

Hurricane Flood Risk in New York City Spatial cost-benefit analysis of measures

Hans de Moel,

Deltas in Times of Climate Change II, September 2014 Ning Lin, Kerry Emanuel, Nathan van der Dussen, Wouter Botzen and Jeroen Aerts

Introduction

POLICYFORUM

CLIMATE ADAPTATION

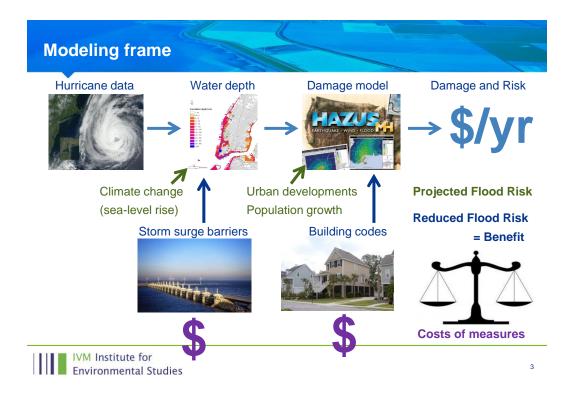
Evaluating Flood Resilience Strategies for Coastal Megacities

Jeroen C. J. H. Aerts, 1* W. J. Wouter Botzen, 1 Kerry Emanuel, 2 Ning Lin, 3 Hans de Moel, 1 Erwann O. Michel-Kerjan**

ecent flood disasters in the R United States (2005, 2008, 2012); the Philippines (2012, 2013); and Britain (2014) illustrate how vulnerable coastal cities are to storm surge flooding (1). Floods caused the largest portion of insured losses among all catastrophes around the world in 2013 (2). Population density in flood-prone coastal zones and megacities is expected to grow by 25% by 2050; projected climate change and sea level rise may further increase

reducing flood occurrence in large parts of the city. However, as in other cities, some of these large-scale engineering options have

Integration of models for storms and floods. damages and protections, should aid resilience planning and investments.


return flood zones (defined by the U.S. Federal Emergency Management Agency), with protection of critical infrastructure to reduce economic loss due to business interruption. S3 includes moderate local flood protection measures, such as levees and beach nourishment that are also part of S2c. The local protection measures and building codes for new structures are adjustable to future climate change, as they can be upgraded if flood risk increases in the coming decades.

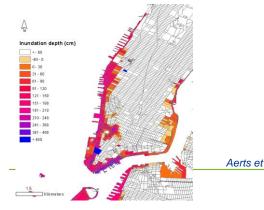
Modeling Flood Risks, Estimating Costs The heart of the method is a probabilistic flood-risk model developed for the city (12-

Aerts et al., 2014. Science 344, 473-475. doi:10.1126/science.1248222

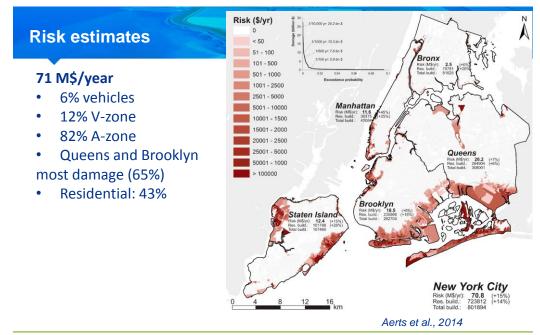
IVM Institute for **Environmental Studies**

Hurricanes / inundation

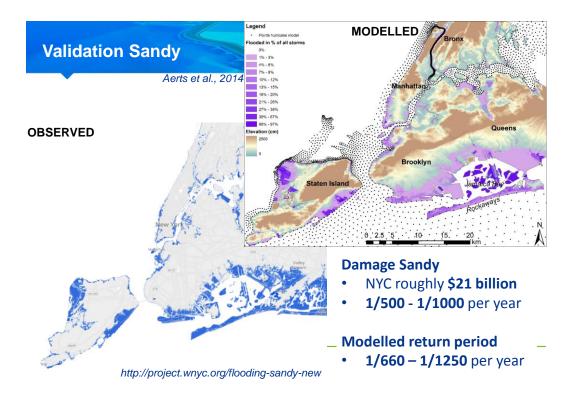
- 549 storms
- Derived from a much larger set, but only most extreme ones (at Battery, Manhattan)
- Inundation by simple extrapolation of water levels

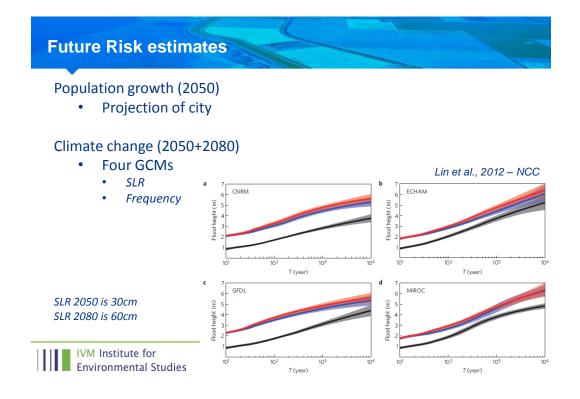


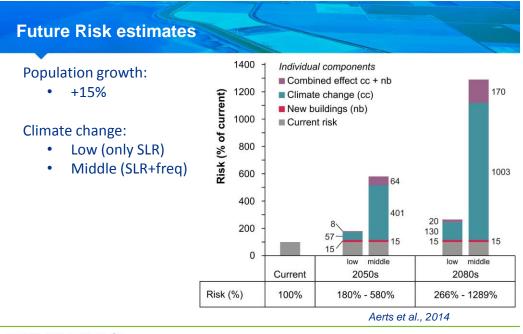
4


Modeling frame

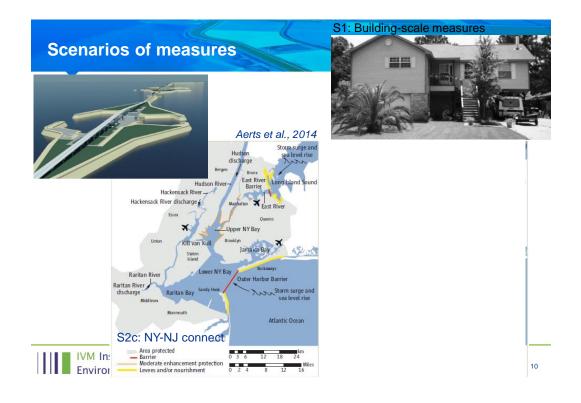
Damage model


- Based on HAZUS-MH4
- Damage to **buildings** (residential, commercial, etc.) and **vehicles**
- At census **block level**




	Code	Description	Value at risk (S/building)			Measure implemented					
						Existing Bu	ildings		New Buildin	p**	
,			Structure	Company	lavenory.	Elevator	Dayreaf*	Waterof	Elevation	Dayroaf.	
	RESI	Single Family Dwelling	182492	91246	0	Y	Y	Y	Y	Y	Y
	RES2	Maruf. Housing	356421	178211	0	Y	Y	Y	Y	Y	Y
	RES3A	Duplay	186630	93315	0	Y	Y	Y	Y	Y	Y
	RE53B	Triplex / Quads	282573	141287	0	Y	Y	Y	Y	Y	Y
	RES3C	Multi-dwellings (5 to 9 units)	\$73107	436504	0	N	Y	Y	Y	Y	Y
		Multi-dwellings (10 to	154633								
	RES3D	19 units)	8	773169	0	N	Y	Y	Y	Y	Y
	RES3E	Multi-dwellings (20 to 49 units)	371486	1857433	0	N	Y	Y	Y	Y	Y
		Multi-dwellings (50+	187072								
	RES3F	units)	61	9353631	0	N	Y	Y	Y	Y	Y
	RES4	Temporary Lodging	119915 08	5995754	٥	Y	Y	Y	Y	Y	Y
			701925								
	RES5	Institutional Dormitory	1	3509626	0	Y	Y	Y	Y	Y	Y
	RE56	N	806775	4033877	٥	Y	Y	Y	Y	Y	Y
	COMI	Nursing Home Retzil Trzde	\$71211	571211	41339	N	Y Y	Ŷ	N	N	N
	COM	AND THE	146601		412.54		•				.,
	COM2	Wholesale Trade	0	1466010	127395	N	Y	Y	N	N	N
	COMS	Personal and Repair Services	342290	342290	٥	N	Y	Y	N	N	N
	COMS	Professional Technical	113819	342290	a	N	¥	Ŷ	24	N	24
	COM4	Services	18	11381918	0	N	Y	Y	N	N	N
			237053								
	COMS	Banks	815539	2370537 12233091	0	N	Y	Y	N	N	N
	COMS	Hospital	44	5	0	N	Y	Y	N	N	N
			490470								
	COM7	Medical Office Clinic Entertainment &	226099	7357062	0	N	Y	Y	N	N	N
	COMS	Recreation &	220099	2260999	0	N	Y	Y	N	N	N
			601538								
	COM9	Theaters	9	6015389	0	N	Y	Y	N	N	N
	COMI	Parking	190913	90457	٥	N	Y	Y	N	N	N
	*	runlig	167776	80437	a	24		1	14	24	24
	IND1	Heavy	9	2516654	585357	N	N	N	N	N	N
	IND2	Tinha	409592	6143882	422805	N	N	N	N	N	N
	IND2 IND3	Light Food Drugs Chemicals	ő	0143352	422805	N	N	N	N	N	N
		Metals Minerals									
	IND4	Processing	0	0	0	N	N	N	N	N	N
	IND5	High Technology	0	0	0	N	N	N	N	N	N
	IND6	Construction	0	0	0	N	N	N	N	N	N
	AGR1	Agriculture Churches and Other	109100	0	0	N	N	N	N	N	N
1 2011	REL1	Non-profit	6	1982996	0	N	N	N	N	N	N
al., 2014			182907								
	GOV1	General Services	01	18290701	0	N	N	N	N	N	N
	GOV2	Emergency Response	287469	4312038	0	N	N	N	N	N	N
	0012	Emergency Keipense	779743	4312038	0	21	14	24	14	24	24
	EDU1	Orade Schools	3	7797433	0	N	N	N	N	N	N
			271759								
	EDU2	Colleges Universities	14	40763870	0	N	N	N	N	N	N

9/25/2014



IVM Institute for Environmental Studies

9

Costs

Cost based on Jones <i>et al.</i> per building category					
Elevation level	RES1	RES2	RES3A	RES3B	
+ 2 ft	\$1,090	\$1,445	\$1,237	\$1,856	and maintenance costs for storm surge barrier strategies for NYC (in \$ 2012 values)
+ 4 ft	\$2,181	\$2,891	\$2,473	\$3,711	Cost estimation Cost estimation based on
+ 6 ft	\$3,271	\$4,336	\$3,710	\$5,567	Engineering firms historical analyses (Table 5.1 Total Span nav. Construction Maintenance Construction Maintenance
					Barrier span (m) parts (m) (US\$ bn) (US\$ mln/yr) (US\$ bn) (US\$ mln/yr)

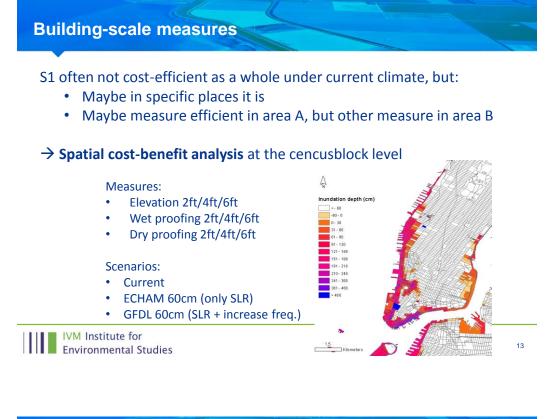
New/existing

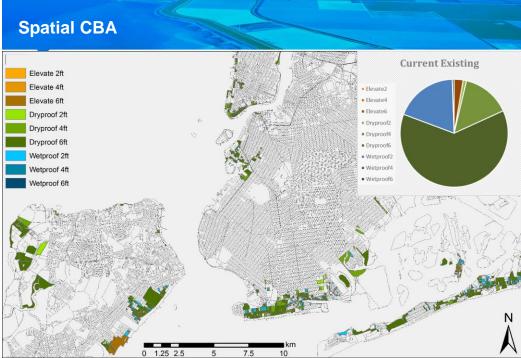
- Elevation
- Wet proofing
- Dry proofing

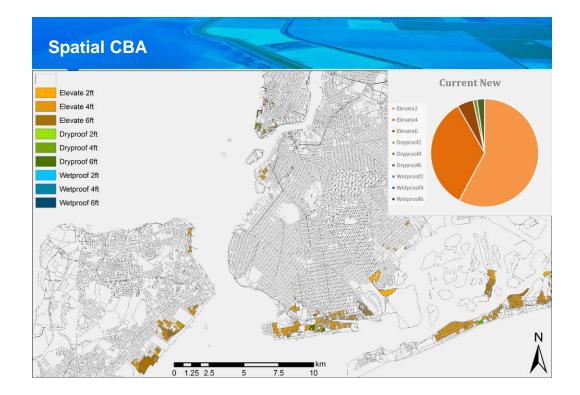
10 \$5,56	Barrier				Maintenance (US\$ mln/yr)	Construction (US\$ bn)	Maintenance (US\$ mln/yr)
Strategy 2a:	Arthur Kill	500	500	1.1		0.6-1.1	5.5
'Environmental	Verrazano Narrows	1820	1820	6.4	75	4.3-6.4	41
dynamics'	East River	1360	1360	1.9-2.1		2.6-3.0	31
Total				9.4-9.6 ^a		7.5-10.5 ^a	77.5 ^a
Strategy 2c:	East River	1360	1360	1.9-2.1		2.6-3.0	31
'NY-NJ Connect'	Outer Harbor	9540	2500	5.9	72	6.5-9.4	72
Total				7.8-8.0 ^a		9.1-12.4 ^a	104 ^a
Strategy 2b:	Arthur Kill	500	500	1.1		0.6-1.1	5.5
'Bay Closed'	Verrazano Narrows	1820	1820	6.4	75	4.3-6.4	41
	East River	1360	1360	1.9-2.1		2.6-3.0	31
	Jamaica Bay	1730	1730			4.1-6.1	39
Total				9.4–9.6 ^a		11.6-16.6 ^a	116.5 ^a

*All summary cost tables are in US\$ 2012 values. Indexing was applied using the Construction Cost Index and the Skilled Labor Index from ENR (Engineering News-Record, http://enr.construction.com/economics).

Aerts et al., 2013. ANYAS 1294, 1-104. doi:10.1111/nyas.12200

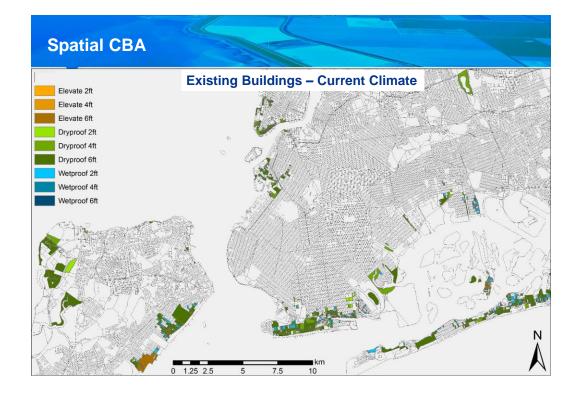

11

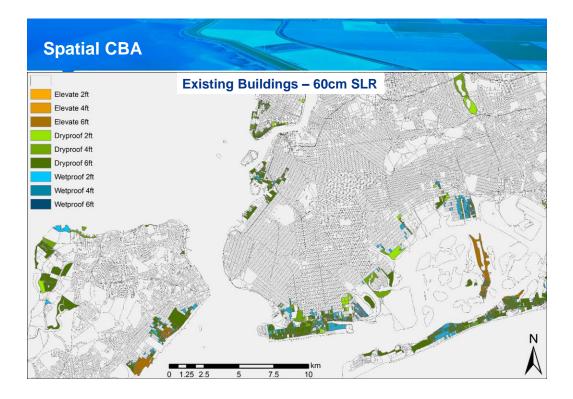


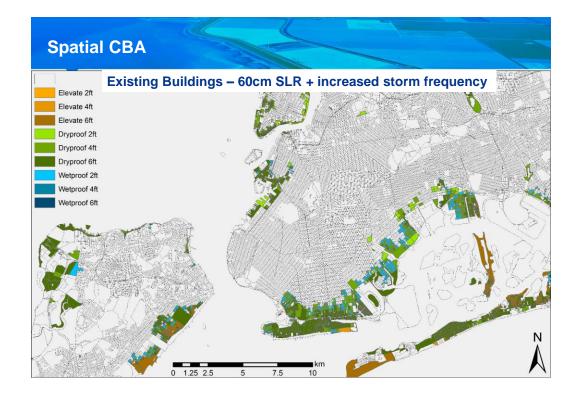

Recommendations:

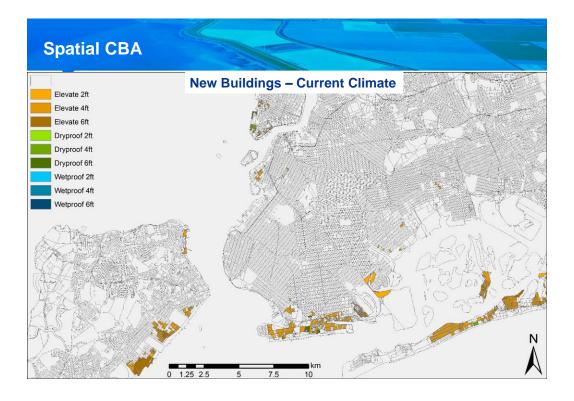
- Elevate new buildings 4-6ft (NPV>0 in all scenarios)
- Consider flood proofing existing buildings (NPV>0 under moderate cc)
- Delay investment in surge barrier (depending on how cc unfolds)

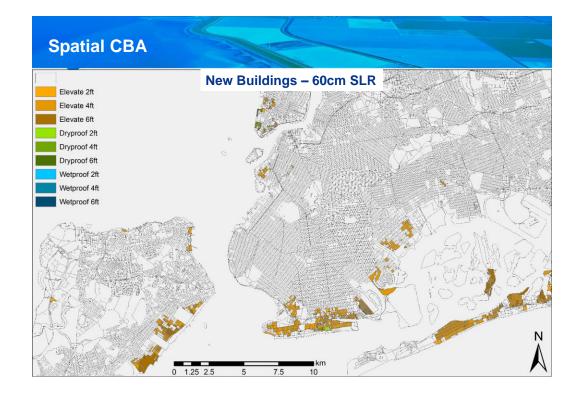
		Where/ how much	Environ.dyn. S2a	Bay closed S2b	N]-JY connect S2c	Hybrid solution S3	
				Costs			
	Total investment Total investment Total investment Maintenance	NYC NJ NYC+NJ NYC+NJ	\$16.9–21.1 billion \$2 billion \$18.9–23.1 billion \$98.5 million	\$15.9–21.8 billion \$2 billion \$17.9–23.8 billion \$126 million	\$11.0–14.7 billion n/a \$11.0–14.7 billion \$117.5 million	\$6.4–7.6 billion \$4 billion \$10.4–11.6 billion \$13.5 million	
		BCR for current climate					
	BCR	4% discount 7% discount	0.21 (0.11; 0.35) 0.13 (0.07; 0.21)	0.21 (0.11; 0.34) 0.12 (0.07; 0.20)	0.36 (0.18; 0.59) 0.23 (0.12; 0.37)	0.45 (0.23; 0.73) 0.26 (0.13; 0.43)	
			BCR for middle	climate change sce	nario		
IVN Env	ben	4% discount 7% discount	1.32 (0.67; 2.16) 0.60 (0.30; 0.98)	1.29 (0.65; 2.11) 0.60 (0.30; 0.97)	2.24 (1.14; 3.67) 1.06 (0.54; 1.74)	2.45 (1.24; 4.00) 1.09 (0.55; 1.78)	










EXISTING	Current			
Risk No Measure	71.0 M\$/yr			
Benefit Best Measure	28.5 M\$/yr			
% Benefit	40%			
# Census blocks (5094)	891			
NEW				
Risk No Measure	15.2 M\$/yr			
Benefit Best Measure	8.7 M\$/yr			
% Benefit	58%			
# Census blocks (4908)	759			

Spatial CBA

EXISTING	Current	SLR (60cm)	SLR + Freq.
Risk No Measure	71.0 M\$/yr	164.2 M\$/yr	787.7 M\$/yr
Benefit Best Measure	28.5 M\$/yr	79.6 M\$/yr	440.0 M\$/yr
% Benefit	40%	48%	56%
# Census blocks (5094)	891	1585	2700
NEW			
Risk No Measure	15.2 M\$/yr	34.8 M\$/yr	176.0 M\$/yr
Benefit Best Measure	8.7 M\$/yr	22.1 M\$/yr	121.5 M\$/yr
% Benefit	58%	63%	69%
# Census blocks (4908)	759	1076	1690

IVM Institute for Environmental Studies

Spatial CBA Current Existing ECHAM60 Existing **GFDL60** Existing Elevate2 Elevate2 Elevate2 Elevate4 Elevate4 Elevate4 Elevate6 Elevate6 Elevate6 Dryproof2 Dryproof2 Dryproof2 Dryproof4 Dryproof4 Dryproof4 Dryproof6 Dryproof6 Dryproof6 Wetproof2 Wetproof2 Wetproof2 Wetproof4 Wetproof4 Wetproof4 Wetproof6 Wetproof6 Wetproof6 **Current New** ECHAM60 New **GFDL60** New Elevate2 Elevate2 Elevate2 Elevate4 Elevate4 Elevate4 Elevate6 Elevate6 Elevate6 Dryproof2 Dryproof2 Dryproof2 Dryproof4 Dryproof4 Dryproof4 Dryproof6 Dryproof6 Dryproof6 Wetproof2 Wetproof2 Wetproof2 Wetproof4 • Wetproof4 Wetproof4 • Wetproof6 Wetproof6 Wetproof6

Concluding remarks

1. Even when applying a measure throughout the city is not cost-efficient; it can be **efficient in specific areas** (16%-17%)

• Area increases considerably with climate change (up to 53%)

2. Substantial amount of **risk can be reduced** through an optimal mix of damage-reducing measure at building level.

- Risk reduction of 40-56% for existing buildings
- Risk reduction of 58-69% for new buildings
- 3. Type of measure to apply differs spatially
 - Most effective measure existing seems dryproofing 6ft
 - Most effective measure new seems elevating 2-6ft
 - But not *most* cost-efficient, doesn't mean not cost-efficient at all

IVM Institute for Environmental Studies

Thank you for your attention!

hans.de.moel@vu.nl

Aerts et al., 2014. Evaluating flood resilience strategies for coastal megacities. Science vol.344, 2 May 2014, pp. 473-475. doi:10.1126/science.1248222

Aerts et al., 2013. Cost estimates for flood resilience and protection strategies in New York City. Annals of the New York Academy of Sciences, vol.1294. doi:10.1111/nyas.12200

Aerts et al., 2013. Low-probability flood risk modeling for New York City. Risk Analysis. doi:10.1111/risa.12008 25