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2. Supranational level. To generate supra-national trends, the difference in 

national population size of each species in each country was taken into 

account. This weighting allows for the fact that different countries hold 

different proportions of a species’ European population (Gregory et al., 

2005). Here, we applied as weights the proportions of each country (or 

part of the country) in the European distribution of a species (based on 

Van Swaay and Warren 1999). The missing year totals are estimated by 

TRIM in a way equivalent to imputing missing counts for particular 

transects within countries (Gregory et al. 2005). Figure 5.5 gives the 

weighted and combined trend for Lasiommata megera. The same 

procedure may be used to establish European trends for the Habitats 

Directive species e.g. Euphydrias aurinia, Maculinea arion and M. 

nausithous (which are included in the grassland indicator). 

3. Multispecies level. For each year the geometric mean of the supranational 

indices is calculated. The preliminary grassland indicator was based on 

seven widespread grassland species (Ochlodes venata, Anthocharis 

cardamines, Lycaena phlaeas, Polyommatus icarus, Lasiommata megera, 

Coenonympha pamphilus, Maniola jurtina) and ten grassland-specialists 

(Erynnis tages, Thymelicus acteon, Spialia sertorius, Cupido minimus, 

Maculinea arion, Maculinea nausithous, Polyommatus bellargus, 

Polyommatus semiargus, Polyommatus coridon, Euphydryas aurinia). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The countries covered were mainly from Western Europe (Table 5.1). The average 

grassland butterfly abundance appeared to decline by almost 50% (Figure 5.6), 

which is most probably linked with the agricultural intensification in Western 

Europe (Van Swaay and Warren 1999; Gregory et al. 2005). The decline is much 

stronger than the decline of the farmland bird indicator, which has fallen by 19% in 

the same period (Gregory et al. 2008). This corresponds with the findings in the UK 

where butterflies have experienced greater losses than birds (Thomas et al. 2004).  

 

 
  

Figure 5.5: Collated index (± standard 
error) for Lasiommata megera in the 
European countries with Butterfly 
Monitoring Schemes. 
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Perspectives 

The number of countries with butterfly monitoring schemes is increasing. In 

addition, the quality of schemes is improving, because any lack of 

representativeness of transect is taken into account, either by choosing an 

adequate design or to adjust any bias during the stage of analysis. As the number 

and quality of butterfly monitoring schemes grows, the coverage of Europe by 

supranational species trends and multispecies indicators improves. The European 

Environmental Agency has already recommended to develop European butterfly 

indicators (European Environment Agency 2007), and these developments may 

lead to indicators that are comparable to the farmland bird indicator, which has 

been adopted by the EU as biodiversity indicator (Gregory et al. 2005). Where 

possible and feasible, one might even think of combining butterflies and birds in 

indicators to report against EU’s 2010 target, in order to generalize changes well 

beyond the set of species.  

The grassland butterfly indicator offers the possibility to detect large scale effects 

of either abandonment of agricultural land (especially occurring in Eastern and 

Southern Europe) or intensification of agricultural practices (a process already 

stopped in parts of Western Europe, but ongoing in many European regions). 

Apart from a grassland butterfly indicator, we see good perspectives to create a 

climate change indicator, summarising changes in occurrence of species driven by 

climate change, as well as a woodland indicator.  The same indicators are also in 

progress for European birds (Gregory et al., 2007). A woodland indicator may 

however not have such a simple message as the preliminary grassland indicator. 

That is because woodland butterflies are made up of two different species groups. 

The first group of woodland butterflies are characteristic for woodland edges and 

open spots, e.g. Euphydryas maturna and Coenonympha hero. The second group 

are canopy species, who profit from high forest, e.g. Apatura iris. Though both 

these groups are genuine woodland butterflies, their expected trends differ 

entirely. Species from the first group probably suffer in large parts of Europe, 

because traditional coppicing has been replaced by management for high forest. In 

Western Europe, where this process has been going on for a few decades, these 

species are virtually extinct, but in Eastern Europe strong populations still exist 

(Van Swaay and Warren 1999; 2003). The few species of the second group, which 

tolerate dense forests (e.g. Pararge aegeria; Shreeve 1984) or the handful of 

European canopy dwellers (e.g. Neozephyrus quercus, Apatura spp., or Limenitis 

populi) are rather the exception. Thus, a woodland indicator might have to 

consider a differentiation of these two groups. As a rule, the majority of European 

woodland butterflies utilises sunny habitats within woodlands, such as sparse 

stands, bogs, streamsides, clearings, rides, or edges (Settele et al., 2008). 

Figure 5.6: European grassland 
butterfly indicator. Trends and 
confidence intervals were assessed by 
structural 
time-series analysis and the Kalman 
Filter using the program Trendspotter 
(Soldaat et al. 2007). 
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Over thirty years butterfly monitoring has developed from one test site in Monks 

Wood in the United Kingdom to more than 2000 transects scattered over Europe. 

Almost every year new countries join in to start up a monitoring network. Further 

extension of butterfly monitoring schemes to other countries in Europe should be 

encouraged and supported by the European Union and its Member States. The 

further development and use of butterflies in European biodiversity indicator will 

further stimulate new butterfly monitoring schemes.  
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6. Monitoring butterflies in the 

Netherlands: how to get unbiased 

indices 
 

 

Slightly modified from: Van Swaay, C.A.M., Plate, C.L. & Van Strien, A.J. (2002)  

Proc. Exper. Appl. Entomol. NEV Amsterdam 13, 21–27. 

 

 

Abstract 

The Dutch Butterfly Monitoring Scheme started in 1990. In 2002 more than 300 

sites are monitored yearly, most of them by volunteers. The main results are 

national yearly indices per species describing changes in species abundance. 

Since the monitoring sites are not equally distributed over the country, 

oversampling and undersampling of particular regions and habitat types may 

lead to biased estimates of the national indices. In this paper we present a 

method to adjust for unequal sampling using Hipparchia semele, a 

characteristic species of heathlands and dunes as an example.  

 

  

Hipparchia semele, a characteristic 
butterfly of heathlands and dunes in 
the Netherlands. 
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Introduction 

In the last century, many butterflies in the Netherlands have declined in range and 

abundance. Of the 70 native Dutch butterfly species, 17 have become extinct and 

30 are considered threatened on the red list (Van Ommering et al., 1995; Maes & 

Van Swaay, 1997). Only 23 species are considered as ‘safe and/or low risk’. 

In 1990, De Vlinderstichting (Dutch Butterfly Conservation) and CBS (Statistics 

Netherlands) started a Butterfly Monitoring Scheme in the Netherlands (Van 

Swaay et al., 1997; Van Swaay, 2000a). The main objective of the monitoring 

scheme is to assess changes at national and regional level of common and rare 

butterfly species, including species of the Habitat Directive. These changes will 

provide useful information on  the success of nature conservation policy tools, like 

red lists (e.g. RIVM et al., 2001; CBS et al., 2001). In addition, the monitoring data 

can be applied to the conservation of butterflies at a local level by comparing 

national changes with local changes (e.g. Van Swaay, 2000a). Finally, the data are 

also useful for research purposes, for instance to examine and evaluate the effects 

of specific conservation measures on butterflies (e.g. Wallis de Vries & Raemakers, 

2001).    

Because it is not possible to count all individual butterflies to establish the true 

trend in species abundance, it is necessary to take samples. Because volunteers 

form the major part of the recorders, each of them with particular preferences, the 

sites are not equally distributed over the Dutch landscapes and habitat types. This 

has the risk of biased estimates of the national changes. Here we describe a 

method to adjust for this unequal sampling. 

 

Method 

Fieldwork 

To a large extent the field method is based on the British Butterfly Monitoring 

Scheme (Pollard & Yates, 1993). Only a few minor changes have been made. The 

most important adaptation is that all transects have been divided into sections 

with a fixed length of 50 m. Such a section must have a homogeneous vegetation 

structure. The length of a transect can be up to 1 km (20 sections), but may be 

shorter. From April to September all butterflies 2.5 m to the left and right of the 

recorder and 5 m in front and above should be counted weekly under standardized 

weather conditions. The method is described in detail in Van Swaay (2000b). Most 

of the sites are recorded by volunteers. 

This method has proved to be successful in collecting a large set of data for 

common and widespread species. For rare species, however, it was not possible to 

get data from a sufficient number of sites. Therefore, since 1994 ‘single species 

sites’ have been added. At these sites only one species is counted in its flight 

period. This reduces the number of required visits to those sites from twenty to 

about four, thereby increasing the opportunities of nature reserve wardens and 

volunteers to count these species sufficiently. 

 

Calculating the year-count per site 

At the end of the season all recorders send in their data on standard paper forms. 

After a first check by butterfly specialists of Dutch Butterfly Conservation, 

Statistics Netherlands (CBS) performs standardized checks by computer 

programmes to detect typing errors and other errors. Thereafter recorders are 

asked to check these errors.   

Over the flight period of a particular butterfly species, a series of counts is 

obtained for each transect (see example in figure 6.1). The number of butterfly 

individuals rises and goes down during the flight season, due to the emergence of 

butterflies from pupae or by immigration, followed by death or emigration.  
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Transects that are not counted sufficiently often during the 

season should be disregarded for further use, because the 

peak of the numbers may be missed entirely. We have applied 

the following procedure to select the transects that are 

counted sufficiently. At first, for each particular year, we have 

assessed the flight period of each generation of all species. 

This was derived from the mean number of butterflies per 

week across all sites. For instance, the flight period for 

Hipparchia semele in 1999 was between week 27 and 36 (figure 

6.2). If there is an overlap between the second and third 

generation, which happens in the Netherlands almost every 

year for the Pieris species, these two generations were taken 

together. For species that overwinter as adults, the butterflies 

emerging in summer resulting from the eggs laid in spring, are 

regarded as the first generation. Thereafter, we selected only 

those transects for further use that (i) were at least counted 

once in the middle of the flight period and (ii) on which 

the time between two subsequent visits was not longer 

than half of the flight period. Transects that did not fulfil 

these criteria were omitted and a missing value was 

added for that particular year. A transect that does not 

fulfil the criteria for one species, may very well be used 

for other species. Finally, we assessed the total year-

count for each site for each particular year and species. 

This is an estimate of the area under the line (the 

number ‘butterfly days’) connecting the individual 

counts for each species per transect per year (see figure 

6.3). At the start and end of the flight period we assumed to have 

a zero count. Because transects are counted once a week, this 

area is divided by seven. It is calculated as: 

 

J= ∑
1

2

i=b-1

i=a

(ti+1- ti)(Ni+ Ni+1)/ 7 

 
where J = year-count, i = number of visit, a = first visit, b = last visit,  

t = day number, ti+1 – ti = length of period between 2 visits in days,  

N = count at visit 

 

Calculating trends and indices across sites 

The changes of species are presented as indices, using the 

first year as a base year. To be able to calculate reliable 

indices a minimal number of transects per stratum is 

needed. In the first two years of the Dutch Butterfly 

Monitoring Scheme the number of transects was relatively 

poor for many strata. For this reason the first year for the 

results of the weighted analysis is 1992.  

Indices were calculated using the computer program TRIM 

(Pannekoek & Van Strien, 2001). TRIM is an index program for the 

analysis of time series of counts with missing data, based on loglinear regression. 

Monitoring data often contain many missing values. The idea is to estimate a 

model using the observed counts and then to use this model to predict the missing 

counts. Indices can then be calculated on the basis of a completed data set with 

the predicted counts replacing the missing counts. For species with more than one 
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Figure 6.1: Example of the data in the 
Dutch Butterfly Monitoring Scheme: 
individual counts of Hipparchia semele in 
1999 on a transect in Berkheide (dune-area 
near Leiden, province of Zuid-Holland). 

Figure 6.2: Mean count in each recording 
week for Hipparchia semele in The 
Netherlands in 1999. 
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generation per year the index of the first generation has been used for greater 

accuracy according to Van Strien et al. (1997). Due to lack of data for the first 

generation for Aricia agestis and Lycaena tityrus the second generation has been 

used. In addition to indices, overall trends across the entire period were calculated 

using TRIM.   

 

Weighted trend analysis 

The national indices are calculated by using a weighting procedure. This is 

necessary because butterflies and transects are not equally distributed over the 

country and the habitats of butterflies. In order to counter for this uneven 

sampling, we have applied a post-stratification of the data and have calculated 

indices and trends for each stratum separately. A stratum consists of a 

combination of (i) a Dutch physical geographical region, such as the Northern 

higher sandy soil area (figure 6.4) and (ii) one of the following habitat types: 

woodland, heathland, agricultural land, moorland, dunes and urban areas.  

Thereafter, we have added the strata weighted together to get a more correct 

estimation of the national indices. If all strata are equally sampled according to 

their surface area, all weight would be similar. If a stratum is undersampled, it 

should get a higher weight than other strata. This weight should be higher when 

the stratum is more important for the species. Thus, the weight factors are based 

on the distribution of the transects across the strata and the relevance  of each 

stratum for each particular species. In order to assess this relevance, first the 

surface area of each the stratum has been calculated using a GIS with a map of 

habitat types, whereby we took into account only the area in which the species 

occurs according to its distribution in the Netherlands. In addition, we estimated 

the relevant part of each habitat type per species by expert judgement. This is 

necessary because a habitat area is not entirely appropriate for the species. For 

example, many woodland butterflies are restricted to the edges and do not occur 

in the dark forest interior. The weighting factor for a stratum is the quotient of the 

number of transects per stratum in case all transects are distributed proportionally 

to their relevance and the actual number of transects per stratum. 

 

 

Figure 6.4: The Dutch physical geographical regions. 
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The procedure can be illustrated by Hipparchia semele, a characteristic butterfly of 

heathlands and dunes. Figure 6.5a gives the distribution of the relevant area of 

Hipparchia semele over the five strata where it occurs. Figure 6.5b shows the 

distribution of the transects where the butterfly is recorded over the different 

strata. It is clear that the dunes on the mainland are oversampled (χ2=108.9, 

p<0.001). To adjust for this bias in the case of Hipparchia semele the oversampled 

mainland coastal dunes are down weighted by 0.43, for the undersampled island 

dunes on the Wadden islands the factor is 8.0.  
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Figure 6.5: Distribution of a) the estimated habitat area of Hipparchia semele 
over the five strata where it occurs and b) of the transects where the butterfly is 
recorded over the different strata (n=54 transect in 2002). 

To correct for unequal sampling for 
Hipparchia semele, the oversampled 
mainland coastal dunes have to be 
downweighted and the 
undersampled island dunes 
upweighted. 

a) b) 
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Results 

For 37 butterfly species weighted trends have been calculated (table 6.1). Six 

species show an increase, but for Coenonympha pamphilus it should be noted that 

the numbers of this species showed a massive decline in 1990-1991. The strong 

increase since 1992 has not yet compensated for the loss in the earlier years. The 

only red list species showing an increase is Papilio machaon, benefiting from 

increasing summer temperatures in the last decade.  

Six species are more or less stable, but fifteen butterflies show a decrease in 

numbers after 1992. Most of them are red list species, like Hipparchia semele, but 

also widespread and abundant butterflies like Aglais urticae and Gonepteryx rhamni 

have declined.  

The trend of four species remains unknown due to high standard errors caused by 

strong fluctuations in time or very different trends between transects. 

The weighted results for Hipparchia semele show a stronger decline as compared 

to the unweighted results (figure 6.6). The cause of this difference can be seen by 

looking at the indices for each separate stratum (figure 6.7). 
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Figure 6.6: National weighted and 
unweighted indices of Hipparchia 
semele in The Netherlands. A 
weighted index is corrected for the 
unequal distribution of transects 
over the range of the species, with 
some areas over- and others 
undersampled. 
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Table 6.1: Evaluation of the weighted national trends of the Dutch butterflies from 1992-
2000. For species with more than one generation a year the trend for the first generation 
is given, except for Plebeius agestis and Lycaena tityrus where the second generation is 
used. 

  Species Evaluation Magnitude 

Increase: 6 
species 

Pararge aegeria Significant very strong 
increase 

>75% in 5 years 
Lycaena phlaeas 

Coenonympha pamphilus Significant strong increase 50-75% in 5 years 

Pieris napi Significant moderate increase 25-50% in 5 years 

Celastrina argiolus 
Probable increase   

Papilio machaon 

Stable: 12 species 

Lasiommatua megera 

Stable 
<25% change in 5 
years 

Polygonia c-album 

Pieris brassicae 

Araschnia levana 

Anthocharis cardamines 

Aricia agestis (2nd generation) 

More or less stable 
<50% change in 5 
years 

Pyrgus malvae 

Carterocephalus palaemon 

Erynnis tages 

Polyommatus icarus 

Pieris rapae 

Aphantopus hyperantus 

Decrease: 15 
species 

Maniola jurtina Significant small decrease <25% in 5 years 

Aglais io 

Significant moderate decrease 25-50% in 5 years 

Hipparchia semele 

Favonius quercus 

Thymelicus sylvestris 

Callophrys rubi 

Plebejus argus 

Issoria lathonia 

Pyronia tithonus 

Thymelicus lineola 

Satyrium ilicis 

Significant strong decrease 50-75% in 5 years 

Gonepteryx rhamni 

Limenitis camilla 

Aglais urticae 

Hesperia comma 

Melitaea athalia Significant very strong 
decrease 

>75% in 5 years 
Heteropterus morpheus 

Unknown: 4 
species 

Lycaena tityrus (2nd generation) 

Strong fluctuations   
Ochlodes sylvanus 

Argynnis aglaja 

Boloria selene 
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Discussion 

In an ideal monitoring scheme: 

 plots are randomly selected (stratified) from the species distribution 

areas; 

 all observers participate from the beginning; 

 all observers count every week; 

 all observers are equally experienced; 

 an observer never ends its participation. 

But because we do not live in an ideal world, we have to face a number of 

problems that may distort the results. Here we have dealt with probably one of the 

most important problems, the unequal sampling. In the Netherlands this is 

especially the case in the coastal dunes. Many recorders prefer to count butterflies 

in this relatively unspoilt area over the agricultural and urban areas. On the other 

hand, the dunes of the Wadden islands are undersampled. Although these islands 

attract many butterfly enthusiasts for short holidays, there are only a few local 

people who do a monitoring transect. For some species this leads to biased indices 

if all transects are calculated without correcting for this phenomenon.  

Both Coastal and Islands areas show a more or less stable trend for the dunes. But 

this species has declined severely on the heathlands, especially in the Northern 

part of the country. The index for 2000 here is less than 10% of the base year 1992, 

which is an enormous decrease! Because the mainland dunes are heavily 

oversampled (figure 6.5), the unweighted national results are biased towards a 

more stable trend. As a result of weighting, the overall indices present a more 

realistic view on the development of this butterfly species in the Netherlands. 

A major assumption of the procedure applied is that transects are representative 

for each stratum. But this might not be true. A recorder may start a transect in 

order to evaluate the development of butterfly numbers to special nature 

management actions or a recorder may lose his motivation for the monitoring 

when the numbers of butterflies have become low. Such suspected reasons to 

start and stop the counting should be taken into account. Furthermore, even 

within a specific habitat, recorders may have a strong preference to count 

butterflies in the most attractive parts. The trends of butterflies in these parts 

might differ from the trends in the rest of the stratum. Further research of these 

phenomena is required to find out how serious these problems are and how they 

can be solved. 
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7. Developing a butterfly indicator to 

assess changes in Europe's biodiversity 
 

 

Slightly modified from: Brereton, T.; Swaay, C.A.M. van & Strien, A.J. van (2009)  

Avocetta 33: 19-27 

 

 

Abstract  

To monitor progress towards the European Union target to halt the loss of 

biodiversity by 2010, biodiversity indicators at a European scale are required. 

Butterflies have been proposed as biodiversity indicators due to their rapid and 

sensitive responses to subtle habitat and climatic changes and as 

representatives for the diversity and responses of other wildlife, especially 

insects. Since the first butterfly monitoring scheme was established in the UK 

in 1976, schemes have now been established in over ten European countries. In 

each scheme, regular butterfly counts are made through the season each year 

along fixed routes under suitable weather criteria. Here, we used the counts to 

compile both national and supra-national annual indices for a number of 

species, in order to develop and test a preliminary European scale biodiversity 

indicator for the European Environment Agency. A multi-species grassland 

“European” Butterfly indicator was constructed by combining data from 17 

characteristic grassland species, following closely the analytical method 

developed for the European Bird Indicator. The indicator showed a strong 

decline in butterfly abundance (of about 40% in 15 years since 1990). The 

European Environment Agency has subsequently proposed a number of 

indicators for inclusion in the set of European biodiversity indicators, 

butterflies being one of the most highest ranked. We hope to update and 

develop the indicator further (including compiling an indicator for woodland 

butterflies), make further analytical improvements and extend butterfly 

monitoring schemes to other countries in order to improve the quality and 

representativeness of the indicator. 

 

  

Abandonment leads to grasslands 
overgrown by scrub and trees leaving 
no habitat for grassland butterflies. 
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Introduction 

Recent years have seen global political consensus on the need to address the loss 

of biodiversity. The 1994 Convention on Biological Diversity (CBD) put an 

obligation on individual governments to develop national strategies for the 

conservation and sustainable use of biological diversity. As part of the response, in 

2001 the European Union set an ambitious target to halt biodiversity loss across 

Member States by 2010, which was backed up by agreement under international 

law in 2002 through the CBD. In 2006, the EU published an Action Plan as a road 

map to delivering the 2010 target, including concrete measures and outlining the 

responsibilities of EU institutions and Member States. An important component of 

the Action Plan was the requirement to develop biodiversity indicators (surrogate 

measures for a wider range of biodiversity) to enable timely assessment of 

conservation progress towards the target. In 2004 a European initiative co-

ordinated by the European Environment Agency, SEBI 2010 (‘Streamlining 

European 2010 Biodiversity Indicators’), was launched to develop a first European 

set of Biodiversity Indicators for 2010 target assessment (European Environment 

Agency 2007). 

 

Components of biodiversity requiring assessment include trends in the abundance 

and distribution of species. Unfortunately, at a European scale the development of 

species indicators is problematic because systematic monitoring of biodiversity is 

scant, with birds providing the best available dataset. Due to the establishment of 

butterfly monitoring schemes in a number of European countries in recent years 

that collect annual data to a scientific standard over a wide geographical area, 

population trends of butterflies now represent an important new possibility as an 

indicator. 

Butterflies are considered as important components of biodiversity because they 

have considerable resonance with both the general public and decision-makers 

(Kühn et al., 2008). 

Information of trends in butterflies is increasingly used by a number of Northwest 

European governments. For example, in 2005 the English Government used three 

butterfly indicators, including a Headline Indicator Populations of Butterflies, and 

Populations of both Woodland and Farmland Butterflies, to help assess progress in 

implementing the England Biodiversity Strategy and assessing the effectiveness of 

biodiversity conservation policies (Department for Environment, Food and Rural 

Affairs 2006). In the Netherlands, butterflies are included in a headline indicator 

based on the Red List status of species as well included in several other indicators, 

e.g. to show effects of climate change (www.natuurcompendium.nl). 

Butterflies have been proposed as biodiversity indicators due to their rapid and 

sensitive responses to subtle habitat and climatic changes and as representatives 

for the diversity and responses of other wildlife, especially insects (Rosenberg et al. 

1986, Erhardt & Thomas, 1991, Fleishman et al., 2000, Kremen 1992, New et al. 

1995, Hammond, 1995, Beccaloni and Gaston 1995, Oostermeijer and van Swaay 

1998, Ehrlich 2001, Ehrlich 2003, Parmesan, 2003, Thomas 2005). Representation 

for insects would be particularly important as insects comprise 56% of known 

species (Groombridge 1992) and an estimated 80% of the global species stock 

(Stork 1993).  

 

In this paper, we evaluate the suitability of butterfly population data as a 

biodiversity indicator at a European scale for 2010 target assessment. We discuss 

the strengths and weaknesses of the preliminary grassland European Butterfly 

Indicator as reported by Van Swaay & Van Strien (2005), and compare this 

indicator with the farmland bird indicator as developed by Gregory et al. (2005). 

We also discuss briefly how well trends in butterflies may represent trends in other 



 

 

81 

insects groups. Grasslands are vitally important to European butterflies, providing 

habitat for 88% of species and the main habitat for 88% of species (Blab and 

Kudrna, 1982, Tax, 1990, Van Swaay & Warren, 1999; Van Swaay et al., 2006). In 

many cases grassland butterflies are dependent on agricultural management for 

their long-term survival. Thus there are strong linkages to EU policy mechanisms 

such as the Common Agricultural Policy and agri-environment schemes. 

 

Methods 

Evaluation of using butterfly monitoring data as an EU Biodiversity Indicator 

The potential use of butterfly monitoring data in a European indicator was 

evaluated in two ways. First, by applying the following criteria to butterfly 

monitoring data: policy relevance, biodiversity relevance, scientifically sound and 

well founded methodologically, broad acceptance and understandability, 

affordable monitoring, available and routinely collected data, affordable 

modelling, spatial and temporal coverage of data, representativeness of the data 

and sensitivity. These criteria were developed and applied by the European 

Environment Agency (EEA, 2007). The quality results for each criterion were 

scored on a scale from 0 (no score) to 3 (highest score), with the total enabling 

objective comparison with other candidate indicators.  

Secondly, a trial indicator for grassland butterflies was made. This provides 

practical insights into the strengths and weaknesses of the monitoring data and 

methods.  
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Belgium – Flanders * 1991 10-20 15-20 v free no no 

Estonia  2004 7-10 9 p by co-ordinator no no 

Finland * 1999 50-60 10-16 v free yes no 

France  2005 75 4-8 v random yes no 

France – Doubs * 2001 (-2004) 10 10-15 p by co-ordinator yes no 

Germany  2005 400 15-20 v free yes yes 

Germany - Nordrhein 
Westfalen * 

2001 50 15-20 v free no yes 

Germany – Pfalz * 
(Maculinea nausithous only) 

1989 (-2002) 16 3 p by co-ordinator yes no 

Jersey  2004 15 15-25 v free yes no 

Spain – Catalunya * 1994 60-70 30 v free yes no 

Switzerland – Aargau * 2001 100 4-7 p systematic yes no 

The Netherlands * 1990 430 15-20 v free yes no 1) 

Ukraine – Transcarpathia * 1974 60 2 p free yes no 

United Kingdom * 1976 750 15-20 v free ? yes 

 
  

Table 7.1: Characteristics of the Butterfly Monitoring Schemes. The data from countries or regions marked by *were 
used for the preliminary European Butterfly Indicator. 1) after weighting, see chapter 6. ** Assessed by expert 
opinion.  
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Collation of butterfly monitoring data from European schemes 

Regional and national butterfly trend data were collated through Dutch Butterfly 

Conservation/Butterfly Conservation Europe from a consortium of individuals and 

organizations from nine countries including: UK, Ukraine, Germany, Netherlands, 

Flanders (Belgium), Spain, Switzerland, Finland, and France (Table 7.1). 

 

Butterfly monitoring methods 

The main objective of European Butterfly Monitoring schemes is to assess changes 

in abundance at national and regional levels of butterflies, including Habitat 

Directive species. For the bulk of schemes the field method used closely follows 

that developed for the British Butterfly Monitoring Scheme, established in 1976 

(Pollard & Yates 1993). Counts are made in a fixed area along line transects under 

set weather conditions and time of day criteria. Counts are made on a regular basis 

over the flight season of the species monitored and used to generate annual 

indices for each species at each site. The average number of visits per year varied 

considerably across the schemes (Table 7.1). Most of the transects are recorded by 

skilled volunteers, who have a good knowledge of the transect butterfly fauna and 

their results are checked by butterfly experts. In many national schemes, transect 

locations are not randomly selected, but are based on free choice of volunteers 

(Table 7.1). This may easily lead to oversampling of semi-natural grasslands, 

nature reserves and other protected areas and under-sampling of intensive 

grasslands on privately owned farmland in the wider countryside. 

 

Preliminary European Butterfly Indicator: habitat and species selection 

The habitat focus was grassland, as this is probably the single most important 

broad habitat type for butterflies in Europe (Van Swaay et al., 2006). Using widely 

accepted definitions (e.g. Asher et al. 2001) derived from autecological studies, 

grassland butterflies were grouped into two broad types: widespread species 

(mobile species occurring in a diverse range of grassland types) and specialists (low 

mobility species restricted to semi-natural grasslands). A selection of 17 species 

was made by European butterfly experts of species that were considered to be 

characteristic of European grassland using the following criteria: (1) widespread 

across Europe, (2) sampled by the majority of Butterfly Monitoring Schemes and 

(3) grassland must be their main habitat as defined in Van Swaay et al. (2006). The 

seven widespread species were Ochlodes faunus, Anthocharis cardamines, Lycaena 

phlaeas, Polyommatus icarus, Lasiommata megera, Coenonympha pamphilus and 

Maniola jurtina. The ten specialist species were Erynnis tages, Thymelicus acteon, 

Spialia sertorius, Cupido minimus, Maculinea arion, Maculinea nausithous, 

Polyommatus bellargus, Polyommatus semiargus, Polyommatus coridon and 

Euphydryas aurinia. 

 

Preliminary European Butterfly Indicator: indices and trends  

Development of a preliminary European Butterfly Indicator for grasslands followed 

methods recently developed for European Birds (Gregory et al. 2005), with the 

work carried out in close consultation with experts from Statistics Netherlands, the 

European Topic Centre for Biodiversity and the European Bird Census 

Council/Birdlife. National indices were produced for each grassland species in each 

country, using the program TRIM, which models data across sites and years, 

accounting for missing indices and zero counts by log-linear modelling (Pannekoek 

& Van Strien 2003). European species trends were then calculated for each species 

by combining national results, with a weighting procedure accounting for the 

difference in national population size of each species in each country.  As no 

precise national population estimates were available, the weighting was defined 

more precisely as the range proportion that each country (or region) held of the 



 

 

83 

European distribution for each species (Van Strien et al. 2001, Van Swaay & 

Warren 1999). A further complication as compared to birds is that the count data 

per site concern several visits per year. The average number of visits of schemes 

were taken into account in the weighting too. Missing year totals were estimated 

by TRIM in a way equivalent to imputing missing counts for particular sites within 

countries (Van Strien et al. 2001).  Multi-species indices for all-species, widespread 

species and specialist grassland butterflies were derived by calculating the 

geometric mean index across each species assemblage (Gregory et al. 2005). In 

this, for each year separately, the log of each species index value was taken, then 

averaged across selected species and the exponential of the result calculated.  

  

Results 

Trends in the European Grassland Butterfly Indicator  

There was a steep populations decline of about 40% in the European Butterfly 

Indicator for grassland butterflies since 1990 (Figure 7.1a). Within this trend, the 

declines of specialist and widespread grassland species did not differ significantly 

(specialists average trend value -1.56±4.40 year-1; widespread species average 

trend -1.94±0.47 year-1; t-test p=0,93).  

Changes in the grassland Butterfly Indicator were compared to changes in the 

indicator for European Farmland Birds using data from the Pan-European 

Common Bird Monitoring Scheme (PECBMS) (Gregory et al. 2007). From 1990 to 

2004, farmland birds declined at a rate of about 20%. Although this suggests a 

steeper decline for butterflies (Figure 7.1b), the average trend value of farmland 

birds (-0.59±0.59 year-1, n=33 species) did not differ significantly from grassland 

butterflies (-1.72±2.54 year-1, n=17 species) (t-test p=0.67). 

 

 

 

Evaluation of using butterfly monitoring data as an EU Biodiversity Indicator 

Based on the EEA criteria, overall the butterfly indicator scored highly, validating 

and confirming the potential of this indicator at a European scale. Policy relevance 

and biodiversity relevance of the butterfly indicator had the highest score (3); most 

other aspects had score 2. Spatial and temporal coverage and representativeness 

had score 1-3, indicating that further improvements are recommended. These last 

points were confirmed in the trial of the indicator. The spatial coverage is limited 

to nine countries, mainly in Western Europe (figure 7.1). The temporal coverage is 

also limited, with the longest time series in the UK, the Netherlands, Catalunya 

and Transcarpathia (table 7.1). These time series may well be influential for the 
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Figure 7.1a (left): Trends in the preliminary grassland butterfly indicator 1990-2004. Figure 8.1b (right): Comparisons 
of grassland butterflies and farmland bird trends. Bird data source: PECBMS. 
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indicator results. The representativeness of national trends varies across countries, 

depending on how transects are selected and if any statistical adjustments are 

made (table 7.1).  

  

Discussion 

Trends in the European Grassland Butterfly Indicator  

The declining trend in grassland butterflies underlines the policy relevance of a 

European Butterfly Indicator. Expert opinion predicted this decline, though the 

rate was more severe than expected. The decrease in grassland butterflies 

parallels recent historical declines shown though many studies at national (e.g. 

Asher et al. 2001, WallisDeVries et al. 2002) and international scales (Van Swaay & 

Warren 1999, Van Swaay et al. 2006). These declines have largely been 

attributable to habitat loss and modification through agricultural intensification 

(Asher et al. 2001, Van Swaay et al. 2006), a result largely consistent with studies 

of other wildlife taxa (Flowerdew 1997, Donald et al. 2001, Robinson & Sutherland 

2002, Gregory et al. 2005). In Eastern and Southern Europe abandonment is a 

serious threat, especially in areas that are too wet, steep, rocky or otherwise 

unsuitable for intensive farming. Following abandonment, some  butterfly species 

flourish for a few years because of the lack of management, but thereafter scrubs 

and trees invade and the grassland disappears, including its rich flora and butterfly 

fauna.   

However, inappropriate conservation management (Davies et al. 2007, Konvicka et 

al. 2005), habitat fragmentation (Thomas 1995, Hanski 2003), and environmental 

change including climate change (Thomas et al. 2004, Franco et al. 2006) and 

increased nitrogen deposition (WallisdeVries et al. 2006) may also be important 

factors in recent declines.  

 

Recent analyses of distribution data from the UK have shown that butterflies are 

declining in range more rapidly than either birds or plants in Britain (Thomas et al. 

2004), emphasising the propensity for butterflies to react more quickly to 

environmental change than species at higher trophic levels. In contrast, Thomas 

(2005) has shown that rates of butterfly declines are more comparable to other 

terrestrial insect groups, although there are examples where this is not the case. 

Butterflies may respond more rapidly than birds and plants due to their (1) narrow 

niches, (2) low mobility and (3) their dependence on spatially and temporally 

dynamically distributed habitats (Thomas et al. 2004).   

 

Comparing changes in the grassland butterfly indicator with changes in the 

farmland bird indicator suggests that butterflies are declining more rapidly than 

birds at a supranational level (Figure 7.1b). However, the average trend values 

between birds and butterflies did not differ significantly. This might be due to the 

still limited statistical power of butterfly trends (see next section). Also, the bird 

monitoring data cover a large part of Europe, whereas butterfly data mainly come 

from the western part of Europe where trends may be more severe than in Eastern 

Europe. A further point is that the two indicators are not directly comparable. The 

butterfly indicator chiefly samples butterfly trends on semi-natural grasslands, 

which are predominant in parts of Central and Eastern Europe but a minority 

grassland habitat over much of Northwest Europe, whilst the bird indicator is more 

representative of the whole agricultural landscape, including arable land. Future 

more sensitive comparisons are required to assess whether birds and butterflies 

have indeed different trends at a supranational level.   
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Evaluation of using butterfly monitoring data as an EU Biodiversity Indicator 

The Grassland Butterfly Indicator demonstrates how butterflies respond quickly to 

changes in the environment and how butterflies are thus a good ‘early warning’ 

indicator of changes in Europe’s biodiversity. The Grassland Butterfly Indicator is 

disaggregated into (habitat) specialist and widespread species. The specialist index 

is likely to represent a large amount of biodiversity as habitat specialist butterflies 

are largely restricted to semi-natural habitats (Asher et. al. 2001), which are among 

the most species-rich insect/ plant habitats in biodiversity terms in farmland 

landscapes and are also critically important for rare species (Fry & Londsdale 1991, 

Thomas 2005).  Semi-natural habitats may also be important in maintaining insect 

diversity in the wider agricultural landscape (Samways 2005, Tscharntke et. al. 

2005, Öckinger & Smith 2007). 

Butterflies are relatively easy to recognize and data on butterflies have been 

collected for many years and by thousands of voluntary observers. The method for 

monitoring butterflies is well described, extensively tested and scientifically sound 

(Pollard 1977, Pollard & Yates 1993). Following the method used for European 

birds was technically relatively straightforward - though there were more 

difficulties to overcome in terms of accounting for the different number of visits 

between schemes.  

Apart from these strengths, several weaknesses should be noted that deserve 

future improvements. The standard errors of trend estimates of butterflies, 

especially for specialist species, were considerable and larger than for birds (see 

the standard errors of the average trend per species group mentioned above), 

leading to a more fluctuating grassland indicator as compared to the bird 

indicator. This is caused by the small total number of sampling transects, 

especially for the rare specialist species, the relatively short time series and the 

considerable year-to-year fluctuations of species. Low power may limit the 

opportunity to detect any trend. In practice, however, many trends appeared to be 

so strong that they were still detectable. The same accounts for the indicator.  

There are concerns over the extent to which the trends on butterfly monitored 

sites reflect trends across the whole European grassland landscape, due to 

sampling bias. In particular, some butterfly schemes over-sample semi-natural 

grasslands in nature reserves and other protected areas, and under-sample 

intensive fields and linear grassland habitats in the wider countryside (Table 7.1). 

This is a particular problem for reporting on abundance trends of widespread 

grassland species in Northwest Europe, where the majority of the total population 

is likely to be located in intensively farmed areas of the wider countryside.  

However, in the UK, studies have shown that abundance trends in widespread 

species are extremely similar (1) on semi-natural sites compared to the wider 

countryside and (2) in protected areas compared to non-protected areas (Brereton 

& Roy 2006); suggesting that this bias may not necessarily strongly influence 

national trends. In terms of nature reserves, it has been suggested (Buckland et al. 

2005) that butterfly and other species trends may be biased due to more 

favourable trends on reserves compared to non-reserve land, as the primary 

objective of land management on reserves is biodiversity conservation. In the 

Netherlands, grassland butterflies have declined at the same rate in semi-natural 

grassland nature reserves compared to non-reserve farmland areas (Figure 7.2; 

paired t-test p=0.86). Studies in the UK that have assessed butterfly trends on 

reserves have shown that butterflies have performed equally poorly on reserves 

compared to elsewhere (Thomas 1984, Thomas 1991, Warren 1993, Thomas 1995, 

McLean et al., 1995, Brereton et al. 2002, Brereton et al. 2007). These results 

suggest that the suggested bias is not necessarily there. 

In the Netherlands, sampling bias (over-sampling of particular habitat types) has 

been corrected by post-stratification and statistical weighting (Van Swaay et al. 
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2002).  However, if the number of monitored sites is low in habitats that comprise 

a large proportion of the land surface, it can be dubious to attempt such weighting 

procedures.  For common species monitoring, it is advisable to establish a scheme 

with a more formal survey design (Yoccoz et al. 2001, Buckland et al. 2005, Legg & 

Nagy 2006).  A number of more recent national butterfly schemes (e.g. in 

Switzerland and France, and planned in the UK - Roy, Rothery and Brereton 2007) 

have been designed with a greater emphasis on representative transect selection 

(based on random sampling) and efficiency savings (fewer visits) (table 7.1).  

Finally, the coverage across Europe is still limited. It is important that more 

monitoring is started in as many countries as possible to improve the 

representativeness of the indicator for Europe as a whole. There are already 

encouraging developments in this respect, with for example new schemes 

proposed for Portugal, Ireland and Slovenia. 

 

 

 

 

 

 

 

 

 

Butterflies as biodiversity indicators 

Butterflies are the only invertebrate taxon for which it is currently possible to 

estimate rates of decline among terrestrial insects (de Heer et al. 2005, Thomas 

2005). However, butterflies can only be regarded as good biodiversity indicators if 

it is possible to generalise their trends to a broader set of species groups (Pearson 

1995, Hilty & Merenlender 2000, Balmford 2002). The distribution of butterflies 

has been found to be a good predictor of areas of high biodiversity, species 

richness and or habitat quality in the majority (though not all) of studies (Beccaloni 

& Gaston 1995, Brown 1991, Brown & Freitas 2000, Simonson et al. 2001, 

Fleishman et al. 2005, Grill et al. 2005, Kerr et al. 2000, Kremen et al. 2003, Thomas 

& Clarke, 2004, Maes & van Dyck 2005, Maes et al. 2005, Ricketts et al. 2002). 

 

There is only limited evidence to indicate that changes in butterfly abundance, 

species-richness and distribution mirror changes in other taxa (Blair, 1999; 

Swengel & Swengel 1999, Brown & Freitas 2000, Conrad et. al. 2004, Hickling et 

al., 2006, Thomas & Clarke, 2004, Thomas et al. 2004). However these studies are 

not fully conclusive and may be dependent on the taxa and the spatial scales 

considered (Ricketts et al. 2002).  A particular problem is a lack of available data on 

trends in the abundance of other insects for comparison. In the UK, the best 

available long-term dataset is for moths, through the Rothamsted Insect Survey 

(Woiwood & Hartington 1994, Conrad et. al. 2004, Conrad et. al. 2006).  Although 

the figures are not directly compatible because of the differing estimation 

methods, the decline in the composite measure for moth abundance (total catch 
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of n= 337 species) is significantly negatively correlated with the composite measure 

for butterfly abundance (the UK Butterfly Indicator of n=52 species) (R=0.54, 

P=0.03, N=27 years, 1976-2002). 

 

Based on a comprehensive review of studies into their life-history traits, biology, 

relative sensitivity to climate change and adjusted extinction rates, recent reviews 

(Ehrlich 1994, Ehrlich 2001, Thomas 2005) have concluded that butterflies may be 

considered reasonable, albeit imperfect representative indicators of trends 

observed in the majority of other terrestrial insects (excluding for example 

invertebrate groups that are predominantly predators and parasitoids).  We 

therefore believe they have a valuable role to play in understanding trends in this 

crucial part of biodiversity and that the greater risk is to exclude an insect indicator 

altogether. We suggest that adoption of butterflies in the EU Headline suite would 

complement the European Bird Indicator by providing a more appropriate 

representation for insects and for species-rich semi-natural habitat fragments. 

 

Next stages 

Currently (April 2007) butterflies along with birds have been put forward as one of 

the 26 indicators in the first 2010 target headline set. In addition to a grassland 

butterfly indicator, it is proposed to develop also a butterfly indicator for 

woodlands. This will enable trends in European butterflies to be disaggregated by 

woodlands and grassland habitats. European butterfly monitoring data may also 

play a crucial role in assessing: (1) future climate change impacts (2) whether 

protected areas (e.g. Natura 2000 sites) are being managed appropriately to 

maintain the full complement of species with differing fine-scale habitat 

requirements and (3) whether efforts to mitigate against the effects of habitat 

fragmentation are successful. 
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8. Differences in the climate debts of 

birds and butterflies at continental 

scale 
 

  

Slightly modified from:  

Devictor, V., Van Swaay, C.A.M., Brereton, T., Brotons, L., Chamberlain, D., Heliölä, 

J., Herrando, S., Julliard, R., Kuussaari, M., Lindström, Å., Reif, J., Roy, D., Schweiger, 

O., Settele, J., Stefanescu, C., Van Strien, A., Van Turnhout, C., Vermouzek, Z., 

WallisDeVries, M., Wynhoff, I., Jiguet, F. 

Nature Climate Change 2: 121–124. 

 

 

Abstract 

Climate changes have profound effects on the distribution of numerous plant 

and animal species (Parmesan, 2006; Thomas et al., 2006; Lenoir et al., 2008). 

However, whether and how different taxonomic groups are able to track 

climate changes at large spatial scales is still unclear. Here, we measure and 

compare the climatic debt accumulated by bird and butterfly communities at a 

European scale over two decades (1990–2008). We quantified the yearly 

change in community composition in response to climate change for 9,490 bird 

and 2,130 butterfly communities distributed across Europe (Devictor et al. 

2008). We show that changes in community composition are rapid but different 

between birds and butterflies and equivalent to a 37 and 114 km northward 

shift in bird and butterfly communities, respectively. We further found that, 

during the same period, the northward shift in temperature in Europe was even 

faster, so that the climatic debts of birds and butterflies correspond to a 212 

and 135km lag behind climate. Our results indicate both that birds and 

butterflies do not keep up with temperature increase and the accumulation of 

different climatic debts for these groups at national and continental scales. 

 
  

Hipparchia statilinus is the most 
warmth-loving species in the 
Netherlands with the highest Species 
Temperature Index (STI). It is only 
found at hot places on bare sand. 
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Species are not equally at risk when facing climate change. Several species-specific 

attributes have been identified as increasing species’ vulnerability to climate 

change, including diets, migratory strategy, main habitat types and ecological 

specialization (Jiguet et al., 2007; Heikkinen et al., 2010; Warren et al., 2001). 

Moreover, although phenotypic plasticity may enable some species to respond 

rapidly and effectively to climate change (Visser, 2008; Charmantier et al., 2008), 

others may suffer from the induced spatial mismatch and temporal mistiming with 

their resources (Parmesan, 2007; Sherry et al., 2007). For instance, species such as 

great tits and flycatchers have been shown to become desynchronized with their 

main food supply during the nesting season (Visser et al., 1998). 

However, beyond individual species’ fates, climate change should also affect 

species interactions and the structure of species assemblages within and across 

different taxonomic groups over large spatial scales (Schweiger et al., 2008; 

Harrington et al., 1999; Pounds et al., 2006). For instance, ectotherms should be 

more directly affected by climate warming and taxonomic groups with short 

generation time should favour faster evolutionary responses to selective pressures 

induced by climate changes (Schweiger et al., 2008). Yet, whether different 

taxonomic groups are tracking climate change at the same rate over large areas is 

still unclear, and methods to routinely assess the mismatch between temperature 

increases and biodiversity responses at different spatial scales are still missing 

(Root et al., 2003). 

Here, we used extensive monitoring data of birds and butterflies distributed across 

Europe to assess whether, regardless of their species-specific characteristics, 

organisms belonging to a given group are responding more quickly or more slowly 

than organisms belonging to another group over large areas. We characterized 

bird and butterfly communities in 9,490 and 2,130 sample sites respectively by 

their community temperature index (CTI) for each year from 1990 to 2008. The CTI 

is a simple means to measure the rate of change in community composition in 

response to temperature change (Devictor et al., 2008). It was recently adopted as 

an indicator of climate change impact on biodiversity by the pan-European 

framework supporting the Convention on Biological Diversity (Streamlining 

European 2010 Biodiversity Indicators). 

The CTI reflects the relative composition of high- versus low- temperature dwellers 

in local communities. High- versus low- temperature dwellers are first 

differentiated according to their species temperature index (STI). The STI of a 

given species is simply the average temperature of the species range and is taken 

as a proxy for species’ dependence on temperature. CTI is then calculated, for a 

given monitored site, as the average of species’ STI weighted by species 

abundances (CTI is thus expressed in degrees Celsius). A temporal increase in CTI 

directly reflects that the species assemblage of the site is increasingly composed of 

individuals belonging to species dependent on higher temperature (that is with 

high STI). This approach enables a comparison of the velocity of changes in 

communities of a given taxonomic group and of temperature. 
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Figure 8.1: Temporal trend of CTI and temperature in 
Europe from 1990 to 2008 (± standard error of the mean 
in dashed lines).  
a,b: CTI for the bird (a) and butterfly (b) communities 
monitored in Europe from 1990 to 2008.  
c, March–September temperature for the same period. 
Temperature anomalies are calculated as the departure 
from the average of the base period 1961–1990. 

Figure 8.2: Spatial trend of CTI and temperature in 
Europe.  
a,b, Change in CTI for the bird (a) and butterfly (b) 
communities from south to north.  
c, Change in March–September temperature along the 
same gradient.  
For birds and butterflies, each point represents the CTI 
for a given sample monitored in 2005. Temperature is the 
average of March–September temperature to match the 
breeding season of birds and butterflies. Distance (x axis) 
is calculated from the southern border of the studied 
region. 
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Indeed, the temporal slope of the change in CTI gives the rate of change in 

community composition in response to climate change through time (°C yr−1). The 

south–north gradient in CTI (°C km−1) then provides an estimate of the rate of 

change in CTI in kilometres. Providing that this gradient is linear, the temporal 

change in CTI can be considered as equivalent to a northward shift in CTI using the 

ratio between the temporal trend and the spatial gradient in CTI (°C yr−1/°C km−1 

=km yr−1). The same can be done independently for temperature to estimate the 

velocity of its northward shift (km yr−1; Loarie et al., 2009). The comparison 

between the velocity of CTI and the velocity of temperature then provides an 

estimate of the lag between the spatial shift in temperature and community 

response. 

 

Using this approach, we found that from 1990 to 2008 the CTI of European birds 

(bird CTI) has increased steadily (+2.6±0.19×10−3 yr−1; F1,17=92,12; r2=0.84; 

P<0.0001; figure 8.1a). Moreover, the CTI spatial gradient is equivalent to a loss 

of 1.26±0.01x10-3 °C of bird CTI each kilometre from south to north (F1,5099=4,776; 

r2=0.78, P<0.0001; Figure 8.2a). The temporal increase in bird CTI is thus equivalent 

to a 37±3 km northward shift in the composition of bird communities over the 

period considered ((2.6×10−3/1.26×10−3) ×18 years). 

Using the same approach, we also found that European butterfly communities are 

increasingly composed of individuals belonging to high-temperature-dwelling 

species (trend in butterfly CTI: +9.3±0.5×10−3 yr−1; F1,17=12.6; r2=0.42; P<0.0001; 

Figure 8.1b). The temporal trend in butterfly CTI is much steeper than the trend in 

bird CTI (difference between slopes 6.74±0.5×10−3; P<0.01, analysis of covariance). 

The spatial gradient in butterfly CTI of 1.47±0.08×10−3 °C loss of CTI km−1 

(F1,797=1.748; r2=0.89; P<0.0001, Figure 8.2b) reveals that the composition of 

butterfly communities has shifted 114 ± 9 km northward during 1990–2008 

((9.3×10−3/1.47×10−3)×18 yr). 

During 1990–2008, the temperature also increased steeply (+5.50±0.61×10−2 °C 

yr−1, F1,17=79.6; r2=0.81; P<0.0001; Figure 8.1c). This temporal trend in temperature 

can be translated in space using the spatial variation of temperature in Europe 

(Loarie et al., 2009). This gradient is equivalent to a loss of 3.98±0.01×10−3 °C km−1 

from south to north (F1,30674=1.7×105; r2=0.84; P<0.00001, figure 8.2c). The 

temperature increase during 1990-2008 thus corresponds to a northward shift of 

249±27 km. 

These results indicate that birds and butterflies do not adjust their abundance 

according to the northward shift of their suitable climates and have accumulated a 

climatic debt of 212 km and 135km respectively (differences between spatial shift 

in temperature and in bird CTI and butterfly CTI respectively). 

The change in CTI does not tell which and how particular species are affected by 

climate change but integrates the actual decline of cold species, increase of warm 

species and the combination of both. Therefore, changes in CTI could mostly result 

from variations in the dominance structure of species occurring locally rather than 

from real spatial shifts. However, using presence–absence data rather than 

abundance, we found similar qualitative results. Therefore, the increase in bird and 

butterfly CTI also results from changes in the identity of species occurring in local 

sites rather than only from abundance variations. 

Change in CTI could also reflect the strong positive or negative trend of only a few 

species rather than mirroring profound changes in community composition. To 

assess whether our conclusions are robust to the identity of the species 

considered, we used a systematic re-sampling approach in which the trends in the 

bird and butterfly CTI were estimated after the random removal of 20% of the 

species monitored in each country. This analysis further confirms the robustness of 

the findings to the change in the species pool considered. 
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Climatic debt can be defined as an accumulated delay in species’ response to 

change in temperatures attributable to its inability to track climate change. Our 

results indicate not only that birds and butterflies are not tracking climate change 

fast enough at large spatial scale, but also that a lag is expanding between the two 

groups. Climate change has become a strong selective pressure, and response to 

this pressure is species and context dependent (Hoffmann et al., 2011). What are 

the consequences of these increasing climatic debts for each group and between 

groups at large spatial scale remains to be studied. Genetic variability, population 

size and generation time, but also dispersal or behavioural plasticity, all contribute 

to shape species’ responses to climate change. In this respect, evolutionary 

responses to changing climate have already been documented and are particularly 

expected for short-time generation groups such as butterflies (Skelly et al., 2007). 

Therefore, significant evolutionary response can, at least to some extent, 

contribute to the observed trends in CTI. 

 

Although the data we have do not enable us to disentangle the real lag 

accumulated by birds and butterflies from possible local adaptation to 

temperature increase, we believe that the rapid adaptations of particular species, 

if any, are unlikely to produce our results, which are based on many species with 

likely high variability in their evolutionary response. However, a close inspection of 

how changes in CTI vary in space or for particular groups of species (defined 

according to their localization, dispersal ability, genetic diversity, or any trait of 

interest suspected to induce differential climatic responses between species 

and/or groups) could possibly help to disentangle evolutionary from demographic 

processes in the responses. The delay in the climatic debt of bird and butterfly 

communities may disrupt multiple interactions between species. For example, 

many bird species depend on caterpillars and could therefore suffer from possible 

modifications of this direct interaction (Charmantier et al., 2008; Parmesan, 2007; 

Sherry et al., 2007; Visser, 1998). It is also likely that other groups of terrestrial 

insects on which many insectivorous vertebrates rely are experiencing important 

northward shifts and changes in community composition. Moreover, birds and 

butterflies are among the most dispersive species so they should be able to track 

climate change more easily than other taxonomic groups. Therefore, other 

multigroup interactions are also probably facing delayed responses to climate 

change at large scale with unknown consequences for biodiversity and ecosystem 

functioning (Parmesan, 2006; Harrington et al., 1999; Memmott et al., 2007). 

Finally, the negative consequences of such delays are probably enhanced by 

interacting and self-reinforcing processes between climate and land-use changes 

(Warren et al., 2001; Brook et al., 2008). 

More rapid responses in butterflies than in birds on average (that is, calculated at 

the European level) may be due to butterflies having relatively short life cycles and 

being ectothermic, enabling them to track changes in temperature regimes very 

closely. These differences may induce higher turnover rates in butterfly 

communities in response to climate changes (Kuussaari et al., 2009; Thomas et al., 

2004), which probably contributes to explain the stronger variation in butterfly CTI 

(Figure 8.1b). Therefore, although birds, as a group, are more dispersive than 

butterflies, our results suggest that they may accumulate higher climatic debt in 

the long run. 
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The ability of each taxonomic group to cope with temperature increase (and hence 

the potential mismatch between groups) should also depend on the 

biogeographic, socio-economic and conservation context. When calculated at the 

country level, we found that the temporal trend in CTI was positive and highly 

significant within nearly every country. This intra-European analysis also revealed 

that, for a given taxonomic group, the temporal change in CTI was much faster in 

some countries than in others (Figure 8.3). For countries with data available 

simultaneously for birds and butterflies, we found either a much higher trend in 

CTI for butterflies or no difference among groups. Overall, these results confirm 

that the compositions of bird and butterfly communities are currently strongly 

affected by climate change, but also reveal that the differences between groups 

are dependent on the area considered. 

Interestingly, although the magnitude of the CTI is dependent on the number and 

identity of the species considered, we showed that the detection of a temporal 

trend in CTI is very robust to changes in the species considered. Indeed, a given 

change in CTI only reflects the population adjustments of species according to 

each species-specific thermal distribution, so, in principle, the trend in CTI should 

remain sensitive to temperature increase whatever the species considered. 

However, to be meaningful, the CTI must be based on species representing a 

gradient in STI values. Moreover, the temporal trend in CTI must be calculated on 

enough sites (and/or years) to avoid confounding factors. Indeed, if the trend in 

CTI is estimated in a restricted area in which land-use changes have affected a 

biased sample of species with respect to STIs, the trend could be erroneously 

interpreted as a community response to climate changes (Clavero et al., 2011). 

Understanding the major ongoing changes in structure and composition of 

communities within and between trophic levels is necessary to prefigure 

forecasted changes in ecosystem integrity. Future assessments could quantify 

whether and how potential delays in the response of different taxonomic groups to 

climate change vary in different habitats and interact with current trends in land-

Figure 8.3: European variations in the temporal trend of bird and butterfly CTI. 
The map shows the temporal trend of bird and butterfly CTI for each country. 
The height of a given arrow is proportional to the temporal trend per group 
and its direction corresponds to the sign of the slope (from south to north for 
positive slopes). The arrow is opaque if the trend is significant. 
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use changes. We therefore suggest that the approach proposed here can help to 

improve the traceability of climate change impacts on biodiversity in mapping 

whether, how and where different taxonomic groups are affected by climate 

changes, using either abundance or presence–absence data, and for national- or 

international-level assessment. 

 

Methods  

We used a method already described to estimate the northward shift in 

composition of a given taxonomic group (Devictor et al., 2008). In brief, the 

velocity of bird and butterfly communities and of temperature is obtained in two 

steps. First, for each taxonomic group, we calculated the annual change in the CTI 

reflecting the relative composition of high- versus low-temperature dwellers. The 

CTI is a simple means to measure the rate of change in community composition in 

response to temperature change. It is calculated, for a given site, as the average of 

each STI occurring in this site, weighted by the species abundances in this site. The 

STI of a given species is the long-term average temperature over the species range 

(CTI is therefore expressed in degrees Celsius). A temporal increase in CTI in a 

given site directly reflects that the relative abundance of individuals belonging to 

species dependent on higher temperatures (that is with a high STI) is increasing in 

this site. We then estimated the overall temporal slope of the change in the pan-

European CTI through time separately for birds and butterflies. This trend was 

estimated using the change in yearly CTI from 1990 to 2008, calculated in 9,490 

and 2,130 sample sites (located across Europe from Spain to Finland) respectively 

for birds and butterflies. These schemes were shown to provide high quality data 

for building pan-European indicators based on trends in population abundance, 

and the dataset used in this study represents the largest dataset ever collated 

documenting temporal changes in the composition of butterfly and bird 

communities. The slope of this trend gives an estimate of the rate of change in 

community composition in response to climate change through time (°C yr−1) for 

each group (Devictor et al., 2008). 

Second, we estimated the south–north gradient in bird and butterfly CTI (°C km−1). 

Because the CTI is linearly decreasing along a south–north gradient, the temporal 

change in CTI can be considered as equivalent to a northward shift in CTI using the 

ratio between the temporal trend and the spatial gradient in CTI (°C yr−1/°C km−1 

=km yr−1). The same was done independently for temperature to estimate the 

velocity of northward shift in temperature (km yr−1). 
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Abstract 

We examined relationships between Dutch butterfly species and the Ellenberg 

indicator values for nutrients, acidity and moisture. Presence/absence data on 

butterflies were obtained from monitoring transects of the Dutch Butterfly 

Monitoring Scheme. Mean indicator values were calculated from vegetation 

samples of a selection of transect sections. Single and multiple logistic 

regression models were used to analyse the relationships. Except for the 

moisture value, the vegetation samples covered the Ellenberg scales quite 

well. Significant correlations between moisture and acidity (-) and nutrients 

and acidity (+) were observed. Sites that were both acid and nutrient-rich were 

not observed. Most of the observed significant relationships were unimodal 

(Gaussian), in which species show a clear optimum indicator value. Other 

species showed a sigmoidal (linear) response to one or more of the ecological 

indicator values. Several species were significantly correlated with all three 

indicator values. For a small group this was also the case in the multiple 

regression model. This was probably caused by multicollinearity of the 

indicator values, leading to some spurious significant single regression models. 

We dismiss methodical problems and possibilities for refinements of the 

models. The observed models can be used to (a) predict the effects of 

environmental factors on the butterfly fauna, (b) use changes in the 

abundances of certain species as indicators of ecological processes and (c) 

determine the sensitivity of butterflies for eutrophication, acidification and 

ground-water draining. In conclusion, the models provide a powerful aid in the 

conservation of butterflies in a changing environment.  

 
  

Pieris rapae: A butterfly preferring 
Nitrogen-rich habitats. 
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Introduction 

The Dutch landscape has been subject to many changes as a result of increasing 

human disturbance. Among other things, the immense intensification of 

agriculture of the past decades has caused eutrophication and lowering of the 

natural ground-water tables of large areas. At the same time, industry and traffic 

produce compounds that eutrophicate and acidify the environment. As a 

consequence, many habitats of butterflies have been completely destroyed, and 

the quality of the remaining habitats is decreasing (e.g. PavIicek-van Beek et al., 

1992; Pullin, 1995). In nature reserves particularly management often has to be 

intensified to counteract this environmental deterioration and conserve the 

characteristic species composition (New et al., 1995). 

There is a great need to understand and quantify the effects that eutrophication, 

acidification and lowering of the ground-water table have on wild plant and animal 

species. When the relationships between various species and environmental 

parameters can be expressed in the form of models, the effects of environmental 

scenarios on flora and fauna can be predicted (Latour et al., 1994). In The 

Netherlands, successful efforts have been made to quantify and model the 

relationships between plant species and the abiotic environment (Gremmen et aI., 

1990; Latour and Reiling, 1993; Latour et al., 1994). Using reciprocal averaging, 

this project has resulted in a calibration of the well-known ecological indicator 

values of Ellenberg (1979) for most members of the Dutch flora. Moreover, for 

many species, significant response curves for Ellenberg’s nutrient acidity, and 

moisture values were obtained. The results were used to develop the so-called 

Multistress mOdel for the VEgetation (MOVE: Latour and Reiling, 1993; Latour et 

al., 1994). 

The aim of the study presented here was to quantify the relationships between the 

butterfly species that occur in The Netherlands and Ellenberg’s environmental 

indicator values for nutrient richness, acidity (pH) and soil moisture, and to 

consider the usefulness of this approach for its original purpose and for the 

management and conservation of butterflies. 

 

Methods 

Butterfly data 

The data from the yearly transect counts of the Dutch Butterfly Monitoring 

Scheme provided reliable presence/absence data of species on specific locations. 

The structure of this monitoring scheme is similar to that described by Pollard and 

Yates (1993). We made a selection of monitoring transects to create a dataset in 

which different habitat types and regions were represented as equally as possible. 

It was not possible to achieve a completely balanced set of data, in which, for 

example nutrient-poor peat bogs were represented equally as well as nutrient-rich 

agricultural or urban sites. At present, peat bogs are quite rare in The Netherlands 

and hence will always be under-represented.  

The weekly counts of butterflies at each of the selected transects were 

transformed to presence/absence data. Each transect comprises 8-20 sections of 

50m. Sections are generally homogeneous concerning ecotope and management. 

An overview of the number of sections that represent different ecotopes in the 

dataset is given in Table 9.1. Data from three consecutive years (1992, 1993 and 

1994) were used separately in the analyses to reduce the chance of missing rare or 

migratory species. 
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Table 9.1: Distribution of vegetation relevés collected for this study (N = 954)  
over the various Dutch ecotopes. 

Habitat type 
Number of vegetation 

relevés 

Woodlands, brushwood, etc.  217 

 
Marsh forest 3 

 
Coniferous and mixed forests 16 

 
Dry deciduous forests 48 

 
Moist deciduous forests 42 

 
Brushwood 46 

 
Coppicewood 4 

 
Wooded banks, dykes, embankments, etc. 45 

 
Scrub 

 
5 

 
Clearcuttings, windthrows and burnt forests 8 

Open areas without agricultural use 384 

 
Dune areas 52 

 
Tidal areas 3 

 
Heathlands 76 

 
Semi-natural grasslands 228 

  
Calcareous grasslands 5 

  
Wet hay meadows 7 

  
Semi-natural, moist to wet, poor grasslands 115 

  
Grass heaths 38 

  
Semi-natural dry poor grasslands 50 

 
Raised peat bog areas 19 

 
Rich fen and mire areas 5 

Non-linear open waters 4 

 
Large, artificial lakes 1 

 
Small marshes 3 

Agricultural areas 41 

 
Grasslands 28 

 
Arable fields 13 

Urban areas 
 

38 

 
Ruderal areas 14 

 
Built-on areas 24 

Infrastructure 238 

 
Road verges and parking areas 179 

 
Railways and harbour or dock systems 22 

 
Dykes 

 
27 

 
Slopes of canals, waterworks, etc. 10 

Linear open waters 22 

 
Ditches, sides of ditches and trenches 22 

Shores and banks 10 

 
Shores of peat-bog and turbary lakes 3 

 
Shores of small artificial lakes 1 

 
Banks of rivers, brooks, etc. 6 
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Table 9.2: The meaning of Ellenberg’s indicator numbers for Central European plan 
species’ responses to variation in soil nutrients, acidity and moisture (adapted from 
Ellenberg, 1979). 

 
Nutrient number (Stickstoffzahl) Acidity number (Reaktionszahl) Moisture number (Feuchtezahl) 

1 Very poor Very acid Extremely dry 

3 Poor Acid  Dry 

5 Moderately rich or poor Weakly acid Intermediate 

7 Rich Neutral Moist  

8 Very rich (nitrogen indicator) 
  

9 
Extremely rich (indicating pollution, 
manure deposits, etc.) 

Basic Wet 

10 
  

Frequently inundated 

11 
  

Amphibic 

12 
  

Aquatic 

 

 

Environmental variables 

In 1996, Braun-Blanquet-type vegetation samples (relevés) were taken at 

representative sites in individual 50m sections of the selected transects. The 

vegetation was analysed in the course of one summer in a total of 954 sections 

from 228 monitoring transects. 

The nutrient, acidity and moisture levels of the soil at each butterfly sampling site 

were inferred from the vegetation composition and the Ellenberg nutrient acidity, 

and moisture values of individual plant species (Ellenberg, 1979; Melman et al., 

1988; Ellenberg et al., 1991). The three Ellenberg scales are explained in Table 9.2. 

Using the list of plant species compiled for the vegetation relevé, the mean of each 

of the three Ellenberg indicator values was calculated. Species that are indifferent 

to a given environmental parameter (category X in Ellenberg’s system), or for 

which the relationship is unknown (?), were excluded from the calculation. 

 

Statistical analysis 

The relationships between the presence of butterfly species and the three 

environmental parameters were investigated using logistic regression analyses 

(Ter Braak and Looman, 1986; Jongman et al., 1987). The basic hypothesis of the 

statistical analyses was that the butterfly-environment relationships would have 

the shape of a Gaussian or unimodal response curve (Figure 9.1; Ter Braak and 

Looman, 1986; Jongman et al., 1987). 

 

 
  

Figure 9.1: Response curve of 
Araschnia levana for Ellenberg’s 
acidity-value, showing the 
Optimum (U), the maximum 
probability of occurrence (Pmax) 
and the Tolerance (T). 
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In this model, the probability of observing a butterfly species is related to the 

Ellenberg value via Eq. (1). In the cases where species occur mainly at one of the 

extremes of the Ellenberg scale, this Gaussian curve attains the shape of a 

sigmoidal, often nearly linear, response. If the b2 term of the unimodal regression 

model is zero or significantly positive, this suggests a linear relationship (we 

considered a bimodal response (b2 > 0) ecologically unlikely). In such cases, the 

sigmoidal model given in Eq. (2) was tested as an alternative hypothesis: 
 

𝑝 =
𝑒𝑏0+𝑏1𝑥+𝑏2𝑥

2

1 + 𝑒𝑏0+𝑏1𝑥+𝑏2𝑥
2  

𝑝 =
𝑒𝑏0+𝑏1𝑥

1 + 𝑒𝑏0+𝑏1𝑥
 

Three different parameters were calculated from the significant Gaussian 

regression curve (see Figure 9.1) using the method described in Jongman et al. 

(1987): 

1. the ‘Optimum’ (U): the Ellenberg value corresponding with the maximum 

point of the curve  

2. the ‘Pmax’: the (maximal) probability of observing a butterfly species at its 

optimum 

3. the ‘Tolerance’ (T): half the width of the bellshaped curve, between the 

optimum and the point of inflexion, which is a measure of the butterfly’s 

ecological amplitude for the environmental parameter. The range of 

values at which a species occurs is approximately given by 4T. 

Whether the regression parameters, namely the constant (b0), the linear 

coefficient (b1) and the quadratic coefficient (b2), departed significantly from zero 

was tested by means of a Wald chi-squared test. 

There is a risk that a significant regression between the presence of a given 

butterfly species and an indicator value is indirectly caused by a (stronger) 

relationship with another parameter. This risk increases if there are strongly 

significant correlations between the three ecological indicator values. To check 

this, we computed Pearson’s product-moment correlation coefficients (Sokal and 

Rohlf, 1988). 

To further address multicollinearity, we also performed a multiple logistic 

regression to study the relative effect of one parameter while keeping the other 

two parameters constant (Sokal and Rohlf, 1988). When more than one parameter 

has a significant contribution to the regression, this approach does not result in a 

regression curve but in a two- or three-dimensional regression plane or surface. 

All statistical analyses were performed with the SASI STAT 6.03 package (SAS 

Institute Inc., 1988). 

 

Results 

Distribution of vegetation samples on the Ellenberg scale 

The number of relevés per class for each of the three Ellenberg scales is presented 

in Figure 9.2. Despite efforts to increase the number of observations at the ends of 

the scales relative to the centre, the intermediate Ellenberg values were 

apparently much more common on the monitoring transects. 

Sites with an average moisture value of <3 (dry to extremely dry) were completely 

absent from our samples. This was not expected since we sampled several 

transects in very dry environments (e.g. inland and coastal sand dunes). Probably, 

some plants indicating dry sites (e.g. Spergula morrisonii, Teesdalia nudicaulis, and 

(Eq. 1) 

 

(Eq. 2) 
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Saxifraga tridactylites) were not recorded in 

the transects because of their early 

flowering time. The fact that moisture 

numbers > 8.5 were not available is 

expected, since the values 9 and 10 

represent amphibic to aquatic 

environments, in which butterflies are 

rarely observed. 

 

Correlations between Ellenberg values 

Looking at the number of samples for each 

combination of Ellenberg values, it is clear 

that not all combinations are equally 

represented in the data. The graph for 

nutrient and acidity value (Figure 9.2a) 

demonstrates this most clearly. There are 

few or no transects with a high nutrient 

value and a low acidity value, or with a low 

nutrient value and a high acidity value. 

As expected on the basis of the 

distribution of samples in Figures 9.2a and 

c, significant correlations were observed 

between the nutrient and the acidity 

values (positive: r=0.786, p=0.0001) and 

between the moisture and acidity values 

(negative: r=-0.121, p=0.0002), but not 

between the moisture and nutrient values 

r=-0.036, p=0.2715). 

 

Single (univariate) regression models 

For 49 out of 54 butterfly species that 

were observed on the monitoring 

transects in 1992-1994, a significant 

relationship was observed between their 

occurrence and one or more Ellenberg 

values (Table 3). For Ellenberg’s nutrient 

value, 26 significant unimodal and 15 

significant sigmoidal regressions were 

found, while eight species did not show a 

significant relationship. Likewise, for 

acidity, 28 regressions were significantly 

unimodal, 16 were sigmoidal and 5 non-

significant. The results for moisture value 

were strikingly different, with only 13 

significant unimodal and 29 significant 

sigmoidal regressions. Seven species did 

not show a significant moisture 

response. 
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Figure 9.2: Three dimensional diagrams showing the number 
of vegetation samples for different combinations of 
Ellenberg values for (a) acidity and nutrient value, (b) 
moisture and nutrient value and (c) moisture and acidity 
value. 
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Table 9.3: Type of univariate response for three of Ellenberg’s environmental parameters 
of 49 butterfly species occurring on Dutch monitoring transects. Uni = significant 
unimodal (Gaussian) response curve (values of optimum/tolerance between brackets); Sig 
= significant sigmoidal (linear) response curve (+ or- between brackets indicates a positive 
or negative slope, respectively); - = no significant response curve. 

Species Nutrients Acidity Moisture 

Aglais urticae Sig(+) Sig(+) Uni(6.5/2.5) 

Anthocharis cardamines Uni(5.5/2.3) Uni(5.4/1.8) Uni(7.3/2.0) 

Apatura iris - - Sig(+) 

Aphantopus hyperantus Uni(3.7/3.0) Uni(3.8/2.2) Uni(7.0/1.8) 

Araschnia levana Uni(6.4/3.2) Uni(5.0/2.3) Uni(6.7/1.7) 

Aricia agestis Uni(5.0/1.8) Sig(+) Sig(-) 

Boloria aquilonaris Sig(-) Sig(-) Sig(+) 

Callophrys rubi Sig(-) Sig(-) Sig(+) 

Carterocephalus palaemon Sig(-) Uni(2.8/1.5) Sig(+) 

Celastrina argiolus Sig(+) - Sig(+) 

Clossiana selene Uni(3.9/1.2) Uni(4.9/0.8) Uni(7.8/0.6) 

Coenonympha tullia Sig(-) Sig(-) Sig(+) 

Coenonympha pamphilus Uni(3.7/1.8) Uni(3.9/2.4) Sig(-) 

Cynthia cardui Uni(5.6/3.2) Sig(+) - 

Erynnis tages - Sig(+) Sig(-) 

Fabriciana niobe Uni(3.8/2.0) - - 

Gonepteryx rhamni - Uni(3.0/2.9) Sig(+) 

Heodes tityrus Uni(2.5/2.1) Uni(2.1/2.4) - 

Hesperia comma Sig(-) Sig(-) - 

Heteropterus morpheus Uni(3.3/1.0) Uni(3.2/1.4) Sig(+) 

Hipparchia semele Uni(2.4/1.9) Uni(1.8/2.6) Sig(-) 

Inachis io Uni(5.7/2.8) Uni(5.9/2.8) Sig(+) 

Issoria lathonia Uni(4.5/1.3) Uni(5.4/1.2) Sig(-) 

Ladoga camilla Uni(4.0/1.2) Uni(3.6/1.1) Uni(6.5/0.8) 

Lasiommata megera Uni(5.8/2.3) Uni(5.9/2.2) Uni(6.3/1.9) 

Lycaena phlaeas Uni(3.0/2.5) Uni(2.9/2.6) Sig(-) 

Maculinea alcon Uni(1.9/0.7) Sig(-) Sig(+) 

Maculinea teleius - - Sig(+) 

Maniola jurtina Uni(4.2/1.6) Uni(4.4/2.4) Sig(-) 

Mellicta aurelia - Sig(+) Sig(-) 

Mellicta athalia Uni(2.4/0.6) Sig(-) - 

Mesoacidalia aglaja Uni(3.1/0.9) Uni(2.2/1.4) Sig(-) 

Nordmannia ilicis Sig(-) - Sig(-) 

Ochlodes venata Uni(0.5/3.0) Uni(1.3/2.7) Sig(+) 

Papilio machaon - Sig(+) Sig(-) 

Pararge aegeria - Uni(4.0/2.0) Uni(7.1/1.8) 

Pieris napi Sig(+) Sig(+) Uni(6.8/1.6) 

Pieris brassicae Sig(+) Sig(+) Uni(6.5/1.9) 

Pieris rapae Sig(+) Uni(7.5/2.8) Uni(6.1/1.4) 

Plebejus argus Sig(-) Sig(-) Sig(+) 

Polygonia c-album Sig(+) Uni(5.0/2.2) Uni(6.5/1.9) 

Polyommatus icarus Uni(4.9/1.6) Uni(6.2/2.4) Sig(-) 

Pyrgus malvae Uni(3.2/1.1) Uni(3.3/1.3) - 

Pyronia tithonus Uni(3.0/2.7) Uni(3.3/2.0) Sig(+) 

Quercusia quercus - Sig(-) - 

Thymelicus sylvestris Uni(3.2/2.1) Uni(3.3/2.1) Sig(+) 

Thymelicus lineola Uni(5.5/2.3) Uni(5.5/2.3) Sig(-) 

Vacciniina optilete Sig(-) Sig(-) Sig(+) 

Vanessa atalanta Sig(+) Uni(6.5/3.5) Uni(6.4/2.0) 
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There is much variation in the optima and tolerances among the different butterfly 

species showing a unimodal response. For nutrient value, the optimum varied 

between 0.5 and 6.4, while the tolerance ranged from 0.6 to 3.2. The optimum for 

acidity fell between 1.3 and 7.5. Tolerance for acidity varied between 0.8 and 3.5. In 

contrast, the range of optimum values for moisture is much smaller: between 6.1 

and 7.8.The moisture tolerance varies between 0.6 and 2.5. 

A group of rare species characteristically showed relatively narrow tolerances for 

one or more parameters (tolerance <1.5): Clossiana selene, Heteropterus  morpheus, 

Issoria lathonia, Ladoga camilla, Maculinea alcon, M. athalia, Mesoacidalia aglaja 

and Pyrgus malvae. In contrast, the following group of (very) common species 

demonstrates high tolerances (>2.5): Aglais urticae, Cynthia cardui, Gonepteryx 

rhamni, Inachis io, Lycaena phlaeas, Ochlodes venata and Vanessa atalanta. 

Figure 9.3 shows the response curves of two species representative of a unimodal 

and a sigmoidal response. Besides the regression lines, the graphs also show the 

observed frequencies of observations of the species in the Ellenberg scale classes. 

One should be aware that logistic regression lines are not simply fitted through 

these observed frequencies, particularly as the frequencies for low and high values 

are based on just a few observations, whereas the central ones are based on many 

observations. Nevertheless, the graphs give some indication of how well the 

regression lines match the actual observations. 

 

 

Figure 9.4 gives examples of the wide variety of responses found among different 

butterfly species. It is important to note that the responses observed agree very 

well with the responses expected on the basis of the available literature, field 

experience and ‘expert knowledge’. For example, M. alcon (Figure 9.4a) has a low 

Pmax, for a nutrient value of 12.5% (the probability of observing this rare species is 

low, even when the nutrient status is optimal), an optimum of 1.9 (it occurs in 

nutrient-poor wet heathlands and hay meadows), and a very narrow tolerance (it 

disappears quickly when its habitat is enriched in nutrients, e.g. by atmospheric 

deposition or the use of fertilisers). On the other hand the more common 

Araschnia Ievana, whose larvae feed on Urtica dioica, has a Pmax of 35%. This 

butterfly is mainly found in habitats with a higher nutrient value (optimum of 6.4), 

but shows a greater tolerance, which agrees with the fact that this species is also 

observed in more nutrient-poor habitats, as long as there are small patches of U. 

dioica available in the vicinity. 
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Figure 9.3: Two examples of response curves of butterflies on Ellenberg’s nutrient value, showing the 
calculated logistic regression model (expected) and the observed frequency of the species in the relevés falling 
in nutrient value classes with a width of 0.25: (a) the unimodal (Gaussian) response of Thymelicus lineola and 
(b) the sigmoidal response of Ochlodes venata. 
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Likewise, the sigmoidal acidity response of 

Coenonympha tullia (Figure 9.4b) with an 

optimum at very low values (indicating a 

highly acid environment) and steeply tailing 

at a value of 3, is not surprising for a species 

of acid peat bogs. The high Pmax, and wide 

acidity tolerance of the very common 

Inachis io is aIso expected, Erynnis tages and 

Aricia agestis, species characteristic in The 

Netherlands of chalk grasslands and 

calcareous coastal dunes, respectively, 

show clear positive sigmoidal responses 

with a preference for high values (indicating 

basic soils). 

Although only part of the moisture gradient 

was sampled, M. alcon and Vacciniina 

optilete show an expected clear preference 

for wet habitats (Figure 9.4c), while E. tages 

and Issoria lathonia prefer dry sites. The 

common Lasiommata megera has a very 

high moisture tolerance and is frequent 

along the entire (sampled) Ellenberg scale. 

 

Multiple regression models 

To some degree, multiple logistic 

regression can alleviate the correlations 

between the ecological indicator values 

(Table 9.4). It appears that the species fall 

into groups, which have significant 

relationships with similar indicator values. 

Several species that had significant 

relationships with all three Ellenberg values 

appeared to have only one or two 

significant parameters in the multiple 

regression model (e.g. Boloria aquilonaris, I. 

io and H. morpheus). However, the reverse 

situation (species that were correlated with 

only one parameter in the single model and 

with more in the multiple model) was also 

observed (e.g. Quercusia quercus, Fabriciana 

niobe and Hesperia comma). Hence, 

intercorrelation between the environmental 

parameters clearly had a considerable effect 

which differs among species. 
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Figure 9.4: Examples of the ecological response curves of 
various butterfly species for Ellenberg’s (a) nutrient, (b) acidity 
and (c) moisture values. Since the entire scale was not 
generally sampled, the response curves are only presented for 
the sampled part.  
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Table 9.4: Results of multiple logistic regression analysis for butterfly species occurring on 
the Dutch monitoring transects from 1992 to 1994 with the three Ellenberg indicator 
values as independant variables; the table shows for which variable(s) the regression 
coefficients were significantly different from zero (Wald Chi-squared test). 
N=nutrient value; A=acidity value; M=moisture value. 
Species for which no variable was significantly different from zero are omitted from this 
list (11 species). The percentage of explained deviance is calculated according to 
Oude Voshaar (1994) and Jongman et al. (1987). The species are sorted in groups with the 
same significant responses. 

Species 
Significant multiple regression 

coefficient for 
Deviance (%) 

Mellicta athalia N 36 

Boloria aquilonaris N 63 

Vanessa atalanta N,A 2 

Maniola jurtina N,A 1 

Thymelicus sylvestris N,A 5 

Polyommatus icarus N,A 6 

Lycaena phlaeas N,A 4 

Thymelicus lineola N,A 5 

Mesoacidalia aglaja N,M 28 

Maculinea alcon N,M 42 

Hipparchia semele N,M 18 

Coenonympha pamphilus N,M 6 

Ladoga camilla N,M 21 

Inachis io A 2 

Polygonia c-album A 2 

Argynnis paphia A 14 

Pieris rapae A 9 

Hesperia comma A 4 

Lasiommata megera A,M 4 

Carterocephalus palaemon A,M 18 

Pararge aegeria A,M 6 

Gonepteryx rhamni A,M 3 

Pieris napi A,M 8 

Aphantopus hyperantus A,M 5 

Araschnia levana A,M 4 

Anthocharis cardamines A,M 5 

Aricia agestis M 8 

Pieris brassicae M 2 

Heteropterus morpheus M 30 

Pyrgus malvae N,A,M 16 

Celastrina argiolus N,A,M 3 

Fabriciana niobe N,A,M 3 

Quercusia quercus N,A,M 4 

Callophrys rubi N,A,M 38 

Ochlodes venata N,A,M 14 

Issoria lathonia N,A,M 17 

Pyronia tithonus N,A,M 8 

Clossiana selene N,A,M 46 
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Discussion 

General methodical aspects 

In principle, any direct relationship between butterflies and Ellenberg values seems 

unlikely. Because butterflies often have specific host and nectar plants and require 

certain structural elements for orientation or basking, they would be expected to 

show a much stronger response to the vegetation at a given site than to the 

nutrient richness or pH of the soil. However, our models enable a direct 

quantification of the of ‘environmental scenarios‘ on the butterfly fauna, without 

the need to make prior predictions about the vegetation. 

One important aspect of our models is that we only used butterfly 

presence/absence data, in spite of the fact that the monitoring data allowed the 

use of abundances. This meant that an observation of a single individual of a 

butterfly species on a given transect section was as important as the observation 

of 50 individuals on another. Obviously, this approach ‘throws away’ a lot of 

valuable information in this respect, especially for common and widespread 

species. On the other hand characteristic species are usually rare, which means the 

dataset contains a lot of ‘zero observations’ for which only logistic regression can 

be used. We therefore decided to use logistic regression for all species so that 

results could be achieved and compared for as many species as possible. 

However, because the available distribution maps of butterflies generally provide 

only presence/absence data, our models can be used on a wider scale, for instance 

to predict butterfly distribution on the basis of soil type or for risk assessments, as 

in Latour et al. (1994). This allows the investigation of the effects of several 

environmental scenarios (for example the continuation of intensive versus 

sustainable agriculture) on butterflies by the Dutch government. If we had used 

abundance data, the models might have been more restricted in their application. 

Nevertheless models based on abundance data would still be a valuable addition 

to our knowledge, especially for common and widespread species. 

Likewise, the calculation of mean Ellenberg indicator values from the vegetation 

relevés did not take the abundance of plant species into account. This implies that 

a few individuals of U. dioica (nutrient value=8) with a cover of 1% would contribute 

equally to the mean nutrient value as a 50% cover of Succisa pratensis (nutrient 

value=2) in the same relevé. In grazed areas, for example, this is a realistic 

situation, which introduces a possible overestimation of the mean nutrient value of 

the site. Hence, it could be argued that a weighted calculation of the mean 

indicator values on the basis of species cover or abundance would have been 

preferable. On the other hand, from the perspective of A. levana or I. i0 the 

presence of that small patch of Urtica in an otherwise nectar-rich pasture may be 

very important, which suggests that the bias mentioned above was probably 

realistic within the context of our study. Another argument is that highly indicative 

plant species are often rare so they could be outweighted by common species with 

a broad tolerance. 

 

An important factor, which may have a considerable impact on the outcome of the 

regression analyses, is whether the butterfly and vegetation samples were 

representative of the Dutch situation. If important habitat types are missing from 

the dataset, species that occur in these habitats and were only sampled on 

marginal sites may show an unrealistic ecological response. In this light, the fact 

that samples with a high nutrient and low acidity value (i.e. acid conditions), or a 

low nutrient and high acidity value, were not present in the data might have 

affected the ecological responses of some species. One may ask whether such 

sites were not sampled or just do not exist. From an examination of the plant 

species that were assigned an indicator value by Ellenberg, it appears that the 

second hypothesis is most plausible: plant species with a high nutrient and a low 
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acidity value are hardly known. There are only two plant species in The 

Netherlands that meet this criterion (Nutrient value = 8, Acidity value = 3): 

Chamerion (=Epilobium) angustifolium and Senecio sylvaticus. Both species are 

characteristic of clear-cuttings or open patches in forest types with a rnineralising 

acid soil. The relationships for some forest butterflies might have been slightly 

biased because of this. 

Since the data were gathered on a national scale, the models do not consider any 

regional ecotypic differentiation. For example, P. malvae occurs in various acid, 

humid grasslands in the eastern part of The Netherlands, where it uses Potentilla 

erecta as its main host plant. In the coastal dunes, however, it is found in 

grasslands close to the sea, where Rubus caesius is the food plant. In the present 

study, both habitat types are lumped together in our dataset, which means that 

the ecological differentiation of the species is averaged. Further analyses will have 

to deal with this problem because it will undoubtedly affect the accuracy of model 

predictions. The same holds, of course, for differences on a larger scale. There is 

increasing evidence, for instance, that butterfly species have different ecological 

behaviour at the edges of their distribution area (Thomas, 1991, 1993). This means 

that the relationships of Dutch butterflies presented here cannot simply be 

translated to other countries. 

 

Single versus multiple regression models 

As mentioned in the results, the three environmental parameters for nutrient, 

acidity and moisture values are not independent. The observed correlations imply 

that at least some of the significant single regression models may have been 

caused by a significant relationship with another, intercorrelated, parameter. The 

multiple regression analyses provided some information about the extent to which 

these possibly spurious relationships occur in our results. Nevertheless, even 

though some of the significant single regressions were caused by correlations with 

one or two other parameters, the information about the optimum, range and 

tolerance is still useful. This is because the regressions presented here are not 

describing causal relationships between butterflies and abiotic parameters, but 

correlative responses with the vegetation as an intermediate, but actually more 

important, step (invisible in the models). Therefore, in our opinion, both the single 

and the multiple regressions may be used. The first category is most useful to 

investigate the sensitivity of species to eutrophication, acidification and lowering 

of the ground water, because it provides information on the tolerances and ranges, 

which the multiple regression does not (at least not in a straightforward manner). 

The second category, however, is more suited for an accurate calculation of the 

probability of the observation of a species. When the outcome of the multiple 

regression model is a low probability of observing a species, the single models may 

help to decide which of the factors is most responsible, especially when more than 

one environmental parameter contributes significantly to the model. 

 

Practical applications of the results 

The models presented here are analogous to the MOVE model for plant species 

described by Latour and Reiling (1993). The main application of these models is to 

predict the effects of certain environmental scenarios (changes in environmental 

processes as a result of political decisions) on flora and fauna. In addition to this, 

the response curves provide information on the sensitivity of butterfly species to 

such processes as eutrophication, acidification and lowering of the ground-water 

table. It is clear that species with very narrow tolerances will be particularly 

sensitive to changes in the environment. From this study, C. selene, H. morpheus, I. 

lathonia, L. camilla, M. alcon, M. athalia, M. aglaja and P. malvae emerge as 

sensitive species with such narrow tolerances. It is therefore no surprise that these 
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species are currently all rare and endangered, and have been placed on the Dutch 

Red List (Wynhoff and Van Swaay, 1995). Knowledge of the ecological responses 

of these species can be helpful tools for their conservation, as key processes that 

cause deterioration in their habitat may be identified and countered. 

The response curves for butterflies may also be used to evaluate the results of the 

management of nature reserves directed at specific targets. When nutrient-rich 

sites are mown annually to develop more species-rich grasslands on poorer soils, 

the development of the local butterfly fauna may serve as an indicator of the 

extent of this process. The response curves give information on which species are 

expected to increase and which to decrease when the nutrient value of the site is 

lowered by the management. In this respect, some butterfly species are clearly 

more indicative than others, and can be considered suitable ‘process indicators’. 

Unfortunately, the narrow-tolerance species mentioned above are less suitable 

indicators because of their rarity. The best process indicators are relatively 

common species, which show a rather clear response to changes in soil nutrient 

status, acidity or moisture. Good examples of such species for The Netherlands are 

Anthocharis cardamines, Coenonympha pamphilus, Polyommatus icarus and 

Hipparchia semele. 

Another interesting application of the results presented in this paper is the 

possibility of calculating the suitability of a site for a given butterfly species. Based 

on vegetation descriptions, the nutrient, acidity and moisture values of a site can 

be computed. Using the regression models, and especially the multiple models, 

the probability of occurrence of a butterfly species can be determined and 

compared with the maximum probability for the species on a national or (in the 

future) a regional scale. If the probability is still too low, the indicator values of the 

site will indicate whether a site is too nutrient-rich, too acid or too dry for the 

species so that the appropriate management actions can be taken. As mentioned 

above, the single models appear to be very helpful for the latter exercise since 

these provide information on a species‘ optimum, tolerance and Pmax, for a given 

Ellenberg value. 

Of course, several important aspects of butterfly ecology, such as microclimate, 

vegetation structure or the total area of a given habitat, are not incorporated in 

our models, which makes predictions of suitability hazardous if no information 

about these factors is incorporated in the analysis. Nevertheless, the models based 

on Ellenberg values enable better predictions than when only the ecology of the 

food plant would have been considered. For example, the acidity value for Viola 

palustris, the major food plant of C. selene in The Netherlands, is only 3, while the 

optimum for the butterfly is 5 (Figure 9.4b). This is probably because the main 

nectar plants of C. selene, such as Lythrum salicaria and Eupatorium cannabinum, 

have much higher acidity values. The regression model incorporates transect 

sections where the adults were observed around the larval food plants, but also 

sections where they were nectaring. Both environments are very important for the 

survival of the species, and our regression models integrate them into an estimate 

of its relationships with the environment. 

In conclusion, the methods and models presented in this paper provide a useful 

tool for the incorporation of butterflies in environmental policies and may help to 

achieve a more efficient management and conservation of sites for butterfly 

species in The Netherlands. Several improvements and refinements will be 

necessary before the models can be used on a wider scale, and we hope that the 

ideas can also be applied in other countries. 
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Abstract 

Europe has undergone substantial biotope loss and change over the last 

century and data are needed urgently on the rate of decline in different wildlife 

groups in order to identify and target conservation measures. However, pan-

European data are available for very few taxonomic groups, notably birds. We 

present here the first overview of trends for an insect group within different 

biotopes across Europe, based on data from the Red Data Book of European 

Butterflies.  

The most important biotopes for Europe’s 576 butterfly species, including 

threatened species, are man-made or man-influenced, notably types of 

grassland or heath/scrub communities. Our results show that butterflies are 

declining substantially across Europe, with a decline in distribution of -11% 

over the last 25 years. The distributions of the 25 most “generalist” species are 

declining only slowly (-1%) compared to specialist butterflies of grassland (-

19%), wetlands (-15%), and forests (-14%). On average, grassland butterflies 

have declined somewhat slower than farmland birds (annual decrease –0.8% 

compared to –1.5%), but woodland butterflies have decreased more rapidly (–

0.01% to –0.6%) than woodland birds, which are more or less stable.  

The sensitivity of butterflies to environmental changes and the availability of 

data across Europe suggest that they are very good candidates to build 

biodiversity indicators and, along with other major groups such as birds, 

suitable to monitor progress towards the EU target of halting biodiversity loss 

by 2010. 

 

Grassland specialist butterflies, like 
this Polyommatus amandus, show a 
decline of 19% in distribution 
between 1973 and 1998 according to 
the Red Data Book (Van Swaay & 
Warren, 1999).  
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Introduction 

Europe has undergone a period of substantial change and development over the 

last hundred years, which has led to major declines of wildlife and their biotopes in 

many countries (Horlyck & Lois 2005; Delbaere 1998). However, pan-European 

data on the rate of decline of species are available for very few taxonomic groups, 

notably birds (Tucker and Heath 1994; EEA 2004; European Communities 2004; 

Gregory et al. 2005). Such data are important to properly assess the threats in 

different biotopes and to identify priorities for conservation action. 

 

Here, we present the first overview of trends for an insect group within different 

biotopes across Europe, and compare these with bird trends calculated by Birdlife 

International (Gregory et al. 2005). The analysis is based on data from the first 

comprehensive review of the status and trends of butterflies across Europe, 

commissioned by the Council of Europe (Van Swaay and Warren 1999). This 

showed that butterflies are declining seriously in almost every country and that 71 

out of Europe’s 576 species are threatened according to the 1994 IUCN criteria 

(IUCN 1994).  

 

In addition to providing trend data for the Red Data Book, country compilers were 

asked to provide information on the biotope type used by each species, and the 

main threats, according to a simple classification system. These results have been 

used to identify the most important biotopes for European butterflies and to 

generate trends of species by biotope and identify the importance of biotopes that 

should be targeted for urgent action. As butterflies have been identified as 

valuable indicators for many other insects (Thomas 2005), which comprise a large 

proportion of terrestrial species, we believe the results highlight issues of great 

importance for the conservation of Europe’s biodiversity as well as for assessing 

European environmental policy. They also demonstrate that butterflies can be 

used to monitor trends in European biotopes and would provide a valuable and 

complementary indicator to birds. 

 

 

Materials and Methods 

Red Data Book 

Data for the Red Data Book were gathered on all 576 butterfly species known to 

occur in Europe and were collated primarily by distributing questionnaires to over 

50 expert national compilers in all 45 European countries covered by the Council of 

Europe (Van Swaay and Warren 1999). These data were usually based on the field 

work carried out by hundreds or even thousands of amateur lepidopterists over 

many years, often drawing on detailed distribution data.  

Using these questionnaires, data were collected on all native species within each 

country covering: 

• Present distribution 

• Trend over the last 25 years 

• Main biotope used by the species  

Species whose ranges just extend within European boundaries, are considered 

marginal to Europe and were excluded from the review. For all remaining species 

the European distribution class and trend over the whole continent were 

calculated, and weighted by country size. Compilers were asked to rank the quality 

of the trend data from very good, good, moderate, or poor depending on the 

amount of quantitative data available. These data were used to produce a list of 

threatened butterflies in Europe, using the 1994 IUCN criteria as closely as possible 

(IUCN 1994; Van Swaay and Warren 1999).  



Each national expert classified the main biotopes for each species in their country according 

to the main Corine biotope classes, as described in Moss et al. (1991). Their classification was 

the first attempt to describe European biotopes in a standardized way (Table 10.1). 

 

The nomenclature used follows Karsholt and Razowski (1999), with the exceptions of Pontia 

daplidice and P. edusa (summarized as Pontia daplidice complex), and Leptidea sinapis and L. 

reali (Leptidea sinapis complex), since at the time of compilation of the Red Data Book the 

exact status and distribution and distinction between these species was still unclear. 

 

Biotope profile  

A biotope profile was calculated for each species by counting the number of biotope-

mentions (= biotope mentioned in a country), and then calculating the percentage of 

biotope-mentions for each biotope (the biotope profile). Since species with a wide 

distribution have a long list of biotopes mentioned only once or twice, the biotopes referred 

to in less than 5% of the biotope-mentions were considered to be of minor importance to the 

species and were omitted from further analysis. Table 10.2 demonstrates this with the 

example of Glaucopsyche alexis. Biotope data for this Lycaenid butterfly were received from 

38 countries. From the 17 listed biotopes, 11 were mentioned only once or twice (less than 5% 

of the biotope mentions) and were therefore omitted. Consequently the final biotope profile 

for this butterfly contained only the first six biotope descriptions. 

 

 
Table 10.1: Classification of the biotopes by Corine biotope descriptions (based on Moss et al., 1991) 
and grouping to the Main biotope groups. 

Corine code Corine biotope description Main biotope group 

16 coastal sand-dunes and sand beaches Coastal 

18 cliffs and rocky shores Coastal 

31 heath and scrub Heath and scrub 

32 sclerophyllous scrub Heath and scrub 

33 Phrygana Heath and scrub 

34 dry calcareous grasslands and steppes Grassland 

35 dry siliceous grasslands Grassland 

36 alpine and subalpine grasslands Grassland 

37 humid grasslands and tall herb communities Grassland 

38 mesophile grasslands Grassland 

41 broad-leaved deciduous forests Forest 

42 coniferous woodland Forest 

43 mixed woodland Forest 

44 alluvial and very wet forests and brush Forest 

45 broad-leaved evergreen woodland Forest 

51 raised bogs Wetland 

52 blanket bogs Wetland 

53 water-fringe vegetation Wetland 

54 fens, transition mires and springs Wetland 

61 Screes Unvegetated 

62 inland cliffs and exposed rocks Unvegetated 

64 inland sand-dunes Unvegetated 

66 volcanic features Unvegetated 

81 improved grasslands Agriculture 

83 orchards, groves and tree plantations Agriculture 

84 
tree lines, hedges, small woods, bocage, parkland 
dehesa 

Agriculture 

85 urban parks and large gardens Urban 

86 towns, villages, industrial sites Urban 

87 fallow land, waste places Urban 
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Threats 

Data on suspected threats were collected only for the 71 European threatened 

species (Van Swaay and Warren 1999). Fourteen types of threat have been 

distinguished. National experts have indicated the degree of threat for each 

threatened butterfly in their country (1=low, 2=medium, 3=high). To calculate the 

average degree of threat per main biotope type, each threatened species is 

assigned to the biotope type where it has been mentioned most frequently. This 

was only possible for forests, grasslands and wetlands. Threats mentioned less 

than three times have been omitted. Of course, there is a strong risk that biotopes 

where no endangered species occur are also threatened. Here, the lack of data 

makes such an assessment unfeasible. 

 

 

Table 10.2: Classification of the biotopes of the Lycaenid butterfly Glaucopsyche alexis. 

Biotope description Number of mentions Percentage Class in table 

dry calcareous grasslands and steppes 11 18.3 2 

mesophile grasslands 11 18.3 2 

broad-leaved deciduous forests 8 13.3 2 

dry siliceous grasslands 8 13.3 2 

fallow land, waste places 3 5.0 1 

sclerophyllous scrub 3 5.0 1 

alpine and subalpine grasslands 2 3.3 Not used 

heath and scrub 2 3.3 Not used 

mixed woodland 2 3.3 Not used 

orchards, groves and tree plantations 2 3.3 Not used 

Phrygana 2 3.3 Not used 

coniferous woodland 1 1.7 Not used 

humid grasslands and tall herb communities 1 1.7 Not used 

inland rocks, screes and sands 1 1.7 Not used 

inland sand-dunes 1 1.7 Not used 

tree lines, hedges, small woods, bocage, 
parkland dehesa 

1 1.7 Not used 

urban parks and large gardens 1 1.7 Not used 

 

 

Biotope specialist butterflies 

A biotope specialist species was defined as being mentioned more often in one 

biotope than in the sum of all the others. The following procedure was used to 

determine the number of biotope specialist species per biotope type per country: 

 In order to remove any bias in biotope assessment amongst country 

compilers, we only included species for which we had biotope data from 

at least three separate sources, usually from three countries. 

 For each species the number of Corine biotopes mentioned per country 

per species is counted. 

 Then, the number of each Corine biotope-mentions per country per 

species per biotope type is counted. 

 These numbers are then evaluated using broad biotope classes (see Table 

10.1). 

 The percentage of broad biotope classes mentions per biotope type 

available in the country is calculated for each species.  

 Species for which one biotope gets a percentage as high as 50% were 

considered specialists of that biotope (Appendix 10.2). 
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Generalist butterflies  

To define generalists, each butterfly species was ranked according to the average 

number of biotopes that it was reported to use compared to the maximum number 

of biotopes mentioned per country. This allowed the full list of species to be sorted 

from generalists to specialists. Then, to determine the group of generalists, the 

top 25 were selected. A control was made on species distribution to avoid narrowly 

distributed species that would not be representative at the continental scale. The 

number of countries in which each species occurred was extracted. The method 

above favours widespread species, and the species selected occurred in a 

minimum of 18 countries. Nevertheless, this means that especially south European 

countries were excluded from analysis since in many of these countries availability 

of good trend data is poor. 

 

The results in Table 10.3 shows that some of the species selected as generalists at 

a pan-European level are specialists in some parts of their range, especially at the 

edge of their distribution (e.g., Pyrgus malvae and Papilio machaon). In this 

analysis, the definition of  “generalist” species thus focuses on the most 

widespread species that occur in a wide range of biotope types. Vanessa atalanta 

was excluded as it is a migrant species in most of Central and Northern Europe and 

trends were not available in every country. 

 

 
Table 10.3: List of butterflies considered to be generalist species at a European level. 

Species 

Aglais urticae, Maniola jurtina, Anthocharis cardamines, Melanargia galathea, Aphantopus 
hyperantus, Ochlodes venata, Callophrys rubi, Papilio machaon, Coenonympha pamphilus, 
Pieris brassicae, Erebia medusa, Pieris napi, Gonepteryx rhamni, Pieris rapae, Inachis io, 
Polygonia c-album, Iphiclides podalirius, Polyommatus icarus, Issoria lathonia, Pontia daplidice 
complex, Leptidea sinapis complex, Pyrgus malvae, Lycaena phlaeas, Thymelicus lineola, 
Thymelicus sylvestris. 

 
 

Calculating European trends for specialists and generalists  

As the quality and accuracy of trend data available from the Red Data Book varied 

considerably among countries and species, we calculated trends only from those 

countries that fulfilled the following arbitrary requirements considered to ensure 

good data quality:  

 at least 80% of the species were given a trend, since this shows that 

sufficient expertise is available and 

 not more than 75% of the trends given were “stable” or “fluctuating” as 

such a high proportion of these categories, often given by default, might 

be related to a lack of knowledge of national populations especially over 

such a long time. 

This left 20 countries representing more than 50% of Continental Europe area (See 

Table 10.4, note that Russia and Turkey are excluded here). 

 

 
Table 10.4: Countries selected for the calculation of trends of specialist and generalist 
butterflies. 

Country 

Austria, Belgium, Canary islands, Czech Republic, Denmark, Finland, Germany, Hungary, 
Latvia, Lithuania, Luxembourg, Moldova, Netherlands, Poland, Romania, Slovakia, Slovenia, 
Sweden, Switzerland, United Kingdom. 
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Overall European trends per biotope were obtained as follows: 

 Trend classes were converted into trends using the geometric mean of 

the class extremes. “Extinct” was converted arbitrary to a 99.9% 

decrease. 

 For each species, we estimated the weighted geometric mean and 

variance, weighted by country area in relation to the mid values of the 

distribution area occupied within each country (each country compiler 

classified species along 4 classes of country occupation : <1%, 1-5%, 5-

15%, >15%).  

 We estimated geometric mean and variance (and thus standard errors) of 

species according to their attributed biotope group. As a reference group, 

we also provide the average trend of all the species together to allow a 

general overview of the situation. 

 

 
Table 10.5: Total number of species, number of threatened species and the percentage of 
threatened species per CORINE-biotope. N = total number of species, T = total number of 
threatened species, %T= percentage threatened. 

CORINE-biotope N T T (%) 

blanket bogs 45 14 31.1 

raised bogs 48 13 27.1 

fens, transition mires and springs 59 15 25.4 

water-fringe vegetation 75 15 20.0 

mesophile grasslands 223 39 17.5 

humid grasslands and tall herb communities 171 27 15.8 

mixed woodland 187 29 15.5 

alluvial and very wet forests and brush 100 15 15.0 

coniferous woodland 156 23 14.7 

dry calcareous grasslands and steppes 274 37 13.5 

broad-leaved deciduous forests 186 25 13.4 

heath and scrub 189 25 13.2 

alpine and subalpine grasslands 261 34 13.0 

dry siliceous grasslands 220 27 12.3 

inland sand-dunes 43 5 11.6 

broad-leaved evergreen woodland 67 6 9.0 

inland cliffs and exposed rocks 70 6 8.6 

tree lines, hedges, small woods, bocage, 
parkland dehesa 

128 11 8.6 

Phrygana 137 11 8.0 

Screes 88 7 8.0 

fallow land, waste places 104 8 7.7 

orchards, groves and tree plantations 95 6 6.3 

cliffs and rocky shores 17 1 5.9 

sclerophyllous scrub 202 12 5.9 

urban parks and large gardens 96 5 5.2 

coastal sand-dunes and sand beaches 40 2 5.0 

scrub and grassland 28 1 3.6 

towns, villages, industrial sites 66 2 3.0 

improved grasslands 74 1 1.4 

* three SPEC1-3 species on the Azores (Hipparchia miguelensis, H. occidentalis and H. 
azorina) are mentioned for agricultural land and artificial landscapes but are not given in the 
table. 
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Results 

Biotope use 

The main biotopes for 436 European butterfly species, based on data collected for 

the Red Data Book of European Butterflies, are shown in Appendix 10.1 and a 

summary of the importance of each biotope is shown in Table 10.5.  
 

The results show that the most species-rich biotopes in Europe are dry grassland: 

notably dry calcareous grasslands and steppes (274 species), alpine and subalpine 

grasslands (261), mesophile grasslands (223), dry siliceous grasslands (220 

species). Mesophile grasslands are also species-rich with 223 species, followed by 

sclerophyllous scrub, and heath (202 and 189 species respectively) and different 

types of woodlands including mixed woodland (187 species), broad-leaved 

deciduous forests (186 species), coniferous woodland (156 species). Humid 

grasslands and tall herb communities comprise 171 species (Table 10.5). 

 

The biotopes with the largest absolute numbers of species threatened across 

Europe are also mainly grasslands: mesophile grasslands (39 threatened species), 

dry calcareous grasslands and steppes (37), alpine and subalpine grasslands (34) 

and humid grasslands and tall herb communities and dry siliceous grasslands (27). 

Different types of woodlands generally hold lower numbers of threatened 

butterflies: mixed woodland (29 threatened species), broad-leaved deciduous 

forests (25) and coniferous woodland (23) while heath and scrub have 25 species 

considered threatened. 

In contrast, the biotopes supporting the greatest proportion of threatened species 

are dominated by bogs and marshes (including blanket bogs, raised bogs, fens, 

transition mires and springs, water-fringe vegetation), humid grasslands and tall 

herb communities. These are followed in importance by mesophile grasslands and 

different types of woodlands (mixed woodland, coniferous woodland, broad-

leaved deciduous forests), and different types of dry grasslands (dry calcareous 

grasslands and steppes, alpine and subalpine grasslands, dry siliceous grasslands). 

Note that specific biotopes such as volcanic features, islets and rock stacks or 

inland rocks, screes and sands are not discussed owing to their low total number of 

species mentioned, although they can be of great importance locally (e.g. volcanic 

features with Hipparchia maderensis on Madeira and Scolitantides orion in Eastern 

Europe, islets and rock stacks with Parnassius apollo or inland rocks, screes and 

sands with Glaucopsyche alexis). 
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European trends for specialists and generalists 

Our overall results show that butterflies are declining substantially across Europe, 

with a decline in distribution of -11% over the last 25 years (Figure 10.1). The 

results also show that the 25 most generalist species, according to our ranking (see 

above), did not significantly decline (-1%, t = -0.4809, p=0.63) compared to 

specialist butterflies. The biggest declines in distribution are among grassland 

specialists (-19%, t = -8.0075, p<0.001), followed by wetland species (-15%, t = -

4.8188, p<0.01), and forest species (-14%, t = -1.9428, p<0.05). 
 

Threats 

Data on suspected threats were gathered only for the 71 species classed as 

threatened at the European level and are shown in Table 10.6. The majority of 

species (n = 63, almost 90%) are affected by agricultural improvement, which 

includes a wide range of activities from conversion of unimproved grasslands to 

arable crops, through to fertilisation of pastures. Although affecting only 33 

species, land drainage is the major threat for wet grassland and wetland 

butterflies. Drainage immediately destroys the biotope of these butterflies, and is 

mostly followed by agricultural improvements. Characteristic species that suffer 

heavily from drainage are Coenonympha oedippus and C. tullia.  

 

 
Table 10.6: Average grade of threat for threatened butterflies in Europe as well as per 
main biotope group, with the highest threatgrade per biotope group in bold. 
N=total number of species. 
Average grade of threat: 1=low, 2=medium, 3=high. 
*=mentioned for less than three species. 

Threat All 
biotopes 

Forest Grassland Wetland N 

Land drainage 2.2 1.7 2.2 2.4 33 

Agricultural improvements 2.1 1.9 2.2 2.0 63 

Land claims / coastal development 2.1 2.0 2.1 * 41 

Agricultural abandonment 2.1 1.9 2.2 1.9 46 

Felling/destruction of woodland 2.1 2.2 2.0 1.7 45 

Isolation and fragmentation of habitat 2.1 2.1 2.0 2.0 62 

Afforestation on non-woodland 
habitats 

1.9 1.8 1.9 2.0 53 

Abandonment and change of woodland 
management 

1.9 2.2 1.8 1.7 45 

Recreational pressure and disturbance 1.8 1.9 1.8 2.0 48 

Natural ecological change 1.8 2.0 1.7 * 37 

Built development (inc. roads, housing, 
etc.) 

1.8 1.8 1.8 1.7 58 

Chemical pollution (inc. herbicides and 
pesticides) 

1.8 1.6 1.8 1.6 55 

Climatic change 1.7 2.1 1.6 1.6 45 

Collecting (killing or taking) 1.4 1.5 1.4 1.5 46 

 

 

Other important threats derive from the abandonment of agricultural land and 

changing biotope management. This is thought to affect 65% of the threatened 

species and is symptomatic of the widespread cessation of traditional farming 

systems that is known to have a negative impact on a variety of other wildlife 

groups (Poole et al. 1998; Tucker and Heath 1994). Examples of changing 

management include the cessation of cutting of damp hay meadows (affecting 
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species like Maculinea nausithous, M. teleius, and Lycaena helle) and abandonment 

of pasture land (affecting species such as Euphydryas aurinia and Maculinea alcon). 

 

The increasing use of herbicides and pesticides on farmland is also reported to be a 

serious problem for butterflies (affecting 80% of threatened species), especially in 

some eastern countries where economic pressures are more severe and 

regulations are less strict. Building developments such as roads, quarries and 

housing are also important (affecting 80% of threatened species). As a result of 

this massive direct loss of breeding areas, a growing threat arises from the 

subsequent isolation and fragmentation of biotopes which now affects 87% of 

threatened species. 

 

Similar problems of abandonment and changing management were also reported 

in woodland biotopes, affecting 63% of threatened species. The main problem in 

woodlands seems to be loss of open woodland habitats following a shift from 

traditional management such as short-rotation coppice systems to high forest 

systems. This has been recognised as a major problem in western countries for 

many years (e.g., Warren and Key 1991) but there is growing evidence that this is a 

widespread and serious problem across Europe (e.g., Benes et al. 2002). The shift 

from traditional short-rotation standing crop to intensive high forests has a very 

negative impact on characteristic woodland butterflies as Lopinga achine 

(Bergman 2001). Afforestation of non-woodland biotopes is also a major threat to 

many species, especially those occurring in small breeding areas such as Parnassius 

apollo. 

 

 

Discussion 

Biotopes and their threats 

This paper presents the first objective overview on the biotope requirements of 

almost all European butterflies as well as the chief threats to threatened species. 

Unlike preceding descriptions, the material has been collected in a standardized 

way over the whole of Europe, giving a unique insight into the threats for this 

insect group.  

 

The results show that butterflies are highly dependent on man-made biotopes 

such as dry grassland and meadows, which are typically maintained by traditional 

forms of farming management such as livestock grazing and hay-making. A wide 

range of factors associated with the rapid intensification of agriculture across the 

region threatens such biotopes. Although dry grasslands are the richest in 

butterfly species, the most important biotopes for threatened butterflies are wet 

biotopes such as bogs and marshes. These are under particular threat from 

drainage, either to create fertile agricultural land or, in some cases, to control 

disease-bearing insects such as mosquitoes.  

 

Contrary to many people’s views of threats to butterflies, collecting was reported 

to be only a very minor or local importance. However, there were some important 

exceptions of species which are possibly quite seriously threatened by collecting, 

notably Parnassius apollo, Polyommatus humedasae, Polyommatus poseidon, 

Polyommatus damone, Euphydryas maturna and Coenonympha oedippus. 

Nevertheless, all these species are suffering far more seriously from problems such 

as biotope loss or changing biotope management.  

 

Climatic change is also mentioned as a potential threat to several species, notably 

highly restricted montane endemics which are closely adapted to specific 
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vulnerable biotopes and which have a very limited possibility of adapting to global 

warming (Dennis 1993; Wilson et al. 2005). 

 

When considering threats, it is worth stressing that Europe is a large and diverse 

region, and it is therefore clear that the types of threat vary considerably from 

country to country. This partly reflects the fact that the types of biotope used by 

each species vary naturally across different climatic zones, but also reflects the 

wide variation of economic and political situations. Threats vary from site to site 

and have been examined further in the Prime Butterfly Areas of Europe report (van 

Swaay and Warren 2003). It is likely that most major threats identified for 

butterflies will continue to operate in the foreseeable future, and may even 

become more serious in some countries. For example, Eastern European countries 

have already started to suffer from serious agricultural intensification (e.g., Donald 

et al. 2001; Konvicka et al. 2006) and the problem may be exacerbated further now 

that their markets are becoming more open. The speed of change in some 

countries may also increase rapidly now they have joined the European Union and 

have access to extra subsidies for increased production. This poses a particularly 

serious potential threat as these countries hold a disproportionate large number of 

threatened butterflies.  

 

On the plus side, there is a growing move to reform EU agricultural and forestry 

policies to encourage more environmentally sustainable systems, for example 

within mechanisms such as the Agri-environment Regulation (EU Reg. 2078/92). 

Although schemes currently being funded under such regulations comprise a very 

small proportion of the agricultural budget, they have the potential to slow down 

some of the trends reported. However, much wider reforms of agricultural policies 

are also urgently needed (e.g., see Tucker and Heath 1994; Baldock et al. 1994; 

Poole et al. 1998). Policies such as the EU Habitats and Species Directive may also 

help to slow declining trends but many countries have been slow to implement this 

Directive (e.g., Flanders - Maes and Van Dyck 2001) and its likely impact on 

butterflies remains uncertain. 

 

Recent studies have shown that many montane species are shifting their 

distributions to higher altitudes, presumably as a result of climatic warming, and 

montane and boreal species may be threatened in future (Wilson et al. 2005). 

 

Trends and comparison with other groups  

The overall decline of butterflies at a European level confirms many previous 

observations (e.g., Heath 1980) and reflects the widespread loss of biodiversity 

reported in many other taxa (e.g., Delbeare 1998). However, for the first time we 

show that declines have been far more rapid in specialist species of grasslands, 

wetlands and forests. Our results show that butterflies seem to be reacting 

differently compared to a recent study describing biotope related trends in 

breeding birds (Gregory et al. 2005). Whereas our paper measured trends amongst 

specialists, the bird trends focused on communities (e.g., farmland birds and 

woodland birds). Although the methods of the two studies were different, the 

results make an interesting comparison.  

 

While farmland birds (which occur in arable biotopes as well as managed 

grasslands), show an annual population decrease of –1.5% (from 1980 to 2002), 

grassland butterflies showed an annual distribution decrease of– 0.8% (for the 25 

year period pre 1997). However, the rates of change cannot be compared directly 

because the butterfly trends are calculated from distribution data that 
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substantially underestimate population decline (e.g., Thomas and Abery 1995; 

Warren et al. 1997).  

 

In contrast, trends in woodland birds show little change compared to forest 

specialist butterflies, which showed an annual distribution decrease over this 

period of –0.01% to –0.6%. The comparatively rapid decline of forest butterflies 

suggests that they are more sensitive than birds to changes in this biotope. In 

woodlands, the decline of butterflies is probably linked with the loss of open 

woodland or forest clearings, whereas many of the birds studied are associated 

with closed forests where change has been less dramatic. It should also be noted 

that the butterflies studied have been pre-selected as specialists as opposed to 

woodland birds, which may occur in a range of other biotopes. Nevertheless the 

study supports the findings of Thomas et al. (2004) that butterflies are declining at 

least as fast as birds and possibly faster in many biotopes. 

 

Butterflies are likely to respond to different factors than birds and, because of their 

annual life cycles, are likely to react more quickly (Thomas 1994). Butterflies tend 

to breed in smaller habitat patches and are more likely to reflect changes occurring 

at a finer scale. Thus, they provide additional and complementary information to 

birds, which tend to range more widely and have populations that operate over 

larger areas. Contrary to woodland birds, that can occur in dark forests, woodland 

butterflies are only found in open places, paths and glades where sun reaches the 

ground and nectaring flowers are found. 

 

Conclusions 

Our study demonstrates that data currently available for butterflies can be 

successfully used to produce generic trends at a continental scale as well as trends 

within different broad biotope types. The sensitivity of butterflies to 

environmental change and the availability of suitable data from many countries 

across Europe suggest that butterflies are very good candidates to build 

biodiversity indicators. Along with other major groups such as birds, they are 

therefore ideal candidates to monitor performance regarding the EU target to halt 

biodiversity loss by 2010. No equivalent data are available for other invertebrate 

taxa, making butterflies unique in enabling an assessment of trends in this 

exceptionally diverse and ecologically important group. 

 

There is a growing network of specialist Lepidoptera groups in countries across 

Europe, many of them using volunteers to compile extensive datasets on 

butterflies and their trends. Datasets for butterflies include traditional mapping 

schemes to identify trends such as those used in the Red Data Book (Van Swaay 

and Warren 1999) but also detailed monitoring schemes based on weekly transect 

counts at networks of sites. A summary of the schemes currently in operation is 

given in the country summaries of the Prime Butterfly Areas of Europe (Van Swaay 

and Warren 2003). New monitoring schemes are being started or planned in other 

countries and the monitoring network is being developed each year. A new 

organization, called Butterfly Conservation Europe, has been started to co-

ordinate and collate such data and to provide the support for volunteers and 

organizations who contribute (see www.bc-europe.eu). The infrastructure needed 

to obtain butterfly data at a European level is thus already well developed and, 

given sufficient resources, could produce an even more scientifically robust 

method of monitoring change in the future. 
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Appendix 10.1: Habitat profiles of European butterflies (listed in alphabetical order 

with taxonomy according to Karsholt & Razowsky, 1999). 1=5-10%; 2=10-20%; 3=20-
30% etc. 
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Appendix 10.2  

List of specialist butterflies per biotope. 
 
Forests 
Apatura ilia, Apatura iris, Apatura metis, Argynnis paphia, Carterocephalus silvicola, Erebia 
aethiops, Erebia ligea, Esperarge climene, Euphydryas maturna, Gonepteryx farinosa, 
Hipparchia alcyone, Kirinia roxelana, Lasiommata petropolitana, Leptidea morsei, Limenitis 
camilla, Limenitis populi, Limenitis reducta, Lopinga achine, Neozephyrus quercus, Neptis 
rivularis, Neptis sappho, Nymphalis antiopa, Nymphalis vaualbum, Nymphalis xanthomelas, 
Pararge aegeria, Pieris balcana, Satyrium ilicis, Satyrium pruni, Satyrium w-album 
 
Grassland 
Arethusana arethusa, Aricia anteros, Aricia artaxerxes, Aricia nicias, Boloria graeca, Boloria 
napaea, Boloria pales, Boloria polaris, Boloria titania, Brenthis hecate, Brenthis ino, 
Carcharodus lavatherae, Carcharodus orientalis, Coenonympha dorus, Coenonympha 
gardetta, Coenonympha glycerion, Coenonympha leander, Coenonympha rhodopensis, Colias 
alfacariensis, Colias aurorina, Colias chrysotheme, Colias erate, Colias hecla, Colias 
myrmidone, Colias nastes, Colias phicomone, Cupido minimus, Cupido osiris, Erebia 
alberganus, Erebia cassioides, Erebia epiphron, Erebia eriphyle, Erebia gorge, Erebia manto, 
Erebia medusa, Erebia melampus, Erebia meolans, Erebia oeme, Erebia orientalis, Erebia 
pandrose, Erebia pharte, Erebia pronoe, Erebia sudetica, Erebia triaria, Erebia tyndarus, Erynnis 
marloyi, Erynnis tages, Euchloe ausonia, Euphydryas aurinia, Euphydryas cynthia, 
Glaucopsyche alexis, Hipparchia syriaca, Leptidea duponcheli, Lycaena alciphron, Lycaena 
candens, Lycaena helle, Lycaena hippothoe, Lycaena ottomanus, Maculinea arion, Maculinea 
nausithous, Maculinea rebeli, Maculinea teleius, Melanargia galathea, Melanargia russiae, 
Melitaea arduinna, Melitaea aurelia, Melitaea britomartis, Melitaea cinxia, Melitaea deione, 
Melitaea diamina, Melitaea didyma, Melitaea parthenoides, Melitaea phoebe, Melitaea trivia, 
Muschampia cribrellum, Neolycaena rhymnus, Oeneis glacialis, Parnassius mnemosyne, 
Parnassius phoebus, Plebeius argyrognomon, Plebeius glandon, Plebeius orbitulus, Plebeius 
pylaon, Plebeius pyrenaica, Polyommatus admetus, Polyommatus amandus, Polyommatus 
bellargus, Polyommatus coelestina, Polyommatus coridon, Polyommatus damon, 
Polyommatus damone, Polyommatus daphnis, Polyommatus dorylas, Polyommatus eroides, 
Polyommatus eros, Polyommatus escheri, Polyommatus ripartii, Polyommatus semiargus, 
Polyommatus thersites, Pontia callidice, Pontia chloridice, Pseudochazara anthelea, 
Pseudochazara geyeri, Pseudophilotes baton, Pseudophilotes bavius, Pseudophilotes vicrama, 
Pyrgus alveus, Pyrgus andromedae, Pyrgus armoricanus, Pyrgus cacaliae, Pyrgus carthami, 
Pyrgus cinarae, Pyrgus cirsii, Pyrgus malvoides, Pyrgus onopordi, Pyrgus serratulae, Satyrus 
actaea, Spialia orbifer, Spialia sertorius, Thymelicus acteon, Tomares callimachus, Tomares 
nogelii, Triphysa phryne, Zerynthia cerisy 
 
Wetlands 
Boloria aquilonaris, Boloria freija, Boloria frigga, Coenonympha tullia, Colias palaeno, Erebia 
disa, Erebia embla, Oeneis jutta, Pyrgus centaureae
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11. Prime Butterfly Areas of Europe: An 

initial selection of priority sites for 

conservation 
 

 

Slightly modified from: Van Swaay, C.A.M. & Warren, M.S. (2006). 

Journal of Insect Conservation 10 (1), 5-11. 

 

 

Abstract 

The Red Data Book of European Butterflies, published in 1999, showed that 

butterflies have declined seriously across Europe and that 71 of the 576 species 

are threatened (12% of the total) either because of their extreme rarity or rapid 

decline. They comprise 19 globally threatened species and 52 species 

threatened at a European level. Many more species were shown to be declining 

in substantial parts of their range and a further 43 species were classified as 

Lower Risk (near threatened).  

A follow up project was conducted in 2002-3 to identify Prime Butterfly Areas 

in Europe where conservation should be targeted as a priority. Due to 

constraints of time and resources, the review in this chapter could not be 

comprehensive, and concentrated on identifying the most important (prime) 

areas for 34 target species, using a network of national compilers. The book 

gives details of 431 areas covering 1.8% of the land surface of Europe, and 

shows that target butterflies are declining in one quarter of PBAs, indicating 

that breeding habitats are continuing to deteriorate even though many are 

protected by national designation. Chief threats are from agricultural 

intensification, afforestation, abandonment of traditional practices, and 

isolation. The results of these two projects provide useful models of what can 

be achieved at a European scale and demonstrate the effective collaboration of 

country experts to achieve shared conservation objectives. 

 
  

Humid grasslands in the Moerputten, one of the Prime Butterfly Areas in the 
Netherlands, selected because of the occurrence of Phengaris teleius. 
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Introduction 

The decline of Europe’s butterflies has been recognised for many years (e.g. 

Heath, 1981; Pavlicek-Van Beek et al., 1992; Pullin, 1995), but the full scale of the 

problem was not known until the publication of the Red Data Book of European 

Butterflies (Van Swaay & Warren, 1999).  

The analysis showed that a total of 71 European species are threatened (12% of the 

total), comprising 19 that are threatened at a global level and 52 threatened at a 

European level. Amongst the globally threatened species (endemic to Europe):  

 1 species is Critically Endangered; 

 4 species are Endangered; 

 14 species are Vulnerable. 

The European threat status (for species also found outside Europe) was: 

 1 species is Extinct; 

 6 species are Critically Endangered; 

 14 species are Endangered;  

 31 species are Vulnerable. 

A further 43 species are classed as Lower Risk (near threatened).  

In this paper we present a summary of a follow up project to identify Prime 

Butterfly Areas where conservation efforts should be focused. The project was one 

of several aimed at identifying Important Biodiversity Areas across Europe, which 

so far includes birds (Heath and Evans, 2000), and work in progress on plants 

(Anderson, 2002), reptiles and dragonflies.  

The results are intended to support other initiatives, like Natura 2000, the Pan-

European Ecological Network (PEEN), the Pan-European Biological and Landscape 

Diversity Strategy and the Bern Convention. Protection and proper management 

of these areas will not only help to conserve these species, but also many other 

characteristic butterflies and other invertebrates occurring in the same habitats. 

 
  

Figure 11.1. Selection of target-
species used for the selection of 
Prime Butterfly Areas. Target-
species fulfil at least two of three 
criteria (grey-shaded). 
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Methods 

The principal aims of the project were: 

 to identify an initial selection of the most important areas for the 

conservation of priority butterflies in Europe; 

 to promote awareness of threatened butterflies in Europe, their special 

refuges and the main issues affecting them; 

 to present information on each area in a standardised way; 

 to help focus conservation and management measures on these areas. 

Information was gathered from all European countries belonging to the Council of 

Europe, including Madeira, the Azores, the Canary Islands, Cyprus, the whole of 

Turkey and Russia east to the Urals. The selection of Prime Butterfly Areas (PBAs) 

was focussed on butterfly species fulfilling at least two of the following three 

criteria (grey-shaded in Figure 11.1): 

1. Zoo-geography: the world range of the species is restricted to Europe 

(Range Affinity 4 in Van Swaay & Warren, 1999) (189 species). 

2. Conservation: the species is threatened according to the Red Data Book 

of European Butterflies (Van Swaay & Warren, 1999) or the IUCN Red List 

of threatened animals (71 species). 

3. Legislation: the species is listed in Appendix II of the Bern Convention (on 

the conservation of European wildlife and natural habitats) and/or the EU 

Habitats and Species Directive (23 species). 

The 34 target-species selected by these criteria for inclusion in the Prime Butterfly 

Areas in Europe are listed in Table 11.1. A site is called a Prime Butterfly Area if it 

contains a substantial resident population of at least one of these target species. 

We included two types of areas: 1) discrete sites that support one or more rare or 

threatened; or 2) wider areas (such as mountain ranges or valley systems) where a 

target species occurs as scattered populations that may well be connected as a 

single metapopulation.  

Furthermore information of each PBA was collected on location, protection status, 

trend and threats. 
 
  

Euphydryas aurinia is one of the target species for Prime ButterflyAreas. 
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Table 11.1: List of target-species for Prime Butterfly Areas project, each of which fulfilled 
at least two of three criteria (grey-shaded in figure 11.1). For more details on the global 
distribution see Van Swaay & Warren (1999). Threatened species are listed as such by in 
the Red Data Book of European Butterflies or on the IUCN Red List of threatened animals. 

Species Global distribution 
restricted to Europe 

Threatened Bern Convention / 
Habitats Directive 

Zerynthia caucasica X X  

Parnassius apollo  X X 

Papilio hospiton X  X 

Pieris wollastoni X X  

Pieris cheiranthi X X  

Gonepteryx maderensis X X  

Lycaena ottomanus X X  

Maculinea arion  X X 

Maculinea teleius  X X 

Maculinea nausithous  X X 

Maculinea rebeli X X  

Plebeius trappi X X  

Plebeius hesperica X X  

Polyommatus golgus X  X 

Polyommatus 
humedasae 

X X X 

Polyommatus galloi X  X 

Polyommatus dama X X  

Argynnis elisa X  X 

Euphydryas maturna  X X 

Euphydryas aurinia  X X 

Lopinga achine  X X 

Coenonympha oedippus  X X 

Coenonympha hero  X X 

Erebia christi X X X 

Erebia sudetica X X X 

Erebia epistygne X X  

Erebia calcaria X  X 

Melanargia arge X  X 

Hipparchia maderensis X X  

Hipparchia azorina X X  

Hipparchia occidentalis X X  

Hipparchia miguelensis X X  

Pseudochazara euxina X X   

 

 

Within the short time and limited funding available for this project, it was only 

possible to identify a first selection of the most important areas for target species 

in Europe, combined with a wide geographic coverage that includes both marginal 

and core populations. In general, we aimed to include the three best populations of 

each target species within each country. As with the Red Data Book, the data were 

provided by over 50 national compilers who were asked to select the Prime 

Butterfly Areas for their country and complete a questionnaire giving details on 

location, key butterfly species, habitats and land uses, threats, protection, and 

conservation issues (following the classification of Tucker and Heath, 1994).The 

results were published in a lengthy book (Van Swaay and Warren, 2003). 
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Summary results 

A total of 431 Prime Butterfly Areas were identified among 37 countries and three 

island archipelagos (Figure 11.2). They cover more than 21 million ha, equivalent to 

1.8 % of the land area of Europe. The exact number of PBAs identified in each 

country depends on many different factors, such as size of the country, the 

number of target species present, the extent of relevant habitats remaining in the 

country, and the capacity to gather the data. 

The most frequently occurring species within PBAs are Maculinea arion, 

Euphydryas aurinia, and Parnassius apollo, which are found in over 100 PBAs. 

Together with Maculinea teleius these three species also have the largest number 

of discrete breeding areas, with at least 1000 estimated populations within the 

PBAs. In contrast, many target species have a very restricted range and the sites 

selected are of the utmost importance for the conservation of rare and highly 

threatened species. They include several endemic species that are restricted to just 

one or two sites in the entire world, for example: Gonepteryx maderensis, 

Hipparchia maderensis, Hipparchia azorina ssp., Polyommatus dama and P. 

humedasae. 

Information on trends shows that many target species are declining within PBAs, 

even within protected areas (Figure 11.3 and Table 11.4). This is extremely 

alarming and indicates that breeding habitats are deteriorating rapidly in most 

PBAs and that conservation measures are needed urgently. Very few species have 

undergone a recent increase in PBAs, the maximum being increases of Euphydryas 

aurinia at five sites. However trends of target species are not known for many 

PBAs, indicating the general need for increased monitoring of populations. 

Figure 11.2. The location of the 431 Prime Butterfly Areas of Europe, identified for the 34 target 
species (Van Swaay & Warren, 2003). 
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The habitat types present in PBAs reflect those of the target species present and 

mainly comprise woodland, alpine/sub-alpine grassland, dry grassland, and humid 

grassland. A great variety and intensity of land-uses are recorded within the PBAs, 

reflecting the long history of human settlement and management of most habitats 

across Europe. The conservation of habitats and butterflies therefore frequently 

depends on the continuation of traditional land-use practices, and suitable policies 

and programmes that can support them, or where necessary replace them. The 

main types of land-use recorded within PBAs are agriculture (62% of PBAs), 

forestry (60%), nature conservation (60%) and tourism and recreation (50%).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The threats facing PBAs are diverse, ranging from adverse management activities, 

land-use, urban or industrial developments, and impacts of land-uses from 

neighbouring areas (e.g. pollution, drainage – see Figure 11.4). The main types of 

threats affecting PBAs are intensification of agriculture (43% of the PBAs), 

afforestation of former open land (40%), isolation and habitat fragmentation 

(35%), abandonment of traditional land use (33%, mainly in Eastern and Southern 

Europe). Other important threats include: adverse management, the negative 

effects of tourism and recreation (especially within Alpine and Mediterranean 

habitats), the felling of woodland, land drainage, urbanization and burning of 

vegetation. Collecting is not considered to be an important threat to the target 

species within the PBAs. 

A total of 192 PBAs in Europe (44% of the total) have at least some protection 

under national law (Figure 11.5). In the countries of the European Union 53% of the 

PBAs were also classified as Natura 2000 sites. Although this large overlap of PBAs 

with sites protected under the Natura 2000 programme is positive, it is extremely 

worrying that over half of PBAs still have no international protection in spite of 

having major populations of butterflies for which Europe has a high responsibility. 

 
  

decrease

stable

increase

unknown

Figure 11.3. Abundance trends of 
target species (n=34) in PBAs. 
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Table 11.2: Number of reported Prime Butterfly Areas in Europe, showing trend per target 
species as reported by the national experts. 

Species Decrease Stable Increase Unknown 

Maculinea arion 42 79 2 50 

Euphydryas aurinia 37 71 5 60 

Maculinea teleius 29 37 1 19 

Parnassius apollo 26 74 1 23 

Lopinga achine 25 38   20 

Maculinea nausithous 22 24 1 22 

Euphydryas maturna 20 43 1 17 

Coenonympha hero 16 13   13 

Maculinea rebeli 10 21 1 24 

Coenonympha oedippus 9 10   7 

Lycaena ottomana 5 11   1 

Pyrgus cirsii 3 2   12 

Plebeius trappi 2 2     

Erebia sudetica 1 3   3 

Pieris wollastoni 1       

Polyommatus dama 1       

Melanargia arge   6     

Erebia Christi   3     

Papilio hospiton   3     

Erebia epistygne   2   4 

Erebia calcaria   2   1 

Argynnis elisa   2     

Plebeius hespericus   1   4 

Hipparchia miguelensis   1   1 

Hipparchia maderensis   1     

Polyommatus galloi   1     

Polyommatus golgus   1     

Polyommatus humedasae   1     

Pseudochazara euxina   1     

Zerynthia caucasica   1     

Hipparchia azorina       5 

Hipparchia occidentalis       2 

Gonepteryx maderensis       1 

Pieris cheiranthi       1 

 

 

Discussion 

This report documents the most important butterfly sites across Europe and we 

urge national conservation agencies to use the list to target protection measures 

within their own country and to tackle the many problems that have been 

identified on individual PBAs. The following specific actions are recommended: 

1. Produce detailed descriptions of the PBAs within each country and 

designate all PBAs as protected areas under national law (NB 56 % of 

PBAs are not protected).  

2. Protect PBAs under relevant international law such as Natura 2000 

designation; and outside the EU, designation as part of the Emerald 

Network. (NB 47% of PBAs in the EU are not protected under 

international laws). 

3. Provide adequate protection of PBAs in accession countries and consider 

PBAs identified in this review as Natura 2000 equivalent sites (eg Czech 

Republic, Estonia, Hungary, Poland, Slovenia and Cyprus).  
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4. Ensure sound habitat management within PBAs and sympathetic 

management in surrounding areas (e.g continuation of traditional 

agriculture and forestry practices and support through EC Agri-

environment Regulation (EC Reg. 2078/92). 

5. Take measures to conserve the wider environment and whole landscapes 

within and surrounding PBAs in order to sustain viable metapopulations. 

6. Monitor populations of target species and conduct research to identify 

appropriate habitat management techniques. 

7. Revise pan-European legislation urgently to take account of the new 

information provided in the Red Data Book of European butterflies (eg 

Bern Convention and the EU Habitats and Species Directive). 

8. Conduct a more comprehensive review of Important Butterfly Areas in 

Europe as soon as possible (NB the current study has shown that this is 

feasible and that there is a great willingness to support such an initiative 

by key entomologists across Europe) 

9. Keep the list of Prime Butterfly Areas up-to-date (eg via the internet) 

 

 

 

 

Conclusions 

The Prime Butterfly Area and Red Data Book projects demonstrate the effective 

collaboration of country experts to achieve shared conservation objectives over a 

short time scale. They have brought together unique datasets that help plan 

conservation at a pan European level. These datasets are already being used to 

initiate and guide action within many countries. However, new information on 

butterflies is coming available constantly and our knowledge of the status and 

threats to European butterflies will undoubtedly improve in coming years. We 

must therefore recognise that no review is ever perfect but represents a snapshot 

of the best data available at the time. The results also provide a good platform to 

build improved information systems and better conservation strategies in the 

future. We hope that the two projects provide useful models of what can be 

achieved at a European scale as similar information is needed urgently on other 

invertebrate taxa in order to stem their widespread decline. 

The urgent need to take concerted action to conserve butterflies and moths across 

Europe has led us to found a new umbrella organisation in November 2004: 

Butterfly Conservation Europe. This aims to halt and eventually reverse the decline 
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Figure 11.4. Main threats to target species within Prime Butterfly Areas. 
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of Lepidoptera in Europe and promote all activities that may help to conserve this 

group of insects. The new organisation will co-ordinate existing work and 

stimulate further action both at a European policy level and at a country level. We 

hope to build on the successes of the two previous projects and support a growing 

network of organisations who are tackling Lepidoptera conservation within each 

country. Further details of its work can be found on www.bc-europe.eu. 
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Abstract 

The International Union for the Conservation of Nature (IUCN) is the leading 

authority on assessing species’ extinction risks worldwide and introduced the 

use of quantitative criteria for the compilation of Red Lists of threatened 

species. Recently, we assessed the threat status of the 483 European butterfly 

species, using semi-quantitative data on changes in distribution and in 

population sizes provided by national butterfly experts. We corrected 

distribution trends for the observation that coarse-scale grid cells 

underestimate actual population trends by 35%. If population data were 

unavailable, we used the distribution trend to calculate a population trend. To 

account for uncertainty, we included a 5% error margin on the distribution and 

population trends provided. The new Red List of European butterflies 

determined one species as Regionally Extinct, 37 species as threatened 

(Critically Endangered, Endangered or Vulnerable) and a further 44 as Near 

Threatened. The use of semi-quantitative data on distribution and population 

trends permitted us to use IUCN criteria to compile a scientifically underpinned 

Red List of butterflies in Europe. However, a comparison of detailed 

monitoring data for some grassland species showed that coarse-scale grid cell 

data and population trends strongly underestimate extinction risks, and the 

list should be taken as a conservative estimate of threat. Finally, combining 

the new Red List status with the data provided by the national butterfly 

experts, allowed us to determine simple criteria to delineate conservation 

priorities for butterflies in Europe, so called SPecies of European conservation 

Concern (SPEC’s). Using European butterflies, our approach illustrated how 

Red Listing can be performed when data are incomplete for some IUCN criteria 

or vary strongly among countries. 

 

Pseudochazara cingovskii: a rare 
and endemic butterfly in Europe, 
considered Critically Endangered. 
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Introduction 

Since the 1950s, the International Union for Conservation of Nature (IUCN) has co-

ordinated the compilation of global Red Lists, that aim to estimate the global 

extinction risk of each species assessed. The first Red Data Books were compiled 

for birds and mammals (Fitter and Fitter, 1987). Initially, categorization was based 

on “best professional judgment” of experts, but since the 1980s, the IUCN decided 

to use quantitative criteria (Mace and Lande, 1991). In 1994, the first version of the 

criteria and categories for compiling global Red Lists was accepted. The criteria 

were revised in 2001 to adapt to the needs of the various taxonomic groups (IUCN, 

2001; IUCN Standards and Petitions Working Group, 2008; Mace et al., 2008). 

Birds were, again, the first group to which these quantitative criteria were applied 

(Collar et al., 1994), but since then other taxonomic groups have been evaluated as 

well (Baillie et al., 2004; Vié et al., 2009). The application of the IUCN criteria is, 

however, not always easy, especially for taxa for which quantitative data are less 

accurate than for mammals or birds such as bryophytes (Hallingbäck et al., 1995) 

or molluscs (Regnier et al., 2009). Additionally, the straightforward use of IUCN 

criteria on sub-global levels (Gärdenfors et al., 2001) poses some problems, 

especially in small regions (Maes and van Swaay, 1997). This led to the 

development of guidelines for the application of the IUCN Red List criteria on 

regional levels in 2003 (IUCN, 2003). 

Butterflies are good indicators for the state of the environment and due to their 

short life cycle, narrow niches and relatively low mobility, they are more sensitive 

to land-use changes than long-lived animals such as birds and mammals (Thomas 

et al., 2004; Fleishman and Murphy, 2009). A further advantage of butterflies is 

their attractiveness to the general public, making them suitable ambassadors of 

biodiversity changes (Kühn et al., 2008; Schlegel and Rupf, in press). Among the 

invertebrates, butterflies are one of the best studied insect groups for which both 

ecological and relatively good quantitative distribution data are available in Europe 

(Kudrna, 2002; van Swaay et al., 2010). The knowledge of butterflies in Europe is 

fairly good compared to other parts of the world. However, differences in data 

quality and quantity among the different European countries still remain. In 

general, the countries in NW Europe usually have detailed and high quality 

information, but are poor in species, whereas species-rich countries in S and E 

Europe often have poor quality data and few people studying butterflies. This 

impedes the straightforward application of quantitative IUCN criteria by simply 

amalgamating the information of different countries. 

Here, we illustrate how we applied the IUCN criteria to compile the new Red List of 

European butterflies. More precisely, we compared the strict quantitative use of 

the IUCN criteria with an approach that allows for uncertainty, correcting for 

underestimating the decrease in populations from coarse-scaled grid cells 

(Akçakaya et al., 2000). We also assessed the Red List status of 17 grassland 

butterflies for which detailed population data were available from butterfly 

monitoring schemes and compared the outcome with that of classical distribution 

data. Finally, based on the Red List and the additional information on distribution 

and population trends, we defined criteria to assess conservation priority classes 

for all European butterflies, so called SPecies of European conservation Concern 

(SPEC’s). 
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Material and methods 

Geographic scope 

For the purpose of this Red List, Europe ranged from Iceland to the Urals including 

the European parts of the Russian Federation, but excluding the Caucasus region 

and from Franz Josef Land to the Mediterranean, including the Canary Islands, 

Madeira and the Azores (Figure 12.1). Apart from the analysis for Europe as 

defined above, we also assessed the threat status in the 27 countries of the 

European Union (EU27 - Figure 12.1). The taxonomy of European butterflies was 

updated for the Red List (see Appendix 1) and is in concordance with the Fauna 

Europaea database. 

 

IUCN criteria 

The IUCN uses five criteria to assess the extinction risk of species (IUCN, 2001): 

A) a past, present and/or projected population reduction measured over 10 

years or 3 generations, whichever is longer; since all European butterflies 

have a generation time < 2 years (Tolman and Lewington, 1997) we used 

10 years as a time period to estimate changes in population sizes; 

B) geographic range size in combination with fragmentation, population 

decline or fluctuations; 

C) small population size in combination with decline or fluctuations; 

D) very small distribution range or restricted population size; 

E) a quantitative analysis of extinction probability. 

Species are assigned a threat category when satisfying any one of the criteria A-E. 

 

Regional assessment  

To determine which species to assess for the European Red List, we used the 

species’ Range affinity, indicating the relationship between the species’ European 

and global distribution (Kudrna, 1986; van Swaay and Warren, 1999). Species for 

which Europe is at the margin of their distribution range or species having only 

temporary populations in Europe were not assessed (Range affinity 1: 48 species – 

Table 12.1). As the IUCN Red List criteria are designed to be used at a global level, 

an adjustment is necessary to define the European Red List category for species 

also occurring outside Europe (IUCN, 2003). The preliminary Red List category of 

species for which the global distribution area is equally situated within and outside 

Europe (Range affinity 2) or mainly situated in Europe (Range affinity 3), can be 

downgraded by one category if the European populations could be rescued by 

Figure 12.1: Quality of the distribution (left) and the trend (right) data as indicated by the national butterfly experts. Black = 
very good; dark grey = good; light grey = moderate; white = poor. The 27 countries of the European Union are hatched.  
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populations outside Europe. This criterion is only valid for migrant or vagrant 

butterfly species such as Painted Lady (Vanessa cardui) or African Migrant 

(Catopsilia florella). Since all migrant species were categorized as Least Concern, 

there was no need for downgrading any of the species in the European Red List. 

For European endemics (Range affinity 4), the European Red List assessment 

coincides with the global Red List status and no adjustments of the Red List 

category were needed. 

 

Data sources for the European Red List 

For the compilation of the Red List of European butterflies, we used four data 

sources. 

First, national butterfly experts provided us with the distribution area of each 

species in their country during the period 1999-2008 either as a percentage of the 

total number of investigated squares (i.e., 1 x 1 km², 5 x 5 km² or 10 x 10 km² 

depending on the mapping resolution used in each country) or as semi-

quantitative distribution classes (<1%, 1-5%, 5-15%, >15%). For species with an 

Area of Occupancy (AOO) < 50 000 km² in the previous Red Data Book of 

European butterflies (van Swaay and Warren, 1999), additional information on the 

present AOO (i.e., the number of 2 x 2 km² grid cells), the number of sites, the 

number of individuals and the degree of fragmentation of the populations was 

asked. The experts also provided a distribution trend (changes in the number of 

grid cells) and, if available, a population trend (changes in the number of 

individuals) for each species for the period 1999-2008, either as an exact figure or 

as semi-quantitative trend classes (unknown, extinct, decrease 75-100%, decrease 

50-75%, decrease 25-50%, decrease 15-25%, stable, increase 125-200%, increase 

>200%). Finally, the experts were asked to give an estimate of the quality of their 

data (Very good, Good, Moderate, Poor – Figure 12.1). 

The second data source was again the previous Red Data Book of European 

Butterflies (van Swaay and Warren, 1999) for countries where no updated 

information was available. Since trends in the previous Red Data Book were based 

on a 25-year period, they were recalculated for a 10-year period assuming a 

constant exponential rate of change (i.e. constant proportional rate). 

The third data source was the Climatic Risk Atlas of European Butterflies by 

Settele et al. (2008) in which the projected changes in the distribution of climatic 

niches over the period 1980-2080 were assessed. For the purpose of this Red List, 

we used the projected changes under the most severe (the IPCC A1FI) climate 

change scenario with a mean expected temperature increase of 4.1°C by 2080, 

assuming full dispersal. There are indications, however, that this scenario is still 

underestimating the negative effects of climate change on species distributions 

(Rahmstorf et al., 2007). Assuming unlimited dispersal is certainly over-optimistic 

for most butterfly species. The use of these projections of the Climatic Risk Atlas 

can, therefore, be seen as a conservative approach that tends to underestimate 

negative effects. Assuming a constant exponential rate of change (i.e. constant 

proportional rate) between the present-day period (1970-2000) and the period 

2051-2080, we converted this projected trend into a 10-year trend to coincide with 

the IUCN criteria. In consultation with the IUCN, the species that were predicted to 

decline by 98% over 80 years (1970-2000 to 2050-2080, equivalent to <30% decline 

over 10 years) were classified as Near Threatened. 

The final data source was the information obtained during two Red List 

workshops. A first workshop with 50 national butterfly experts (Laufen, Germany - 

January 2009) reviewed the preliminary assessments in biogeographically based 

subgroups. New data were added to the species summaries and maps and 

provisional Red List categories were defined for each species. During a second 

workshop (Ankara, Turkey - August 2009), we performed a sensitivity analysis on 
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the distribution trends by adding uncertainty levels when using distribution trends 

to estimate the extinction risk of butterflies (cf. Akçakaya et al., 2000). Following 

this meeting, all butterfly assessments were reviewed and adjusted, where 

necessary, in consultation with the IUCN Red List Unit. The final IUCN Red List 

classifications can, therefore, be regarded as a product of scientific consensus 

through the application of semi-quantitative criteria to determine the extinction 

risk of all European butterflies, supported by literature and expert data sources. 

 

Estimating the geographic range of a species in Europe 

For all European butterflies, we produced distribution range maps based on 

European distribution data (Kudrna, 2002), national and regional atlases and 

European field guides (Tolman and Lewington, 1997; Lafranchis, 2004). From 

these maps, we calculated the Extent of Occurrence (EOO) for all European 

butterflies. To obtain the Area of Occupancy (AOO), we subsequently calculated 

the geographic range of all European species either by weighting the percentual 

distribution provided by the national experts (based on grid square data) or by 

using the geometric means of the semi-quantitative distribution classes (<1%, 1-

5%, 5-15% and >15% become 0.1%, 2.24%, 8.66% and 38.73% respectively). The 

geographic range was calculated both for Europe as a whole and for the 27 

countries of the European Union (EU27). 

 

Estimating the European distribution trend 

As mentioned above, we performed a sensitivity analysis on the distribution trend 

by allowing for a certain level of uncertainty on the national distribution trend 

provided by the national butterfly experts. In consultation with the IUCN, we 

decided to apply a conservative uncertainty level of 5% for all species (Akçakaya et 

al., 2000). If no up-to-date information on distribution changes was available, we 

converted the 25-year trend in the Red Data Book of European Butterflies (van 

Swaay and Warren, 1999) into a 10-year trend assuming a constant exponential 

rate of change (i.e. constant proportional rate) for the period 1999-2008 to 

coincide with the IUCN criteria. If only trend classes were provided in the previous 

Red Data Book (van Swaay and Warren, 1999), we transformed these classes in the 

25-year period classes into a 10-year period trend: a decrease of 75-100% over a 

25-year period was transformed into a decrease of 40-100% in the 10-year period, 

a decrease of 50-75% into 23-40%, a decrease of 25-50% into 10-23%, a decrease 

of 15-25% into 6-10%, an increase of 125-200% into 109-130% and an increase of 

>200% into >130%. The European distribution trend was then calculated as the 

mean trend of all countries weighted by their area assuming that the area of 

occupancy (AOO) within a country is proportional to the area of its country (van 

Swaay and Warren, 1999), except for the Ukraine where only the area for which 

data were available was used (Transcarpathia). The distribution trend was 

calculated both for Europe as a whole and for the EU27. 

 

Estimating the European population trend 

The procedure to establish the European population trend was similar to the 

distribution trend, using either the newly provided national population trends or 

semi-quantitative classes. Since the previous Red Data Book did not contain 

population trends, we used the distribution trends to derive a population trend for 

those countries where no such information was provided. In general, the use of 10 

x 10 km² grid cells (used in the previous Red Data Book) underestimates the 

decrease in population trends by about 35% compared to 2 x 2 km² grid cells 

(Thomas and Abery, 1995; Cowley et al., 1999). Population trends are strongly 

correlated with trends in changes in distribution based on 2 x 2 km² grid cells 

(Warren et al. 2001). This resolution was also suggested by the IUCN as units for 
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population trends (IUCN, 2001). The figure of 35% was, therefore, used to correct 

for the reported population trends based on 10 x 10 km² grid cells (Akçakaya et al., 

2000). A decline of 10% on a 10 x 10 km² grid square basis in the previous Red Data 

Book, for example, was transformed into a population decline of 13.5% for the 

current trend calculations. The European population trend was calculated in a 

similar way as the European distribution trend, both for Europe as a whole and for 

the EU27. 

 

Monitoring European grassland butterflies 

Butterfly monitoring schemes are organised in different European countries or 

regions (van Swaay and van Strien, 2008) and aim to assess regional and national 

trends per species by means of standardized transect walks (Pollard and Yates, 

1993). For 17 grassland species, monitoring data were available from 12 countries 

or regions: Catalunya (NE Spain), Estonia, Finland, Flanders (N Belgium), France, 

Germany, Jersey (Channel Islands), the Netherlands, Portugal, Argovia (N 

Switzerland), Transcarpathia (W Ukraine) and the United Kingdom. These data 

have already been used to produce the European Grassland indicator (van Swaay 

and van Strien, 2008). To illustrate the effect of using detailed population data 

(Van Dyck et al., 2009), we also calculated the IUCN Red List category for this 

limited set of species and compared the outcome with the classical IUCN approach 

described above. 

 

SPecies of European conservation Concern  

Apart from compiling a Red List for European butterflies, we also used the data to 

determine so called SPecies of European conservation Concern (SPEC’s - van 

Swaay and Warren, 1999; Keller and Bollmann, 2004) based on the Red List status, 

endemicity and the strength of the decline (Possingham et al., 2002; Fitzpatrick et 

al., 2007). SPEC’s can be considered as useful tools in policy making (Rodrigues et 

al., 2006), for example for the Bern Convention (Europe) and/or for the Habitats 

Directive (in the EU27). Both forms of legislation aim to protect sites for the most 

threatened species and/or to protect species legally.  

 

 

 

 

 

 

 

 

 
 
  

IUCN Category Europe 
Without uncertainty 

 
With uncertainty 

EU27 RL1999 

Regionally Extinct 1 (0.2) 1 (0.2) 2 (0.5) 1 (0.2) 

Critically Endangered 3 (0.7) 3 (0.7) 2 (0.5) 7 (1.2) 

Endangered 8 (1.8) 12 (2.8) 9 (2.1) 18 (3.1) 

Vulnerable 11 (2.5) 22 (5.1) 19 (4.5) 45 (7.8) 

Near Threatened 25 (5.7) 44 (10.1) 47 (11.2) 42 (7.3) 

Least Concern 383 (88.0) 349 (80.2) 337 (80.2) 463 (80.4) 

Data Deficient 4 (0.9) 4 (0.9) 4 (1.0) - 

Not Applicable or Not Evaluated 48 48 63 - 

Species assessed 435 435 420 576 

Table 12.1: The number of butterfly species (percentages in brackets) per IUCN Red List category in Europe 
as a whole and for the 27 countries of the European Union (EU27). For comparison, we also give the number 
of species in the previous Red List (RL1999 - van Swaay and Warren, 1999). For Europe as a whole, results 
with and without uncertainty classes are given*, while for the EU27 only the result with uncertainty is 
shown. Percentages do not take into account the species that were Not Assessed or Not Evaluated. The 
higher number of species assesses in the 1999 Red List is due to the fact that Asian Turkey was included in 
the analysis. 

*The consulted experts could either report the trend as a an exact figure (e.g. 'decline of 20%') or as semi-
quantitative trend classes (e.g. 'decrease of 15-25%'). After introducing a 5% uncertainty in the exact 
figures and using the class-borders, the minimum and maximum trend could be calculated lead. Following 
the precautionary principle the largest decline was used to classify the species for the columns 'with 
uncertainty'. 
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Table 12.2: IUCN Red List category for 17 grassland butterflies using trends based on 
distribution data and on monitoring data. 

Species Distribution data Monitoring data 

Anthocharis cardamines Least Concern Least Concern 

Coenonympha pamphilus Least Concern Near Threatened 

Cupido minimus Least Concern Least Concern 

Cyaniris semiargus Least Concern Vulnerable 

Erynnis tages Least Concern Near Threatened 

Euphydryas aurinia Least Concern Least Concern 

Lasiommata megera Least Concern Near Threatened 

Lycaena phlaeas Least Concern Least Concern 

Maniola jurtina Least Concern Least Concern 

Ochlodes sylvanus Least Concern Least Concern 

Phengaris arion Endangered Critically Endangered 

Phengaris nausithous Near Threatened Least Concern 

Polyommatus bellargus Least Concern Least Concern 

Polyommatus coridon Least Concern Least Concern 

Polyommatus icarus Least Concern Least Concern 

Spialia sertorius Least Concern Least Concern 

Thymelicus acteon Near Threatened Vulnerable 

 

 

Results 

Data quality, as indicated by the national butterfly experts differed considerably 

over Europe (Figure 12.1). Distribution data were, on average, estimated as 

relatively good (2.46 on a scale from 1 very good to 4 poor), while, on average, 

trend data were qualified as moderate (average 2.89). 

The strict quantitative use of the IUCN criteria would have classified 23 butterflies 

as Regionally Extinct or threatened (Critically Endangered, Endangered or 

Vulnerable - Table 12.1). Allowing for uncertainty in the population trends resulted 

in the classification of 38 species as Regionally Extinct or threatened (Table 12.1). 

Using the detailed population trends from the monitoring transects would have 

placed six of the 17 grassland species in a higher and one in a lower threat category 

(Table 12.2). Although IUCN permits the use of the best information available to 

estimate extinction risks, we preferred to evaluate all species using distribution or 

population trends, because monitoring data are biased towards NW Europe. The 

final IUCN Red List category of all 483 European species together with the IUCN 

criteria used to classify the species can be found in Van Swaay et al. (2010). 

In the new Red List of European butterflies, Anatolian False Argus (Aricia 

hyacinthus) is the only species classified as Regionally Extinct. It was known only 

from SW Romania in the beginning of the 20th century (Székely, 2008) and the 

nearest present-day populations are in W Turkey (Hesselbarth et al., 1995). 37 

species (9%) were classified as threatened and a further 44 species (10%) as Near 

Threatened (Table 12.1). The three Critically Endangered species in Europe are: 

Maderian Large White (Pieris wollastoni - restricted to the island of Madeira, but 

probably extinct because it has not been observed since the 1980s), Siberian 

Brown (Coenonympha phryne - only present in the Ukraine on two small virgin 

steppes in NE Crimea and in Russia reported as extremely rare) and Macedonian 

Grayling (Pseudochazara cingovskii - known from only one location of less than 1.5 

km² in Macedonia). 
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Regionally Extinct in Europe 
Critically Endangered in Europe 
Endangered in Europe 
Vulnerable in Europe 
 
SPEC1 

Near Threatened in Europe 
 
 
 
 
SPEC2 

Decline in >=35% of 
the Europen countries 
 
Decline >10% 
 
SPEC3 

 
 
 
Decline <10% 
 
SPEC4 

European endemics (22) European endemics (11) European endemics (3) European endemics (3) 

Coenonympha orientalis Colias phicomone Erebia manto Melitaea parthenoides 

Erebia christi (II) Erebia claudina Hipparchia maderensis Plebejus hespericus 

Erebia sudetica (II) Erebia epistygne Melitaea asteria Pseudophilotes baton 

Euchloe bazae Erebia flavofasciata   

Gonepteryx cleobule Hipparchia fagi Non-endemics (19) Non-endemics (6) 

Gonepteryx maderensis Hipparchia leighebi Argynnis niobe Boloria frigga 

Hipparchia bacchus Hipparchia sbordonii Boloria freija Colias palaeno 

Hipparchia tilosi Plebejus trappi Colias tyche Euphydryas aurinia (II) 

Pararge xiphia Polyommatus nephohiptamenos Erebia embla Oeneis bore 

Pieris cheiranthi Polyommatus nivescens Glaucopsyche alexis Oeneis jutta 

Pieris wollastoni Pseudophilotes panoptes Hamearis lucina Plebejus sephirus 

Plebejus zullichi  Hesperia comma (II)  

Polyommatus galloi Non-endemics (33) Hyponephele lycaon  

Polyommatus golgus (II) Archon apollinus Lycaena hippothoe  

Polyommatus humedasae (II) Aricia anteros Lycaena thersamon  

Polyommatus orphicus Boloria chariclea Melanargia occitanica  

Polyommatus violetae Boloria titania Neolycaena rhymnus  

Pseudochazara amymone Carcharodus flocciferus Nymphalis vaualbum  

Pseudochazara cingovskii Carcharodus lavatherae Papilio alexanor  

Pseudochazara euxina Chazara briseis Phengaris alcon  

Pseudochazara orestes Colias hecla Pseudophilotes bavius  

Pyrgus cirsii Cupido decoloratus Pyronia tithonus  

 Euphydryas desfontainii Satyrium ilicis  

Non-endemics (16) Euphydryas iduna Tomares callimachus  

Aricia hyacinthus Hipparchia hermione   

Boloria improba Hipparchia statilinus   

Boloria polaris Iolana iolas   

Coenonympha hero (II) Leptidea morsei   

Coenonympha oedippus (II) Maniola halicarnassus   

Coenonympha phryne Melitaea aurelia   

Coenonympha tullia Melitaea britomartis   

Colias chrysotheme Muschampia cribrellum   

Colias myrmidone Oeneis norna   

Euphydryas maturna (II) Parnassius apollo (II)   

Lopinga achine (II) Parnassius mnemosyne (II)   

Lycaena helle Parnassius phoebus   

Phengaris arion (II) Phengaris nausithous (II)   

Phengaris teleius (II) Plebejus dardanus   

Tomares nogelii Plebejus pylaon   

Turanana taygetica Polyommatus damon   

 Polyommatus dorylas   

 Polyommatus eros   

 Pseudophilotes vicrama   

 Thymelicus acteon   

 Zegris eupheme   

 Zerynthia cerisy   

 

Table 12.3a: Conservation priority classes of the SPecies of European conservation Concern (SPEC’s) in the whole of Europe. 
The numbers shown in brackets is the number of species in each conservation priority class. (II) = the species is already listed 
in the Bern Convention Annex II. 
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Regionally Extinct in EU27 
Critically End. in EU27 
Endangered in EU27 
Vulnerable in EU27 
SPEC1 

Near Threatened in EU27 
 
 
 
SPEC2 

Decline in >=35% of the EU27 
countries 
 
Decline >10% 
SPEC3 

 
 
 
Decline <10% 
SPEC4 

European endemics (19) European endemics (10) European endemics (6) European endemics (2) 

Erebia christi (II/IV) Colias phicomone Erebia manto Erebia nivalis 

Erebia sudetica (II/IV) Erebia claudina Erebia melas Plebejus hespericus 

Euchloe bazae Erebia epistygne Hipparchia maderensis  

Gonepteryx cleobule Erebia flavofasciata Hipparchia semele Non-endemics (17) 

Gonepteryx maderensis Hipparchia fagi Oeneis glacialis Argynnis aglaja 

Hipparchia bacchus Hipparchia leighebi Pyrgus warrenensis Boloria euphrosyne 

Hipparchia tilosi Hipparchia sbordonii  Boloria frigga 

Pararge xiphia Polyommatus nephohiptamenos Non-endemics (16) Boloria selene 

Pieris cheiranthi Polyommatus nivescens Boloria freija Colias palaeno 

Pieris wollastoni Pseudophilotes panoptes Boloria thore Colias tyche 

Plebejus zullichi Non-endemics (37) Coenonympha oedippus Cyaniris semiargus 

Polyommatus galloi Argynnis laodice Erebia aethiops Erebia ligea 

Polyommatus golgus (IV) Argynnis niobe Erebia embla Erebia medusa 

Polyommatus humedasae Boloria chariclea Euphydryas maturna (II/IV) Erynnis tages 

Polyommatus orphicus Carcharodus lavatherae Hesperia comma (II) Euphydryas aurinia (II) 

Polyommatus violetae Chazara briseis Lycaena helle (II/IV) Hamearis lucina 

Pseudochazara amymone Coenonympha tullia Melanargia occitanica Lycaena virgaureae 

Pseudochazara orestes Colias hecla Melitaea aurelia Oeneis bore 

Pyrgus cirsii Euphydryas desfontainii Melitaea cinxia Oeneis jutta 

 Euphydryas iduna Parnassius mnemosyne (II/IV) Pyrgus centaureae 

Non-endemics (13) Hipparchia hermione Polyommatus admetus Pyrgus malvae 

Aricia hyacinthus Hipparchia statilinus Polyommatus bellargus  

Boloria improba (II) Iolana iolas Pyrgus armoricanus  

Boloria polaris Limenitis populi Satyrium ilicis  

Coenonympha hero (II/IV) Lycaena alciphron   

Colias chrysotheme Lycaena hippothoe   

Colias myrmidone (II/IV) Maniola halicarnassus   

Leptidea morsei (II/IV) Melitaea britomartis   

Lopinga achine (IV) Melitaea diamina   

Nymphalis vaualbum (II/IV) Melitaea trivia   

Phengaris arion (II/IV) Muschampia cribrellum   

Phengaris teleius (II/IV) Nymphalis xanthomelas   

Tomares nogelii Oeneis norna   

Turanana taygetica Parnassius apollo (II/IV)   

 Parnassius phoebus   

 Phengaris alcon   

 Phengaris nausithous (II/IV)   

 Plebejus dardanus   

 Polyommatus damon   

 Polyommatus dorylas   

 Polyommatus eros (II/IV)   

 Polyommatus ripartii   

 Pseudophilotes vicrama   

 Pyrgus serratulae   

 Scolitantides orion   

 Thymelicus acteon   

 Zegris eupheme   

 Zerynthia cerisy   

Table 12.3b: Conservation priority classes of the SPecies of European conservation Concern (SPEC’s) in the 27 countries of 
the European Union (EU27). The figure shown in brackets is the number of species in each conservation priority class. (II), 
(IV), (II/IV) = the species is already listed in the Habitat Directive Annex II or IV or both. 
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In the EU27, two species were classified as Regionally Extinct: Anatolian False 

Argus and Nogel’s Hairstreak (Tomares nogelii), both reported only from Romania. 

Two species are Critically Endangered in the EU27: Maderian Large White (see 

above) and Danube Clouded Yellow (Colias myrmidone), the latter being one of the 

most rapidly declining species in the region (Dolek et al., 2005; Konvicka et al., 

2008). Thirty species (7%) were considered threatened and a further 47 (11%) Near 

Threatened (Table 12.1). 

The most often used criteria to classify European butterflies in their final Red List 

category were criterion A (declining populations – 47 times) and criterion B 

(restricted geographic range size, and fragmentation, decline or fluctuations – 22 

times). Criterion C (small population size and decline) was only used for Spanish 

Greenish Black-tip (Euchloe bazae), an extremely local species occurring only in 

Spain; criterion D (very small population or very restricted distribution) was used to 

classify six species: El Hierro Grayling (Hipparchia bacchus), two locations on El 

Hierro in the Canary islands (Spain); La Palma Grayling (Hipparchia tilosi), five 

locations on La Palma in the Canary islands (Spain); Nevada Blue (Polyommatus 

golgus), nine locations with an area of occupancy (AOO) of 16 km² in Sierra Nevada 

and Sierra de la Sagra (Spain); Andalusian Anomalous Blue (Polyommatus 

violetae), two locations in the Sierras of Almijara, Tejeda, Cazorla and La Sagra 

(Spain), Brown’s Grayling (Pseudochazara amymone), four locations in NW Greece 

and Dils' Grayling (Pseudochazara orestes), five locations along the border between 

Greece and Bulgaria. 

The SPecies of European conservation Concern with the highest conservation 

priority (SPEC1) are the Regionally Extinct and threatened species (38 and 32 

species in the whole of Europe and in the EU27 respectively – Table 12.3). A second 

conservation priority (SPEC2) concerns all Near Threatened species (44 and 47 

species in Europe and in the EU27 respectively – Table 12.3). Additionally, species 

that are of Least Concern, but show a declining population trend in at least 35% of 

the countries, consist a third (overall decline >10% - SPEC3) and fourth (overall 

decline <10% - SPEC4) conservation priority (Table 12.3). 

 

 

 
  

Figure 12.2: Number Regionally Extinct, Critically Endangered, Endangered or 
Vulnerable butterfly species per 864 km² hexagon in Europe. 
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Discussion 

Despite regional differences in data quality, we managed to apply quantitative 

IUCN criteria to estimate the extinction risk of European butterflies. Allowing for 

uncertainty in data accuracy (Akçakaya et al., 2000) and applying the 

precautionary principle (Kriebel et al., 2001), we classified about 19% of all 

European butterflies as threatened (i.e., Critically Endangered, Endangered or 

Vulnerable) or Near Threatened. The use of detailed monitoring data for a limited 

set of grassland species, however, showed that coarse-scale grid cell data and 

population trends strongly underestimate extinction risks. The new European Red 

List of butterflies should, therefore, be seen as rather conservative (i.e., only listing 

clearly threatened species). However, it is also an opportunity to demonstrate the 

rapid loss of European butterflies and the need for urgent conservation action. 

  

Data quality and the use of IUCN criteria for European butterflies 

Data quality differed considerably among countries and also between distribution 

and trend data. 53% of the European countries estimated their distribution data as 

good, while only 21% estimated their trend data to be good. Since self-assessment 

of data quality is often subjective (Burgman 2005), it would – for the future – be 

preferable to assess the data quality of (national) surveys with a more objective 

measure, both in space and in time. NW European countries generally have high 

quality data on butterfly distribution and population trends. For example, Britain 

(Asher et al., 2001), the Netherlands (Bos et al., 2006) and Belgium (Maes and Van 

Dyck, 2001; Fichefet et al., 2008) all have recent distribution atlases and/or 

butterfly monitoring schemes. In contrast, many E and SE European countries, but 

also countries such as Germany, France or Italy, have far less detailed distribution 

and trend data (Figure 12.1). The use of distribution and trend classes, however, 

allowed us to adequately include all countries in the Red List assessment of 

European butterflies. Since Central and E Europe are strongholds for many of the 

threatened butterflies in Europe (Figure 12.2 – van Swaay et al., 2010), it is 

important to gather more detailed data in these countries. To improve the quality 

and the quantity of data necessary for compiling European but also national Red 

Lists, we would encourage all European countries to start collecting detailed 

butterfly distribution data and, where possible, to start a robust butterfly 

monitoring scheme (e.g. Kühn et al., 2008). The use of skilled volunteers can make 

these schemes relatively cheap and will rapidly increase the number of records 

(Schmeller et al., 2008). 

The use of the Climatic Risk Atlas of European Butterflies (Settele et al. 2008) 

enabled us to classify nine species in the Near Threatened category: four arctic 

species (Arctic Fritillary Boloria chariclea, Northern Clouded Yellow Colias hecla, 

Lapland Fritillary Euphydryas iduna and Norse Grayling Oeneis norna) and five 

species that, in Europe, mainly occur in the southwest (Spring Ringlet Erebia 

epistygne, Spanish Fritillary Euphydryas desfontainii, Mother-of-pearl Blue 

Polyommatus nivescens, Panoptes Blue Pseudophilotes panoptes and Sooty 

Orange-tip Zegris eupheme). However, the climate risk atlas assessed 50 more 

species as having an extremely high risk of going extinct due to climate change 

(i.e., a loss of more than 95% in distribution area). If the climate change criterion 

would have been lowered to a 95% distribution loss (as in Settele et al. 2008) 

instead of the 98% used here, 44 additional species would have been classified as 

Near Threatened in the present European Red List. Climate change atlases that 

estimate the extinction risk of species such as the ones for birds (Huntley et al. 

2007) and butterflies (Settele et al. 2008) are powerful conservation tools and can, 

as shown here, be used as criterion A3c (i.e., a projected population reduction over 

10 years) in the Red Listing process. 
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The use of coarse-scale grid cells as units of species’ distribution strongly 

overestimates the area occupied by a species (Thomas and Abery, 1995; Cowley et 

al., 1999), leading to an underestimation of the decline in distribution. For 

example, detailed measurements of the distribution of Alcon Blue (Phengaris 

alcon) in Belgium revealed that it actually occupied only 0.48 km² (Maes et al., 

2004). When expressing its distribution in grid cells, however, it occurs in 22 grid 

cells of 1 x 1 km² (22 km²), 15 cells of 2 x 2 km² (60 km²), 13 cells of 5 x 5 km² (325 

km²) and nine cells of 10 x 10 km² (900 km²). This would overestimate the AOO by 

a factor of 46, 125, 677 and 1875 respectively. To minimise the overestimation of a 

species’ distribution and to produce estimates of the area of occurrence (AOO) 

that are valid for comparison with the thresholds in criterion B, the IUCN 

recommends the use of 2 x 2 km² grid cells (IUCN Standards and Petitions Working 

Group, 2008). Furthermore, where actual population trends from monitoring 

schemes were available, they showed that declines in population trends based on 

distribution data are even more strongly underestimated. On the other hand, a 

misjudgement of a single national expert might easily result in a very local species 

being listed as threatened without proper justification. Brown grayling 

(Pseudochazara amymone) and Dil’s grayling (Pseudochazara orestes), for example, 

are restricted to Greece and/or Bulgaria, two countries without a butterfly 

monitoring scheme able to estimate population trends of this local endemics. 

Despite this, both species are classified as Vulnerable, based on the opinion of 

local experts. 

One of the major problems in applying the IUCN criteria to butterflies is the 10-

year period which is rather short to detect declines of more than 30% to classify 

the species at least as Vulnerable. Having one or even more generations per year 

and being more sensitive to environmental factors, invertebrate numbers tend to 

fluctuate much more than those of long-lived animals (Thomas, 1994). This makes 

it difficult to distinguish between anthropogenically induced declines and natural 

fluctuations. Moreover, the IUCN criteria are designed to estimate a species 

imminent extinction risk and do not take declines in an earlier period into account. 

Although understandable, it may lead to very counterintuitive classifications. 

There are several examples of species (mostly habitat specialists) that have almost 

disappeared from W and C Europe in the second half of the 20th century (resulting 

in a population decline of more than 80%), but the few remaining populations have 

been maintained and are either stable or show slow declines of less than 30% 

partly as a result of huge conservation efforts. Examples include Moorland 

Clouded Yellow (Colias palaeno - Nilsson et al., 2008) and Cranberry Fritillary 

(Boloria aquilonaris - Baguette and Schtickzelle, 2003) in peat bogs, False Ringlet 

(Coenonympha oedippus - Lhonoré and Lagarde, 1999; Čelik et al., 2009) and Violet 

Copper (Lycaena helle - Bauerfeind et al., 2009) in wetlands and Scarce Fritillary 

(Euphydryas maturna - Cizek and Konvicka, 2005) in coppiced woodlands. Because 

of a strong decline in the second half of the 20th century, False Ringlet, for 

example, was listed as one of the most threatened species in the previous Red 

Data Book of European butterflies (van Swaay and Warren, 1999) but is now 

classified as Least Concern in the EU27. Most of these species used to be much 

more common and widespread in Europe, and are thought to belong to the most 

threatened species by many butterfly experts. However, since they declined by 

less than 30% in the last 10 years, they were classified as non-threatened in the 

present Red List. The number of individuals in populations of these species may 

appear stable to experts visiting the sites on an irregular basis. Over several 

decades, however, such species have often become extinct across large regions 

(even in nature reserves) due to gradual but permanent habitat deterioration and 

natural fluctuations. Since such fluctuations are of much higher amplitude in 

insects than in vertebrates, they can more easily lead to extinctions. Considering a 
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longer time period (e.g., 25 years) to estimate extinction risks, would, therefore, 

be advisable for butterflies and possibly also for other invertebrates. 

A straightforward comparison of the Red Data Book (van Swaay and Warren, 

1999) and the present Red List (van Swaay et al. 2010) is not possible due to 

differences in methodology, spatial extent and timescales used between both lists. 

Compared to the previous Red List, a smaller number of species was now 

categorized as threatened (Table 12.1).However, applying the methodology of 

1999 to the present data would have classified 112 species in a higher and 37 in a 

lower Red List category than with the latest IUCN methodology (analysis not 

shown but see van Swaay and Warren (1999)). Using the 1999 methodology, 19 

(4%) more species would have been classified in the present Red list as Regionally 

Extinct or threatened (Critically Endangered, Endangered or Vulnerable) and 49 

(10%) as Near Threatened. The lower number of threatened species in the present 

list can, therefore, at least partly be attributed to the more conservative new IUCN 

criteria. Other methodological differences, e.g. the fact that Asian Turkey was 

included in the previous Red List, also make it impossible to compare both lists 

(Keith and Burgman, 2004). 

 

Conservation and policy implications 

With about 9% of the European butterflies classified as threatened and an 

additional 10% as Near Threatened, our results show that declines in butterfly 

diversity have certainly not been halted. In total, we determined 113 and 120 

SPEC’s for Europe and for the EU27 respectively (Table 12.3). Twenty-two of these 

species are already on the Bern Convention or Habitat Directive Annexes (Table 

12.3). For all SPEC’s, we would recommend the compilation of species action plans 

describing the causes of decline and the management and policy actions required 

(e.g., Munguira and Martín, 1999). An underpinned Red List and improved 

legislation protecting both suitable biotopes and species are, therefore, both 

important to stimulate butterfly conservation in Europe. The protection of sites of 

the most threatened butterfly species could focus on so called Prime Butterfly 

Areas (PBA’s), that are delineated on the basis of a target-species list of butterflies 

(European importance, conservation priority, etc). The list of SPEC’s presented 

here would be a good complement to the list of species that was used to delineate 

the present PBA’s because it involves more species (113 instead of 34), more 

specific biotopes (e.g., tundra, mountain areas) and more biogeographical regions 

(especially N European species are under-represented in the present target-

species PBA list). PBA’s have already been described for Europe (van Swaay and 

Warren, 2003), have recently been updated for Bulgaria (Abadjiev and Beshkov, 

2007) and Serbia (Jakšić, 2008) and a revision is being prepared for Turkey.   
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13. Synthesis 
 

 

 

Introduction 

In the preservation of biodiversity, butterfly conservation plays a major role in 

representing the large group of insects. Apart from one or two other groups (e.g. 

dragonflies and grasshoppers) there are no insect groups for which large-scale 

information on distribution and trends are available, as well as knowledge on their 

ecology and conservation.  

In chapter 1 the five major pillars in butterfly conservation were described: 

1. distribution 

2. trend 

3. causes 

4. conservation  

5. communication 

Three of these pillars have been investigated further in this thesis. In the first part 

(chapters 2-4), the focus was on establishing the distribution and especially trends 

in the distribution of species. Trends in distribution can be significantly different 

from the trend in population size, which is the topic in the second part (chapters 5-

8). Using this information to gather more knowledge on the conservation of 

butterflies makes up the last part (chapters 9-12).  

 
 

Challenges in tracking changes in butterfly distribution 

In their basic form, distribution maps show dots which represent observations of 

species. In most cases these dots are displayed in some kind of grid system and 

summarise the recording over periods of time. However, such maps can be difficult 

to interpret, as there are large differences in the periods, research intensity, scale 

of observations etc. (chapter 2). In the worst case, these maps even don’t show the 

distribution of a species but something completely different, for example the 

distribution of recorders or of train stations which could easily be reached. 

Although the number of recorders, both in the Netherlands, Europe and the world, 

has risen considerably, these facts still play an important role in compiling 

distribution maps, even of relatively well-investigated groups like butterflies: the 

higher demand for high quality and detailed information in landscape planning, 

nature conservation and management has more or less compensated for the rise in 

the number and the precision of butterfly records. Where, for Lempke (1936), a list 

of municipalities was more than sufficient, without any information on the date of 

the observation or on the number of records, and Geraedts (1986) and Tax (1989) 

were quite satisfied with squares of 5 x 5 km, even a 1 x 1 km grid is now considered 

to be on the coarse side (figure 13.1). Nowadays, online maps and in-the-field-

recording on a smartphone with gps improve the precision to under 10 m.  
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Although large numbers of recorders potentially reduce the gaps of knowledge in 

the maps, it is still essential to be able to judge the value of records as well as the 

squares with missing values. Several methods have been developed to tackle these 

issues: 

 Probability map: a map showing the probability that a species occurs in a 

square, mostly built on models using abiotic and habitat information (Van 

Swaay et al., 2006). 

 Gap closure: filling a distribution map (a map with all positive records) to a 

range map using a predefined set of rules. This method is used by the 

European Union for completing and unifying distribution maps at a 

European scale for the reporting on species of the annexes of the Habitats 

Directive under article 17 (Evans & Arvela, 2011). 

 Occupancy modelling: correct for the detection probability of species in 

grid cells (chapter 4). 

 

Probability maps 

The distribution of species is determined by a complex of interacting factors. If all 

factors are known and all relationships parameterised in a model, a complete 

distribution map should theoretically be possible. Such models usually end up with 

a probability of a species to occur at a given site given the combination of 

ecological parameters. To produce such probability maps, distribution records are 

linked to available data on abiotic parameters as well as habitat information or 

even the distribution of other species (Maes et al. 2009). The quality of the maps is 

determined by the models used, the number of parameters as well as the quality of 

the parameter maps and the number and quality of the detection/non-detection 

data.  

In the Netherlands, such maps have so far been produced for butterflies on two 

occasions. In 2006 a report on biodiversity hotspots for butterflies in the 

Netherlands was produced (Van Swaay et al. 2006) with probability maps for all 

species on a level of 250 x 250 m for the period 2000-2005. Figure 13.2 shows the 

probability distribution of Hipparchia semele on a 250 x 250 m scale as well as 

summarised on a 5 x 5 km scale. 

More recently Sierdsema (pers. comm.) is in the process of producing probability 

maps for all protected Dutch species including butterflies.  
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Figure 13.1: Quality of the distribution data of butterfly records in the Dutch National 
Database Flora and Fauna (NDFF). The totol number of butterfly observations in each 
period is given on the upperside of the bars.  
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Although a useful tool, probability maps suffer from the fact that the final result 

heavily depends on the quality and update frequency of the underlying data-maps. 

As there are always some maps that are not or only infrequently updated (which 

means some of them can be more than ten years old), probability maps have a 

serious risk of being already outdated when produced or soon after. 

 

 

 
 
 
 

 
 
At a larger scale, butterfly distributions heavily depend on climatic circumstances. 
As a consequence, it has proved possible to generate climatic niche models 
producing European Climate Envelopes per species describing the distribution of 
species at a European scale and based on four climatic variables (Settele et al., 
2008):  

 accumulated growing degree days until August, which is highly 
representative for general temperature gradients across Europe; 

 soil water content for the upper horizon, which is a realistic measure of 
water availability and near surface microclimate;  

 ranges in annual precipitation; 

 ranges in annual temperature;  

with the two last variables reflecting continentality and oceanity. 
The resulting probability maps can be extended to the future by applying possible 
climate scenarios (see figure 13.3 for an example). Such climate envelopes and the 
resulting maps not only help in understanding the relationships between 
butterflies and the main climatic drivers, a risk analysis also makes it possible to 
anticipate on future changes and take measures to counteract negative 
implications.     
 

  

Figure 13.2: Probability maps, indicating suitable grid cells,  for Hipparchia semele in the 
Netherlands in the period 2000-2005 on a 250x250m grid (left) and summarized to a 5x5km grid 
(right) (Van Swaay et al., 2006). Source: NDFF. 
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Figure 13.3: Observed and modelled actual distribution as well as potential future distributions in 2050 and 2080 
under the GRAS (GRowth Applied Strategy) scenario (approximating the IPCC A1FI climate change scenario with 
mean expected increase in temperature of 4.1°C) (Settele et al., 2008): 

a. Observed species distribution (50 × 50 km² UTM grid; black circles) and modelled actual distribution of 
climatic niche (orange areas) of Anthocharis euphenoides in Europe.  

b. Potential distribution under the GRAS scenario in 2050 (orange= remains stable; grey= gets lost, and dark 
brown= gained. 

c. Potential distribution in 2080. 

 

 

a.  

 

b.  

 
c.  

 

Male (right) and female of  
Anthocharis euphenoides. 
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Gap closure  

Gap closure is a method which is used to produce range maps for species and 

habitats, listed on the annexes of the Habitats Directive of the European Union, for 

the reporting following article 17 of that directive. Gap closure is described as:  

‘using a predefined set of rules specifying when two distribution points/grids will 

be joined together to form a single range polygon and where an actual gap in the 

range will be left’ (Evans and Arvela, 2011). This is a useful tool on a European 

scale, where large parts are under-investigated, but in a well investigated country 

like the Netherlands the results are poor – and for butterflies in some cases even 

wrong– in which case the gap closures have to be removed manually.  

 

Occupancy modeling 

Occupancy modeling has been discussed extensively in chapter 4. The basic idea is 

that a higher observation effort implies a higher probability to detect a species, so 

variation in observation effort over the years can be directly translated into 

variation in species detectability. Records from replicate visits to a site allow 

estimating detection probability separately from the probability of occurrence 

(Kéry et al. 2010, Van Strien et al. 2010). Examples for the resulting map for 

Hipparchia semele for 1990 and 2010 are shown in figure 4.5. 

 

Even for a well investigated group like butterflies in a well-investigated country 

like the Netherlands, distribution maps (showing positive records of a species) are 

still far from perfect. At the same time the need for complete maps, both in time 

and in space, has increased considerably. Such maps are needed at different levels. 

The obligations of the Habitats Directive require distribution and range maps at a 

10 x 10 km square resolution over six year periods (Evans and Arvela, 2011), which 

is easily achieved for the three remaining butterfly species listed (of the six species 

mentioned on the Habitats Directive that once occurred in the Netherlands, 

Phengaris arion, Euphydryas aurinia and Coenonympha hero being extinct, leaving 

only Phengaris teleius, P. nausithous and Lycaena dispar), but for some other 

species groups with a much smaller number of active volunteers (like Mollusca), 

this can still be hard to achieve.  

As butterflies are relatively easy to recognize and their habitat requirements are 

well-known, an inventory of at least 90% of the sites should be possible in most 

European countries for the butterflies listed on the Habitats Directive. In many 

European countries national and local governments support volunteers and, in 

return, obtain a large amount of high-quality data, allowing them to fulfill all 

requirements. It is advisable that the remaining countries of the European Union 

also provide support for the involvement of volunteers in data collection, thereby 

providing a solid basis for future reporting. 

 

Trend in distribution 

Chapter 2 shows the first attempt to find a standardised method to establish a 

distribution trend for butterflies in the Netherlands. Using a set of reference 

species (chapter 3) already constituted a considerable improvement over former 

approaches, and the results were presented in five-year periods by Van Swaay 

(1995).  

Occupancy modelling offers the best results so far with the additional insights into 

distribution dynamics and trends of colonisation and persistence (chapter 4). As a 

result, this method has now been used successfully for several species groups in 

the Netherlands for the reporting of the Conservation Status of species of the 

annexes of the Habitats Directive (available from mid-2014 on 

http://bd.eionet.europa.eu/article17/index_html/speciessummary). It is also useful 

for the compilation of Red Lists.  
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The results of occupancy modelling could be further improved: 

 Delete double records. 

Butterfly records in the Netherlands have been collected in many 

different ways and thus can enter the National Database Flora and Fauna 

via several different routes. This leads to a number of double or even 

triple records: the same observation occurs several times in the database, 

but each time with a slightly different reference. Evidently, these 

duplications influence the detection probability and thus the occupancy 

and its trend. 

 Avoid ‘me-too’ observations. 

Recorders have always wanted to see (and in former times: collect) rare 

species. For this reason they make targeted trips to known locations with 

rare species. Oftentimes, only these species are recorded (or collected), 

thus leading to an unreasonably high detection probability. Promoting 

the recording of complete species lists could be a partial solution to this 

problem. In addition, volunteers might be encouraged to survey poorly 

recorded areas on the basis of maps showing recording intensity, possibly 

in combination with information on the predicted species-specific habitat 

suitability. 

 Extend the number of high quality non-detections. 

As there are large differences in recording between recorders (and from 

day to day), leading to large differences in usability for occupancy 

modelling, it would be much better if data were collected in a more 

standardized way, e.g. by being sure that all observed species have been 

recorded. That would be feasible with minor adaptations to the online 

input platforms. 

 

Future developments in tracking changes in butterfly distribution 

Butterfly distribution research typically consists of three phases: 

1. The exploration or discovery phase. In this time the species list gets 

updated almost every year and new expeditions bring in additions 

regularly. Thomas (2005) shows that the dates of discovery of individual 

British butterfly species are strongly correlated with their range sizes, 

with the common widespread species being found first. Many countries in 

the tropics are still in this phase. 

2. The atlas phase. The discovery of new species has become a rare event 

and more attention gets paid to local, regional and national overviews, 

e.g. by the publication of atlases with dotmaps. In Europe part of the 

countries in Southern and Eastern Europe are in this phase at present. 

3. The monitoring phase. Additionally trends in distribution and population 

size become available. 

In the Netherlands, we have reached phase 3 and a wealth of detailed data is 

available. What developments can be expected? 

 Although the Netherlands is one of the best investigated countries in the 

world regarding butterfly distribution, even here there are still gaps, 

depending on the grid size used. On a 5x5 km grid virtually all terrestrial 

grid cells are visited at least once (between 2010 and 2012 there were 

records from 1674 gridcells of 5x5 km, even more than the 1667 terrestrial 

Dutch grid cells, as some records were from migrating butterflies seen 

from boats), but on a 1x1 km level 14543 cells (40%) did not have a single 

record in that period, and on a 250x250 m grid 586575 cells (88%) can be 

regarded as not-visited and un-studied – and then the quality of the data 

is not even taken into account, as many are one-record-only visits.It will 

be almost impossible to fill these gaps: often they are in relatively 
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uninteresting parts of the country (from a butterfly volunteer or nature-

lover point of view) or they are inaccessible (e.g. private or a closed nature 

reserve) and it will be difficult to direct volunteers to visit such gridcells. 

However, unless probability maps show a high probability for a policy-

relevant or Red-listed species, there is not much need to try to stimulate 

volunteers or professionals to visit such sites. 

 On the other hand, there is a great need among managers of 

naturereserves for detailed information on the distribution of butterflies 

at their sites (Braunisch  et al., 2012), especially where it concerns policy-

relevant or Red-listed species. And in such cases the data resolution 

should be even much finer. The Dutch Subsidy system for Nature and 

Landscape managment (SNL) even demands a scale of 50x50 m (Van 

Rosmalen, 2012). With the present data, such a precision cannot be 

achieved. However, there are several possibilities to fulfill these criteria: 

o Data (at least from nature reserves and other important sites) 

can be collected by professionals. This method is expensive, but 

has the advantage that there is a reasonable and controllable 

certainty that all grid cells get visited. But there is a caveat. As 

shown in chapter 4, each species always has a detection 

probability, in the case of Hipparchia semele this is 0.58 on a top 

day in the season (chapter 4). This means that on that top day at 

least three visits have to be made to exclude the presence of this 

butterfly with 95% certainty ((1-0.58)3=0.03, so below 0,05). But 

this detection probability is much lower on other days of the 

flight season (following the Gaussian curve resulting from the 

flight period as:  

      logit(pijk) = αk + β1 * dateij + β2 * dateij
2   

This means that even more visits are needed to exclude the 

presence of this butterfly with reasonable (95%) certainty. And 

as a detection probability of 0.58 is the average for the butterfly 

species which need to be monitored in the SNL system, this 

applies to many more species. 

o Collecting such detailed data with volunteers and use 

professionals as backup. There are some major advantages of 

working with volunteers (Schmeller et al., 2009), with the price 

and commitment as the most important ones. The quality of 

data collected by volunteers is more likely determined by survey 

design, analytical methodology, and communication skills within 

the schemes rather than by volunteer involvement per se 

(Schmeller et al., 2009). The biggest risk when involving 

volunteers is the uncertainty that all sites get visited frequently 

enough and with enough coverage, but this can be overcome by 

subsequent filling of the gaps by professionals, leading to an 

equal quality and more support (Bos-Groenendijk & Wolterbeek, 

2013). Of course this doesn’t solve the problem of the number of 

required visits as with professional data collection.  

o Downscaling from probability maps. At this moment probability 

maps on a scale of 250x250m are available (Van Swaay et al., 

2006).Van Swaay (2013) used a combination of real observations, 

occupancy maps on a scale of 1x1 km and 250x250m probability 

maps to produce national maps of each butterfly species for two 

periods (2002-2005 and 2009-2012) in this fine grid. Although 

these maps prove very useful to answer methodological 

questions (e.g.whether the monitoring system for the Dutch 
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Subsidy system for Nature and Landscape management can 

produce reliable results), they are still too coarse for application 

in conservation practice. 

o As most observations are nowadays on a scale of 100x100 m or 

less (see figure 13.1), occupancy models can be used with this 

finer grid to produce complete maps. This has been tested for 

three coastal dune areas in the Netherlands (Wallis de Vries et 

al., 2013). This gave good results for most of the species and the 

production of good quality annual maps was possible. However, 

abundant data are needed, and this method is only applicable in 

well investigated areas. Furthermore the resulting distribution 

trends – one of the other outputs – are less sensitive to changes 

than population trends from butterfly monitoring transects. This 

is illustrated in figure 13.4 in presenting the distribution trend (on 

a 1 x 1 km scale, based on the results of occupancy modelling) 

and the population trend (from the Dutch Butterfly Monitoring 

Scheme) of Lasiommata megera. The population trend started to 

decline immediately, but only fifteen years later this decline 

became apparent in the distribution of the species. 

 Occupancy modelling based on opportunistic data can deliver good 

quality distribution trends. However the quality is more or less equal to 

using the Butterfly Monitoring Data, which also deliver population trends 

(Van Strien et al., 2013). 

 

It seems reasonable to expect these trends to continue in the near future: more 

volunteers will collect more detailed distribution and population trend data, but 

professional coordination and backup will remain necessary, as the demands from 

policy makers and nature wardens for reliable evidence-based information will 

grow as well. 
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Challenges in monitoring butterfly abundance 

Already for several decades butterfly monitoring has focused on obtaining 

quantitative trends of the population size. This has resulted in a great success, with 

more than 3500 transects in nineteen countries used for the European Grassland 

Butterfly Indicator in 2012 (Van Swaay et al., 2012).  

Although Butterfly Monitoring Schemes are present in a growing number of 

countries and new ones are being initiated in many places, long time-series are 

only available for a limited number of countries. The spatial and temporal 

coverage improves every year, but more development work is needed to achieve 

complete geographical coverage. This long-term experience with butterfly 

monitoring in Europe can provide a good template for both other taxonomic 

groups as well as for other continents, for example in the GEO BON program 

(Scholes et al., 2008; Pereira et al., 2010). 

Table 13.1 provides an overview of the situation in 2012 of the European Butterfly 

Monitoring Schemes. To be able to draw proper inferences on the temporal 

population trends at national or regional level, transects should best be selected in 

a grid, random or stratified random manner (Sutherland, 2006): 

 Grid. Locations are placed along a grid over the country. So far, this is only 

practiced in Switzerland, where all counts are made by professionals. 

 Random. Once a recorder registers, a random site in the neighbourhood is 

provided to them. Random or grid schemes give a more representative 

sample but often miss rare or threatened species. They are best for 

recording trends in more widespread species. They are also less practical 

for involving volunteers and are, therefore, often more costly. 

Combinations of the two are also possible. 

 Free choice. This method is used most frequently in the older schemes 

(e.g. the UK and the Netherlands). The location of the transect is chosen 

by the recorder (sometimes together with the co-ordinator), which in 

some cases has led to the overrepresentation of protected sites in natural 

areas and the undersampling of the wider countryside and urban areas 

(Pollard & Yates, 1993), though in Germany Kühn et al. (2008) reported 

that this effect was not that pronounced. Obviously, in such a case the 

trends detected may be only representative for the areas sampled, while 

their extrapolation to national trends may produce biased results. Such 

bias can, however, be minimized by post-stratification of transects. This 

implies an a posteriori division of transects by e.g. habitat type, protection 

status and region, where counts per transect are weighted according to 

their stratum (Chapter 6). Free choice schemes are good for engaging 

large numbers of volunteers and for covering high quality sites where 

recorders can see a wide range of butterflies, including rare ones. They 

are good at detecting site-related trends to inform management on 

protected sites (e.g. nature reserves). 

 

Grid and random located transects provide the least biased results. However, 

because of the way they are chosen, the chance that these localities include rare 

and localised species is small. This means that they don’t deliver trends for these 

rare species, making these Butterfly Monitoring Schemes especially good for 

biodiversity trends on common and widespread species, but not good for following 

rare species, often an important part of the focus of butterfly and nature 

conservation. In general free choice transects are much more focused on rare 

species and nature reserves, thus also delivering trends on these species. 

The number of visits varies from weekly through the main butterfly season in the 

UK and the Netherlands (26 weeks in theory, the Northwestern European climate 

leading to an average of 17-19 effective visits) to 3-5 visits annually in France. In the 
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Netherlands, transects dedicated to rare species need only be visited during the 

expected flight period of the species.  

In normal transects, weekly counts cover the entire flight period of every species 

and can be used to estimate population trends per transect over time. However, 

weekly visits may be too demanding for observers. If the only objective is to 

produce large-scale (e.g. national) trends, the effort may be reduced by having 

fewer visits (Heliölä & Kuussaari 2005; Roy et al. 2007). Such a reduced-effort 

scheme is now active in the UK for the Wider Countryside Butterfly Survey, which 

is based on random 1x1 km squares to detect trends in mainly common butterflies. 

It is based on only a few annual visits, targeted to the period when most 

information can be gathered, i.e. three visits in July–August plus in some cases an 

additional one in May (Roy et al. 2005; 2007). This reduced sampling makes it 

possible to involve volunteers, but in this case only because of pre-existing 

networks organised by Butterfly Conservation (UK) and British Trust for 

Ornithology. In general, many more transects will be needed in a reduced effort 

scheme than in a traditional scheme.  

 
  

If transects are selected at random or in a grid, there is a high chance local and rare species will be missed. In the 
Netherlands we can only calculate trends for Boloria selene because of targeted, single-species transects.  
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Table 13.1: Characteristics of the European Butterfly Monitoring Schemes as submitted by the 
national coordinators (situation 2012; Van Swaay et al., 2012). 
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Andorra 2004 w 1.5 6 20-30 v f yes no 

Belgium - Flanders 1991 r 0.8 10 15-20 v f no no 

Estonia 2004 w 1.8 11 7 p c no no 

Finland 1999 w 3 65-67 ca 11 v ~70%, p ~30% free for v yes no 

France 2005 w 1 611-723 4,4 (1-15) v half r, half f yes no 

France - Doubs 2001-2004 r 1 0 10-15 p c yes no 

Germany 2005 w 0.5 400 15-20 v f yes yes 

Germany - Nordrhein 
Westfalen 

2001 r 1 0 15-20 v f no yes 

Germany – Pfalz 
(Phengaris 
nausithous only) 

1989 r 0.5 50-87 1 p c yes no 

Ireland 2007 w 1.5 190 16.3 v f yes no 

Jersey 2004-2009 w 1 0 15-25 v f yes no 

Lithuania 2009 w 1.3 14 6-9 v f no no 

Luxembourg 2010 w 0.34 30 8.2 (3-11) v ~10%, p ~90% r yes no 

Norway 2009 r 1 9-18 3 v ~42%, p ~58% g yes no 

Portugal 1998-2006 w 1 0 3-5 v f no no 

Romania starting up         

Russia - Bryansk area 2009 r 1.2 2-14 3-5 v ~90%, p ~10% f yes no 

Slovenia 2007 w 1.3 9-14 6.25 - 7.53 v c yes no 

Spain - Catalonia 1994 r 1 60-70 30 v f yes no 

Sweden 2010 w 0.65 90 4 v f yes no 

Switzerland 2003 w 2 x 2.5 90-95 7 (4 alpine 
region) 

p g yes no 

Switzerland - Aargau 1998 r 2 x 0.250 101-107 10 p (civil service) g yes no 

The Netherlands 1990 w 0,7 430 17 (15-20) v f yes no 

Ukraine – 
Carpathians and 
adjacent parts 

1990 r 1 158 5 (2-10) p f yes yes 

United Kingdom 1973 (1976) w 2.7 819-977 19 v f yes yes 

 

 

 

 
  

*: assessed by experts opinion. In case a monitoring scheme is not representative for agricultural grasslands and/or nature reserves 
are overrepresented, it means that the resulting trends may be biased towards non-agricultural areas (often nature reserves), 
where management is focussing on the conservation of biodiversity. Such a scheme probably underestimates the (mostly negative) 
trend of butterflies in the wider countryside. 
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The power of a Butterfly Monitoring Scheme to detect trends depends on many 

things, the most important ones being (after Van Strien et al., 1997): 

 The year-to-year variance: some species, like the Painted Lady (Vanessa 

cardui), show large fluctuations from year to year, where other species, 

such as the Meadow Brown (Maniola jurtina), only show minor changes in 

abundance from year to year. This means that for some species it is 

possible to calculate significant trends much sooner than for other 

species. Furthermore, for species with more than one generation per year, 

Van Strien et al. (1997) show that the power of the BMS rises when the 

counts of the first generation are used instead of those of the second 

generation, as the year-to-year variance of the first generation of most 

species is considerably lower. 

 The number of sampling sites: the more transects there are for a species, 

the better a trend can be detected.  

 The detection period: the longer a scheme is running, the more species 

trends can be detected. 

 

As a result of the power analysis of the UK Butterfly Monitoring Scheme, 20 

transects appears a good minimum to pursue for each species in each stratum that 

needs to be measured (Van Strien et al., 1997). A stratum can be a country, habitat 

type, land use or management type, designation category, etc., or combinations of 

these. For species that are present at more than 50 sites, a further increase in the 

number of transects hardly improves the power to detect trends (Van Strien et al., 

1997). This means that when starting a new country or regional BMS, the focus 

should be on gaining as many transects as possible. Once the number of transects 

is over 50, the co-ordinator could focus on other species or start with stratifying 

the country (e.g. in habitat types or geographical regions) and try to obtain at least 

20 transects for each stratum.  

 

For some species there are simply not enough populations to conduct 20 transects. 

In such cases the coordinator should aim at getting as many populations covered 

as possible. Where some of these populations occur in remote locations, single-

species monitoring can be used, in which only a few counts are made in the peak of 

the flight period of the species (Van Swaay et al, 2012). 

 

 

Future developments in tracking changes in butterfly distribution 

The first BMS in volunteer-rich countries like the UK and the Netherlands focused 

on obtaining as many transects as possible. This soon gave good coverage of most 

species and habitats. However, in other countries with fewer volunteers, it is 

preferable to focus on a selection of target habitats and species. The following are 

some options for targeting: 

 Natura 2000 sites: in the European Union the Natura 2000 network 

provides a backbone for nature conservation based on a selection of 

habitats and species mentioned in the annexes of the EU Habitats 

Directive (see also chapter 11). Many of the important areas for butterflies 

will be in those Natura 2000 areas, although many other areas will fall 

outside Natura 2000. By focusing on these areas and the often rare and 

specialised species in them, most common and widespread species will 

also be included. The disadvantage is that the resulting trends do not give 

any information on the situation in the wider countryside, which would be 

desirable from a policy perspective. 

 High Nature Value Farmland: it is clear that the highest number of 

butterflies and species is found on semi-natural grasslands, typically on 
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High Nature Value Farmland (Opperman et al., 2012). By focusing on 

these habitats and land-use types, many of the rarer and specialised 

butterflies will be covered and with them the more widespread and 

common species. 

 Selected species: The other way round would be to focus on a selected 

group of species such as the species listed in the annexes of the Habitats 

Directive (in the European Union) or Bern Convention (non EU); or the 

species considered rare and threatened in the European Red List (Van 

Swaay et al., 2010). 

 

 

 

 

 

However, in a situation with limited funding and a low number of volunteers, the 

focus for setting up a new Butterfly Monitoring Schemes should be on: 

 Coordinate volunteers: visit local nature conservation groups, use social 

media, local papers etc. to reach as many volunteers as possible. Using 

volunteers not only rises the number of transects, they are also important 

ambassadors of butterflies and their conservation in their local 

communities, forming a basis for the conservation of butterflies and their 

habitats. 

 Many short transects close to the working or living places of volunteers 

are better than a few long transects in far-away nature reserves. Even for 

busy people it is possible to have one or two transects close to their 

homes and/or working place. Although volunteers tend to want to count 

in nature reserves with special species, it is the short transects in the 

urban or agricultural areas that make up the core of the Butterfly 

Monitoring results for the common and widespread species, allowing 

research and trends. 

 Link up with the international butterfly monitoring community, in Europe 

via Butterfly Conservation Europe. It is a place to learn from the 

experience of others. Europe has a wealth of different cultures and ways 

of tackling the problem of butterfly monitoring with volunteers, so there 

is a good chance of finding common ground. 

 

With limited resources, it can be good to focus on a selected group of species, e.g. those 
of the Habitats Directive, like this Euphydryas maturna. 
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Indicators 

Indicators are important tools to assess environmental change and the impact of 

Government policies. They are particularly important to assess progress with the 

EU Biodiversity Strategy and the goal of halting biodiversity loss by 2020. 

Good indicators to measure biodiversity changes should have the following 

qualities (European Environment Agency, 2007): 

1. Policy relevant 

2. Biodiversity relevant 

3. Measure progress towards target 

4. Well-founded methodology 

5. Broad acceptance and intelligibility 

6. Data routinely collected  

7. Cause-effect relationship achievable and quantifiable 

8. Spatial coverage, ideally pan-European 

9. Show temporal trend 

10. Country comparison possible 

11. Sensitivity towards change 

 

Butterflies meet most if not all of these criteria and have been selected as a high 

priority for the development of European indicators under the SEBI 2010 process 

(European Environment Agency, 2007). Butterfly Conservation Europe has tested 

the development of a pan-European Butterfly Indicator and has so far produced 

two indicators: the indicator on European grassland butterflies (chapter 7) and the 

Climate Change indicator (chapter 8). 

 

The indicator on European grassland butterflies was first developed in 2005. It is 

based on the European trend of 17 grassland butterflies: species that European 

butterfly experts considered to be characteristic of European grassland and which 

occurred in a large part of Europe, covered by the majority of the Butterfly 

Monitoring Schemes and having grasslands as their main habitat (Van Swaay et 

al., 2006). National population trends from the Butterfly Monitoring Schemes are 

combined to form supra-national species trends. These trends per butterfly 

species are then combined into an indicator: a unified measure of biodiversity by 

averaging indices of species in order to give each species an equal weight in the 

resulting indicators. When positive and negative changes of indices are in balance, 

then we would expect their mean to remain stable. If more species decline than 

increase, the mean should go down and vice versa. Thus, the index mean is 

considered a measure of biodiversity change.   

The most recent update showed that grassland butterflies have declined by almost 

50% since 1990 (van Swaay et al., 2012). Because the indicator is constructed from 

national trends of typical grassland species, it cannot be disaggregated into 

grassland types. This would be a useful development for the future.  

The Grassland Butterfly Index makes a good complement to the Farmland Bird 

Index (Gregory et al., 2005), because butterflies are far more specialised to 

grasslands and are more sensitive to changes in the quality of these habitats, 

which are crucial for biodiversity. They also operate at smaller spatial scales and 

are thus sensitive to site management. In comparison, farmland birds are better 

indicators of arable and mixed farms, and large spatial scales. 

 

The Climate Change Indicator uses the principle of the Climate Temperature 

Index (CTI, Devictor et al., 2008). The preference of a species for a specific climate 

can be expressed by the long term average temperature over its entire range. This 

is called the Species Temperature Index (STI). The STI was calculated for each 
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European species, using the European distribution atlas of Kudrna (2002) and the 

Climatic Risk Atlas of European Butterflies (Settele et al., 2008). The number of 

butterflies of each species occurring at a certain site in a certain year can be 

described as a community. As each species has its own specific STI (Species 

Temperature Index), a Community Temperate Index (CTI) can be calculated as the 

average of each individual’s STI present in the assemblage. A high CTI would thus 

reflect a large proportion of species with a high STI, i.e. of more high-temperature 

dwelling species. This way, the CTI can be used to measure local changes in species 

composition. If climate warming favours species with a high STI, then the CTI 

should increase locally (Devictor et al., 2008; Devictor et al., 2012). Chapter 8 

shows that butterfly communities have shifted northwards by an equivalent of 114 

km in 20 years, whereas the temporal trend in temperature has shifted north by 

249 km, showing that butterflies are lagging significantly behind climate change 

(Devictor et al, 2012). 

 

Future developments in indicators 

Both indicators could be improved and extended:  

 The Grassland Butterfly Indicator could use a wider variety of grassland 

butterflies, thus improving the quality especially at the northern and 

southern edges of Europe, where the habitat requirements of species 

start to change. 

 Restrict the Grassland Butterfly Indicator to transects (or parts of 

transects) on grassland alone to avoid bias from other habitat types. 

 Extend the use of indicators to other habitat types. A woodland indicator 

would be the most logical follow-up, as it includes many species, some of 

them Europe’s most threatened butterflies (e.g. Coenonympha hero and 

Euphydryas maturna, both also mentioned in the annexes of the Habitats 

Directive).  

 Developing other environmental change indicators. The Climate Change 

Indicator is an example of a community indicator. Such indicators can also 

be developed for other environmental variables, for example the soil 

nitrogen, acidity and moisture indicators, as extracted from chapter 9. By 

adding an indicator for the effect of abandonment on butterflies, these 

indicators could span the most important environmental challenges for 

both butterflies and humanity in the next decades: climate change, 

intensification of agriculture (via a Nitrogen indicator) and abandonment. 

These would be highly valuable tools for European policy makers to 

monitor the effects of their efforts to preserve biodiversity.  
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Towards effective butterfly conservation 

Effective species conservation as described in chapter 1 relies on a chain of 

information linking distribution – trend – causes – conservation – communication. 

Supporting volunteers to collect information on distribution and trend has proven 

to be a highly effective way to work on the first two pillars. The chapter in parts I 

and II show that these are supported by a solid scientific basis, providing a reliable 

source of information. 

 

For conservation to be effective, however, more information is needed on the 

causes and mechanisms behind the reported changes. There is good and detailed 

autecological information available for a number of countries, but surprisingly little 

for the Netherlands (at least compared to a country like the United Kingdom), 

mostly as a consequence of lack of funding. This leads to the fact that we know 

very well where the butterflies are and which ones are declining and at what rate, 

but we lack scientifically sound method to stop this. Much more autecological and 

conservation research on butterflies is needed to render the investments in the 

collection of volunteer based distribution and trend data more effective for 

conservation. Such research should focus on questions like the metapopulation 

structure of populations of threatened species (making it clear whether it is better 

to invest in connecting nature reserves or enlarging them), finding the bottlenecks 

that lead to the decline of species or the effects of environmental pressures on 

butterflies and their larvae and how to counteract these by taking conservation 

measures on the ground. Up to that moment the Do's and Don'ts for butterflies of 

the Habitats Directive of the European Union (Van Swaay et al., 2012) can provide 

a helpful proxy. 

Chapters 8 and 9 reveal basic information on the effects of climate, nitrogen, 

acidity and moisture on our butterflies. This is a sound basis to explore hypotheses 

explaining the decline of many species.  

On the much coarser European scale the description of their main habitats 

(chapter 10) in combination with their most important areas for conservation and 

protection (chapter 11) forms a start for basic butterfly conservation. These Prime 

Butterfly Areas have been described in greater detail for Bulgaria (Abadjiev and 

Beshkov, 2007) and Serbia (Jakšic, 2008). Especially in Eastern and Southern 

Europe, such more detailed descriptions may bring together all expertise on 

butterflies and identify the main areas to protect them. In many of these countries 

only a limited number of people and funding is available compared to 

Northwestern Europe, and Prime Butterfly Areas can help focusing the limited 

resources. 

 

Butterflies are sensitive indicators of habitat management and measures to 

stimulate them will also help a wide range of other species, especially insects 

which form the largest component of biodiversity. For the species of the Habitats 

Directive the most important management principles can be summarized to (Van 

Swaay et al (2012) :

 

1. Manage at a landscape scale.  

Butterflies usually occur in a network of local populations between which there is some 

exchange of adults to form a metapopulation (Hanski, 1999). Progressive loss of habitat 

suitability across a landscape, or new barriers to dispersal, can lead to loss of local 

populations and eventually regional extinction of a species through the breakdown of 

metapopulations. Management should, therefore, aim to maintain such population 

networks across the landscape, accepting that not every locality may be occupied at any 

one time (though some core sites should be).  
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2. Maintain active pastoral systems.  

Grassland is the single most important habitat for butterflies and abandonment is the 

biggest single threat (WallisDeVries & Van Swaay, 2009). Abandonment can 

temporarily lead to good conditions for many species, but will soon lead to scrub 

encroachment and eventual loss of suitable breeding conditions as open grassland turns 

to woodland. The maintenance of open grassland is thus essential, usually by the 

maintenance of active traditional pastoral systems, including livestock grazing and hay 

cutting. Socio-economic conditions will need to be considered to ensure that such 

pastoral systems survive. 

 

3. Manage for heterogeneity. 

Grassland butterflies each have their own specific habitat requirements, so 

management should aim to provide a range of conditions, often based around 

traditional land use patterns. Some species require short vegetation, while others 

require taller vegetation. Others still require small-scale mosaics of vegetation types. 

Managing for spatial heterogeneity across a landscape is thus essential to conserve the 

full range of typical species (Fahrig et al., 2011). 

 

4. Avoid uniform management (especially in hay meadows).  

Butterfly populations can be reduced, or may even become extinct, following intensive 

and uniform management, notably hay cutting. Cutting dates should be varied as much 

as possible within Natura 2000 sites so that not all areas are cut within a narrow time 

window. Ideally, a mosaic of small-scale cutting should be implemented, mimicking 

traditional management before mechanisation (Konvicka et al., 2008; Cizek et al., 

2011). 

 

5. Habitat mosaics are crucial.  

Many butterflies use resources found in a range of habitat types and require mosaics of 

different habitats in the landscape (Marini et al., 2009). For example, some species 

breed along scrub or wood edges and need a mixture of scrub and grassland (e.g. Turner 

et al., 2009). Other species may lay eggs in one type of habitat and use nectar resources 

in another, as Argynnis aglaja in the coastal dunes in the Netherlands. The spatial scale 

of the mosaic will vary from region to region, and will often depend on the traditional 

land use pattern. Sometimes it will consist of small fields with small blocks of scrub or 

woodland, while in more extensive landscapes the mosaic may be very large scale. 

 

6. Active woodland management is often essential.  

Most woodland butterflies require some form of active management (Freese et al., 

2006; Streitberger et al., 2012) and this is essential for the survival of several threatened 

species. Management can either be regular thinning or rotational coppicing or planting. 

Some species also require the maintenance of open habitats within woodland, such as 

sunny clearings or paths/tracks. Traditional management is often a useful guide to 

suitable management, but may need to be adapted to suit modern timber markets.   
 

7. Monitoring is essential.  

Some form of biological monitoring of Natura 2000 sites is essential to ensure 

management is maintaining the designated features. Butterflies are a sensitive 

indicator group that can be used to assess change (both positive and negative) and 

inform decision making. Many butterflies are easy to identify and there are often local 

volunteer groups or societies that can help provide data. Monitoring can be as simple as 

successive species inventories, or can be structured around formal sampling procedures 

such as butterfly transects. The latter are more time consuming but can provide 

accurate population trends that can identify deleterious changes at an early stage.
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From expert judgement to evidence-based conservation 

Butterfly conservation has come a long way from ‘common sense’ (or ‘expert 

judgement’). The number of publications on the topic keeps increasing every year 

(figure 13.5) and more and more bricks are added to construct an evidence-based 

form of conservation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Butterfly monitoring and the indicators based on monitoring data have been 

shown in this thesis  to provide excellent building blocks  to track the effects of 

nature conservation on the main challenges that European butterflies face: climate 

change, intensification and abandonment. As such, they may become highly 

valuable for European policy makers to support decision making on the 

preservation of biodiversity. 

 

However, bringing the message of the ways towards effective conservation to the 

ground is as yet our biggest challenge. Knowledge is good and important, but 

dissemination to the wider public as well as to those responsible for nature 

conservation, is outside the normal scope of many scientists and conservationists. 

Although not part of this thesis, communication from the results of scientific 

research as well as the general principles mentioned above, certainly is a vital point 

in saving butterflies 

 

This thesis illustrated the importance of volunteers and citizen science: without 

them only small-scale (though detailed) research would be possible and large-

scale effects could be hard to prove (or incomparably more expensive). Butterfly 

conservation cannot move on without their invaluable efforts. Keeping their 

interest and attention in a rapidly changing world provides new challenges to 

nature conservation organisations.  
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Summary 
 

 

 

This thesis consists of three parts: tracking butterfly distribution changes, tracking 

butterfly abundance changes and how to use this knowledge for their conservation. 

 

 

The first part discusses several methods to track changes in the distribution of 

butterflies. Chapter 2 is a follow up of the Dutch Butterfly Atlas (Tax, 1989). It 

describes a method to follow changes in butterfly distribution up to 1985 by 

calculating the percentage of the total number of investigated squares where the 

species was reported in a five-year period. Although this method works well for 

some species, it does not work well for very rare species. Also the change of 

method in 1980 – from butterfly collectors to field observations – resulted in 

errors. 

The method presented in chapter 3 using reference species, is a step ahead and 

was successfully used in the second distribution atlas of Dutch butterflies in 2006 

(Bos et al., 2006). The use of occupancy models is a new step forward. Chapter 4 

shows the results for the use of this method using distribution data from the 

Grayling (Hipparchia semele) on a 5x5km scale from 1950 onwards (figure i). An 

interesting added value of these models is the information on survival and 

colonisation as well as distribution maps with occupancy results per year per 

square.  

As an example figure i shows the trend of Hipparchia semele for the three methods 

in one graph. Occupancy modelling is the superior method, but the use of 

reference species can be an easy way out when data are lacking or insufficient 

computer power is available for occupancy modelling. 

 

 

 
  

Figure i: Comparison of the 
trend of Hipparchia semele 
following the three methods 
described in Part I summarised 
to five-year periods:  

 Chapter 2: the percentage 
of the total number of 
investigated squares where 
the species was reported. 

 Chapter 3: corrected with 
reference species. 

 Chapter 4: occupancy (only 
available from 1950 
onwards).   
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The second part of this thesis focuses on trends in butterfly abundance. Chapter 5 

gives a review of butterfly monitoring in Europe and how it can be applied. Two of 

the main problems before trends can be calculated with the program TRIM are 

how to arrive at a good estimation of the number of butterflies on a transect in 

spite of large variartion in monitoring intensity per transect, and how to correct for 

the fact that butterfly transects are not randomly or irregularly distributed over the 

country (chapter 6). Combining national butterfly trends to produce a European 

indicator (chapter 7) is an important step to make changes in butterfly numbers 

available to policy makers in one single graph (figure ii).  
 
 

 
 
As grasslands are the most important habitat for butterflies, grassland butterflies 
are the first – and so far only – group for which such an indicator has been 
produced. Another way to use butterfly monitoring data, which provides an 
overview of the number of butterflies per site, is presented in chapter 8. Using the 
average temperature in the distribution area of European butterflies, the weighted 
changes in butterfly numbers prove to be good indicators for a the reaction of 
these insect to a changing climate. In twenty years butterfly communities moved 
114 km north. Although this may sound impressive, it is by far insufficient to keep 
up with the speed of the changing climate: to keep the same temperature butterfly 
communities would have had to move almost 250 km northwards. However 
butterflies, as short-living insects are still responding much faster than long-living 
birds, which by now have moved only 37 km within 20 years. 

 

Using data gathered by volunteers and experts from all over Europe – and the 

Netherlands especially – for the conservation of butterflies is the main item of the 

third part of the thesis. Chapter 9 describes the relationships between the 

occurrence of butterflies and the productivity, acidity and moisture of the soil over 

the vegetation. The results of this chapter can be used in a similar way as the 

climate change indicator of chapter 8: by using changes in the butterfly 

community changes in the soil parameters may become apparent. Although rough 

descriptions of the habitats of butterflies have been available for a long time 

already, chapter 10 is the first quantification of the preferences of all European 

butterflies regarding their habitat. To move from a species-based butterfly 

conservation to an area-based conservation strategy, the production of the 

European Prime Butterfly Areas is a first step (chapter 11). Finally, chapter 12 

discusses the compilation of the latest Red List on European butterflies and what 

problems arose while developing it. In chapter 13, all previous chapters are 

discussed in the light of future developments.  

Figure ii: European Grassland 
Butterfly Indicator ( EEA, 2013).  
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Samenvatting 
 

 

 

Dit proefschrift bestaat uit drie delen: het volgen van veranderingen in de verspreiding 

van vlinders, het volgen van veranderingen in de populatiegrootte van vlinders en hoe 

deze kennis te gebruiken voor hun bescherming. 

 

 

In het eerste deel worden verschillende methoden besproken om veranderingen in 

de verspreiding van vlinders te volgen. Hoofdstuk 2 is een vervolg op de Atlas van 

de Nederlands dagvlinders (Tax, 1989). Het beschrijft een methode om 

veranderingen in de verspreiding van dagvlinders te volgen tot 1985. Hoewel deze 

methode goed werkt voor sommige soorten, heeft zij moeilijkheden met 

zeldzame soorten. Ook de verandering van de veldmethode in 1980 – van 

vlinderverzamelaars naar veldwaarnemingen – leidde tot fouten. 

De methode in hoofdstuk 3, het gebruik van referentie-soorten, is een stap vooruit 

en werd met succes toegepast in de tweede verspreidingsatlas van de Nederlandse 

vlinders in 2006 (Bos et al., 2006). Het gebruik van occupancy modellen is een 

nieuwe stap voorwaarts. Hoofdstuk 4 toont de resultaten voor het gebruik van 

deze methode bij de verspreiding van de heivlinder (Hipparchia semele) op een 

5x5km schaal vanaf 1950. Een interessant bijproduct van deze modellen zijn de 

gegevens op de overleving en kolonisatie evenals verspreidingskaarten per jaar per 

vierkante kilometer.  

Als voorbeeld toont figuur iii de trend van de heivlinder (Hipparchia semele) voor de 

drie methoden in een grafiek. Occupancy modellen zijn de beste methode, maar 

het gebruik van referentie-soorten kan een eenvoudige manierzijn als 

onvoldoende gegevens of computerkracht beschikbaar zijn voor het gebruik van 

occupancy modellen. 
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Figuur iii: Vergelijking van de trend 
van de heivlinder volgens de  drie 
methoden beschreven in deel I 
samengevat in perioden van vijf 
jaren:  
• Hoofdstuk 2: het percentage 
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Het tweede deel van dit proefschrift richt zich op de populatietrends van vlinders. 

Hoofdstuk 5 geeft een overzicht van Europese vlindermeetnetten en hoe ze gebruikt 

kunnen worden. Twee van de belangrijkste problemen voordat trends kunnen worden 

berekend met het programma TRIM, zijn hoe je een goede schatting van het aantal 

vlinders op een transect komt ondanks grote verschillen in intensiteit van onderzoek per 

transect, en hoe te corrigeren voor het feit dat vlinder transecten niet willekeurig of 

regelmatig verdeeld over het hele land zijn (hoofdstuk 6). Het combineren van van 

nationale vlindertrends naar een Europese indicator (hoofdstuk 7) is een belangrijke stap 

om veranderingen in vlinder aantallen beschikbaar te maken voor beleidsmakers (figuur 

iv).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Graslanden zijn de belangrijkste habitat voor vlinders, en graslandvlinders zijn de eerste - 

en tot dusver enige - groep waarvoor een dergelijke indicator is geproduceerd. Hoofdstuk 

8 laat een andere manier zien waarmee gegevens van de Europese vlindermeetnetten 

gebruik kunnen worden. Met behulp van de gemiddelde temperatuur in het 

verspreidingsgebied van de Europese vlindersoorten, blijken de gewogen veranderingen 

in vlinderaantallen goede indicatoren te zijn voor het aantonen van de invloed van 

klimaatverandering op deze insecten. In twintig jaar zijn vlindergemeenschappen 114 km 

naar het noorden opgeschoven. Hoewel dit misschien veel klinkt, is het bij lange na niet 

genoeg om gelijke tred te houden met de snelheid van het veranderende klimaat: voor 

dezelfde temperatuur moest je bijna 250 naar het noorden opschuiven. Maar de kort 

levende vlinders kunnen wel veel sneller volgen dan de langlevende vogels, die pas 37 km 

zijn opgeschoven in 20 jaar.. 

 

Het derde deel van dit proefschrift handelt over het beschermen van vlinders met behulp 

van gegevens die zijn verzameld door vrijwilligers en deskundigen uit heel Europa - en 

Nederland in het bijzonder. Hoofdstuk 9 beschrijft de relatie tussen het voorkomen van 

vlinders en het stikstofgehalte, de zuurgraad en het vochtgehalte van de bodem via de 

vegetatie. De resultaten van dit hoofdstuk kunnen op dezelfde manier worden gebruikt 

als de klimaatindicator uit hoofdstuk 8: via veranderingen in de vlindergemeenschap 

worden veranderingen in de vegetatie en bodemparameters duidelijk. Hoewel ruwe 

beschrijvingen van de leefgebieden van de vlinders al langer beschikbaar zijn, presenteert 

hoofdstuk 10 de eerste kwantificering van de voorkeuren van alle Europese vlinders voor 

hun habitat. Het maakt het mogelijk om habitatspecialiststen te onderscheiden van 

generalisten. Het overzicht van de belangrijkste vlindergebieden in Europa (Prime 

Butterfly Areas) is een stap om van soortenbescherming naar gebiedenbescherming te 

gaan (hoofdstuk 11). Tenslotte wordt in hoofdstuk 12 ingegaan op de resultaten van de 

meest recente Rode Lijst van Europese vlinders. 

In hoofdstuk 13 worden alle voorgaande hoofdstukken besproken in het licht van 

toekomstige ontwikkelingen.
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