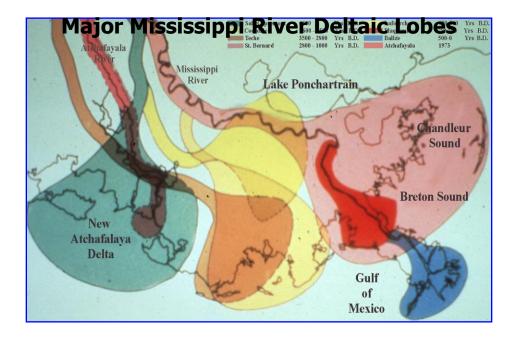
Sustainable Management of Deltas in a Climate-Challenged, Energy-Scarce World

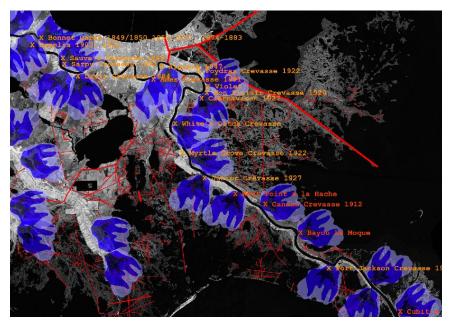
John W. Day, Jr. Professor Emeritus

Dept. of Oceanography and Coastal Sciences School of the Coast & Environment, Louisiana State University

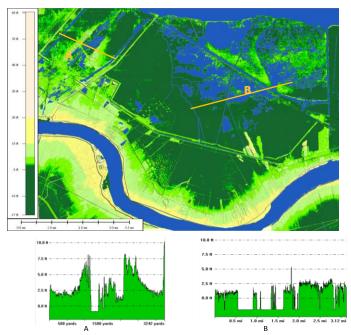
Conceptual Framework

Sustainable Management Should be Based on System Functioning


Must be Aware of Fundamental Biophysical Constraints:

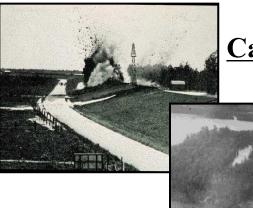

- Laws of Thermodynamics govern flows of energy and materials into and out of human systems
- All systems at all scales are embedded within Earth systems Boundaries are important
- Absolute constraints are imposed at global scale
- All sustainability ultimately depends on global sustainability

Temporal Scale of pulsing events in deltaic systems


Event	Timescale	Impact
River switching	1,000 yrs	Deltaic lobe formation Net advance of deltaic landmass, Barrier Island Formation
Major river floods	50-100 yrs	Channel switching initiation Crevasse splay formation Major deposition
Major storms	5-20 yrs	Major deposition Enhanced production
Average river floods	Annual	Freshening (lower salinity) Nutrient input Enhanced 1º and 2º production
Normal storm events (Fronts)	Weekly	Enhanced production Organism transport Net material transport
Tides	Daily	Drainage/marsh production Low net transport

Day et al. 1995, 2007

There were hundreds of crevasses along the lower Mississippi River since 1700. A number occurred in the first part of the 20^{th} century.


Bonnet Carre Spillway

Bonnet Carre Floodway •Accretion 2.8 cm/yr •Bulk density 1.0

LaBranche Wetlands •Accretion 0.38 cm/yr •Bulk density 0.2-0.3

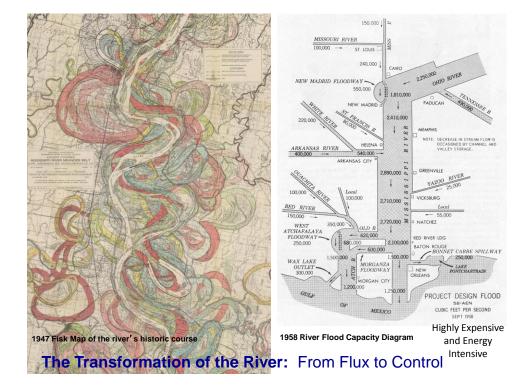
Hundreds of Natural Crevasses since 1700s

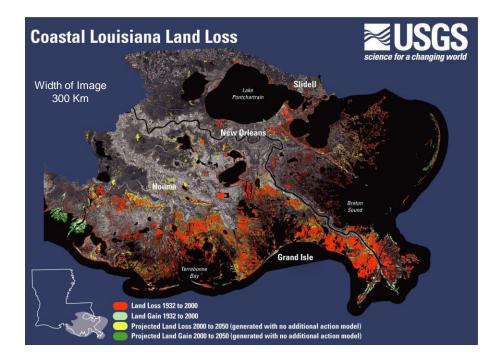
LaBranche Wetlands

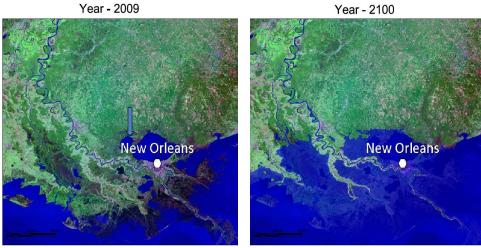
Caernarvon 1927

Sediment Deposition During

The 1927 Crevasse

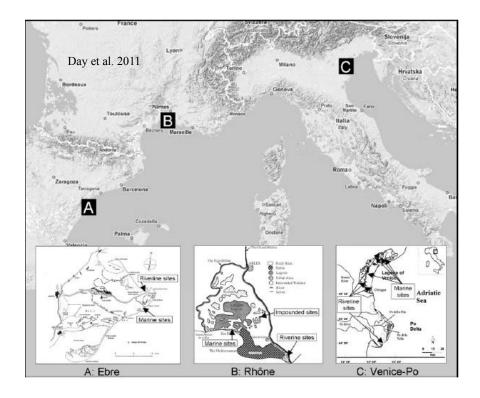

Flow Up To 10,000 m³/sec

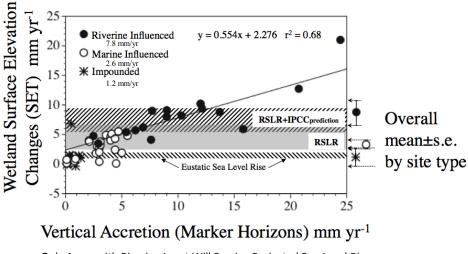



30 cm in 3 months in 1927

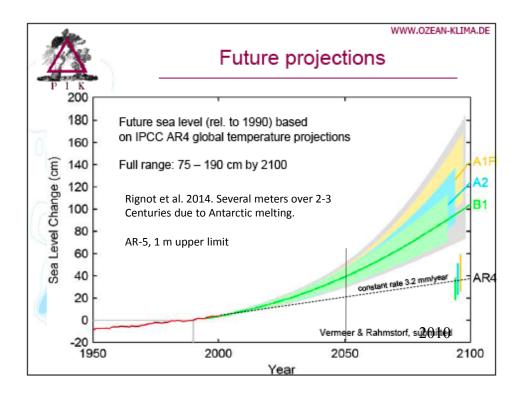
55 cm from 1927 to 2002

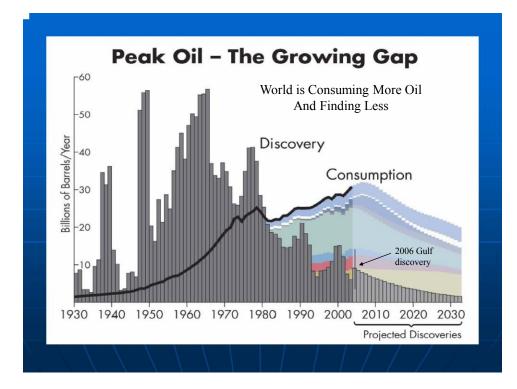
Also high sediment Input to Atchafalaya delta

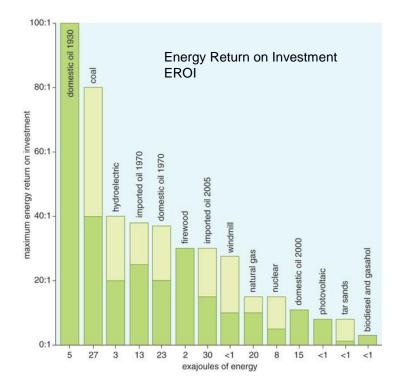


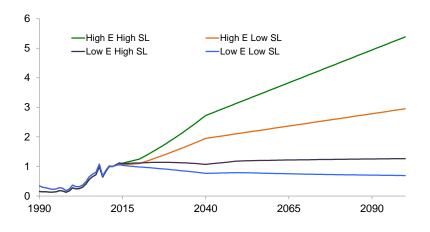


Map: Blum, M.D., and H.H. Roberts (2009), Drowning of the Mississippi delta due to insufficient sediment supply and global sea-level rise, *Nat. Geosci.*, 2, 488-491.


The Transformation of the River: The Future




Only Areas with Riverine Input Will Survive Projected Sea-Level Rise


Day et al. 2011. Estuaries and Coasts

Restoration Cost Index (2012 = 1, Adjusted for Inflation)

Value of Ecosystem Services of the Mississippi Delta Is Estimated at \$12 to 47 Billion Dollars Annually

- \$20 billion less with BAU
- \$20 billion more with restoration

Value of the Natural Capital of the Delta is \$330 Billion to \$1.4 Trillion

Batker et al. 2014

Problems with NeoClassical Economics (Question Current Conceptual Frameworks)

- Define economy independent of biophysical matrix
- Describe economic production independent of physical work
- · Not consistent with laws of thermodynamics
- Not consistent with principles of ecologycontinued growth (exponential vs logistic growth), lack of absolute scarcity (law of the minimum, limiting nutrients), infinite substitutability (Redfield ratio)
- Treat humans as rational

Hall and Klitgaard, 2011, Energy and the Wealth of Nations

Coastal Areas Below Sea Level

- Netherlands
- Mississippi Delta (New Orleans)
- Rhone Delta
- Po Delta (up to 5 m below MSL)
- Ebro Delta
- Sacramento Delta
- Fens
- Ganges Delta
- Vistula Delta
- Bangkok

Human Impact on Deltas

- Deltas developed with a relative stable sea level
- Deltas developed with a relatively predicable riverine inputs (water, sediments, nutrients)
- Deltas developed without engineered changes
- Human activity has changed all of this

Summary

- Climate Change Will Impact the Landscape Unevenly. Large Areas Will be Worse Off
- Energy Scarcity Will Limit Options for the Economy and Environmental Management
- Ecosystem Services Will Become Relatively More Important to the Human Economy
- Delta Restoration Will Have to Take Place on a Much Greater Scale. Climate Change Will Make Restoration More Difficult and Energy Scarcity Will Limit Options
- Work with Delta Dynamics as Much as Possible

Indices of Deltaic Sustainability

- Geomorphic Sustainability
 - Elevation Change \geq RSLR
 - Total Area Change ≥ 0
- Ecological Sustainability
 NPP > 0
- Economic Sustainability
 - Economic Value Generated by $Delta \ge Economic Subsidies$
 - Change in Value of Ecosystem Services ≥ 0
- Resource Sustainability
 - Resources needed (freshwater, sediments) available

Estuaries of the World

- Minimal long-term dependence on fossil fuels

Book

194 Pages

In depth, multidisciplinary consideration of specific issues faced by one of the planet's great ecological systems with a legacy of mismanagement and an uncertain future

Audience: University Faculty, Students, High-Level Policy-Makers

RESTORE THE MISSISSIPPI

John W. Day G. Paul Kemp Angelina M. Freeman David P. Muth *Editors*

Perspectives on the Restoration of the Mississippi Delta

The Once and Future Delta

2 Springer

In Times of Extraordinary Actuality, Consciousness Replaces Imagination

Wallace Stevens

The Weight of This Sad Time We Must Obey; Speak What We Feel, Not What We Ought to Say

Shakespeare, King Lear