

Decision making in times of water scarcity

Risk-based methodology to support fresh water management

Marit Zethof

Saskia van Vuren

Word-wide problems due to water scarcity

Examples of drought events in recent times:

- Po River delta in Italy, 2012
- Ebro River delta in Spain in 2005-2008 and 2012
- Amazon River delta in 2005 and 2010
- Sacramento-San Joaquim delta in California, USA in 1976, 1977, 1987-1994 and 2007-2009
- Yangtze river delta in China in 2006 and 2011

Word-wide problems due to water scarcity

Drought event in the Netherlands in 2003:

 Peat flood defence embankments: if they loose moisture, it results in decreases structure weight and a decreased water-damming ability

Failure of peat flood defence in Wilnis

Word-wide problems due to water scarcity

Drought event in the Netherlands in 2011

Water niet meer aan te slepen BN DeStem - 6 mei 2011

Voorjaar uitzonderlijk droog – geen verandering in zicht NRC Handelsblad - 4 mei 2011

Water boards take measures to cope with drought

Brabants Dagblad 5 mei 2011

Gemalen draaien op driedubbele capaciteit

Sproeiverbod dreigt door droogte

Drought still manageable: we will consider the situation of fluit growers Waterboard De Stichtse Rijnlanden – 2 mei 2011

Water boards take into account continuation of drought De Telegraaf – 28 april 2011

De Telegraaf - 28 april 2011

Word-wide problems due to water scarcity

Delta societies more vulnerable to water deficits, due to

- future climate change
- · socioeconomic developments

Annual water stress for present conditions and projections for two scenarios (source: EEA, 2012)

Fresh water management in the Netherlands

- Fresh water supply:
 - main water system (river basin, IJssel lake)
 - regional water system (surface water, ground water)
 - end-user (private storage basins)

Fresh water management in the Netherlands I will keep the water for my own use for a while up Methodology to support fresh water allocation is needed TuDelft

There of the state of the state

Fresh water management in the Netherlands

Category 1	Category 2	Category 3	Category 4
Safety and the prevention of irreversible damage	Public facilities	Small-scale first-rate utilization	Remaining interests; (both economical and environmental reflexion)
1 Stability of flood defenses	1 Drinking water provision	* Temporarily irrigation of capital intensive cults	* Navigation * Agriculture
2 Settlement and subsidence (of peat and upland moor)	2 Energy provision	* Process water	 Nature (as long as no irreversible damage occurs)
3 Nature (committed to the soil characteristics)			* Industry * Water leisure pursuits
			* Lake fishing

A ranking scheme for fresh water allocation

Fresh water management in the Netherlands

- Prearranged ranking system: a water hierarchy scheme)
- Risks (in terms of probability x consequences) that would ensue due to drought are not well considered
- Degree end-users suffer from drought, depend on
 - Location of deficit
 - Point of time of deficit
 - Size and duration of deficit
 - Sensitivity of the end-user for deficits
 - Degree mitigation measures are possible
- Drought risk implies a temporal fluctuation!

Fresh water management in the Netherlands

- Measures to cope with water scarcity
 - Main water system scale
 - Optimizing distribution of fresh water flows over Rhine branches
 - Reducing salt water intrusion in main system
 - Regional scale
 - Water storage in regional water systems
 - Local scale
 - Private storage basins, surface and underground storage

Fresh water management in the Netherlands

Measures proposed in Deltaplan for fresh water

Fresh water management in the Netherlands

- Question:
- Do measures compensate drought-damage in a cost-efficient way?
- How to deal with uncertainty?
 - in water supply (river discharge, salt water intrusion, water storage in soil and surface)
 - in water need of various end-users/sectors (time (seasonal period), location, duration,
- How to deal with its consequences and resulting risks?

- Approach considers risks: probability of drought related event and their possible consequences
- Meant to:
 - 1. evaluate the impact of climate variability and socioeconomic developments on drought-related risks,
 - 2. assess the cost-efficiency of measures to try to prevent water scarcity and mitigate drought damage, and in the end
 - develop strategies to better deal with drought-related risks

- Risk assessment:
 - 1. probability of drought-related hazard events in the presence of current and possible future climate changes,
 - 2. impact of these events on water supply/availability,
 - 3. water demand of end users,
 - 4. resulting water shortage
 - 5. consequences for the various end-users, yielding
 - 6. a so-called risk profile (trans-sectoral and cross-regional)

Risk-based methodology to support

Case study Gouda

Risk-based methodology to support

- Salinity Risk at intake Gouda for agriculture sector
 - Probability of the exceedance duration for Chloride concentration (250 mg/l)
 - Its consequences/damage for agriculture
 - Its resulting risk

- Impact four measures
 - Closure Spui
 - Extra Intake from Lek river (Krimpenerwaard route)
 - Redistribution of Rhine discharge (10% extra over Lek)
 - Redistribution of Rhine discharge (25% extra over Lek)

• Impact four measures

Measure	Present value of salinity risk [106 €]	Investment cost
Closure Spui	45	17
Extra intake from Lek river (Krimpenerwaard route)	651	250
Redistribution of Rhine discharge (10% extra over Lek)	281	250
Redistribution of Rhine discharge (25% extra over Lek)	801	100
Reference situation	2.361	-

- Objective for future
 - application of the methodology to the Netherlands
 - developing and evaluating drought-related risk management strategies to better cope with droughts

