

# River flood damage estimation in Jakarta, Indonesia

P.Wijayanti<sup>a,b</sup>, X. Zhu<sup>a</sup>, P. Hellegers<sup>a</sup>, Y. Budiyono<sup>c,d</sup>, E. C. van Ierland<sup>a</sup>

- a. Wageningen University (WUR), the Netherlands
- b. Bogor Agricultural University (IPB), Indonesia
- c. VU University Amsterdam, the Netherlands
- d. The Agency for the Assessment and Application of Technology (BPPT), Indonesia

# Background

- Flooding is a serious problem in Jakarta.
- Estimation of flood damages is important to estimate the benefits of implementing flood protection measures.

# Objectives

- 1) To estimate the actual flood damages by means of a survey,
- 2) To study the relation between flood damage and flood characteristics,
- 3) To compare the actual damages to those obtained by means of expert assessment in a GIS analysis.

# Results

Table 1. Estimated damage from flood in January 2013 by survey and expert-GIS approaches

| Sector                | Flood damages (US\$) |                   |
|-----------------------|----------------------|-------------------|
|                       | Survey               | <b>Expert-GIS</b> |
| Households            | 525,120              | 1,318,235         |
| <b>Business units</b> | 682,929              | 9,248,201         |





Figure 1. (a) Study area, (b) Vulnerability curves, (c) Flood damage in Jakarta under different exceedance probabilities, and (d) Flood damage map under a 50year flood return period



Figure 2. Stage damage curves for households by income groups (left) and for business units by size (right)

### Methods

#### Statistical method:

- Survey 300 households and 150 business units along Pesanggrahan river for damages due to flood in January 2013.
- Estimate the actual flood damage model by OLS:

$$AFD_{i} = \beta_{0} + \beta_{1}DEP_{i} + \beta_{2}DUR_{i} + \beta_{3}DIS_{i}$$
$$+\beta_{4}INC_{i} + \beta_{5}ARE_{i} + \varepsilon_{i}$$

where:

actual flood damage (US\$), AFD;

flood depth (cm),  $DEP_{i}$ flood duration (hours), DUR;

distance from river to the building (or housing) (m), DIS;

family income (IDR/month),  $INC_i$ building (or housing) area (m<sup>2</sup>),  $ARE_{i}$ 

error term.

### **Experts-GIS:**

- Use expert workshops to obtain a vulnerability curve,
- Combine it with the *Damagescanner* model.





# Conclusion

- ✓ For both sectors, flood depth, flood duration, income, and building area have significant positive impacts on flood damage.
- ✓ The statistical estimated damages are lower than the expert-GIS approach, due to the following reasons:
  - the household survey was conducted in low and medium income areas, whereas expert/GIS also covers high income areas,
  - the business survey was conducted to micro, small and medium business, whereas expert/GIS also includes large business.







