

Content

- Urban flood Risk Uncertainty
- Balanced intervention approach
- Case study of Ho Chi Minh City
- Conclusions

Risk Uncertainty Analysis

Risk is a Hazard-depending Spatio-temporal function:

Risk = Hazard Probability * Exposure * Vulnerability

- Exposure Uncertainty due to Urbanization
- Hazard Uncertainty due to both climatic and non-climatic impacts
- Vulnerability Uncertainty due to Social policy and economical development

Risk Uncertainty analysis

- Hydraulic model → Flood map (at a probability)
- Flood map + cadastral Map → Exposure.
- Exposure map + Damage function → Vulnerability

Risk Uncertainty analysis Current risk uncertainty may be just resulted by hydrological variation. Future risk may be derived from climate changes, ineffective plans- and policies. Current Future

Remarks

- Urban flood risk control implies high level of Uncertainties resulted by both climatic- and non-climatic factors.
- Conventional approach focusing structural intervention may not be flexible to cope with such variations.
- 3 options of Flood Risk Management: Hazard-, Exposure- and Vulnerability reduction
- A spatially balanced intervention strategy decides the TIMINGand FRACTIONAL HARMONIZING of the H-E-V.

Balanced Intervention Approach

12 key principles of IUFR

- 1. There is no flood management blueprint.
- 2. Be Able to cope with a changing and uncertain future.
- 3. Integration of flood risk management into regular urban planning
- 4. Getting the balance right.
- 5. Structural measures can transfer risk upstream and downstream.
- 6. Impossible to entirely eliminate the risk from flooding.
- 7. Linkages between flood management, urban design, planning and management
- 8. Social and ecological consequences of flood management
- 9. Clarity of responsibility
- 10. Multi-stakeholder cooperation.
- 11. Raise awareness and reinforce preparedness
- 12. Recover quickly after flooding

Cities and Flooding (2012). Abhas K Jha et al. World Bank

Multi-leveled Integrated strategy

Mix measures to reduce flood damage under extremity

- Operation/Maintenance capacity, both technical and financial, decide intervention scale and sophisticated level of the measures.
- Social capacity determines the Adaptation level of strategy

Protection

Technical measures to alleviate flood risk within protection level (80-95%)

Integrated strategy and Social capacity

- Hazard control: common option for Low to Mid social capacity; requires less governance/coordination; Top-down strategy; highly vulnerable.
- Exposure control: requires higher governance/coordination; Mainstreamed by urban water space policy; Top-down strategy; low vulnerability.
- Vulnerability improvement: requires higher governance/coordination and perception; Mainstreamed by housing policy and Emergency response Plan; Mixed strategy,

Remarks

- Prevention-biased mindset, originated from agricultural water management, is still dominant in developing countries.
- Changing the perspectives of Flood management from just hazard reduction to all 3 components will provide more balanced strategies.
- Operation/Maintenance capacity decides intervention scale and sophisticated level of the strategy.
- Balance level of strategy is usually limited by Social capacity.
- Risk accumulation and transfer should be taken into account in CBA.

Conclusions

- For cities, probability of diaster beyond prevention capacity is 100%.
- Bigger is not usually better. If possible, multi-layered protection should be prefered.
- To cope with uncertainty, Earlier is not necessarily better. Stepwise intervention for uncertainty and limited resources.

