

Hung-Chih Hung, Ching-Yi Yang, Chang-Yi Chien

National Taipei University, Taiwan 24 September 2014

Outlines

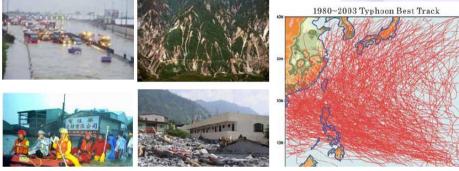
- Background and purposes
- Related studies
- Methods
- · Results of the case study
- Conclusions

Background and purposes

Background – 1/2

Metropolitan areas are vulnerable and risky to climate-related hazards in parallel with a high agglomeration of population

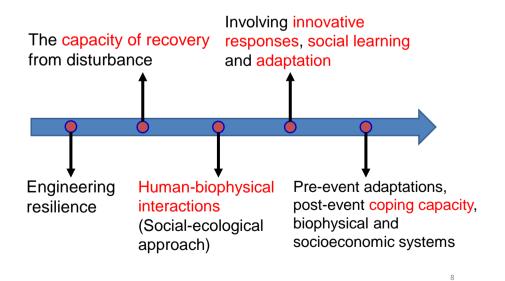
Building resilience is critical for metropolitan land use planning to strengthen the ability to cope with and minimize climatic disaster risks



There are challenges in the identification and development of the components and metrics for measuring resilience

Background – 2/2

 Major portions of Taiwan are highly exposed to the threat from typhoon and flood



The Purpose of the Study

- To propose a novel method for resilience assessment that combines a GIS-based fuzzy multicriteria decision approach with multivariate analysis
- We create resilience maps using an PGIS approach to encompass active participation of stakeholders
- We examine the determinants of the concept of resilience using a multivariate and cluster analysis

Related studies

Evolution of the Concept of Resilience

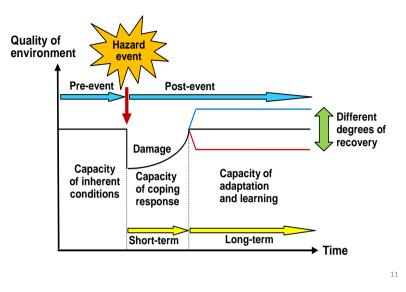
10

Resilience Assessment and Land Use Planning

Resilience assessment

• To help land-use planners understand which sectors, regions, or communities are the least resilient

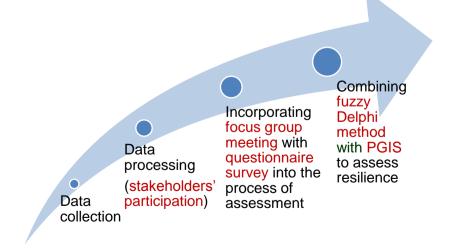
Social-ecological approach


 Incorporating disturbances (hazards), institutional structure, governmental actions, knowledge, social capital into assessment

Contemporary resilience assessment

- Involve land-use factors
- GIS tools (e.g., PGIS) enhance the integration of stakeholders' knowledge and participations into the process of assessment

Conceptual framework of resilience assessment to climatic hazards


Resilience indicators to climatic hazards

Dimension	Category	Indicator	Relationship with resilience
Inherent biophysical conditions	Hazard potential Exposure	Rainfall Debris flow torrents Proximity to river	Linear (-) Binary-Linear(-) Linear (+)
Inherent Socio-	Demography	Elevation Population Elderly	Linear (+) Linear (-) Linear (-)
economic conditions	Income	Native Social dependence Income	Linear (-) Linear (-) Linear (+)
	Industries	Saving Unemployment Industry and service	Linear (+) Linear (-) Linear (-)
Institutional,	Land uses	Primary industries Urban development	Linear (+) Linear (-)
coping, and infrastructure capacity		Agricultural land Informal settlements	Linear (+) Linear (-)

Dimension	Category	Indicator	Relationship with resilience
Institutional,	Politics	Vote turnout	Linear (+)
coping, and	Infrastructure	Public infrastructure	Linear (-)
infrastructure capacity		Shelters	Linear (-)
		Police and fire facilities	Linear (+)
		Medical services	Linear (+)
Adaptive	Perceived	Risk perceptions	Nominal (+)
capacity and learning	risk and self-	Access to resources	Nominal (+)
learning	efficacy	Adaptation appraisal	Nominal (+)
	Adaptation and learning	Adaptive strategies	Binary and linear(+)
		Education	Linear (+)

Resilience indicators to climatic hazards

Process of assessing resilience

Results of the case study

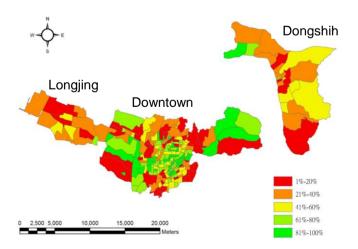
Case study areas

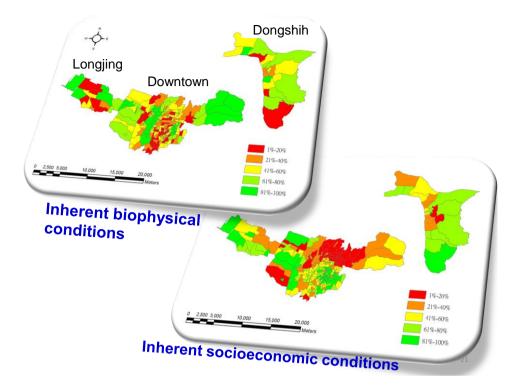
Taichung City is the largest metropolis and the most rapidly urbanizing area in central Taiwan

The population of Taichung increased by **30%** from 2 million in 1990 to 2.7 million in 2013

Three cases were selected from Taichung City including the villages in Dongshih (hillside), Longjing (coastline) district and downtown areas

Taichung Metropolis

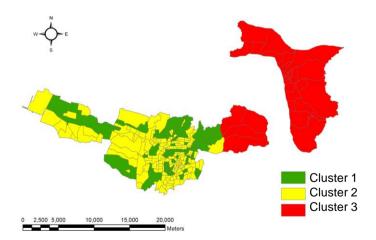

Weights of indicators


Dimension	Weight	Category	Weight	Indicator	Weight
Inherent	0.205	Hazard	0.081	Rainfall	0.035
biophysical		potential		Debris flow torrents	0.038
conditions		Exposure	0.112	Proximity to river	0.036
				Elevation	0.039
Inherent	0.351	Demography	0.110	Population	0.028
Socio-				Elderly	0.037
economic conditions				Native	0.029
conultions				Social dependence	0.076
		Income	0.121	Income	0.039
				Saving	0.039
		Industries	0.120	Unemployment	0.036
				Industry and service	0.041
				Primary industries	0.033
Institutional, coping, and	0.232	Land uses	0.121	Urban development	0.068
infrastructure capacity				Agricultural land	0.032

Dimension	Weight	Category	Weight	Indicator	Weight
Institutional,				Informal settlements	0.035
coping, and infrastructure		Infrastructure	0.110	Public infrastructure	0.032
capacity				Shelters	0.036
				Police and fire facilities	0.039
				Medical services	0.041
Adaptive	0.212	Perceived	0.115	Risk perceptions	0.039
capacity and learning		risk and self- efficacy		Access to resources	0.040
				Adaptation appraisal	0.042
		Adaptation and learning	0.110	Adaptive strategies	0.058
				Education	0.03219

Weights of indicators

The Distribution of estimated integrated resilience indices


Cluster analysis

- To provide policy-makers with the core areas in which planning measures require to be adopted and which characteristics can be used to promote resilience
- A method of combining k-means cluster with discriminant analysis was used to identify unique grouping of villages

Clusters of resilience types

Cluster 1	 A higher socioeconomic vulnerability to climatic hazards Distributed mostly surrounding the downtown cores
Cluster 2	 Containing the areas with the middle indicator values
Cluster 3	 The highest values for all of the biophysical conditions, learning and adaptive capacity Concentrated mostly in Dongshih

Results of cluster analysis

Determinants of resilience to climatic hazards

- Logit regression analysis allows us to identify the key factors driving diversification of local resilience
- To compare the least resilience villages (20th percentile estimated IRI values) with the remaining ones

25

The findings through Logit analysis

Category	Indicator	Relationship to resilience
Exposure	Proximity to river	+***
Exposure	Elevation	+***
Demography	Population	***
	Elderly	***
	Native	***
	Social dependence	***
Income	Income	+***
	Saving	+***
Industries	Unemployment	***
	Industry and service	+**
Land uses	Urban development	***
	Informal settlements	*

* p < 0.1; ** p < 0.05; *** p < 0.01

The findings through Logit analysis

InfrastructurePublic infrastructure+***Shelters+***Police and fire facilities+***Police and fire facilities+***Medical services+***Adactal services+***Adaptation and learningAdaptive strategies+***Education+***	Category	Indicator	Relationship with resilience
Police and fire facilities+***Medical services+***Medical services+***Adaptation andAccess to resources+***Adaptation appraisal+***Adaptation andAdaptive strategies+*	Infrastructure	Public infrastructure	+***
Medical services+***Perceived risk and self- efficacyRisk perceptions+***Access to resources+***Adaptation appraisal+***Adaptation and legentingAdaptive strategies+*		Shelters	+***
Perceived risk and self- efficacyRisk perceptions +***+***Access to resources Adaptation appraisal+***Adaptation and LearningAdaptive strategies+*		Police and fire facilities	+***
and self- efficacyAccess to resources+***Adaptation appraisal+***Adaptation andAdaptive strategies+*		Medical services	+***
efficacy Access to resources + *** Adaptation and Adaptive strategies + *	Perceived risk	Risk perceptions	+***
Adaptation appraisal +*** Adaptation and Adaptive strategies + *		Access to resources	+***
	emcacy	Adaptation appraisal	+***
learning Education +***	Adaptation and	Adaptive strategies	+*
	learning	Education	+***

* p < 0.1; ** p < 0.05; *** p < 0.01

27

28

Conclusions

Conclusions – 1/2

Building resilience	 Policy-makers focus more on building resilience and incorporating stakeholders' knowledge into decision- making
Novel approach	 We constructed an integrated index to characterize the resilience To combine a fuzzy multicriteria decision analysis with an PGIS to assess resilience
Findings	 Various factors constitute different spatial patterns of resilience, and that tradeoffs may exist between some of these factors

Conclusions – 2/2

Findings	 To provide policy-makers with a better governance structure to design appropriate patchworks of planning measures for different resilience cluster in metropolitan areas
----------	--

Thanks for your attention

Hung-Chih Hung, Ching-Yi Yang, Chang-Yi Chien

