

Drinking water distribution network

~ 120 000 km pipe under the ground in the Netherlands composed of different pipe materials

Occurrence of pipe failure

~ 3000 - 4000 pipe failures per year in the Netherlands

Study on long-term predictions of pipe failure

KWR Watercycle Research Institute

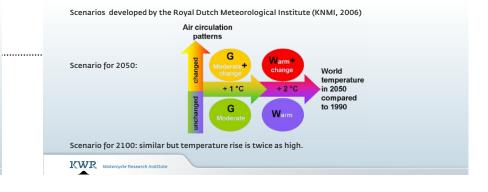
ng science to practice

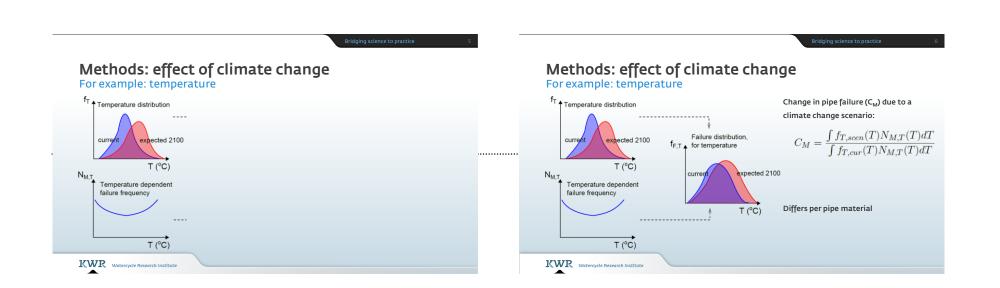
idging science to practice

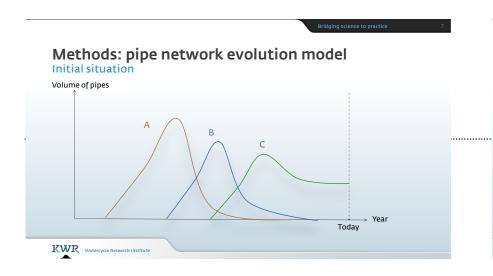
Introduction

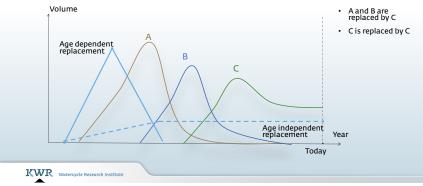
Method is developed to estimate *future* (long-term) pipe failure frequencies

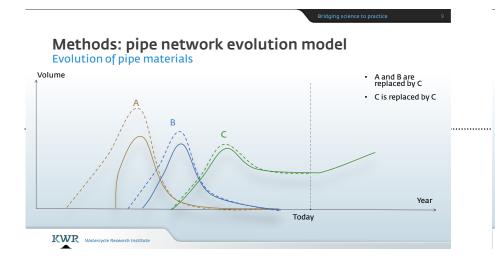
Accounting for

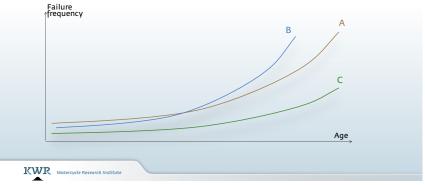

- Effect of climate change
- Evolution of the network (replacement of pipes and ageing)


Using statistical analysis on failure registrations


KWR Watercycle Research Institute


Methods: effect of climate change




Methods: pipe network evolution model Replacement strategy

Methods: Failure frequency calculation Combining climate change and pipe evolution

The volumes (I_M) over the years are combined with the ageing curve $(N_m(t))$ to determine the failure frequency (N_{m,f}) for a specific pipe material (A, B or C):

$$N_{M,f} = \frac{\int N_M(t)l_M(t)dt}{\int l_M(t)dt}$$

Combining evolution of network and climate change:

Pipe failure frequency (Pf) in complete network

$$P_f = \frac{\sum_M N_{M,f} L_M C_M}{\sum_M L_M}$$

KWR Watercycle Research Institute -

Methods Settings of model

Pipe network evolution model:

- Three pipe materials: AC, GCI (grey cast iron) and PVC
- AC and GCI are replaced by PVC
- Age dependent replacement according to triangular distribution (starting at 80 years, peak at 100 years and ends at 140 years).
- Age independent replacement by 0.5% of the volume per year
- Total length of the complete network remains the same

Climate effect model:

.

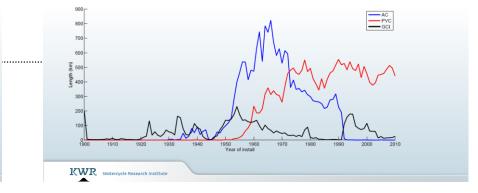
• Temperature was determined to be most influencing climate variable

KWR Watercycle Research Institute .

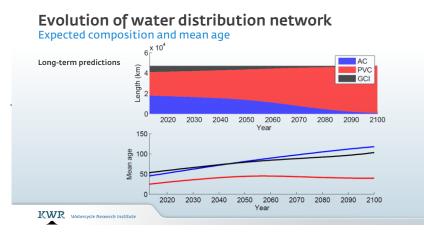
ng science to practice

Scenario study

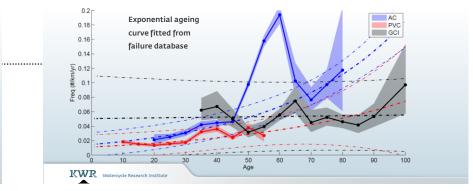
Data from failure registration in the Netherlands (USTORE, about half of NL)

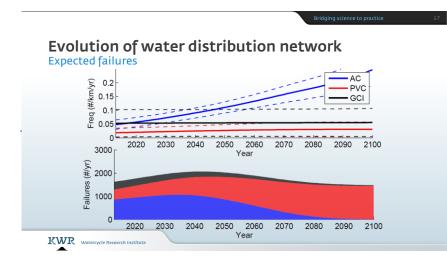

Material	Length (1000 km)	# failures	Freq (#/km/yr)	Age (yr)
AC	18,1	5398	0,0659	50
PVC	22.6	1311	0,0132	30
GCI	6.2	886	0,0315	63

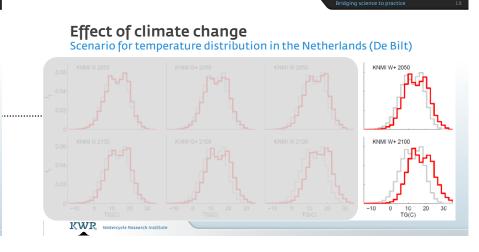
Results

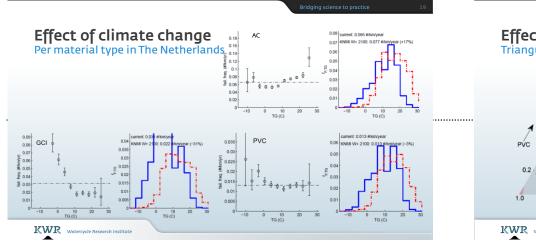

- 1. Evolution of drinking water distribution network
- 2. Effect of climate change
- 3. Prediction of pipe failure for future networks

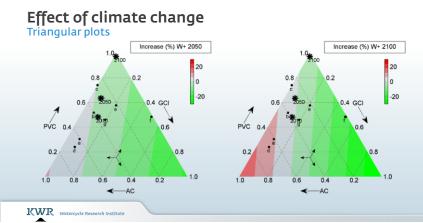
KWR Watercycle Research Institute


Evolution of water distribution network Existing situation (2013)




ridging science to practice




Evolution of water distribution network Ageing of the pipes

Bridging science to practice

Climate change and evolution of network Prediction of failure

Scenario	Freq (#/km/yr)	Dif with current climate
current 2013	0.0343 (+/-0.0121)	0.0 %
current 2050	0.0571 (+/- 0.0157)	0.0 %
current 2100	0.0335 (+/-0.0251)	0.0 %
W+ 2050	0.0582 (+/- 0.0155)	1.9~%
W+ 2100	0.0333 (+/- 0.0245)	-0.4 %

KWR Watercycle Research Institute

idging science to practice

Discussion

Weather parameters

••••••

- different parameters (other than temperature) may be important at different locations
- relation between temperature and failure may be age dependent

Uncertainty in ageing curve predictions

Different replacement strategies can be assessed

KWR Watercycle Research Institute

idging science to practice

Conclusions

Methodology to estimate occurrences of pipe failure in the future:

- Climate change scenario
- Pipe network evolution
- Applicable for any region where failure registration and climate change scenarios are available

Results for a case study in the Netherlands:

- Direct of effect climate change is small
- Largest variations in pipe failure are related to ageing of the pipes

Use of model for pipe replacement (asset management) strategies and climate change adaptation.

KWR Watercycle Research Institute

