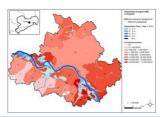
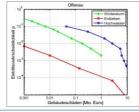

Flood damage modelling on basis of urban structure mapping using high-resolution remote sensing data

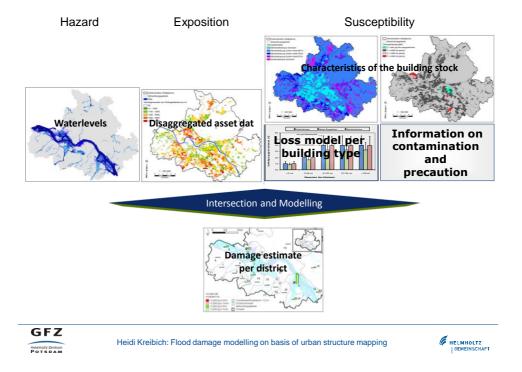
Heidi Kreibich, Tina Gerl, Mathias Bochow GFZ-German Research Centre for Geosciences, Potsdam, Germany

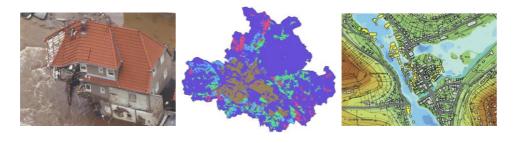




Flood damage modelling is needed for ...

- Vulnerability assessment
- Risk mapping
- Efficient decisions about protective and precautionary measures
- > Assessment of climate adaptation strategies
- Comparison of multi natural hazards risks
- Cost assessment for the (re-)insurance sector
- Loss estimation during/after flood events for compensation and reconstruction




Heidi Kreibich: Flood damage modelling on basis of urban structure mapping

Damaging processes

- Damaging processes differ from building to building
- Damage determining factors are e.g. building use, type, size, material, precaution, basement
- More detailed information about exposed residential buildings are necessary

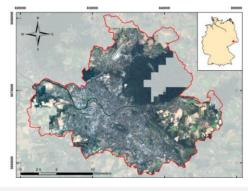
HELMHOLTZ | GEMEINSCHAFT

Residential areas

Buildings historic city center

4-Storey villa Mid-rise dwellings High-rise building Singe-family house

Morphological units differ in regard to:


- > composition of different objects (e.g., buildings, trees)
- surface materials (e.g., roof materials, vegetation type)
- distribution and arrangement within space

Heidi Kreibich: Flood damage modelling on basis of urban structure mapping

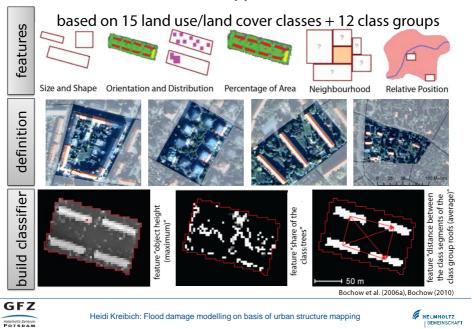
Approach

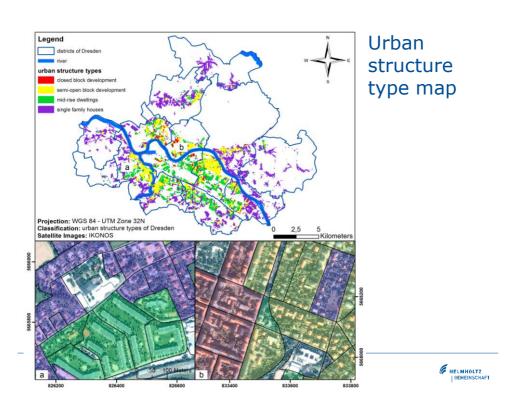
IKONOS imagery of the case study area

preprocessing

land use/ land cover classification

urban structure type mapping


flood loss modelling



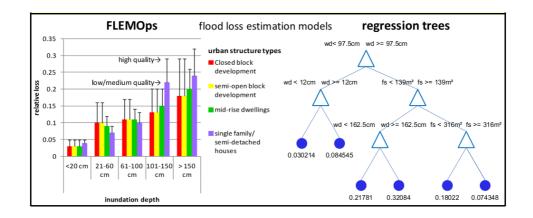
Heidi Kreibich: Flood damage modelling on basis of urban structure mapping

Urban structure type classification

Error matrix of the urban structure type classification

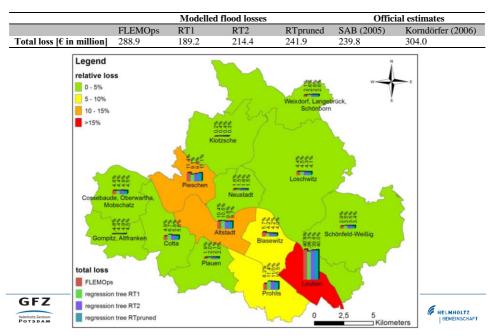
	Number of training	Closed block development	Semi-open block	Mid-rise dwellings	Single family	Omission error
	building blocks		development		houses	
Closed block	36	63.9	16.7	19.4	0	36.11
development						
Semi-open block	493	1.2	72.8	11.6	14.4	27.18
development						
Mid-rise dwellings	745	1.5	16.0	64.1	18.4	35.84
Single family houses	1157	0	11.5	8.1	80.4	19.62
Commission error		42.50	41.82	24.84	18.28	

Heidi Kreibich: Flood damage modelling on basis of urban structure mapping

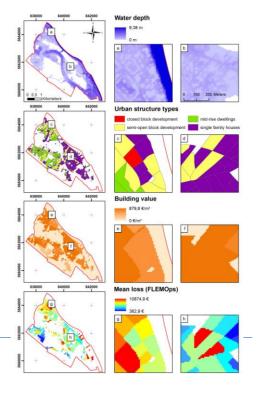

Building characteristics of the four urban structure types

		Closed block development	Semi-open block development	Mid-rise dwellings	Single family houses
Share of area [%]		2.9	22.6	24.7	49.8
Age of building [%]	before 1924	28.0	35.1	12.2	25.6
	1924-1948	16.1	23.1	25.1	33.7
	1949-1990	40.9	22.5	47.6	17.6
	after 1990	15.1	19.2	15.0	23.0
heating system [%]	coal	2.3	0.6	0.7	2.3
	gas	30.7	67.5	38.5	75.1
	fuel oil	6.8	8.6	6.8	15.5
	electricity (night storage)	5.7	1.3	4.3	2.3
	district heating	54.5	21.2	49.0	2.8
	wood, pellets, tile stoves	0	0.6	0.4	1.9
	others	0	0	0.4	0
mean floor space [m ²]		4336	1078	2549	388

Flood loss models



Heidi Kreibich: Flood damage modelling on basis of urban structure mapping



Flood loss estimations

Example of spatial characteristics:

- Water depth
- > urban structure type
- building values
- ➤ losses

Conclusions

- ➤ The urban structure map achieved a good accuracy of 74%
- On this basis modelled flood losses are in the same order of magnitude as official damage data
- ➤ Single family houses show significantly higher losses than the other three urban structure types, so that information on their specific location is very valuable

Gerl, T. M., Bochow, M., Kreibich, H. (2014): Flood Damage Modeling on the Basis of Urban Structure Mapping Using High-Resolution Remote Sensing Data. - Water, 6, 8, p. 2367-2393.

