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Chapter 1: General Introduction 

  

 

nfectious zoonotic diseases transmitted between human, wildlife and domestic animals have 

important impacts on livestock economies, wildlife conservation and public health [1]. In 

Southeast Asia alone, for examples, it has been estimated that highly pathogenic avian influenza 

(H5N1) virus outbreaks caused the death of 140 million domestic birds with economic losses at $10 

billion [2]. After 1889, the introduced rinderpest virus rapidly reduced the ungulates in African savanna to 

20% of their original abundance [3,4]. Ebola hemorrhagic fever has been considered as a big threat to 

African ape populations [5]. It has been estimated that infectious diseases are the most important threat to 

human health, responsible for 25% of worldwide mortality [6]. Over the last decades, about 20,000–

30,000 cases of Lyme disease have been reported annually in USA and the average annual numbers of 

cases in Europe and Asia have been estimated at 65,467 and 3,450, respectively [7]. Although the 

epidemiology of human and livestock diseases are relatively well-studied [8], the epidemiology and 

ecology of wildlife diseases or human/livestock diseases with wildlife-human/livestock interface are 

largely unknown. In order to evaluate the risk of infectious diseases and take successful prophylactic 

measures, a clear understanding of the driving forces of the dynamics of these diseases is required.  

Pathogen transmission can be affected by many biotic (e.g., host density, vector density etc.) and abiotic 

factors (e.g., climate etc.) [9,10]. Among these factors, host species richness has attracted much recent 

attention, because of interest in identifying and evaluating utilitarian functions of biodiversity [11,12]. 

Current studies argue that high species richness reduces risks of infectious diseases via a hypothesized 

‘dilution effect’ [13,14,15], which presents an exciting convergence of public health concern and 

biodiversity conservation [11,14,16]. Although the dilution effect has been reported in many different 

diseases [17,18], its generality and mechanisms are still under active debate [11,12,19,20]. In this thesis, I 

contribute to a better understanding of the effect of species richness on disease risk by testing the dilution 

effect hypothesis and exploring the underlying mechanisms. 

Mathematical models and host population size (or host density) 

Mathematical host-pathogen models are able to generate conceptual understanding of disease dynamics 

[21]. Simplified host-pathogen models of disease dynamics occur in many forms [21]. The basic and 

well-known host-pathogen model is SIR (susceptible-infected-recovered) model and the transmission 

dynamics can be described as differential equations (Fig 1.1).  

From the compartmental models, we can see that host abundance (host density for a consistent area) plays 

an important role in determining disease dynamics. For density-dependent transmitted diseases, host 

population size directly determines infection rate (dI/dt, Fig 1.1), and thus the infection prevalence. Take 

an example, the infection prevalence of Phytophthora ramorum in forest communities in western coasts 
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of USA was positively correlated with the density of its competent hosts, bay laurel and tanoak [22]. In 

addition, for density-dependent transmissions, there exists a threshold host population size under which 

the pathogen cannot invade the population [23]. Increasing host population size is able to increase the 

chances of pathogen invasion and disease outbreak [24]. Herd size or cattle density, for an example, is 

consistently identified to correlate with the probability of occurrence of bovine tuberculosis at herd level 

[25,26]. In frequency-dependent transmissions, infection rate is independent of host population size (Fig 

1.1) and thus a high host population size cannot lead to a higher infection prevalence [24]. However, 

increasing host population size is capable of increasing the total number of infected hosts, since the 

number of infection is the product of infection prevalence and host population size. 

 

Figure 1.1: Structure of a classical SIR compartmental model. N represents the host population size. Hosts can be 

susceptible (S), infected (I) or recovered/immune (R). b and d respectively represent birth rate and mortality. Infected 

hosts can recover from an infection at a recovery rate r. The per capita transmission rate is determined by the force of 

infection, λ. The parameter β is the intraspecific transmission rate. For density-dependent transmission (Box 1), λ 

equals βI, whereas for frequency-dependent transmission, λ equals βI/N.  

 

Dilution effect and its mechanisms 

Many pathogens are able to infect more than one host species, and these host species can differ strongly 

with respect to their abilities to support and transmit pathogens due to differences in their immune 

systems [27,28] or co-evolutionary histories with pathogens [27,29]. Also, host-pathogen interactions can 

be affected by the presence of interacting species, including predators, competitors, etc. within the 

d�

dt
= �� − (� + �)� 

d�

dt
= �� − (� + �)� 

d�

dt
= �� − �� 

Box 1: Some definitions   
Density-dependent transmission: transmission in which the number of new infections per unit time is 

proportional to the product of the density of infected hosts and the density of susceptible hosts.  

Frequency-dependent transmission: transmission in which the number of new infections per unit time is 

proportional to the product of the density of infected hosts and the proportion (or frequency) of hosts that are 

susceptible. 

Basic reproductive rate: R0, the expected number of secondary cases caused by the first infectious individual in a 

wholly susceptible population 

Generalist parasite: parasites that have been recorded as infecting more than one Family of related species. 

Specialist parasite: parasites that had been recorded only from species within a single Family of related species.  

Reservoir competence: a species’ potential to support and transmit pathogens. 

Zoonosis: an infectious disease which can be transmitted from animals to humans. 

Infection prevalence: the proportion of a population found to have the infection. 

Threshold population for invasion: the minimum host population size required for a disease to be able to invade 

a host population successfully. 
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community [30,31]. Therefore, community structure and composition can largely influence the dynamics 

of infectious diseases [18,31]. 

With great pressures on nature resources and increasing global biodiversity loss, ecologists are 

reinforcing incentives for biodiversity conservation by outlining the ecosystem services it provides [32]. 

One of the ecosystem services could be protection against diseases [33]. This basic idea arose from 

‘zooprophylaxis’ within the discipline of malaria epidemiology [34]. Zooprophylaxis describes the active 

use of livestock animals to divert vector (mosquito) bites away from humans to protect against malaria 

infection [35]. Then, Ostfeld and colleagues [36,37,38] reformulated this idea in their studies on Lyme 

disease and introduced ‘dilution effect’ with a restrictive definition referring to a community where 

higher species richness supports a greater fraction of low competency hosts, which leads to an increase in 

“waste” encounter events (between infected vectors and incompetent hosts) [17]. Now, the concept of 

‘dilution effect’ has been extended and is used to describe the net effect of species diversity or species 

richness reducing disease risk by a variety of different mechanisms, because the restrictive definition 

leaves many mechanisms by which species diversity reduces disease risk undefined [17,31]. The dilution 

effect has been reported in a wide range of infectious diseases such as Lyme disease [39,40], West Nile 

encephalitis [41], Hantavirus pulmonary syndrome [42,43,44], schistosomiasis [45],  trematode parasites 

[15,46] and so on [18]. However, it is still highly disputed whether the dilution effect generally occurs 

[11,12,19,20]. These critical studies suggested that the dilution effect is more likely idiosyncratic and 

applies only under certain circumstances [11,19]. 

Table 1.1: Mechanisms that can give rise to a dilution effect from changes in species richness. 

Mechanism Definition 

Encounter reduction Reduction in the rate of encounters between susceptible and infected hosts or 

between susceptible hosts and infected vectors.  

Transmission reduction Reduction in the probability of transmission of pathogen from infected hosts to 

susceptible hosts or vectors 

Susceptible host regulation Reduction in the abundance of susceptible hosts 

Vector regulation Reduction in density of infected vectors 

Recovery augmentation Faster disease recovery rate among infected hosts 

By using standard infectious disease models in directly transmitted parasite and vector-borne infection, 

Keesing and colleagues [31] outlined five hypothetical mechanisms (Table 1.1) through which changes in 

species richness could influence infection risk. Among them, two mechanisms, encounter reduction and 

host regulation, have been well proved [17,41]. Encounter reduction describes the process that high 

species richness can reduce the encounter rates among competent hosts or between vectors and competent 

hosts by changing host behaviours, host home range and so on [31]. For examples, to test the dilution 

effect in Sin Nombre virus (SNV), Clay et al. monitored intra and interspecific encounters of deer mice 

(competent host for SNV) in the Great Basin Desert and found that higher species diversity reduced 

intraspecific contact rate between deer mice. This might because that the presence of other species may 

change the foraging behaviour of deer mice and force them to forage in less desirable areas [47]. Hass et 

al. found that incompetent host species in higher-diversity plant communities could dilute the 

transmission of Phytophthora ramorum since those incompetent hosts can act as physical barriers to 

pathogen spread and interfering with transmission pathways among competent hosts, bay laurel and 

tanoak [22]. Host regulation refers to that incompetent hosts in communities with high species richness 

can reduce the density or abundance of competent hosts by competition or predation, and thus reduce 
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disease risk [31]. For Lyme disease in USA, the density of competent host, white-footed mouse, is usually 

high in low-diversity communities due to the lack of competition, which leads to an increased disease 

transmission [28,39,48]. However, whether other mechanisms can cause a dilution effect is still 

conjectural or lack evidence from experimental and field studies [17].  

Predictions of the dilution effect in mathematical models 

The classical compartmental models for multi-host have been used to investigate the generality of the 

dilution effect [49,50,51].  

�� =	����� + �����                                  (E 1.1) 

�� = (����� + �����)/(�� + ��)             (E 1.2) 

Equation (E 1.1) describes the force of infection in a two-host system with density-dependent 

transmission, whereas equation (E 1.2) refers to frequency-dependent transmissions. Subscripts present 

different host species, a competent host species 1 and an incompetent host species 2. β11 is the 

intraspecific transmission rate, whereas β21 is the interspecific transmission rate (from host 2 to host 1). 

Using classical SIR models, Dobson investigated the effect of species richness on disease risk in both 

density-dependent and frequency-dependent transmission [49]. He found that the dilution effect is more 

likely to occur in frequency-dependent transmitted diseases while increasing host species richness always 

leads to increased R0 (as a measure of disease risk, Box 1) in diseases with density-dependent 

transmission. These results are easy to understand. In frequency-dependent transmissions, adding an 

incompetent host species can increase the total host population (denominator in E 1.2), which may reduce 

the force of infection for the competent host and thus reduce disease risk. Whereas adding incompetent 

host species always increases the force of infection for the competent host (E 1.1) in density-dependent 

transmissions if incompetent hosts cannot change the density or behaviour of the competent host. 

However, if incompetent species is also able to reduce the density of competent hosts (e.g. through 

competition or predation) or change the behaviour of the competent host (e.g. reduce home range or 

foraging area of the competent host) in density-dependent transmissions, the dilution effect may also 

operates via mechanism ‘host regulation’ and ‘encounter reduction’, respectively [51].   

Host heterogeneity in pathogen transmission 

Species usually differ in their competence to support and transmit pathogens due to differences in their 

immune systems [27,28] or co-evolutionary histories with pathogens [27,29]. For many pathogens only a 

small fraction of host species is responsible for the majority of transmission [27]. Thus, knowing driving 

forces determining host competence for pathogens is beneficial to screen diverse host species to identify 

their roles in pathogen transmission [28,52]. 

Ecologists have begun to search for explanations for host heterogeneity, and linked species’ reservoir 

competence to life-history traits [52,53]. Life-history theory generally suggests trade-offs between 

investment in self-maintenance (e.g., physiological resistance) and future reproduction [54]. The 

predictions derived from this theory suggest that short-lived hosts (i.e. species that usually have higher 

reproductive rates and smaller body sizes) tend to invest minimally in adaptive immunity [55,56], which 

may make them more competent for pathogens. Indeed, several studies have shown that lower specific 



General Introduction 

5 

 

1 

immune defence level or higher host reservoir competence could be related to higher fecundity [57], 

shorter developmental period [55], higher metabolic rate [52] and lower body mass [58].  

On the other hand, studies linked species’ local extinction risk to life-history traits. For example, fast-

lived species generally have a higher reproduction rate and a higher population density, and therefore can 

recover more quickly from disturbances and thus experience lower local extinction risk [59,60]. Therefore, 

a species’ reservoir competence and its local extinction risk might be negatively correlated and explained 

by similar underlying life-history traits. In this way, when species richness declines, species with higher 

competence for pathogens are more likely to remain in the community, and thereby increase the risk of 

transmitting these pathogens. This could be a causal mechanism underlying the dilution effect. However, 

before this thesis, few studies combined a species’ local extinction risk, reservoir competence and life-

history traits in their analyses.  

Environmental and climatic factors related to pathogen transmission 

Pathogen transmission can be conceived as the interactions between hosts, vectors (for vector-borne 

diseases) and pathogens [9]. Any environmental or climatic factor that affects any aspect of them (i.e. 

abundance, behaviour, longevity etc.) may have a potential to influence the dynamics of pathogen 

transmission. From a host perspective, changes in climate and environment can modify host distribution, 

host abundance and host community composition, and thus change transmission dynamics [9]. Extreme 

climate conditions can reduce host population and thus decrease disease risk, whereas increased habitat 

fragmentation can sometimes lead to a high concentration of host populations in small remaining 

fragments [37,39]. Environmental stresses may reduce immunity performance and make hosts more 

vulnerable to pathogen infection [61]. In addition, host habitat structure and topography can also 

influence the transmission dynamics through affecting host movements and dispersals [9,62,63]. From a 

pathogen perspective, climatic and environmental factors may even influence the persistence of the 

pathogens that can persist in the environment outside of either hosts or vectors. For example, studies have 

shown that Mycobacterium bovis (pathogenic agent for bovine tuberculosis) can survive longer under 

relatively colder and moister conditions [64,65]. For vector-borne diseases, climate and environmental 

factors that influence vector density, distribution and activity are able to affect the dynamics of pathogen 

transmission [9,66]. Previous studies showed that tick abundance, as an important predictor for the 

transmission risk of many tick-borne diseases, can be largely determined by climate and environment 

conditions [67,68,69]. Since these environmental and climatic factors might confuse the effect of species 

richness on disease risk, they must be taken into account to better understand the driving forces of 

pathogen transmission and disease risk. 

Thesis outline 

The main aim of this thesis was to investigate the effect of species richness on disease risk. Especially, I 

tested the current disputed hypothesis, the dilution effect hypothesis, and studied the underlying 

mechanisms. To achieve this, different approaches (spatial epidemiological, phylogenetic analyses and 

theoretical modelling) were used in a disease ecological framework.  

In chapter 2, I test the dilution effect in bovine tuberculosis (BTB), an influential disease caused by 

Mycobacterium bovis and mainly spreads via aerosol transmission which is usually described as density-

dependent transmission [70].  In Africa, BTB can infect a wide range of domestic and wildlife mammals, 
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and these mammals vary in their abilities to support and transmit M. bovis. Therefore, changes in 

mammal species richness may affect BTB risk. Using a spatial epidemiological approach and the data of 

BTB outbreaks provided by the World Organisation for Animal Health (OIE), I examine the effect of 

mammal species richness on BTB presence, as well as whether other factors are associated with BTB 

presence.  

In chapter 3, I extend the detection of the dilution effect to the persistence and recurrence of BTB. Spatial 

pathogen dynamics has several distinct epidemiological phases including new establishment in a region, 

persistence, fade-out and recurrence (Fig. 1.2). In BTB, a few studies have indicated that the patterns of 

different phases might be driven by different determinants [70,71]. Improving understanding of the 

epidemiological processes underlying different BTB phases can lead to more effective control strategies 

and better targeted surveillance measures. Therefore, in this chapter, we test the dilution effect of 

mammal species richness and examine which other factors were associated with the persistence and 

recurrence of BTB in cattle. 

Next, I test the relationship between species’ life-history traits and reservoir competence (as a measure of 

species’ potential to support and transmit pathogens) in chapter 4. Considering species’ local extinction 

risk can also be explained by life-history traits, understanding the relationships between these life-history 

traits and reservoir competence in a community is essential to better understand and predict how changes 

in species richness affect pathogen transmission in communities. The hypothesis, originated from the life-

history theory, is that species’ life-span is negatively correlated with reservoir competence. According to 

this hypothesis, species with low reservoir competence go extinct first with increasing species loss, 

whereas more competent hosts are more likely to remain in the communities and increase disease risk. 

Therefore, this hypothesis would be a central mechanism for the dilution effect. 

In chapter 5, I conduct a modelling study to investigate the effect of connectivity on disease risk in 

metapopulations. Since species loss is often driven by habitat fragmentation [72], it is necessary to take 

habitat structure (connectivity) into account to get a better understanding of roles that fragmentation plays 

on pathogen transmission. In fragmented habitats, higher connectivity may dilute disease risk (dilution 

effect) via increasing species richness, or increase disease risk (facilitation effect) through increasing 

contact rates among patches. Therefore, we assume that the net impact of connectivity (fragmentation) is 

dependent on the relative importance of these two opposite effects. 

Finally, chapter 6 reviews the key finding of previous chapters and ties them together in a discussion of 

the evidence and critiques for the dilution effect. Ultimately, suggestions are made for the future studies.  

  

1 
Absence 

2 
Presence 

3 
Presence 

4 
Absence 

5 
Presence 

Persistence Fade-out New establishment Recurrence 

Time 

Figure 1.2: Illustration of different epidemiological phases. The period and BTB presence/absence status for an 

area are given within the rectangles. We assume no infection before the first period.  
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Dilution Effect in Bovine Tuberculosis: Risk Factors for Regional Disease 

Occurrence in Africa 

 
Zheng Y.X. Huang, Willem F. de Boer, Frank van Langevelde, Chi Xu, Karim Ben Jebara, Francesco 

Berlingieri and Herbert H.T. Prins 

 

 

hanges in host diversity have been postulated to influence the risk of infectious diseases, 

including both the dilution and amplification effects. The dilution effect refers to a negative 

relationship between biodiversity and disease risk, whereas the amplification effect occurs 

when biodiversity increases disease risk. We tested these effects with an influential disease, bovine 

tuberculosis (BTB), which is widespread in many countries and causing severe economic losses. Based 

on the BTB outbreak data in cattle from 2005-2010, we also tested, using generalized linear mixed 

models, which other factors were associated with the regional BTB presence in cattle in Africa. The 

interdependencies of predictors and their correlations with BTB presence were examined using path 

analysis. Our results suggested a dilution effect, where increased mammal species richness was associated 

with reduced probability of BTB presence after adjustment for cattle density. In addition, our results also 

suggested that areas with BTB infection in the preceding year, higher cattle density, and larger percentage 

of area occupied by African buffalo were more likely to report BTB outbreaks. Climatic variables only 

indirectly influenced the risk of BTB presence through their effects on cattle density and wildlife 

distribution. Since most studies investigating the role of wildlife species on BTB transmission often only 

involve single species analysis, more efforts are needed to better understand the effect of the structure of 

wildlife communities on BTB dynamics. 
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Introduction 

Bovine tuberculosis (BTB), which is a chronic disease caused by Mycobacterium bovis and mainly 

spreads via aerosol transmission [70], not only infects a wide range of domestic and wildlife mammals, 

but also humans [73]. Although control programs have eliminated or nearly eliminated this disease from 

domestic animals in some developed countries, BTB is still widespread in Great Britain, Ireland, New 

Zealand and many developing countries, especially in Africa [74,75]. In fact, this zoonotic disease is still 

an important public health concern and can cause severe economic losses due to livestock death and trade 

restrictions [75]. 

Africa has the highest species richness of mammals [76] and many of these mammal species can be 

infected by M. bovis. Previous studies have been carried out to investigate the roles that wildlife species 

play on the dynamics of BTB transmission [75,77]. Wildlife hosts are usually classified as either 

maintenance hosts (such as African buffalo, Syncerus caffer and maybe also greater kudu, Tragelaphus 

strepsiceros), spillover hosts or dead-end hosts [74,75]. However, studies investigating the role of wildlife 

species often only involved single species analysis and neglected the effects of multiple hosts and 

community structure on the transmission of BTB [75]. 

Host diversity has been postulated to influence the risk of infectious diseases [31,78]. The effect of 

biodiversity on disease dynamics has attracted much current attention in the context of global biodiversity 

loss and increased emergence of infectious diseases [13,15,18,79]. In theory, changes in species richness 

or diversity in communities can lead to a dilution effect or amplification effect by changing the 

abundance of competent hosts or altering the encounter rates among competent hosts in a community [31]. 

The dilution effect, which suggests a negative relationship between biodiversity and disease risk, occurs 

when the incompetent host species are more likely to be present in high-diversity communities rather than 

in low-diversity communities. Species which are first lost from a community tend to be those that are less 

competent hosts [79], ultimately leaving a higher abundance of more competent species in low diversity 

systems due to release from competition or predation, and thereby increase the risk for disease 

transmission. On the contrary, the amplification effect occurs when there is a positive correlation between 

disease risk and species diversity. Even though mounting evidence of the dilution effect has been reported 

in many different diseases [18], whether the dilution effect generally occurs is still highly disputed 

[11,15].  

Since the ability to transmit M. bovis varies among different mammal species, we expect that differences 

in mammal species diversity are probably able to affect the dynamics of BTB transmission. We assume 

that higher mammal species richness may provide more transmission pathways for M. bovis, thus 

facilitate the spread of the disease. On the other hand, higher mammal species richness may exert a 

dilution effect and lower BTB disease risk by increasing the abundance of incompetent hosts, which are 

able to interfere with the pathways of transmission or act as sinks for M. bovis and deflect BTB 

transmission away from the cattle. Here, we examine these two alternative hypotheses referring to the 

effect of mammal species richness on BTB risk in Africa. 

Besides wildlife species, many other factors have identified to be responsible for facilitating BTB 

transmission [70,75]. At individual level, the prevalence of tuberculosis-like lesions has been found to 

increase with age in cattle and buffalo [80,81]. Different breeds of cattle also experience different risk of 

BTB [82]. At herd level, factors such as herd size and previous infection status have been identified to 

correlate with the probability of positive reaction to BTB test [25,26]. Cattle movements and purchase of 
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cattle have also been identified to facilitate BTB transmission [83,84,85,86]. However, the influence of 

risk factors on the dynamics of BTB transmission at larger scales, such as regional scale, is not well 

understood. A regional analysis of the dynamics of disease transmission can promote the understanding of 

the epidemiological process underlying the infection pattern, and might lead to important suggestions for 

regional control [87]. Moreover, studies on the influence of risk factors tend to concentrate mainly on 

industrialized countries, whereas the epidemiology of BTB in the developing world, especially in Africa, 

remains largely unknown [75]. Therefore, the present study aims to test whether the dilution or 

amplification effect of mammal species richness operates on BTB transmission, and examine the key 

factors associated with the regional BTB presence in cattle in Africa. 

Materials and methods 

Data collection and pre-processing 

The data set of the BTB presence/absence in cattle in Africa from 2005 to 2010 was provided by the 

World Animal Health Information Database (WAHID) from the World Organisation for Animal Health 

(OIE). During this period, some countries reported the presence of BTB only at country-level, whereas 

other countries specified the presence/absence of BTB at a lower administrative level. The lowest 

administrative level of reporting was used as the level of analysis in this study. Only administrative areas 

that reported presence or absence in more than 2 consecutive years were used in the analyses. The 

compiled data set has 1355 rows of BTB presence/absence data covering 15 countries and 304 

administration areas over the years 2005-2010 (Table S 2.1). Per year, 27.7% (± 11.40 % SD) of the 

administrative areas reported the presence of BTB.  

Mammal species richness, which was defined as the total number of mammal species present in an 

administrative area, was calculated based on the geographical distribution of African mammals obtained 

from the African Mammal Databank (AMD), an atlas of medium to large mammals [88]. For each 

mammal species, the AMD includes two polygon coverage files respectively describing the distribution 

of suitable habitat and the distribution of species occurrence at a 1 x 1 km resolution [88]. The “actual 

distribution” for each species was calculated as the intersection of these two distribution maps [89]. Since 

the distribution data of small mammals are usually unreliable [90] and also small mammals are less often 

involved in BTB transmission in Africa, only species with an average body mass ≥ 2 kg from the AMD 

were used in the analysis. The presence (1) or absence (0) of each species was recorded in each 

administrative area using the “actual distribution” calculated from the AMD. The presence-absence data 

were compiled to calculate the total number of species, or species richness of each administrative area. 

Other influencing variables were categorized into biotic and abiotic variables (Table 2.1). For biotic 

variables, cattle density and previous infection status have been linked to BTB risk at herd level in 

previous studies [25,85]. We tested whether these effects also influenced the probability of BTB presence 

at regional scale. Human population density was also used as an biotic predictor variable, as human 

population density could be considered as an indicator of trade activity [91], which has been proven to be 

positively related to BTB disease risk [83,84]. Besides, since maintenance hosts can maintain the 

pathogen in the community without any other species, and are able to play important roles in disease 

persistence, transmission and spread [74,77], we used the percentage of the area occupied by African 

buffalo and greater kudu as predictor variables to test the effects of these two maintenance host species. 

We calculated the mean cattle density (CattleD), the mean human population density (HumanD) and the 

percentage of the area occupied by African buffalo (Buffalo) or greater kudu (Kudu) for each 
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administrative area. We also collected information on the infection status in the preceding year (PreInf); if 

BTB presented in the preceding year, PreInf was specified as 1, otherwise, it was reported as 0. Since 

BTB disease can be transferred to a neighbouring area from an infected area through the borders they 

share, we calculated, for each administrative area, the percentage of the border that was shared with 

neighbouring infected areas in the preceding year (BorPre). 

Table 2.1 Description and summary (mean ± SD) of the predictors used in the analysis, with unit, year and their 

predicted effects.  

description of data sets Abbreviation predicted 

effect 

unit year mean ± SD 

biotic variables  

 previous infection status PreInf positive no unit 2005 - 2009  

 mammal species richness MSR negative no unit 1999 49.70 ± 29.23 

 cattle density CattleD positive km-2 2005 13.55 ± 18.70 

 human population density HumanD positive km-2 2006 334.5 ± 925.7 

 percentage of the border shared with 

previous infected areas 

BorPre positive no unit 2006 - 2010 70.9 ± 35.0 

 percentage of area occupied by buffalo Buffalo positive no unit 1999 36.3 ± 40.9 

 percentage of area occupied by kudu Kudu positive no unit 1999 6.6 ± 20.1 

abiotic variables  

 annual mean temperature TemMean negative ºC 1950 - 2000 23.91 ± 4.29 

 mean precipitation in driest month PreDry negative mm 1950 - 2000 6.86 ± 8.41 

 mean annual aridity index Aridity negative no unit 1950 - 2000 0.61 ± 0.34 

interaction variables  

 cattle density * mammal species 

richness 

CattleMSR negative km-2   

 buffalo*mammal species richness BufMSR negative no unit   

 Kudu*mammal species richness KuduMSR negative no unit   

Because M. bovis is associated with several wildlife species [74,77], environmental factors that can 

influence the distribution of wildlife populations may also play significant roles in disease transmission 

[64,91]. We assume that a lower mean precipitation in the driest month might be correlated with a higher 

probability for animals to assemble at water resources or under tree shaded areas [92,93], which can 

increase BTB transmission. Since previous studies have shown that M. bovis can survive longer under 

relatively colder conditions [92], we expect that lower annual mean temperature might increase the 

probability of the persistence of BTB. Therefore, the mean annual temperature (TemMean), the mean 

precipitation in the driest month (PreDry) and the mean annual aridity index (Aridity) were also 

calculated for each administrative area as abiotic predictor variables.  

In addition, three interaction terms, mammal species richness associated with the three maintenance host 

species (cattle density, percentage of area occupied by African buffalo and greater kudu), were taken into 

account to test the prediction that higher mammal species richness might weaken the effects of the 
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maintenance hosts due to the dilution effect. The data for all predictor variables were acquired from 

existing databases (Table S 2.2). All data pre-processing analyses were conducted in ArcGIS 10.0. 

Statistical analysis 

Generalized linear mixed models with binary response (GLMM, logistic regression models) were used to 

examine the effects of predictors on the probability of BTB presence both for the whole period and for 

each year. Only the BTB presence/absence data from 2006 to 2010 were used as dependent variable, 

because the earliest year in the dataset was 2005, which was used as previous infection status (PreInf) for 

2006. Before performing the GLMMs, we log-transformed MSR, Buffalo [log (Buffalo+0.5)], Kudu [log 

(Kudu+0.5)] and BorPre [log (BorPre+0.5)] to obtain distribution closer to normal distribution. Using 

GLMMs with country and year as random factors (in analyses for each year, only country was used as 

random factor), univariate analyses were first performed to identify the potential risk factors. The area of 

the unit (Area) was retained in the model as an obligate variable to correct for the effect of area size. 

Variables with a p-value of <0.25 were identified as potential risk factors which were used to construct 

multiple regression models. Before fitting the multiple regression models, we assessed the multi-

collinearity by examining the variance inflation factor (VIF) of the candidate variables. The results of 

multi-collinearity test suggested little collinearity among variables. For analysis of the whole period, we 

constructed the final multiple model using both forward and backward selection procedures, where the 

Likelihood Ratio Test (LRT) was applied to test for difference in the fit of the nested models. The final 

model for the whole period was then fitted to each individual year to check for consistency of the effects 

of the predictors. After fitting the multiple regression models, we tested the spatial autocorrelation of the 

residuals using Moran’s I index and found little evidence for spatial autocorrelation (Table S 2.3). In 

GLMMs with binary response, fully standardized regression coefficient (b*M) was used to compare the 

impacts of different variables [94]. 

 

Figure 2.1: Conceptual path model of the potential relationships between risk factors and BTB presence. 

Based on the results of the final multiple GLMM, a regression-based path analysis was conducted to 

examine the interdependencies of the predictors and their direct and indirect effects on BTB presence [95]. 

A recursive conceptual path model was constructed as Figure 2.1. Besides the variables TemMean, 

PreDry and Aridity, the mean annual precipitation (PreMean) and the mean temperature in the hottest 
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month (TemMax) were also included as climatic variables because they could be considered as measures 

for the suitability for human, cattle and wildlife. To reduce the climatic variables, we first conducted a 

factor analysis to extract the primary components. The final parsimonious path model was constructed 

based on W-statistic and Chi-squared test [96]. Again, the area of the unit (Area) was always retained in 

the model to correct for the effect of area size. Path coefficients were calculated also using fully 

standardized (logistic) regression coefficient to compare the strength of the effects on continuous and 

binary endogenous variables [94]. All statistical analyses were conducted in R 2.14.0 with appropriate 

packages. 

Results 

Regression analysis 

The results of univariate models (Table 2.2) suggested that areas reporting BTB outbreak in the preceding 

year had a higher probability of reporting BTB occurrence than the areas without infection during the 

year before. As we predicted, a higher probability to report BTB presence was related to a higher cattle 

density (CattleD), a higher percentage of the border shared with neighbouring infected areas in the 

preceding (BorPre) and a higher occurrence of buffalo (Buffalo) and kudu (Kudu). Other factors did not 

show any significant relationships with BTB presence in the univariate analysis. The results of multi-

collinearity test showed that the VIFs for all risk factors were smaller than 5, which indicated little 

collinearity among variables.  

Table 2.2: Summary of the univariate analyses of risk factors associated with BTB presence in Africa for the whole 

period 2006-2010. (VIF is the variance inflation factor for scale variables) 

variables predicted effect b  p VIF 

PreInf positive 2.756 <0.001***  

CattleD positive 0.022 <0.001*** 1.32 

Buffalo positive 0.822 <0.001*** 2.48 

MSR negative -0.464 0.399 3.78 

Kudu positive 1.253 0.006** 1.89 

HumanD positive 0.000 0.750 1.20 

BorPre positive 0.462 <0.001*** 1307 

TemMean negative 0.000 0.989 1.69 

PreDry negative -0.023 0.113 3.12 

Aridity negative -0.025 0.49 4.26 

*** p< 0.001; ** p< 0.01; * p<0.05 

Variables with a p-value of <0.25 were identified as potential risk factors which were used to construct 

multiple regression models. Using this criteria, 6 out of 10 variables, namely PreInf, CattleD, BorPre, 

Buffalo, Kudu and PreDry, were identified as potential predictors. In addition, in order to test the dilution 

effect of mammal species richness, we also included three interaction terms (Table 1) and mammal 

species richness (MSR) to construct the multiple regression models. Backward and forward selection 

procedures generated a similar final multiple regression model. This final model (Table 2.3) showed that 

the interaction of cattle density and mammal species richness (CattleMSR) was the only interaction term 
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which had a significant effect (b*M = -0.88; p = 0.001). The negative regression coefficient of CattleMSR 

indicated that the positive effect of cattle density was, as predicted, weaker under higher mammal species 

richness than under lower mammal species richness. The final model also identified previous infection 

status (PreInf), cattle density (CattleD), and the percentage of the area occupied by African buffalo 

(Buffalo) as significant risk factors in the prediction of regional BTB presence, all with positive 

regression coefficients as we predicted (Table 2). Cattle density (CattleD) had the strongest effect, with a 

b*M = 0.93 (p < 0.001). In addition, our analyses also identified that country was a significant random 

factor (χ2= 70.5, p <0.001). The predictive accuracy of the final multiple model is 86.8% by using a cut-

off of 0.5. 

Table 2.3: Multiple regression analyses of risk factors associated with the probability of BTB presence in Africa for 

both the whole period 2006-2010 and each year. (b*M is the fully standardized regression coefficient) 

year  whole period  2006 2007 2008 2009 2010 

variables predict effect b*M p - value  b*M b*M b*M b*M b*M 

Area positive 0.04 0.175  -0.08 -0.05 0.26* -0.00 0.00* 

PreInf positive 0.37 0.000***  0.42*** 0.36*** 0.52*** 0.37*** 0.38*** 

CattleD positive 0.93 0.000***  0.31 1.99*** 1.64** 1.55* 1.56* 

Buffalo positive 0.21 0.000***  0.42*** 0.15* 0.22 -0.04 0.05* 

MSR negative -0.19 0.053  -0.26 -0.004 -0.14 0.02 0.02 

CattleMSR negative -0.88 0.001***  -0.25 -1.97*** -1.63** -1.62* -1.61** 

*** p <0.001; ** p <0.01; * p <0.05 

The results of the regression analyses (Table 2.3) for each year identified that previous infection status 

(PreInf) was a strong predictor for the probability of BTB presence for all years. The interaction of cattle 

density and mammal species richness (CattleMSR) was negatively associated with BTB presence from 

2007 to 2010. The results also suggested that cattle density (CattleD) showed a significant positive 

correlation with the probability of BTB presence for almost all years except for 2006. Only in 2006, 2007 

and 2010, the percentage of area occupied by Buffalo (Buffalo) was identified to be positively associated 

with BTB presence (Table 2.3). 

 

Figure 2.2: The results of the factor analysis for 

climatic variables. PreMean, PreMin and 

Aridity were heavily loaded on Factor 1, while 

TemMean and TemMax were heavily loaded on 

Factor 2 
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Path analysis 

The results of factor analysis (Fig. 2.2) for the climatic variables showed that the first two component 

axes, Factor 1 and Factor 2, respectively explained 55.6% and 33.4% of the variation in climatic variables. 

PreMean, PreMin and Aridity were heavily loaded on Factor 1, whereas TemMean and TemMax were 

heavily loaded on Factor 2 (Fig. 2.2). A higher Factor 1 score was related to larger precipitation values 

while a higher Factor 2 score was associated with lower temperatures. 

The path analysis confirmed the GLMM results that the interaction term CattleMSR had a negative total 

effect on BTB presence while previous infection status (PreInf), cattle density (CattleD) and the 

percentage of area occupied by buffalo (Buffalo) had positive total effects (Table 2.4, the final 

parsimonious path model is shown in Figure S 2.1). The human density (HumanD), the percentage of area 

occupied by kudu (Kudu), climatic Factor 1 and Factor 2 all showed positive indirect effects on BTB 

presence. Larger precipitation and lower temperatures were correlated to a higher risk of BTB presence 

through their effects on cattle density and the distribution pattern of wildlife (Figure S 2.1). 

Table 2.4: Summary of the effects of predictors on the risk of BTB presence in path analysis 

variables# direct effect indirect effect total effect 

Area 0 -0.04 -0.04 

PreInf 0.37 0 0.37 

CattleD 0.88 0.27 1.15 

Buffalo 0.21 0.08 0.29 

MSR 0 -0.11 -0.11 

CattleMSR -0.88 -0.24 -1.12 

Kudu 0 0.09 0.09 

HumanD 0 0.18 0.18 

Factor 1 0 0.45 0.45 

Factor 2 0 0.10 0.10 

# Variables are the area of the units (Area), previous infection status (PreInf), cattle density (CattleD), percentage of the area occupied 

by buffalo (Buffalo) and Kudu (Kudu), mammal species richness (MSR), human density (HumanD) and two climatic component factors 

(Factor 1 and Factor 2). 

Discussion 

Our study identified several significant risk factors that are correlated to the probability of BTB presence 

at regional scale in Africa. The results show that the positive effect of cattle density became weaker with 

increasing mammal species richness. Administration areas with previous BTB infection, higher cattle 

density and larger percentage of area occupied by buffalo were more likely to report BTB outbreaks. 

Climatic variables only indirectly influenced BTB presence through their effects on cattle density and 

wildlife distribution. In addition, the results show that the variation in BTB presence was partly explained 

by the country, a random factor.  

For density-dependence disease systems, which are usually used to describe the transmission dynamics of 

direct-transmitted or aerosol-borne diseases, a threshold host density or a critical community size is 

required for successful pathogen establishment or pathogen persistence [23]. A higher cattle density 
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implies a higher contact rate of susceptible and infectious host individuals [97], which contributes to the 

persistence and spread of M. bovis [24]. Therefore, the probability of BTB presence is higher when cattle 

density increases. 

A significant interaction between cattle density and mammal species richness was shown in our study. 

The positive effect of cattle density on BTB presence becomes weaker when mammal species richness 

increases. Since BTB presence rather than prevalence was used as the response variable, the negative 

interaction between cattle density and mammal species richness suggests that a higher cattle density is 

needed for the establishment and persistence of BTB when mammal species richness is higher [23]. 

Therefore, this result indicates that mammal species richness is able to dilute, rather than amplify, the 

impacts of cattle as maintenance host on the risk of BTB presence. This dilution effect of biodiversity on 

disease dynamics has attracted much attention in the context of global biodiversity loss and increased 

emergence of infectious diseases [13,15,18,78,79]. However, these studies investigating the biodiversity-

disease relationships usually focus on vector-borne diseases or direct-transmitted plant diseases, while 

few studies were carried out on aerosol-borne or direct-transmitted animal diseases, except for hantavirus 

[18]. Our study detected, for the first time, the dilution effect of mammal species richness on the risk of 

BTB presence, an influential aerosol-borne disease. 

Two main mechanisms have been proposed for the dilution effect. One is “encounter reduction” where 

the addition of alternative hosts may interfere with transmission pathways and reduce encounter rates 

between susceptible hosts and infected hosts, and the other is “susceptible host regulation” where 

interspecific competition or predation may limit the abundance of competent hosts [31]. The dilution 

effect we found in BTB, indicated by the negative interaction between mammal species richness and 

cattle density, can be possibly explained by the “encounter reduction”. Previous studies suggested that 

transmission becomes more frequency-dependent when local transmission is integrated together across 

spatial scales [98]. In BTB, although many wildlife species can become infected, most of them act as 

spillover or dead-end hosts, and transmit the pathogen inefficiently [74,77]. The presence of these 

incompetent hosts might reduce the contact rates among herds by acting as barriers to herd movement, 

and thus increase the threshold host density and critical community size. Therefore, a higher cattle density 

is needed for the establishment and persistence of BTB in areas with higher mammal species richness, 

which suggests an interactive effect between mammal species richness and cattle density as found in our 

study. Since we did not find the direct negative effect of mammal species richness on BTB presence, we 

cannot draw the conclusion whether “susceptible host regulation” operates in BTB in Africa. Certainly, 

we could not exclude the possibility that the dilution effect we detected is just caused by the correlations 

between mammal species richness and some unidentified factors that we did not include in our analyses. 

For example, areas with higher mammal species might be nature reserves or national parks, where fences 

are frequently used to prevent the encounter between wildlife species and livestock. These fences can also 

interfere with cattle movement and thus lead to a pseudo dilution effect. This certainly needs further 

research, and ideally experiments. 

Our study also suggests that the previous infection status is a strong predictor in determining the 

probability of BTB presence. Being consistent with previous studies [85,99], our result indicates that BTB 

tends to occur repeatedly in the same area [85]. This result might be attributed to the endemicity of BTB 

in some areas. The difficulty in diagnosis in the early stage of the disease [92] and consistently failed 

control efforts [99] might also contribute to disease persistence. This result suggests that much more 

efforts should be made to control this infectious disease in those areas which experience BTB outbreaks. 
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We found that the percentage of area occupied by buffalo was a predictor for BTB presence for the whole 

period. As a maintenance host, African buffalo plays an important role in BTB transmission. Since 

African buffalo can remain infected and infectious for several years and transmit the pathogen through 

aerosol transmission [74], this widespread species could limit the efficiency of control measures. The 

movements of buffalo might also facilitate the spread of the disease, though few studies investigated this 

issue. Therefore, when a larger percentage of the area is covered by African buffalo, cattle will have more 

opportunities to come into contact with African buffalo, and thereby be more likely to experience a BTB 

outbreak. This result also coincides with previous studies in which the disease risk of BTB or the 

persistent of BTB in cattle were identified to be associated with other maintenance hosts, such as brushtail 

possum (Trichosurus vulpecula) in New Zealand [25], Eurasian badger (Meles meles) in UK and Ireland 

[26,100] and lechwe antelope (Kobus leche) in the Kafue basin of Zambia [73]. In addition, we did not 

find a significant direct effect of another maintenance host, the greater kudu. This might be attributed to 

the more limited distribution of greater kudu in Africa (13.2% administrative areas are occupied or partly 

occupied by greater kudu compared to 55.3% by African buffalo). 

Although other variables, such as quality of veterinary service or used control measures, could not be 

taken into account because of lack or incompleteness of the data, the random factor country used in the 

analyses is capable of controlling, to some extent, for the variation caused by these country-level 

variables. We admit that conclusions are usually not easy to be drawn from large spatial scale studies 

because of the complexity of the natural environment and the difficulty of controlling confounding factors 

[101]. The quality of the BTB presence/absence data, especially the extent, the resolution and the 

accuracy, limit the precision and generality of our results. However, it is still an important step that our 

study was able, for the first time, to test for the importance of factors on BTB presence at regional level in 

Africa. Our study showed that the factors that play an important role in BTB transmission at herd level, 

like previous infection status and cattle density, might also be able to significantly influence BTB disease 

dynamics at regional level. In addition, despite the presence of many incompetent hosts in areas with 

higher mammal species richness, little evidence was found that these hosts facilitate pathogen 

transmission and spread the disease. On the contrary, increasing mammal species richness was correlated 

with lower chances of BTB presence in interaction with increasing cattle densities. Due to the limitations 

of our BTB data set, this dilution effect could not be tested at lower spatial levels in our study. Further 

research is needed to fully reveal the effect of mammal species richness on BTB transmission over 

different spatial scales. Since most studies investigating the role of wildlife species on BTB disease 

transmission often only involve single species analysis, it is worth increasing efforts to better understand 

the effect of structure of the wildlife community on BTB transmission [75]. 
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Supplementary Information 2 

Table S 2.1: The names of the countries (with their country codes and the number of administrative areas) 

and years of the BTB presence data used in Chapter 2 and Chapter 3.  

Country name Country code Years Number of areas Chapter 3 
Angola AGO 2005-2006 18  
Benin BEN 2005-2010 77 Y 
Cote D'Ivoire CIV 2005-2007 49  
Cameroon CMR 2005-2009 10 Y 
Egypt EGY 2005-2010 26 Y 
Ghana GHA 2005-2010 10 Y 
Lesotho LSO 2005-2010 10  
Morocco MAR 2008-2010 7 Y 
Mozambique MOZ 2005-2010 10 Y 
Malawi MWI 2005-2010 3 Y 
Nigeria NGA 2005-2010 37  
Togo TGO 2005-2010 5 Y 
Tunisia TUN 2005-2010 24 Y 
South Africa ZAF 2006-2010 9 Y 
Zambia ZMB 2006-2010 9 Y 

 

Table S 2.2: Formats and sources of the original data for the variables we used in Chapter 2 and Chapter 

3 

Datebase Format Variables Data source Web site links 

Cattle density raster CattleD FAO 
http://www.fao.org/geonetwork/srv/en/metada

ta.show?id=12713 

Human density raster HumanD NASA 
http://sedac.ciesin.columbia.edu/data/set/gpw-

v3-population-density 

BTB outbreaks binary PreInf, BorPre OIE 
http://www.oie.int/wahis_2/public/wahid.php/

Diseaseinformation/statusdetail 

Mammal species 

distribution 
polygon 

MSR, Bufflao, 

Kudu 
AMD 

http://www.gisbau.uniroma1.it/amd/homepage

.html 

Mean temperature 

in each month 
raster 

TemMean 

TemMax 
WorldClim http://www.worldclim.org/current 

Mean 

precipitation in 

each month 

raster 
PreDry 

PreMean 
WorldClim http://www.worldclim.org/current 

Mean annual 

aridity index 
raster Aridity CGIAR-CSI http://csi.cgiar.org/aridity/ 

time-series 
datasets of 
variations in 
climate 
 

raster 

TemMean, 
TemMax, 
TemMin, 
ATemRng, 
BTemRng, 
RainMean, 
RainMin, 
RainCV, 
PreTemMean, 
PreRainMean, 
PreTemMax, 
PreRainMin 

CRU 
http://badc.nerc.ac.uk/view/badc.nerc.ac.uk__
ATOM__dataent_1256223773328276 
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Table S 2.3: Moran’s I values of residuals for the test of spatial autocorrelation in the final model both 

for the whole period and for each year. For the model of whole period, we calculated the Moran’s I values 

also for different scales. 

Year Final model for whole period  Final model for each year 

Distance (k km) global (0 - 8) 0 – 0.5 0-2 0-4  global (0 - 8) 

2006 0.047*** 0.035* 0.047** 0.042**  0.019* 

2007 -0.009 0.011 -0.014 -0.003  -0.013 

2008 -0.013 -0.012 -0.021 -0.009  -0.021 

2009 -0.025 -0.071 -0.023 -0.015  -0.022 

2010 -0.018 -0.061 -0.022 -0.010  -0.015 

* P< 0.05; ** p < 0.01; *** p < 0.001 

 

Figure S 2.1: Final parsimonious path model and related risks. Arrows indicate the direction of the paths 

and the signs the direction of the associated coefficients.  

Note: 

Variables related to BTB presence, the area of the units (Area), previous infection status (PreInf), cattle density (CattleD), percentage of 

the area occupied by buffalo (Buffalo) and Kudu (Kudu), mammal species richness (MSR), human density (HumanD) and two climatic 

component factors (Factor 1 and Factor 2). 
* P< 0.05; ** p < 0.01; *** p < 0.001 
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Dilution Effect and Identity Effect by Wildlife in the Persistence and 

Recurrence of Bovine Tuberculosis in Cattle 
 
Zheng Y.X. Huang, Chi Xu, Frank van Langevelde, Herbert H.T. Prins, Karim Ben Jebara, Willem F. de 

Boer  

 

 

urrent theories on disease-diversity relationships predict a strong influence of host richness on 

disease transmission. In addition, identity effect, caused by the occurrence of particular species, 

can also modify disease risk. We tested the richness effect and the identity effects of mammal 

species on bovine tuberculosis (BTB), based on the regional BTB outbreak data in cattle from 2005-2010 in 

Africa. Besides, we also tested which other factors were associated with the regional BTB persistence and 

recurrence in cattle. Our results suggested a dilution effect, where higher mammal species richness was 

associated with reduced probabilities of BTB persistence and recurrence in interaction with cattle density. 

African buffalo had a positive effect on BTB recurrence and a positive interaction effect with cattle density 

on BTB persistence, indicating an additive positive identity effect of buffalo. The presence of greater kudu 

had no effect on BTB recurrence or BTB persistence. Climatic variables only act as risk factors for BTB 

persistence. In summary, our study identified both dilution effect and identity effect of wildlife and showed 

that BTB persistence and recurrence were correlated with different sets of risk factors. These results are 

relevant for more effective control strategies and better targeted surveillance measures in BTB. 
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Introduction 

Bovine tuberculosis (BTB) caused by Mycobacterium bovis is widespread in many countries, especially in 

Africa, and has caused significant economic losses [75]. Previous studies have identified various risk factors 

for BTB transmission at different levels, such as herd size, previous infection status and cattle movements at 

herd level [75,102]. Increasing evidence suggests that wildlife species play an important role in BTB 

dynamics as well [74,75,77,103,104]. This finding invokes further research efforts especially on multi-

species transmission in livestock-wildlife interactions, as studies on the role of wildlife species often only 

involved single-species transmission [75,105]. 

It has been hypothesized that greater species diversity is able to reduce pathogen transmission, i.e. the 

dilution effect [13,15,31,50,106]. This dilution effect can operate through different mechanisms, such as 

decreasing encounter rates among competent hosts or regulating host abundance [31]. Although the dilution 

effect has been found in many different disease systems, it is still highly disputed whether the dilution effect 

generally occurs [79,106,107,108].  In Africa, many mammal species can be infected by M. bovis, and these 

species have been classified as maintenance hosts (such as African buffalo, Syncerus caffer), spillover hosts 

or dead-end hosts [74,77]. Since the competence to transmit M. bovis varies among different species, we 

expect that mammal species diversity can affect BTB transmission. We hypothesized that higher mammal 

species richness may trigger a dilution effect and reduce BTB risk by increasing the abundance of 

incompetent hosts which are able to interfere with the BTB transmission pathways. On the other hand, there 

might also be an identity effect, implying that the occurrence of particular species in the community changes 

the disease risk, either positively or negatively [109]. In this study, therefore, we tested the identity effect of 

buffalo, considering that the occurrence of maintenance host species might increase BTB risk because of 

their high competence in transmitting M. bovis. In addition, since studies have not reached an agreement on 

the role of greater kudu (Tragelaphus strepsiceros) in BTB transmission [74,75], we also tested for an 

identity effect of this species.  

A previous study tested the dilution effect and found that mammal species richness was negatively associated 

with the probability of BTB presence [105]. However, spatial pathogen dynamics has several distinct 

epidemiological phases including new establishment in an area, persistence, fade-out and recurrence, and the 

patterns of different phases might be driven by different determinants [71,102]. Therefore, we tested the 

dilution effect as well as the identity effect in the persistence and recurrence of BTB and compared the 

differences in these two distinct phases. In addition to wildlife species, other factors are also responsible for 

facilitating BTB transmission, such as cattle density, the status of ‘neighbourhoods’, climate [75]. However, 

since studies usually investigated the effects of these factors at herd level and relatively fewer studies focus 

on regional scale [75], we also tested whether these variables act as risk factors for BTB risk at regional scale. 

The present study aimed at testing the dilution effect as well as the identity effects of two wildlife species 

(African buffalo and greater kudu) in the persistence and recurrence of BTB in cattle. We also examined 

which other factors were associated with BTB persistence and recurrence and tested whether they are 

associated with different sets of predictors. 

Materials and methods 

BTB data 

Data of BTB in cattle in Africa from 2005 to 2010 were provided by the World Animal Health Information 

Database [110] from the World Organisation for Animal Health (OIE), which reported the status of BTB at 
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the administrative level every six months during this period. The lowest administrative level of reporting was 

used as the level of analysis in this study. Only countries with BTB outbreak histories were included in the 

analyses, since we focused on BTB recurrence and persistence. The compiled data set has 879 rows covering 

11 countries and 190 administration areas (Table S 2.1).  

We classified a disease fade-out if BTB was not reported in two consecutive reporting periods (therefore one 

year) following a presence. This criterion has been used in previous studies to identify BTB persistence and 

fade-out [111,112]. Therefore, a BTB presence in a specific period was considered as BTB recurrence if BTB 

was not reported in the administrative areas in the previous two reporting periods. BTB persistence was 

classified if a BTB presence was reported within a year (i.e. within maximally two 6-months reporting 

periods).  

Table 3.1: Descriptions, abbreviations, units and summaries (mean ± SD) of the predictors used in the analysis. 

Description of data sets Abbreviation Unit Mean ± SD 

 Cattle density CattleD km-2 13.6 ± 18.7 

 Mammal species richness MSR 1 49.7 ± 29.2 

 Percentage of area occupied by buffalo Buffalo no unit 36.3 ± 40.9 

 Percentage of area occupied by kudu Kudu no unit 6.6 ± 20.1 

 Percentage of the border shared with previous infected areas BorPre no unit 70.9 ± 35.0 

 Climatic predictors 

 Annual mean temperature TemMean ºC 24.9 ± 4.1 

 Mean temperature of the warmest month TemMax ºC 35.2 ± 3.4 

 Mean temperature of the coldest month TemMin ºC 14.9 ± 7.1 

 Temperature annual range ATemRng ºC 20.4 ± 6.8 

 Temperature bi-annual range BTemRng ºC 21.4 ± 7.0 

 Annual mean precipitation RainMean mm 84.0 ± 47.4 

 Mean precipitation in driest month in current year RainMin mm 3.1 ± 5.5 

 Annual coefficient of variation for precipitation  RainCV no unit 0.94 ± 0.26 

 Mean temperature in preceding year PreTemMean ºC 24.8 ± 4.1 

 Mean precipitation in preceding year PreRainMean mm 82.6 ± 45.8 

 Mean temperature of the warmest month in preceding year PreTemMax ºC 35.2 ± 3.4 

 Mean precipitation in driest month in preceding year PreRainMin mm 2.8 ± 5.1 

 Interaction terms 

 Cattle density * mammal species richness CattleMSR km-2  

 Cattle density * buffalo CattleBuff km-2  

 Cattle density * Kudu CattleKudu km-2  

Wildlife data 

Mammal species richness (MSR) were calculated from the African Mammal Databank (AMD), an atlas of 

medium to large mammals [88]. For each mammal species, the AMD includes two polygon coverage files 

respectively describing the distribution of suitable habitat and the distribution of species occurrence at a 1 x 1 

km resolution [88]. The intersection of these two distribution maps was calculated as the “actual distribution” 

for each species [89]. Since small mammals are less often involved in BTB transmission in Africa, only 

species with an average body mass ≥ 2 kg from the AMD were used in the analysis. The presence or absence 

of each mammal species was recorded in each administrative area and were compiled to calculate the species 
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richness of each administrative area. Using species distribution maps from the AMD, the percentage of the 

area occupied by African buffalo (Buffalo) and greater kudu (Kudu) were calculated for each of the 

administrative areas to test the identity effects of these two species. 

Other predictors 

Many studies have identified that cattle density as an important predictor for BTB outbreaks 

[85,105,113,114,115]. The BTB status of ‘neighbourhoods’ might also play an important role in explaining 

and predicting BTB risk [116]. In addition, previous studies also indicated that climate can substantially 

influence BTB dynamics through the influence on the survival of M. bovis [64,65,75,113]. Therefore, we also 

included these variables to test their effect on BTB persistence and recurrence at regional scale. 

From the Food and Agriculture Organization (FAO), we collected the data of cattle density in 2005, which 

had a resolution of 0.05 degree. We calculated the mean cattle density for each administrative area. To 

investigate the effect of ‘neighbourhood’, the percentage of the border that was shared with neighbouring 

infected areas in the preceding year (BorPre) was calculated based on the BTB presence/absence data from 

OIE. Twelve climatic variables (Table 3.1) representing temperature and precipitation conditions were 

calculated based on the Climate Research Unit (CRU) datasets [117]. CRU time-series datasets yield month-

by-month variations in climate from 1900 to 2010. These are calculated per (0.5x0.5 degree) grid cell, 

compiled from an archive of monthly mean temperatures provided by more than 4000 weather stations 

distributed around the world. In addition, to investigate the effect of wildlife-livestock interactions, we 

included the interaction terms between cattle density and three wildlife variables, i.e., mammal species 

richness, areas occupied by buffalo and kudu, as potential predictors. The data for all predictor variables were 

acquired from existing databases (Table S 2.2). All data pre-processing analyses were conducted in ArcGIS 

10.0. 

Statistical analyses 

Generalized linear mixed models (GLMM) with a binary response were used to examine the effects of 

predictors on BTB persistence and recurrence. In addition, country was included in the models as the random 

factor to control for possible differences between countries, because of the lack or incompleteness of the data 

of veterinary service and used control measures. Before performing the GLMMs, we log-transformed, 

log(x+0.5), Buffalo, Kudu and BorPre.  

Using GLMMs, two approaches were applied to investigate the associations between predictors and BTB 

persistence or recurrence. First, we used a stepwise selection approach to construct a final multiple regression 

model. The area of the unit was retained in the model to correct for the effect of area size. We initially 

included cattle density in the model, since this predictor was shown to have significant impacts on both BTB 

persistence and recurrence. Then, other variables were added into the model by a standard-entry stepwise 

procedure, using a Likelihood Ratio Test (LRT) to test for the difference in the fit of the nested models. For 

highly correlated independent variables, only the one causing the largest change in the Log-Likelihood (LL) 

was added to the model to avoid multi-collinearity. We included interaction terms after including all main 

factors. Main terms were maintained in the model if they were included in a significant interaction term. 

Second, a ‘removal approach’ based on multiple regression frameworks [2,118] was used to test for the 

consistency of results obtained via the stepwise selection approach. In this approach, all variables, except for 

those causing multi-collinearity, were forced in the model. Then, the coefficient and the change in -2LL were 

estimated on the removal of each independent variable. We tested for the spatial autocorrelation of the 
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residuals (final models in stepwise selection approach and full models in removal approach) using Moran’s I 

index and found little evidence of spatial autocorrelation for the models (Table S 3.1). The whole statistical 

process was conducted in R 2.15.1 with appropriate packages. 

Results 

Descriptive epidemiology 

The regional prevalence of BTB was 36% during the study period (Table 3.2). The percentage of areas 

experiencing recurrence of BTB was 14%, and the percentage of areas with a BTB fade-out was 22% 

(persistence percentage was thus 88%). 

Table 3.2: Infection prevalence, percentages of persistence and recurrence of bovine tuberculosis (BTB) in the African 

administrative areas during 2006-2010. 

Year 

No. of pathogen 

free area in 

preceding year 

No. of areas 

with 

recurrence 

Recurrence 

rate  

No. of infected 

area in the 

preceding year 

No. of areas 

with fade-

out 

Fade-out rate  
Infection 

prevalence 

2006 112 18 16 % 53 14 26 % 32 % 

2007 114 18 16 % 60 11 18 % 34 % 

2008 115 18 16 % 65 13 20 % 36 % 

2009 110 14 13 % 70 21 30 % 39 % 

2010 108 13 12 % 72 10 14 % 40 % 

total 559 81 14 % 320 69 22 % 36 % 

Table 3.3: Summary statistics (regression coefficient b ± SE; Adjusted Odds Ratio, AOR and 95% CI, calculated from the 

first and third quartiles, and p-value) for the predictors correlated with BTB persistence using a stepwise selection 

procedure and a removal approach (some non-significant variables in the removal approach were not listed). 

Variables 
Stepwise selection approach  Removal approach 

b ± SE AOR (95% CI) p – value  b ± SE Δ -2LL p – value 

CattleD 0.11± 0.03 7.54 (2.07 - 27.42) 0.002**  0.14±0.06 5.93 0.014* 

PreTemMax -0.25 ± 0.08 0.64 (0.45 - 0.87) 0.004**  -0.23±0.12 3.38 0.066 

PreRainMin -0.12 ± 0.05 0.64 (0.44 - 0.92) 0.019*  -0.16±0.06 7.11 0.008** 

MSR 0.03 ± 0.02 3.29 (0.45 - 24.03) 0.241  0.02±0.03 0.26 0.613 

Buffalo -0.65 ± 0.41 0.24 (0.04 - 1.42) 0.116  -1.01±0.52 4.07 0.043* 

CattleMSR -0.004 ± 0.001 0.12 (0.03 - 0.44) 0.001***  -0.005±0.002 7.84 0.005** 

CattleBuff 0.08 ± 0.03 3.15 (1.43 - 6.94) 0.005**  0.09±0.03 7.55 0.006** 

* P< 0.05; ** p < 0.01; *** p < 0.001 

Risk factors for BTB persistence 

Both the stepwise selection approach and removal approach showed that cattle density was positively 

correlated to BTB persistence, while the interaction of cattle density and mammal species richness was 

negative (Table 3.3). Only one of the investigated maintenance hosts, buffalo, played a significant role in 
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BTB persistence, as indicated by the positive interaction with cattle density in both approaches. Removal 

approach also detected a positive main effect of buffalo. In addition, the mean precipitation of the driest 

month in the preceding year (PreRainMin) showed a negative relationship with BTB persistence in both 

approaches, and the mean temperature of the warmest month (PreTemMax) was negatively correlated with 

BTB persistence in the stepwise selection approach. 

Risk factors for BTB recurrence 

For BTB recurrence, the stepwise selection approach and removal approach generated similar results (Table 

3.4).  In contrast to BTB persistence, BTB recurrence was found to be correlated with a different set of 

predictors (Tables 3.3 and 3.4), highlighted by the positive main effect of the area occupied by Buffalo and 

the absence of climatic effects for BTB recurrence. Similar with BTB persistence, cattle density had a 

positive effect on BTB recurrence and there was a significant negative interaction between cattle density and 

mammal species richness. 

Table 3.4: Summary statistics (regression coefficient b ± SE; Adjusted Odds Ratio, AOR and 95% CI, calculated from the 

first and third quartiles, and p-value) for the predictors correlated with BTB recurrence using a stepwise selection 

procedure and a removal approach (some non-significant variables in the removal approach were not listed). 

Variables 
Stepwise selection approach  Removal approach 

b ± SE AOR (95% CI) p - value  b ± SE Δ -2LL p – value 

CattleD 0.059 ± 0.016 2.47 (1.49 - 4.09) < 0.001***  0.076 ±0.030 7.54 0.006** 

MSR 0.006 ± 0.015 1.11 (0.65 - 1.88) 0.686  0.006 ±0.02 0.09 0.762 

Buffalo 0.68 ± 0.20 4.44 (1.87 - 10.6) < 0.001***  0.67 ±0.24 7.34 0.007** 

CattleMSR -0.0013 ± 0.0005 0.38 (0.18 - 0.77) 0.007**  -0.0018±0.0007 7.19 0.007** 

* P< 0.05; ** p < 0.01; *** p < 0.001 

Discussion 

Despite large efforts to investigate the influences of wildlife on BTB transmission, the understanding of the 

impacts of livestock-wildlife interactions and wildlife community structure remains limited [74,75,77]. Here, 

we demonstrated that wildlife species play a substantial role in both the persistence and recurrence of BTB, 

and moreover, that these two distinct phases are correlated with different sets of risk factors. 

In line with previous studies [85,113], our results showed that a higher cattle density facilitates both 

persistence and recurrence of BTB. This can be explained by the manner of BTB transmission, which is 

mainly through aerosol transmission [74,102], a density-dependent transmission [105]. Increasing host 

densities can lead to higher encounter rates of susceptible and infectious hosts, thereby promoting persistence 

and spread of the pathogen [24,111]. 

Recently, the influence of species diversity on disease dynamics has attracted great interest [31]. A well-

known hypothesis is described as the “dilution effect”, which states that high species diversity can reduce 

disease risk [31]. The negative interaction between cattle density and mammal species richness in our study 

indicates the occurrence of a dilution effect in this BTB disease system. High mammal species richness can 

reduce the positive effect of cattle density on both BTB persistence and recurrence. This dilution effect is 

possibly explained by “encounter reduction”, which is described as that the addition of alternative hosts may 
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decrease the risk of pathogen transmission by reducing encounter rates between susceptible and infected 

hosts [31]. Many mammal species that can be infected by BTB are spillover or dead-end hosts and do not 

transmit the pathogen efficiently [74,77]. The presence of these non-competent wildlife species might act as 

barriers to herd movement of cattle and reduce encounter rates among herds, which leads to decreased 

probabilities of BTB persistence and recurrence in cattle. A few previous researches indicated that herbivores 

may forage in limited areas in the presence of other species, especially predators [119]. However, the 

understanding of effects of wildlife on livestock movements is still lacking and need more studies. In 

addition, we cannot exclude the possibility that the dilution effect we found might be just caused by some 

other predictors correlating with mammal species richness. For example, higher mammal species might occur 

in nature reserves where fences are frequently used to prevent the contact between wildlife and livestock. 

These fences are also able to interfere with cattle movements and thus lead to a ‘pseudo’ dilution effect.  

Buffalo was found to have a positive identity effect on both BTB persistence and recurrence in cattle. The 

positive interaction between buffalo and cattle density in BTB persistence indicates that the positive effect of 

cattle density on BTB persistence was amplified under high buffalo occurrence. Theoretical studies 

suggested that the probability of pathogen persistence is indeed positively related to host density [24]. As 

maintenance host, buffalo can increase the effective encounter rates among cattle herds by frequently 

contacting different cattle herds, especially because they have similar habitat and dietary requirements, and 

thereby increase the effect of cattle density on pathogen persistence. For BTB recurrence, the positive 

association between buffalo and BTB recurrence might be caused by buffalo that spread the pathogen from 

infected regions to pathogen-free regions. Also, as a reservoir species, buffalo could preserve the pathogen 

and transmit it to cattle in the regions without cattle infection, triggering BTB recurrence in cattle. Previous 

studies suggested that maintenance hosts are more likely to remain in the community with decreased 

biodiversity [46,79], which indicated that the positive effect of maintenance host might also be underlay by 

the dilution effect. In this study, however, we did not find a significant negative correlation between mammal 

species richness and buffalo occurrence, suggesting the independence of the identity effect from the dilution 

effect. For greater kudu, neither BTB persistence nor recurrence was correlated with the presence of greater 

kudu, which might indicate that greater kudu is not a maintenance host for M. bovis. 

Climate plays a role in the epidemiology of BTB through affecting the survival of M. bovis [64,65]. Extreme 

temperatures and precipitation (i.e., mean temperature of the warmest month and mean precipitation in driest 

month in the preceding year) were found to be correlated with BTB persistence. This is probably because hot 

and dry weather precludes long-time survival of M. bovis [64,65,75,113]. However, we did not find any 

significant relationship between climatic variables and BTB recurrence, which indicates that climate might 

exert little effect on pathogen re-establishment in cattle at this scale of analysis.  

In summary, our study showed that wildlife substantially influences regional patterns of BTB persistence and 

recurrence. Mammal species richness was negatively correlated with BTB persistence and recurrence, 

suggesting the existence of a dilution effect, while buffalo as the maintenance host species had a positive 

identity effect. Our study also underlies the relevance of different ecological/climatic factors in determining 

BTB risk, and suggests that BTB persistence and recurrence are correlated with different sets of risk factors. 

These results are relevant for more effective control strategies and better targeted surveillance measures in 

BTB. 
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Supplementary Information 3 

Table S 3.1: Moran’s I values of the test of spatial autocorrelation of the residuals in the final models of 

stepwise selection approach and full models of removal approach. We calculated the Moran’s I values over 

different spatial scales. 

 BTB persistence BTB recurrence 

Distance (k km) Stepwise selection Removal approach Stepwise selection Removal approach 

0 - 0.5 -0.014 -0.009 -0.006 -0.005 

0 - 2 -0.021 -0.015* -0.002 -0.003 

0 - 4 -0.017 -0.012 -0.001 -0.0007 

0 - 6 -0.016 -0.021 -0.0003 -0.0002 

0 - 8 (global) -0.016 -0.010 -0.0003 -0.001 

* P< 0.05; ** p < 0.01; *** p < 0.001 
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Competence: a Possible Mechanism Underlying the Dilution Effect 
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osts species for multi-host pathogens show considerable variation in the species’ reservoir 

competence, which is usually used to measure species’ potential to maintain and transmit 

these pathogens. Although accumulating research has proposed a trade-off between life-

history strategies and immune defences, only a few studies extended this to host species’ reservoir 

competence. Using a phylogenetic comparative approach, we studied the relationships between some 

species’ life-history traits and reservoir competence in three emerging infectious vector-borne disease 

systems, namely Lyme disease, West Nile Encephalitis (WNE) and Eastern Equine Encephalitis (EEE). 

The results showed that interspecific variation in reservoir competence could be partly explained by the 

species’ life histories. Species with larger body mass (for hosts of Lyme disease and WNE) or smaller 

clutch size (for hosts of EEE) had a lower reservoir competence. Given that both larger body mass and 

smaller clutch size were linked to higher extinction risk of local populations, our study suggests that with 

decreasing biodiversity, species with a higher reservoir competence are more likely to remain in the 

community, and thereby increase the risk of transmitting these pathogens, which might be a possible 

mechanism underlying the dilution effect. 
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Introduction 

Diseases caused by multi-host pathogens are able to impact livestock productivity, agricultural economies, 

wildlife conservation and public health [120]. For many infectious multi-host pathogens, different host 

species, or even co-occurring host species in the same community, exhibit pronounced variation in their 

abilities to serve as reservoirs or transmit the pathogens [27,121]. Therefore, it is a major concern to 

better understand the dynamics of disease transmission, especially at community level, and the impact of 

differences in reservoir competence on infection risk [121]. 

Reservoir competence is usually used to measure a species’ potential to serve as a reservoir for pathogens 

and transmit pathogens [122,123,124]. Recently, ecologists have begun to search for explanations for the 

interspecific variation in reservoir competence in the ecology and life histories of species [121,125]. Life 

history theory generally suggests trade-offs with investment in self-maintenance (e.g., physiological 

resistance) at the expense of other physiological activities, such as current reproduction and growth [54]. 

The predictions derived from this theory suggest that “fast-lived” species (i.e. species that follow a 

strategy aimed at growth and early reproduction) tend to invest minimally in adaptive immunity [55,56], 

which may make them more competent for pathogens [13], whereas “slow-lived” species with longer life 

spans and slower growth rates are hypothesized to invest more into costly immune defences. Several 

studies have shown that specific immune defence level could be related to life-history traits, such as 

fecundity [57] and developmental period [55]. However, only a few studies extended this trait-based 

approach to examine the relationships between the hosts’ life-history traits and the potential to transmit 

pathogens (but see Cronin et al. [121]). Better understanding these relationships could help us to predict 

the species’ reservoir competence and model disease dynamics at community level, which is relevant for 

human health, economic growth and wildlife conservation [120,121,125]. 

In this paper, we present a quantitative study relating life-history traits to the variation in species’ 

reservoir competence for three vector-borne diseases: one tick-borne disease, Lyme disease and two 

mosquito transmitted diseases, West Nile Encephalitis (WNE) and Eastern Equine Encephalitis (EEE). 

We used the reservoir competence index (RCI) as a measure of the species’ reservoir competence, which 

is considered to be a function of several epidemiological parameters, namely host susceptibility 

(probability of a host becoming infected by infected vectors), host infectivity (probability of a vector 

becoming infected, when feeding on an infected host), and duration of infectiousness (number of days 

that a host remains infectious) [28,121,122,124]. For species life-history traits, we used body mass, 

incubation time (gestation time for mammals), and clutch size (litter size for mammals). Incubation time 

and clutch size have been linked to the species’ immune response [55], while body mass can serve as a 

surrogate for size-scaled life-history traits such as fecundity, metabolic requirements [126] and age at first 

breeding [127].  

In addition, a species’ potential to serve as a reservoir or transmit pathogens may have a phylogenetic 

signal. Since the morphological and physiological traits of species which regulate interactions with 

pathogens are usually phylogenetically conserved [29], phylogenetic differences in reservoir competence 

may exist across different taxa [27]. Therefore, we use both a conventional and a phylogenetic 

comparative analysis to test the relationships between the life-history traits and reservoir competence. We 

expect reservoir competence to be negatively correlated with body mass and incubation time (gestation 

time for mammals) while positively correlated with clutch size (litter size for mammals). 
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Materials and methods 

Data collection 

We searched for reservoir competence data from published studies and found reservoir competence data 

for three vector-borne diseases (Table 4.1). For Lyme disease, we collected the data from studies about 

Borrelia and different tick vector species. Since different strains of pathogens and different tick vector 

species may influence host reservoir competence [128], we only used the data from those studies where 

the disease is caused by the etiologic agent Borrelia burgdorferi and transmitted by the vector Ixodes 

scapularis [122], while the numbers of host species in the data sets with respect to other strains of 

Borrelia or other tick vector species were too small. For Lyme disease, we used the species’ realized 

reservoir competence (RRC), i.e. the product of the species’ host susceptibility and host infectivity, as a 

measure for the species’ reservoir competence [122] because of the lack of data on the duration of 

infectiousness. For WNE, we used two different data sets (Table 1, two data sets are referred as WNE-1 

and WNE-2 respectively): the first data set determined the reservoir competence index and host 

infectivity for 25 native bird species of North America in experimental conditions [124], whereas the 

second described original raw experimental viremia data from different studies and recalculated the 

reservoir competence index for 44 bird species using a method to avoid inflation of average viremia and 

infectiousness by a single animal with a high-titred viremia [129]. For EEE, we used the published dataset 

of 10 bird species [123].  

We collected life-history traits data (body mass, gestation/incubation time and litter/clutch size) from 

previous published studies or existing databases. Data sources are listed in Table S 3.1 and Table S 3.2.  

Table 4.1: Disease parameters, studied taxon, number of host species used in the analysis of Lyme disease, West Nile 

Encephalitis (WNE) and Eastern Equine Encephalitis (EEE) 

Disease Host taxon  Disease parameter Host number  

Lyme disease mammal realized reservoir competence (RRC) 9 

WNE-1 bird reservoir competence index (RCI) 15 

WNE-2 bird reservoir competence index (RCI) 24 

EEE bird reservoir competence index (RCI) 10 

Phylogenetic tree 

For WNE and EEE, we used a published phylogenetic tree of birds [130], which includes 169 avian and 2 

out-group genera. If only one bird species in the disease data set did belong to a genus in the tree, the 

genus tip was considered as the tip of this species. If more than one bird species did belong to a genus in 

the tree, we added a new branch with length 0.0001 for each species to the genus tip, and then the genus 

tip became a node. For the bird species which did not belong to any genus in this phylogenetic tree, we 

checked if the tree included any genera sharing the same family with these bird species. Species which 

did not belong to any family derived from the genera in the tree were not used in the analysis. If there was 

only one genus in the tree sharing the same family with the bird species in the disease data, the genus tip 

was considered as the tip for this species. If a bird species shared the same family with more than one 

genus in the tree, we created a new ‘family’ tip [131]. Then this ‘family tip’ was used as the tip of the bird 

species in the disease dataset. For Lyme disease, we used a published phylogenetic tree including almost 

all extant mammal species [132]. Trees were transformed to ultrametric trees (Fig. 4.1) to perform the 

phylogenetic comparative analysis.  
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Statistical analysis 

In the datasets of WNE used in the study, there were several non-host bird species whose reservoir 

competences were zero. Non-hosts data were removed before analysis because within a community there 

are many non-host species which are often not included in reservoir competence studies, especially for 

the studies with respect to testing life history theory, since trade-offs between life-history traits versus 

immune defence against a specific pathogen might not occur in non-host species. 

We log-transformed incubation time (gestation time for mammals) and body mass. We fitted models 

using reservoir competence as dependent variable and life-history traits as independent variables. We 

reported the results of a non-phylogenetic statistical analysis (assuming a star phylogeny [131]), and a 

phylogenetic comparative analysis under Brownian motion evolution. Since life-history traits were 

usually significantly correlated with each other and the relationship of a trait might be changed by adding 

other collinear variables in multiple regression models, we first conducted a factor analysis to extract the 

primary life-history axes, and reported the results of the univariate regressions using these extracted factor 

scores as independent variables. For Lyme disease, we first conducted our analyses using phylogenetic 

independent contrasts for all variables, then extracted the primary life-history axes from these 

(A) (B) 

Figure 4.1 Phylogenetic trees for 

mammals (A) and birds (B) used in 

the analyses 
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independent contrasts, and finally carried out regression analyses on these phylogenetically corrected 

responses and predictors [125]. For WNE and EEE, since the phylogenetic tree of birds was not fully 

dichotomous because of the lack of some branches’ lengths (Fig. 4.1), we first conducted the factor 

analyses and then carried out the regression analyses using a phylogenetic GLS approach instead of the 

independent contrast approach [133]. After that, we also carried out univariate regression analyses to test 

for the impact of each life-history trait on the species’ reservoir competence. All analyses were carried out 

in Canoco 5 and R 2·14·0 using the ape package [134]. 

 

Figure 4.2: The results of factor analysis for (A) mammal hosts of Lyme disease; (B) bird hosts used in WNE-1; (C) 

bird hosts used in WNE-2 and (D) bird hosts of EEE. Species codes plotted in ordination space reflect the first two 

letters of the genus and species names (for Lyme disease, the species codes cannot be given because the species’ names 

of the internal nodes were not available). 

Results 

Factor analysis 

Factor analyses (Fig. 4.2) showed that the first component axis, Factor 1, explained a large percentage of 

the variance of the species’ life-history traits: 78.5% for the hosts of Lyme disease, 57.2% for the hosts of 

WNE-1, 61.8% for the hosts of WNE-2 and 72.1% for the hosts of EEE. For Lyme disease and EEE, all 

three life-history traits were heavily loaded on Factor 1. Whereas for WNE-1 and WNE-2, only body 

mass and incubation time were heavily loaded on Factor 1, and clutch size was generally more extracted 
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on the second Factor. Host species with higher Factor 1 scores were generally those that have “slow-lived” 

characteristics, e.g. larger body mass, longer incubation/gestation time and smaller litter/clutch size (only 

in Lyme disease and EEE).  

Regression analysis 

The phylogenetic regression analyses of Factor 1 (Table 4.2) showed that the realized reservoir 

competence of Lyme disease, reservoir competence index in WNE-1 and EEE were all significantly 

negatively correlated to the Factor 1 scores. According to these results, higher Factor 1 scores referred to 

slower life histories, those species with higher reservoir competence tended to have fast life histories. The 

reservoir competence index in WNE-2 was not significantly associated to the Factor 1 scores (Table 4.2).  

Table 4.2: Regression coefficient b, t-statistic and adjusted R2 (only for conventional analysis) for the univariate linear 

regressions of the first primary component (Factor 1) for both non-phylogenetic and phylogenetic analysis of Lyme 

disease, West Nile Encephalitis (WNE) and Eastern Equine Encephalitis (EEE) 

Disease, data resource 
Disease 

parameters 

Conventional analysis  Phylogenetic analysis 

b t Adjusted R2 
 

b t 

Lyme disease (n=9) RRC# -0.10 -1.48 0.13  -0.14 -2.72* 

WNE-1 (n=15) RCI# -0.21 -1.63 0.11  -1.22 -2.97* 

WNE-2 (n=24) RCI -0.02 -0.21 -0.04  -0.48 -1.16 

EEE (n=10) RCI -0.23 -1.98 0.24  -0.17 -2.71* 

# RRC: realized reservoir competence. RCI: reservoir competence index 

*p ≤ 0.05, **p≤0.01 

Table 4.3: Regression coefficient b, t-statistic and adjusted R2 (only for conventional analysis) for the univariate linear 

regressions of each life-history traits for both non-phylogenetic and phylogenetic analysis of Lyme disease, West Nile 

Encephalitis (WNE) and Eastern Equine Encephalitis (EEE)  

Disease, data resource
Disease 

parameters 

Independent 

variables 

Conventional analysis 
 

Phylogenetic analysis 

b t Adjusted R2 
 

b t 

Lyme disease (n=9) RRC# body mass -0.18 -3.68** 0.61  -0.19 -3.55** 

  gestation -0.17 -1.32 0.08  -0.16 -1.23 

  litter size 0.01 0.13 -0.14  0.01 0.24 

WNE-1 (n=15) RCI# body mass -0.49 -1.75 0.11  -1.54 -2.68* 

  incubation -0.36 -0.74 -0.03  2.64 0.40 

  clutch size -0.09 -0.81 -0.02  -0.36 -2.15 

WNE-2 (n=24) RCI body mass -0.01 -0.04 -0.03  -0.45 -0.87 

  incubation 0.17 0.53 -0.02  13.57 1.44 

  clutch size 0.06 0.80 -0.01  -0.29 -1.63 

EEE (n=10) RCI body mass -0.52 -1.02 0.01  -0.31 -0.78 

  incubation -1.87 -1.17 0.04  -0.25 -0.59 

  clutch size 0.42 3.32* 0.53  0.37 2.92* 

# RRC: realized reservoir competence. RCI: reservoir competence index 

*p ≤ 0.05, **p≤0.01 

In regression analyses for each life-history trait, both non-phylogenetic and phylogenetic analysis showed 

that body mass was the strongest predictor for the species’ realized reservoir competence of Lyme disease 

(Table 4.3). Species with a larger body mass tended to have a lower realized reservoir competence for 

Lyme disease. Neither gestation period nor litter size showed any significant relationship with realized 
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reservoir competence, though the coefficients were, as expected, negative for gestation and positive for 

litter size (Table 4.3).  

For species’ reservoir competence index of WNE-1, the phylogenetically corrected univariate regression 

showed significantly negative relationships with body mass (Table 4.3). Species with a larger body mass 

tended to have lower reservoir competence index for WNE. Whereas for the second WNE data set (WNE-

2), no significant relationships between reservoir competence and life-history traits were found in the 

non-phylogenetic regression or in the phylogenetic regression (Table 4.3).  

For EEE, both the results of the non-phylogenetic univariate regression and phylogenetic analysis showed 

that clutch size was a significant predictor for species’ reservoir competence index (Table 4.3). Species 

with larger clutch size tend to have a higher reservoir competence for EEE. Neither body mass nor 

incubation time showed any significant relationships with reservoir competence, though the coefficients 

were, as expected, negative (Table 4.3).  

Discussion 

Our study focused on the relationships between life-history traits and species’ reservoir competence for 

three vector-borne diseases. The results generally showed that life-history traits can partly explain 

interspecific variation in reservoir competence. Body mass is a strong predictor to the reservoir 

competence in Lyme disease and WNE-1. Larger-bodied species tend to have lower reservoir competence. 

The variation in birds’ reservoir competence in EEE could be partly explained by clutch size. As we 

predicted, bird species with larger clutches tend to have a higher reservoir competence of EEE. For 

reservoir competence index in WNE-2, the lack of a significant relationship might be due to the different 

sources used in compiling this data set. The reservoir competence index can differ when measured under 

different conditions, since one component of reservoir competence index, the species’ susceptibility, 

usually vary in space and over time [122]. 

Our findings build on an emerging body of studies on the relationships between life history theory and 

disease ecology. Instead of focusing on immunology, however, our study associated the species’ potential 

to maintain and transmit pathogens with life-history traits. Life history theory suggests the existence of a 

trade-off between the immune system and life-history traits relating to growth and reproduction [135,136]. 

“Slow-lived” species tend to invest more in adaptive immunity because they probably encounter a greater 

number of infections overall, and are more likely to encounter the same pathogen, whereas “fast-lived” 

species which are in favour of growth and frequent reproduction tend to invest comparatively little in 

costly adaptive immunity [56,135]. Together with a previous study suggesting that species with a higher 

reservoir competence tend to favour cheaper, nonspecific immune defences that pathogens may be able to 

circumvent easily [58], the negative relationships between reservoir competence and life histories in our 

study support the predictions derived from life history theory. In addition, previous studies reported a 

strong positive relationship between natural antibody levels and incubation period in bird and mammal 

species [55,58], indicating that longer developmental times contribute to better adaptive immune systems. 

However, we did not find any significant relationship between incubation/gestation time and reservoir 

competence. This indicates that other factors, besides the effect of incubation period on adaptive immune 

system, might also influence species’ reservoir competence, which needs to be studied in the future. 

Recently several studies on life history theory proposed to discuss these physiological trade-offs between 

defence versus life histories in the context of a broader background, namely, the impact of biodiversity on 
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disease transmission [58,121,125]. Based on our results, one might expect that those species with a high 

reservoir competence are more likely to be those that are wide-distributed, since evidence is accumulating 

that species with faster life histories are more resistant to population decline and local extinction than 

“slow-lived” species [59,126]. Species with faster life histories (such as those with smaller body masses 

and larger clutch sizes) usually have lower energetic requirements and higher reproductive capacities, 

which make them more likely to be able to survive in remnant habitat patches with low biodiversity [59]. 

Also, some studies suggested that larger body mass usually associated with smaller population size [137], 

which also make them more vulnerable to biodiversity decline [138]. According to our findings that the 

species’ reservoir competence can be partly explained by their life histories, species with slower life 

histories tend to have lower reservoir competence. Thus, the species which are first lost from a 

community when disturbed tend to be those that are less competent hosts, ultimately leaving a higher 

abundance of more competent species in low diversity systems due to release from competition or 

predation, and thereby increase the risk for disease transmission. This might be a possible mechanism 

underlying the dilution effect, the inverse relationship between biodiversity and disease risk, which has 

attracted much interest in the context of ongoing biodiversity losses and increased emergence of human 

and wildlife diseases [13,78,139]. 

In theory, high biodiversity might dilute or amplify disease risk by changing the relative abundance of 

competent hosts [31]. The amplification effect suggests a positive relationship between biodiversity and 

disease risk. Compared with rare studies that support the amplification effect [13], the dilution effect has 

been reported for quite a few different diseases [28,43,44,45,140,141,142,143,144]. Some studies have 

shown that the dilution effect generally occurs when competent host species survive and increase their 

local densities in disturbed low-diversity communities, while other ecologists criticised the dilution effect 

and claimed that the dilution effect only occurs under certain circumstances and depends on a specific 

community composition where incompetent host species are more likely to be present in high-diversity 

communities [107]. Together with a previous study which suggested that fast-lived amphibian species 

were particularly prone to infection and pathology of a virulent trematode parasite, Ribeiroia ondatrae 

[125], the results of our study might explain how the community composition changes under increasing 

species loss and how this affects the species’ competence for the pathogen, triggering a dilution effect. 

Our study highlights the importance of the association between life-history traits and species’ potential to 

support and transmit pathogens and thus contributes to empirical evidence for life history theory. The 

results, in conjunction with findings of relationships between species’ life histories and local extinction 

risk, suggest a possible mechanism why the dilution effect operates with decreases in biodiversity. 
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Supplementary Information 4 

Table S 4.1: Data sources for reservoir competence, mammals’ life-history traits and birds’ body mass 

variables sources or references 
RRC for Lyme disease LoGiudice K et al. 2003 (Table 1) 
RCI for WNE-1 Komar N et al. 2003 (Table 10) 
RCI for WNE-2 Kilpatrick AM. 2007 (Figure 2) 
RCI for EEE Komar N et al. 1999 (Table 3) 
life-history traits for mammals Jones KE. Ecological Archives E090-184-D1 
body mass for birds Olson et al. 2009 
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Table S 4.2: Body mass, clutch size and incubation period of birds used in the analysis 

Species Body mass (g) Clutch size Incubation period (day) Sources and references 

Agelaius phoeniceus 53.22 3.28 11.68 Bennett PM 2002 

Agelaius tricolor 66.53 3.75 11.875 Bennett PM 2002 

Anas platyrhynchos 1096.33 8.25 27.5 Bennett PM 2002;  

del Hoyo J et al. 1994 

Aphelocoma californica 85.38 4.8 18.2 Martin TE 1995 

Bubo virginianus 1205.96 2.25 30.15 Bennett PM 2002 

Bubulcus ibis 345.43 3.67 23.85 Bennett PM 2002; 

Brown LH et al. 1982 

Buteo jamaicensis 1121.90 2.43 32 Bennett PM 2002; 

del Hoyo J et al. 1994 

Cardinalis cardinalis 44.70 3.37 12.5 Bennett PM 2002 

Carpodacus mexicanus 21.39 4.33 13.53 Bennett PM 2002 

Catharus mustelinus 49.65 3.43 13.23 Bennett PM 2002 

Catharus ustulatus 31.19 3.66 12.5 Bennett PM 2002 

Centrocercus urophasianus 2722.81 7.5 26 Bennett PM 2002 

Charadrius vociferus 92.42 4 26.57 Bennett PM 2002 

Colaptes auratus 136.21 6.47 12.625 Bennett PM 2002 

Columba livia 332.47 2 17.25 Bennett PM 2002 

Columbina passerina 30.29 2 13.5 Bennett PM 2002 

Corvus brachyrhynchos 445.27 4.25 18.15 Bennett PM 2002 

Corvus ossifragus 284.26 4.5 17 Bennett PM 2002 

Cyanocitta cristata 74.56 4 17 Bennett PM 2002 

Dumetella carolinensis 37.08 3.88 13.3 Bennett PM 2002 

Euphagus cyanocephalus 63.19 5.09 12.75 Bennett PM 2002; 

Martin SG 2002 

Falco sparverius 116.52 3.85 29.25 Bennett PM 2002 

Larus delawarensis 517.06 3.07 26.1 Bennett PM 2002 

Melospiza melodia 20.68 3.87 12.7 Bennett PM 2002; 

Arcese P et al. 2002 

Mimus polyglottos 48.71 3.90 12.32 Bennett PM 2002 

Molothrus ater 43.21 4 11.57 Bennett PM 2002; 

Lowther PE 1993 

Nycticorax nycticorax 550.42 3.50 23 Bennett PM 2002 

Megascops asio 184.50 4 26 Bennett PM 2002 

Passer domesticus 26.98 4.15 12.51 Bennett PM 2002 

Pica pica sericea 225.50 6.5 17 Madge S & Burn H 1999 

Quiscalus quiscula 116.02 4.83 13.67 Bennett PM 2002 

Sturnus vulgaris 81.70 5.12 12.375 Bennett PM 2002 

Turdus migratorius 77.36 3.73 12.92 Bennett PM 2002 

Zenaida macroura 119.76 2 14.8 Bennett PM 2002 

 



Dilution Versus Facilitation: the Impact of Habitat Connectivity on Disease Risks in Metapopulations 

37 

 

5 

 

Chapter 5 

 

Dilution versus Facilitation: the Impact of Habitat Connectivity on Disease 

Risks in Metapopulations 
 

Zheng Y.X. Huang, Frank van Langevelde, Herbert H.T. Prins, Willem F. de Boer 

 

 

everal studies have been conducted to investigate the generality of the dilution effect, a highly 

disputed hypothesis that refers to the negative effect of species diversity on disease risk. 

However, these studies were conducted only in spatially homogeneous environments without 

considering habitat structure, which is surprising as species loss is often driven by habitat fragmentation. 

Using epidemiological metapopulation models, we linked fragmentation and habitat connectivity to the 

dilution effect and explored the effect of connectivity on disease risk. We showed that higher connectivity 

is not only able to increase disease risk (facilitation effect) through increasing contact rates among 

patches, but also able to dilute disease risk (dilution effect) via increasing species richness. When both 

effects operate, the net impact of connectivity depends on the dilution potential of the incompetent host. 

We also demonstrated that different risk indices react differently to increasing connectivity, and it is 

easier to detect a negative relationship between disease risk and species richness when using infection 

prevalence as the risk index than using the abundance of infection. Our study may reconcile the current 

debate on the dilution effect, and contributes to a better understanding of the generality of the dilution 

effect and the impacts of fragmentation on disease risks. 
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Introduction 

Habitat fragmentation caused by human disturbances has produced substantial negative impacts on 

biodiversity [72], and in turn on ecosystem functioning and services [145]. One of the ecosystem services 

could be protection against diseases [33]. Current studies argue that high species richness reduces the risk 

of infectious diseases via a hypothesized ‘dilution effect’ [13,14,40]. While this dilution effect presents an 

exciting convergence of public health concern and biodiversity conservation, its generality is still under 

active debate [11,19,20,146,147]. It has been reported that the dilution effect occurs in a wide range of 

infectious diseases [14], such as Lyme disease [39,40], West Nile encephalitis [41], bovine tuberculosis 

[148], Hantavirus pulmonary syndrome [43,44], and so on. In contrast, some researchers argued that the 

dilution effect is more likely idiosyncratic and applies only in certain circumstances [11,19].  

Theoretical studies have been conducted to investigate the generality of the dilution effect. For example, 

it has been shown that the occurrence of the dilution effect may depend on the type of disease 

transmission [49,51]. Specifically, the dilution effect is more likely to operate in diseases with frequency-

dependent transmission [50,51]. While for a density-dependent transmitted disease, high species richness 

generally increases the risk unless it can reduce the densities of competent hosts (e.g., through 

interspecific competition or predation) [51]. Different indices of disease risk may also react differently to 

the changes in species richness. By incorporating empirical laws of community assemblage, Roche et al. 

[149] found that high species richness can reduce infection prevalence while the number of total infected 

hosts in the community increases. Considering that species loss is often driven by habitat fragmentation, it 

is surprising that these studies on the disease-diversity debate were conducted in spatially homogeneous 

environments without considering habitat heterogeneity.  

The landscape configuration can not only affect pathogen transmission through altering species richness 

and community assemblages [14,31], but also influence pathogen transmission dynamics by modifying 

contact rates among subpopulations [150,151]. Previous studies suggested that increasing connectivity 

among subpopulations almost universally facilitates disease transmission, allowing a pathogen to 

successfully invade a metapopulation [152] and increasing the prevalence and incidence of diseases in 

metapopulations [150,151]. We, therefore, hypothesize that increasing habitat connectivity can have both 

positive and negative effects on disease risk, depending on the interplay between enhanced pathogen 

transmission via promoting contact rates among subpopulations and the dilution effect through changes in 

host species richness. However, no study, to our knowledge, linked landscape structure and host 

movements to the disease-diversity debate. Incorporating these two mechanisms would be necessary in 

order to get a better understanding of the influence by fragmentation on disease risks and the generality of 

the dilution effect.  

Here, we used simple stochastic models to linked fragmentation and habitat connectivity to the dilution 

effect, and investigate the effect of habitat connectivity on pathogen transmission in metapopulations. Our 

main objective is to examine the relative importance of the dilution and facilitation effects along a 

connectivity gradient and explore the scenarios when the positive and the negative relationships between 

species richness and disease risk can be detected. Overall, we demonstrate that disease risk can either 

decrease with increasing connectivity due to the dilution effect, or increase due to a facilition effect. The 

dilution effect of incompetent host can be overshaded by the facilitation effect of connectivity, and the net 

impact of connectivity depends on the dilution potential of the incompetent host. 
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Models and Methods 

Pathogen transmission in the single-host system 

We combined a classical SIR (susceptible-infectious-recovered) model with a Levins’ metapopulation 

model to simulate the dynamics of directly transmitted pathogens. We assumed that the hosts were fully 

mixed in a certain number of patches with identical properties and homogeneous environment within, and 

that all patches were equally accessible to the hosts from other patches. The model reads as: 

d��
dt

= ��� − (� + �)�� 

d��
dt

= ��� − (� + �)�� 

d��
dt

= ��� − ��� 

Where Ni represented the host population size in patch i, and hosts could be either susceptible (Si), 

infected (Ii) or recoverd/immune (Ri). The host population increased with logistic growth, which included 

a constant birth rate b and a density-dependent mortality d within each patch. Host mortality was assumed 

to be independent of infection status. Infected hosts could be recovered from the infection at a recovery 

rate r. We assumed a frequency-dependent transmission, since the dilution effect is more likely to occur 

in this type of diseases [49,50,51]. Then, the force of infection λ was determined by intraspecific 

transmission rate β: 

� = 	�
��
��

 

The pathogen transmission dynamics were modelled with a stochastic process. At each time step, the 

processes of birth, death, infection, recovery, movement and extinction were modelled sequentially 

[62,151]. The number of newly-born individuals followed a Poisson distribution, whereas the number of 

deaths, infections, and recoveries followed a binomial distribution. Newborns would neither die nor be 

infected [62].  

Patches were connected to each other via host movements. The migration proportion, m, as a measure of 

connectivity, was used to describe how many individuals leave a patch at each time step. Therefore, the 

migration proportion represented the movement rates among subpopulations, with a higher value of 

migration proportion representing a higher frequency of movements [151], characteristic of a less 

fragmented landscape. This migration proportion was assumed to be the same regardless of the state of 

the individuals or the local population size in the patch. The number of emigrants for each patch at each 

time step also followed a binomial distribution, and all emigrants were distributed randomly over all 

patches. 

In addition, we set a local extinction rate for the local population in each patch at each time step. This 

extinction rate was the inverse of persistence time, Tp(i), which was a function of population size Ni and 

carrying capacity K [153]: 

��(�) =	
�� × �

�� + �/�
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Where a was the adjusting parameter for persistence time. Higher values of a lead to a higher Tp and thus 

a lower local extinction risk. 

Pathogen transmission in the two-host system  

We further extended the abovementioned single-host model to a two-host system comprising one 

competent and one incompetent host species. Being consistent with previous studies [149,154], we 

assumed that competent host species had smaller body masses and shorter life-spans, because life-history 

theory generally suggests a trade-off between investment in self-maintenance (e.g., physiological 

resistance) and other physiological activities (e.g., reproduction and growth) [54]. In this way, compared 

to slow-lived species, fast-lived species (with smaller body massed and short life-spans) usually invest 

less in immunological defences, which makes them act as more competent hosts for pathogens [55,155]. 

Such trade-off has been confirmed for the hosts of Lyme disease [40,156,157], West Nile virus [157], 

Barley yellow dwarf virus [52] and trematode parasites [15,46].  

We also assumed that birth rates and patches’ carrying capacities were determined allometrically by the 

body masses of the species [158]. Therefore, the competent host species with smaller body mass had a 

higher birth rate b1 than the incompetent host species b2. The carrying capacity for the competent host 

species K1 was higher than that of the incompetent host species K2. In this way, the incompetent host 

would go extinct first with declining connectivity, which is consistent with empirical evidence 

[138,159,160].  

Table 6.1: Description of model parameters and variables. Subscript 1 and 2 represent the competent and incompetent 

host species, respectively.  

parameter definition value 

b Birth rate b1 = 0.1; b2 = 0.08 

d Death rate d = bN/K 

β1 Intraspecific transmission rate for competent host 0.9 

β2 Intraspecific transmission rate for incompetent host [ 0.1, 0.9] 

β12 = β21 Interspecific transmission rate �(
�����

�
)  

c Interspecific transmission scaling parameter [0.01, 1] 

r Recovery rate [0.1, 0.3] 

K Patch carrying capacity K1 = 100; K2 = 80 

m1 = m2 Migration proportion [0, 0.05] 

a Local population extinction adjusting parameter a1 = 5; a2 = 3 

Interspecific transmission between the competent and incompetent host was assumed to be symmetrical 

and quantified as a scaled average of the intraspecific transmission rates [49,50]:  

��� = ��� 	= 	� �
�� + ��

2
� 

Where β1 and β2 were the intraspecific transmission rates, while β12 and β21 were the interspecific 

transmission rates, and c was a scaling parameter allowing us to adjust the magnitude of the interspecific 

transmission rates. The force of infection for the competent host, λ1, could be calculated as [51]: 
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The dilution effect here was caused by a mechanism called ‘encounter reduction’, which means that the 

addition of the incompetent host can reduce the chances of infected competent hosts to encounter 

susceptible competent hosts [31]. To investigate the relative importance of the dilution effect, different 

‘dilution potentials’, defined as the competence of the additional host to reduce the disease risk [40], of 

the incompetent host were simulated by varying the intraspecific transmission rate of the incompetent 

host β2 and the scaling parameter c. A higher dilution potential corresponds with a lower value of β2 

and/or c. Details for all parameters are provided in Table 6.1. 

For reasons of simplicity, the migration proportions for the incompetent and competent hosts were 

assumed to be similar. Competition or predation were not considered in our model, which implied that the 

density of the competent and incompetent host populations were independent of each other. 

Model analyses 

The carrying capacity of a patch was set as 100, which was large enough for the infection to become 

endemic after the pathogen successfully invaded a metapopulation. Twenty-five patches were used in the 

simulations (we found that the number of patchs did not change the results qualitatively). We first ran the 

model without pathogens for 500 time steps to make sure the system reached a quasi-equilibrium. Then 

an infectious competent individual was added into a randomly selected occupied patch; and the 

transmission process was simulated with another 500 time steps so that the populations reached an 

approximate equilibrium. Since the infection and demographic processes are stochastic and can create 

large variation among runs of the model, we ran 1,000 repetitions for each parameter set [150]. We 

calculated the probability of pathogen invasion, i.e., the fraction of simulations where the pathogen 

successfully invaded the metapopulation, resulting in a persisting infection. We also quantified the 

disease risk for the simulations with successful pathogen invasion and persisting infection using three 

indicators, i.e., the mean infection prevalence of the competent host (i.e., the proportion of infected hosts 

in the whole metapopulation), the mean number of infectious competent hosts (NumInfC) and the total 

number of infectious individuals (TolInf, including both competent and incompetent host). 

We first analysed the model behaviour in a single-host (competent host) system with different recovery 

rates and explored how the facilitation effect operated. Then, we extended our model to a two-host system 

and explored the relative importance of the dilution and facilitation effect on disease risk, respectively 

using a high (β2 = 0.1, c = 0.1) and a low (β2 = 0.7, c = 0.7) dilution potential for the incompetent host. 

Results 

Facilitation effect in single-host system 

Our results show that the infection could not invade the metapopulation when habitat connectivity was 

very low (Fig. 5.1). At different recovery rates, the mean infection prevalence showed similar sigmoidal 

patterns in response to increasing migration proportion (Fig. 5.1), indicating a facilitative effect of 

connectivity on infection prevalence within a certain range. We defined the facilitation region as the 

range of the migration proportion where increasing migration proportion increased the infection 

prevalence. The upper threshold for this range was determined by the tangent of the curve where the 

infection prevalence increased less than 2% with an increase of 0.01 in migration proportion (we found 
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that slightly different criteria did not change the results qualitatively). We used infection prevalence to 

define the facilitation region because infection prevalence for frequency-dependent transmitted diseases is 

independent of host density, and thus its increase was only caused by increasing contact rates among 

subpopulations. The width of the facilitation region was enlarged with increasing recovery rate (shown by 

the dashed vertical lines in Fig. 5.1). In addition, our results also showed that the probability of pathogen 

invasion responded similarly to the increasing connectivity as the infection prevalence, showing 

sigmoidal patterns (Fig. 5.1).  

 

Figure 5.1: Changes in the probability of pathogen invasion and in the infection prevalence with increasing migration 

proportion under different recovery rates: (a) r = 0.1; (b) r = 0.2; (c) r = 0.3. Grey vertical lines indicate the standard 

deviation for the infection prevalence, and dashed vertical lines indicate the upper threshold of the facilitation region. 

Population size changes and the dilution effect 

The overall population sizes for competent and incompetent hosts reacted similarly to increasing 

connectivity (Fig. 5.2). Hosts could not invade the metapopulation under low connectivity until the 

connectivity reached a certain threshold. After that, host population size rapidly increased with increasing 

migration proportion, m, after which the growth rate slowed down. A higher connectivity threshold was 

needed for the incompetent host than for the competent host to invade the metapopulation because of its 

lower carrying capacity and higher local extinction risk. When the incompetent hosts invaded the system, 

the dilution effect started to operate. Given that the facilitation region for the competent host depended on 

the recovery rate, two distinct scenarios became apparent. One scenario is that the facilitation effect and 

dilution effect overlapped over a gradient of migration proportions (i.e., r = 0.3, shown as the shaded area 

in Fig. 5.2), the other scenario is that the facilitation effect operated at lower values of the migration 

proportion than the dilution effect (i.e., r = 0.1, Fig. 5.2). We explored how disease risks react to 

increasing connectivity in the two-host system under these two scenarios for both a low and a high 

dilution potential of the incompetent host. 
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Figure 5.2: Changes in the equilibrium population sizes (after 500 time steps) of the two hosts with increasing 

migration proportion. The grey dashed arrows indicate the facilitation region under different recovery rates and the 

shaded area refers to the overlap region where both a dilution and a facilitation effect operate under the condition that 

the recovery rate r = 0.3. Dilution effect operates when the incompetent hosts invades the system. 

Dilution versus facilitation in a two-host system 

 

Figure 5.3: Changes in the infection prevalence of the competent host, number of infected competent hosts (NumInfC) 

and total number of infected hosts in the system (TolInf) with increasing migration proportions in a two-host system 

for different recovery rates and dilution potentials. Dashed vertical lines indicate the upper threshold of the facilitation 

region (see Fig 5.1); while the solid vertical lines indicate the start of the dilution effect (see Fig 5.2).  
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In the first scenario (r = 0.3) when the dilution effect and the facilitaiton effect overlapped and the 

incompetent host had a high dilution potential (β2 = 0.1, c = 0.1, Fig 5.3A), the number of infected 

competent hosts (NumInC), the total number of infected individuals (TolInf, including both competent 

and incompetent host), and the infection prevalence of the competent host showed similar patterns. They 

first increased with migration proportion because of the facilitation effect, and then decreased due to the 

dilution effect to relatively stable levels. Hence, in the overlap region (with both the facilitation effect and 

the dilution effect), the faciliation effect was outweighed by the dilution effect. However, when the 

incompetent host had a low dilution potential (β2 = 0.7, c = 0.7), different disease risk indicators showed 

different trends in the overlap region (Fig 5.3B), as the total number of infected individuals (TolInf) 

increased, the number of infected competent hosts (NumInfC) remained relatively stable, and the 

infection prevalence of the competent host decreased.  

We then varied the dilution potential of the incompetent host (different combinations of c and β2) to 

investigate the net effect of connectivity on disease risk, i.e., whether disease risk indicators increased or 

not in the overlap region when the facilitation and the dilution effect overlapped. Our results showed that 

the net effect of connectivity on disease risk in this region was determined by the dilution potential of the 

incomptent host (Fig 5.4). The lowest dilution potential (high values for β2 and/or c) was required for the 

infection prevalence of the competent host to decrease.The number of infected competent host (NumInfC) 

and the total number of infected individuals (TolInf) needed higher dilution potentials to counteract the 

increasing host density (Fig 5.2) in the overlap region. 

 

Figure 5.4: Thresholds for the combination of the intraspecific transmission rate for the competent host (β2) and the 

interspecific transmission scaling parameter (c) under which the disease risks (the total number of infected individuals: 

TolInf, the number of infected competent hosts: NumInfC, and the infection prevalence of the competent hosts: IP) 

decrease in the overlap region, i.e. the range of migration proportions where both a facilitative and a dilution effect 

operate. Disease risks increase in the upper-right regions (lower dilution potential).  

In the second scenario (r = 0.1) where the facilition effect and the dilution effect operate seperately, the 

infection prevalence of the competent host first increased rapidly with increasing connectivity because of 

the facilitation effect, and then remained stable until the dilution effect starts to operate (Fig 5.3C, D). 

After that, the infection prevalence decreased to a stable level, and a larger decrease rate of the infection 

prevalence occurs with higher dilution potential. The number of infected competent hosts (NumInfC) and 

the total number of infected individuals (TolInf) showed different patterns. They first increased due to the 

facilitation effect, and after the dilution effect starts to operate, they slightly decreased under a high 
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dilution potential of the incompetent host, whereas they both increased when the dilution potential is low 

(Fig 5.3C, D). 

Discussion 

Human-induced habitat fragmentation plays an important role in species loss [72], and in turn modifies 

disease dynamics [14,31]. Some studies have shown increased disease risk in fragmented habitats with 

reduced species richness [15,39,161], providing supportive evidence to the dilution effect. While others 

did not find such relationship and concluded that habitat framentation has a complex role in pathogen 

transmission [9,12,20,162]. Our modelling study shows that these apparent contradictions can be 

understood, and suggests that both the dilution and facilitation effect can operate with increasing habitat 

connectivity, and whether disease risks decrease or not depends on the dilution potential of the 

incompetent host. 

Our results from the single-host system showed that the infection prevalence first increased within a 

certain range of migration proportion and then remained stable (Fig 5.1). This is because infectious 

individuals do not move frequently at low migration proportions, i.e. in a highly fragmented landscape, 

and thus could not encounter enough susceptible individuals and spread the pathogen, especially when 

there are many recovered and immune individuals and limited susceptibles. The infection prevalence was 

high when the metapopulation acted more like a homogeneous population at high migration proportions, 

which resulted in immediate access of susceptible individuals for infected individuals. A higher recovery 

rate led to a larger facilitation region as a higher recovery rate means shorter infection periods, and high 

infection prevalence could only be achieved in these circumstances when infectious individuals moved 

more frequently to encounter susceptible individuals within their infection period. For the probability of 

pathogen invasion, increasing the migration proportion means that infected individuals move more 

frequently and thus have higher probabilities to arrive in a fully susceptible patch and spread the pathogen 

within their infection periods.  

In the two-host system, we have shown that disease risk in fragmented habitats does not always decrease 

due to the dilution effect when the connectivity increases, but can also increase because of the facilition 

effect. The net effect of connectivity reflects the relative importance of the dilution versus facilitaiton 

effect. This result might partly explain the current contradictions with regard to the existence of the 

dilution effect. For example, a recent study showed that higher disease risk of chytridiomycosis, caused 

by the chytrid fungus Batrachochytrium dendrobatidis, was found in less fragmented landscapes with 

higher amphibian species richness [163], wheres an experimental study on this emerging amphibian 

disease suggested a dilution effect where increased species richness reduced the disease risk [143]. We 

showed in this study, that the facilitation and dilution effects might co-occur. Although the dilution effect 

is expected to operate under a higher species richness (with less fragmentation), this effect could be 

outweighted by the facilitation effect caused by an increasing landscape connectivity. B. dendrobatidis, a 

driver of the global amphibian decline, can heavily infect quite a lot of amphabian species [164], which 

leads to a low dilution potentials of these hosts species, so that the facilitation effect might overshadow 

the dilution effect in habitats with high connectivity and high species richness.  

In addition, we found that different indicators of disease risk (i.e., the proportion of infected and the 

number of infected individuals) show different trends over the connectivity gradient in metapopulations, 

suggesting that connectivity affects these indicators differently. If so, then this result makes the detection 

of a dilution effect more difficult. Many studies reported the dilution effect using infection prevalence as 
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the indicator of disease risk [38,40,41,43,44]. However, several studies argued that sometimes the density 

of infected individuals might be a more direct measure of disease risk [19,20,146], especially for the risk 

for humans when the wildlife-human contacts are density-dependent [149]. According to our results, if 

the density of infected individuals is used as the risk indicator, the dilution effect might disappear, or a 

positive correlation between disease risk and species richness can be found because higher dilution 

potentials of incompetent hosts are needed to counteract the facilitation effect of connectivity. Hence, we 

recommend reporting both the prevalence and the density of infected individuals to better understand the 

determinants of disease risk. 

In the simulation models, we made a number of simplifying assumptions to make the analysis tractable. 

First, we assumed that the incompetent host has a similar migration proportion as the competent host, 

which might not be realistic. However, we thought that relaxing this assumption will not qualitively affect 

our conclusions, since it can only change the threshold of connectivity for colonization of the incompetent 

host and make the overlap region (the range of connectivity where both a facilitation and a dilution effect 

operate) move over the gradient of connectivity. Also, we did not consider the effect of competition or 

predation. If the additional host can reduce the density of incompetent hosts, another mechanism for the 

dilution effect, ‘host regulation’ [31], would operate and lead to a stronger dilution effect [49,51]. In this 

way, it would be more likely to detect a negative correlation between species richness and disease risk.  

In addition, we assumed a negative relationship between a species’ reservoir competence and its local 

extinction risk, which is central in the dilution effect hypothesis [12,50,157]. Although this negative 

relationship, which is based on life-history theory, has been documented in several studies (see review in 

[50]), its universal application is still under debate [12,50]. Weak correlations between host reservior 

competence and local extinction risk can create inconsistent effects of host species richness on disease 

risk [50]. To better compare disease risk under different levels of connectivities, we also assumed that 

seasonal factors did not influence disease transmission and host demographic variables. These seasonal 

patterns directly modify susceptible recruitment and transmission patterns [165,166] and thus may 

potentially influence our results. Therefore, a natural next step would be to relax these assumptions to 

increase our understanding of the roles that connectivity plays in pathogen transmission. 

In general, our study shows that even when the dilution effect operates in a system, the impact of 

fragmentation on disease risk cannot be easily predicted because connectivity is able to trigger 

simultaneously a facilitation and a dilution effect. Our study reconciles the current debate on the dilution 

effect, and contributes to a better understanding of the impacts by habitat fragmentation on disease risk. 

We show that a facilitation and a dilution effect can operate simultaneously, so that both an increase or a 

decrease in disease risk can be expected when habitat fragmentation increases. 
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Chapter 6 

  

Synthesis: Evidence and Critiques on the Dilution Effect 

 

ith ongoing species loss and increasing emergence of infectious diseases, the interest in 

identifying the effect of species richness on disease risk has been accumulating 

[12,15,50,167]. Species richness and community composition can influence disease 

dynamics because many pathogens infect multiple host species that vary in terms of their reservoir 

competence [18,27,157]. Recent studies suggested that high species richness can reduce disease risk in 

communities via a dilution effect [15,18,21,31,168]. The dilution effect presents an exciting convergence 

of conservation and public health interests [11,12,146], and has been reported in many different disease 

systems [17,18,22,41,42,43,44,45,144,169]. However, uncertainty persists over its generality and its 

underlying mechanisms [11,15,19]. Understanding the effect of species richness on disease risk is critical 

to predict changes in pathogen transmission under increasing species loss, and may provide new insights 

with regard to interventions and control measures.  

Previous studies have formulated three prerequisites for the dilution effect (Fig 6.1) [11,18]. They are: 1) 

host species differ in their reservoir competence; 2) higher quality hosts dominate in species-poor 

communities, whereas lower quality hosts occur mainly in more diverse communities; 3) species with low 

reservoir competence reduce disease risk through several mechanisms (mainly through host regulation 

and encounter reduction, see Table 1.1). However, recent critical studies argued that the last two 

prerequisites are usually not fulfilled (Fig 6.1) [11,12,19,20,50,146]. 

In this thesis, I first tested the dilution effect in bovine tuberculosis (BTB) (Chapter 2 & 3). Then, species’ 

reservoir competence was linked to life-history traits to provide support for the second prerequisite in 

Chapter 4. Finally, in Chapter 5 the effect of habitat connectivity on disease risk was studied using an 

epidemiological metapopulation model, as species loss is often driven by human disturbance and habitat 

fragmentation. The results from these chapters can be either interpreted as support (Chapter 2, 3 & 4) or 

critique (Chapter 5) for the dilution effect. In this Synthesis, these results are brought together in order to 

gain a better understanding of the mechanisms and generality of the dilution effect. Based on these 

findings, I here discuss the evidence for and critiques on the dilution effect. Lastly, I draw the main 

conclusion and suggest a focus for future studies.  

 

W
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Association between local extinction risk and reservoir competence 

One of the central prerequisites for the dilution effect is that a species’ local extinction risk negatively 

correlates with its competence to support and transmit pathogens [11,12,18,50]. In this way, species with 

a lower reservoir competence are expected to go extinct first with increasing species loss, whereas species 

with a higher reservoir competence are more likely to remain in the community and increase pathogen 

transmission [18,50]. However, before this thesis, few studies provided support for this prerequisite 

(critique 2 in Fig. 6.1). Understanding the relationship between a species local extinction risk and their 

reservoir competence is essential to predict disease dynamics with community changes and understand 

the generality of the dilution effect.  

 

Figure 6.1: Illustration of the prerequisites for and critiques (following the arrows) on the dilution effect. 

The variation in a species’ reservoir competence can be partly explained by life-history traits [52]. Life-

history theory suggests trade-offs with investment in self-maintenance (e.g., physiological resistance) at 

the expense of other physiological activities, such as current reproduction and growth [54]. Slow-lived 

species tend to invest more in adaptive immunity because they probably encounter a greater number of 

infections overall, and are more likely to encounter the same pathogen, whereas fast-lived species which 

are in favour of growth and frequent reproduction tend to invest comparatively little in costly adaptive 

immunity and thus usually have a higher competence for pathogens [56,135]. In Chapter 4, the 

relationships between reservoir competence and life-history traits were tested in three vector-borne 



Synthesis: Evidence and Critiques on the Dilution Effect 

49 

 

6 

diseases, namely Lyme disease, West Nile encephalitis (WNE) and Eastern Equine encephalitis (EEE). 

Our results support the life-history theory and show that species with larger body mass (for hosts of Lyme 

disease and WNE) or smaller clutch size (for hosts of EEE) have lower reservoir competences. Besides 

my study, such a relationship between life-history traits and reservoir competence has recently also been 

documented in Barley yellow dwarf virus [52], Trypanosoma cruzi infections [53] and trematode 

parasites [15,46]. On the other hand, an increasing number of studies showed that the risk of extinction is 

not randomly distributed over the spectrum of species, and some life-history traits predispose species’ 

population declines in human disturbed ecosystems [170,171]. For example, species with longer 

developmental time and lower fecundity are less able to compensate by increase reproductive output 

during periods with a relatively higher mortality, and are therefore more vulnerable to population decline 

within disturbed communities [172,173]. In addition, a larger body mass usually correlates to a larger 

home range or area requirement [59,174], a lower population density [59,175] and a lower fecundity 

[126], all of which are associated with a higher local extinction risk [59,174]. Some the life-history traits 

(such as body mass, clutch size in Chapter 4.) that are correlated to species’ reservoir competence might 

be also associated with the species’ local extinction risk. Therefore, a species’ reservoir competence and 

its local extinction risk might be negatively correlated and explained by similar underlying life-history 

traits (Fig 6.2), and those species with a high reservoir competence are more likely to be those that are 

widely distributed.  

 

Figure 6.2: Competence-extinction relationship explains the dilution effect. Hexagons are ecological processes. 
Rectangles are factors that affect ecological processes or correlate to other factors. 1a, 1b: Species’ reservoir 
competence and local extinction risk are linked through life-history traits; 2: Parasite local adaptation also leads to 
negative relationship between reservoir competence and local extinction risk; 3: Dilution effect occurs because species 
with lower local extinction risk have higher reservoir competence; 4: Local extinction risk determines which species 
are lost when biodiversity declines; 5a, 5b: Biodiversity declines increase disease risks through reducing the dilution 
effect. 

The covariance between species’ reservoir competence and local extinction risk might also arise due to 

parasite local adaptation [50]. Parasites can be driven by the selective pressure of losing hosts during 

community disassembly to evolve to infect the most abundant or widespread host [176,177], which also 

leads to a negative relationship between reservoir competence and local extinction risk (Fig 6.2). 

Currently, some studies have suggested that increased abundance of fast-lived species is a common result 

of human-induced global change [178,179,180,181,182,183]. Shift in host community composition 
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towards fast-lived species suggested by such a relationship might be a mechanism by which global 

change increases pathogen transmission rates [52] and hence support the dilution effect. 

Although both life-history theory and the local adaptation mechanism provide theoretical grounds for a 

negative correlation between a species’ reservoir competence and local extinction risk, few study directly 

tested the relationships between reservoir competence and local extinction risks. Studies also pointed out 

that many stochastic factors are able to influence community composition [184,185,186], which might 

weaken this negative relationship. The uncertainty in the negative correlation between reservior 

competence and local extinction risk can create inconsistent effects of host species richness on disease 

risk, making the dilution effect disappear or even a positive effect of species diversity emerges [50]. 

Therefore, I suggest to directly test this relationship in future studies, which would be beneficial to better 

predict disease dynamics in relation to biodiversity declines. 

Dilution effect and identity effect 

Previous studies have suggested two mechanisms by which species diversity influence ecosystem 

functioning, the complementarity effect and the identity effect [185,187,188,189]. The complementarity 

effect influences ecosystem properties through the interactions (or absence of interactions) among species, 

whereas the identity effect is due to the presence of a key species with a particularly higher or lower 

contribution than average in communities [187,188]. The identity effect can be caused by a selection 

effect or a sampling effect whereby increasing species richness results in an increasing probability of such 

a key species [187,190,191]. In Chapter 2 and 3, the dilution effect of mammal species richness and the 

identity effect of African buffalo on the presence, persistence and recurrence of bovine tuberculosis (BTB) 

were tested at regional scale. The results show that mammal species richness has a possible dilution effect 

whereas African buffalo as a maintenance host species has a positive identity effect on BTB presence, 

persistence and recurrence. The results indicate that the identity effect and the dilution effect of species 

richness can operate simultaneously, which is consistent with previous studies regarding the effect of 

species diversity on ecosystem productivity [187,192] and nutrient retention [193].    

Currently, a critique of the dilution effect (critique 3 in Fig. 6.1) is that disease risk might be increased in 

high-diversity communities due to the presence of some particular species which are heavily disease-

prone or main feeders for vectors [11,20]. For example, the presence of deer, as an important bloodmeal 

host for ticks, can largely increase tick abundance and thus may increase the risk of tick-borne diseases, 

such as Lyme disease [194,195]. These critical studies argued that increasing species richness can lead to 

an increased probability of the presence of such a particular species. The dilution effect may be 

overshaded by the positive identity effects of these species, even a positve relationship between species 

richness and disease risk can be detected [11,20]. However, others argued that the sampling effect might 

be a statistic artefact and is not widespread in natural communities, because the communities are arguably 

not random assemblages of species [196,197]. In my BTB studies (Chapter 2 & 3), I detected a positive 

correlation between species richness and the occurrence of buffalo (r = 0.66, p < 0.01), which indicate 

that the species identity effect could act as an additional mechanism by which species richness influences 

disease risk. 

Regardless of the debate on the identity effect, it is desirable to seperate this effect from other effects in 

interpreting the effects of species diversity on disease risk, since it is beneficial to better understand the 

effect caused by increasing species richness or a changing community composition on disease risk [190]. 

Recently some other studies on the disease-diversity relationship also started to test for a species identity 



Synthesis: Evidence and Critiques on the Dilution Effect 

51 

 

6 

effect on disease risk. For example, using manipulative experiments, Venesky and co-workers found that 

amphibian species richness was a significant negative predictor for the abundance of Batrachochytrium 

dendrobatidis (Bd), whereas the presence of Bufo terrestris was able to amplify Bd abundance because of 

its high susceptibility [167]. When examining the effects of tree species richness on the risk of foliar 

fungal pathogens in Germany, Hantsch and colleagues found that tree species richness was negatively 

correlated with the pathogen load of common mildew species, while the presence of Quercus as a 

particular disease-prone species was correlated with a high pathogen load at plot level [191]. These 

studies, together with the BTB studies in Chapter 2 and 3, are among the first to test the species’ identity 

effect with regard to the effect of species diversity on disease risk.  

The prevalence and the abundance of infection 

To quantify the risk of an endemic disease, scientists usually use the prevalence and the abundance of 

infection (either infected hosts or infected vectors) to study the dynamics of pathogen transmission. When 

testing the effect of species richness, many studies with regard to the dilution effect used the infection 

prevalence as an index of disease risk [38,40,41,43,44]. For examples, in the Great Basin Desert there 

was a negative relationship between rodent species diversity and the infection prevalence of the Sin 

Nombre virus infection in deer mice [44]. The prevalence of the West Nile virus infection in mosquito 

vectors increased with decreasing bird diversity in North America [41]. Along areas at the western coast 

of the USA, the infection prevalence of Phytophthora ramorum for competent hosts, bay laurel and 

tanoak, was negatively correlated with tree species richness in forest communities [22]. However, many 

studies suggested that the number of infected individuals might be a more suitable indicator for disease 

risk to humans since wildlife-human contacts are usually density-dependent [19,20,146]. However, 

infection prevalence and the number of infection may show different relationships with species diversity. 

For example, a theoretical study incorporating empirical laws of community assemblage found that high 

species richness can reduce the infection prevalence while the number of total infected hosts in the 

community increases [78]. Hence, I suggest that both the prevalence and the abundance of infection 

should be reported to better understand the determinants of disease risk. 

Another critique on the dilution effect (critique 4 in Fig. 6.1) exists when species diversity has a negative 

effect on infection prevalence whereas no or even a positive effect on the abundance of infection. The 

abundance of infection, as the product of infection prevalence and host/vector population size, may 

increase when host/vector population increases, even if the infection prevalence decreases. When testing 

the effect of connectivity on disease risk in metapopulations, I demonstrated that different indicators of 

disease risk (infection prevalence and number of infected hosts) react differently to increasing 

connectivity (Chapter 5). When the infection prevalence decreases with increasing connectivity (along 

with increasing species richness), the number of infected hosts can also increase since increasing 

connectivity is expected to increase host abundance. Therefore, the negative correlation of species 

richness with infection prevalence would be easier to be detected than with the number of infected hosts 

(Chapter 5). For vector-borne diseases, a higher species richness may provide more bloodmeals for 

vectors and increase vector abundance, especially tick species which are sit-and-wait species relying on 

host movement to facilitate encounters with hosts for feeding [11,20,198]. In this way, the abundance of 

infected vectors, as an index for human disease risk, can increase with increasing species richness even if 

the infection prevalence of vectors decreases [11,20,38]. Therefore, it seems that for both direct-

transmitted and vector-borne diseases, it is easier to detect a dilution effect using the proportion of 

infection as risk indicator than using the abundance of infection. 
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Fragmentation and dilution effect 

Habitat fragmentation can considerably change the dynamics of disease transmission through modifying 

host movements, host/vector density, community composition and micro-environments [9]. Controversal 

results have been found in previous empirical studies investigating the effect of habitat fragmentation on 

disease risk, even in the same disease systems [19]. For example, nymphal infection prevalence and the 

density of infected nymphs for Lyme disease were positively correlated with fragmentation in New York 

& Connecticut [39,161], whereas no relationship was found across New York, Connecticut and New 

Jersey [48]. These inconsistent results indicate that habitat framentation may have a complex role in 

pathogen transmission.  

Habitat fragmentation can cause species loss [72], which may lead to an increased disease risk due to a 

reduced dilution effect [31,39]. On the other hand, reduced connectivity among fragmented patches can 

limit host movements and thus the transmission of pathogens carried by hosts [151,199]. Combining these 

two effects of fragmentation, I investigated how connectivity affects disease risk in metapopulations in 

chapter 5. I found that disease risks may show non-linear relationships with connectivity. The net impact 

of connectivity depends on the relative importance of the dilution effect (by increased species richness) 

versus the facilitation effect (by increasing contact rates among patches). These results indicate that the 

effect of species richness is not only a consequence of host species richness, but also of the landscape 

configuration. Besides contact rates among patches, fragmentation also influences host density and vector 

density which can affect disease risk [9]. For example, when mapping the risk of Lyme disease, Estrada-

Peña found that tick density was higher in habitats with higher connectivity [67], which can counteract 

the dilution effect in these habitats [66]. Therefore, the dilution effect, if it occurs, may be confused by 

other effects of factors which change community composition. A future challenge for studies 

investigating the effect of species richness on disease risk will be to include the effects of those factors 

modifying species richness. 

Outlook 

The dilution effect hypothesis has been investigated in many studies with different diseases, but its 

generality and mechanisms are still highly disputed. The uncertainty in the effect of species richness may 

be caused by the confounding factors which can influence pathogen transmission. Many climatic and 

environmental factors can largely affect pathogen transmission through modifying host/vector density, 

species susceptibility/infectivity, pathogen survival and so on [9]. One direction for future studies with 

regard to the disease-diversity relationship is to use manipulative experiments, which currently only a few 

studies conducted [146,167], to control for these confounding factors. Moreover, manipulative 

experiments and well-designed studies are also needed to test the underlying mechanisms by which 

species diversity influence disease risk [17,167]. For example, by monitoring the intra- and interspecific 

encounters of deer mice in foraging arenas at five sites in Great Basin Desert to test the dilution effect of 

rodent species diversity in Sin Nombre virus and explore the underlying mechanisms, Clay and 

colleagues detected a dilution effect and suggested the encounter reduction mechanism that intraspecific 

interactions between deer mice was reduced with increased diversity [47]. 

When investigating the effect of species richness on disease risk at a higher level, such as landscape level, 

future studies should take into account habitat configuration and environmental context, since they are 

able to influence pathogen transmission and community composition simultaneously. This thesis, for 

example, has demonstrated that habitat fragmentation can affect disease risk in a complex way. I propose 
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that the advances in studies of patch connectivity (e.g., graph theory), together with classical 

epidemiological models and field studies, can provide powerful tools to increase our understanding of the 

epidemiological processes underlying the infection pattern at landscape level. 

In addition, increasing studies have shown that reservoir competence not only varies in different species, 

but also shows genetic heterogeneity that different genotypes of a same species may show different 

competence to transmit pathogens [18,200,201,202]. For example, a mesocosm study showed that the 

prevalence of Octosporea bayeri in Daphnia magna water fleas was consistently lower in host 

populations with higher than lower genetic diversity, which might be caused by the encounter reduction 

mechanism that those less susceptible Daphnia genotypes act as dead-end hosts when they filter parasites 

that might otherwise infect susceptible genotypes [203]. A next important step in the field of disease 

ecology could be to investigate the effect of genetic diversity on the dynamics of pathogen transmission. 

Conclusion 

Understanding the effect of species richness on disease risk in communities is essential to predict disease 

dynamics with ongoing biodiversity declines. The aim of this thesis is to test a controversial hypothesis, 

the dilution effect, and investigate the underlying mechanisms. I showed that there is a possible dilution 

effect of mammal species richness on the presence, recurrence and persistence of BTB. African buffalo 

can exert a positive identity effect that increase BTB risk (Chapter 2 & 3). I suggest that the identity 

effect could be an additional mechanism by which species richness influences disease risk. I also 

demonstrated that the variation in host competence to support and transmit pathogens can be partly 

explained by species’ life-history traits that are linked to species’ local extinction risk, which provides 

support for the dilution effect hypothesis (Chapter 4). In chapter 5, I showed that habitat connectivity can 

both increase or decrease disease risk, and the net impact of connectivity on disease risk was dependent 

on the relative importance of the dilution effect (due to the increasing species richness) versus the 

facilitation effect (caused by increasing contact rates among patches). I propose that future studies 

investigating the effect of species richness on disease risk should also consider those factors (such as 

fragmentation) that can simultaneously affect pathogen transmission and community composition, in 

order to get a better understanding of the roles played by such factors. In addition, different indicators of 

disease risk (e.g., prevalence and abundance of infections) may show different relationship with species 

richness (Chapter 5). This might be one of the reasons that inconsistent results were suggested by 

previous studies regarding to the dilution effect. In general, the results of this thesis support the dilution 

effect hypothesis and indicate under what conditions it can be found. I propose that a future direction 

would be to conduct manipulative experiments to study the effect of species richness on disease risk and 

the underlying mechanisms. 
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Summary 

 

any pathogens infect multiple host species which can differ in their reservoir competence. 

Consequently the species richness and composition of the host community can 

considerably influence the dynamics of disease transmission. Recently, an increasing 

number of studies reported the existence of a dilution effect whereby high host species richness reduces 

the disease risk. However, the generality of the dilution effect and its mechanisms are still highly debated. 

In this thesis, I tested the existence of a dilution effect in bovine tuberculosis (BTB) and investigated the 

underlying mechanisms of the dilution effect.  

I detected a possible dilution effect in BTB, where higher mammal species richness reduced the 

probability of occurrence of BTB at a regional level in Africa, after correcting for cattle density (Chapter 

2). This dilution effect might be caused by encounter reduction, i.e. the presence of non-competent 

mammal species might act as barriers to herd movement of cattle and reduce encounter rates among herds, 

which leads to a decreased probability of BTB outbreaks. Then I extended the study of the BTB dilution 

effect to the analysis of BTB persistence and recurrence (Chapter 3). The results showed that mammal 

species richness was also negatively correlated with the BTB persistence and recurrence. Besides, I 

demonstrated that the presence of African buffalo, as a maintenance host for Mycobacterium bovis (the 

causative agent of BTB), had a positive identity effect and increased the risk of BTB persistence and 

recurrence, whereas greater kudu distribution was not correlated with BTB persistence or recurrence. In 

addition, BTB persistence and recurrence were correlated with different sets of risk factors.  

In Chapter 4, I showed that interspecific variation in species’ reservoir competence could be partly 

explained by life-history traits in three vector borne diseases, namely Lyme disease, West Nile 

Encephalitis (WNE) and Eastern Equine Encephalitis (EEE). Species with larger body mass (for hosts of 

Lyme disease and WNE) or smaller clutch size (for hosts of EEE) had a lower reservoir competence. 

Given that both larger body mass and smaller clutch size are linked to higher extinction risk of local 

populations, the results indicate that species with a higher reservoir competence are more likely to remain 

in the community when biodiversity declines, and thereby potentially increase the risk of transmitting 

these pathogens. This might be a possible mechanism underlying the dilution effect. 

Combing the results about the relationships between species’ reservoir competence and life-history traits, 

I constructed a compartmental model to investigate the effect of connectivity on the risk of directly 

transmitted diseases in metapopulations (Chapter 5). I showed that different indicators of disease risk 

(infection prevalence and number of infected individuals) reacted differently to increasing connectivity. 

Higher connectivity can not only decrease disease risk due to the dilution effect by increasing species 

richness, but can also increase disease risk through increasing contact rates among patches (facilitation 

effect). The net impact of connectivity depends on the relative importance of the dilution versus 

facilitation effect. These results may reconcile the current debate on the dilution effect, and contributes to 

a better understanding of the impacts of fragmentation on disease risks and the generality of the dilution 

effect. 
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Finally, I combined these findings and reviewed the evidence and critiques on the dilution effect (Chapter 

6). Latest studies (also the BTB study in this thesis) tried to test species identity effects, caused by 

particular species in communities, and found that the identity effect and dilution effect can operate 

simultaneously in the host community. I suggest that the identity effect could act as an additional 

mechanism explaining the effect of species richness on disease risk. A weak correlation between host 

reservoir competence and local extinction risk can create inconsistent effects of host species richness on 

disease risk. Moreover, different indicators of disease risk may react differently to the changes in species 

richness. This could also be one of the reasons for the controversial results from previous studies that 

used different indicators (e.g., prevalence or number of infection) of disease risk. In conclusion, this 

thesis presents both evidence and critique for the existence of the dilution effect. Since factors may 

simultaneously influence community compostion and the characteristics of pathogen transmission (e.g., 

susceptibility, survival of pathogen etc.), future studies should also consider these factors, rather than only 

species richness, to better understand the effect of species richness on disease risk. 
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Samenvatting 

 

eel ziekteverwekkers infecteren meerdere gastheren en deze gastheren kunnen verschillen in 

hun capaciteit om de ziekteverwekker over te dragen. Als gevolg hiervan kan de 

soortenrijkdom en de samenstelling van de gastheergemeenschap een grote invloed hebben 

op de dynamiek van de overdracht van ziektes. Een toenemend aantal studies laat zien dat een hogere 

soortenrijkdom het ziekterisico verlaagd, wat in het Engels het “dilution effect” wordt genoemd (wat 

vertaald kan worden als het verdunningsseffect). Desondanks is er veel debat over de algemeenheid en de 

mechanismes van dit verdunningseffect. In dit proefschrift heb ik getest of er aanwijzingen zijn voor een 

verdunningseffect bij rundertuberculose (BTB) en onderzocht ik mechanismes die het verdunningseffect 

kunnen veroorzaken.  

Ik vond een mogelijk verdunningseffect op regionale schaal voor BTB in Afrika, waarbij een hogere 

zoogdiersoortenrijkdom het voorkomen van BTB verlaagde als het effect gecorrigeerd wordt voor de 

dichtheid waarmee koeien worden gehouden (Hoofdstuk 2). Dit verdunningseffect zou kunnen worden 

veroorzaakt door een verlaging van de kans op het tegenkomen van andere dieren, dat wil zeggen, de 

aanwezigheid van niet-competente zoogdiersoorten zou als een barrière voor bewegingen van kuddes van 

koeien kunnen werken. Hierdoor is er minder contact tussen verschillende kuddes, wat zou kunnen leiden 

tot een afname van het aantal BTB uitbraken. Ik heb dit onderzoek uitgebreid met een analyse waarbij het 

aanhouden van en de terugkeer van BTB uitbraken werd onderzocht (Hoofdstuk 3). De resultaten van 

deze analyse lieten zien dat zoogdiersoortenrijkdom ook negatief gecorreleerd was met deze twee 

parameters. Daarnaast liet ik zien dat de aanwezigheid van de Afrikaanse buffel, die als gastheer onder 

andere verantwoordelijk is voor de permanente aanwezigheid van Mycobacterium bovis (de 

ziekteverwekker van BTB) in de dierengemeenschap, een positief identiteitseffect had op zowel het 

aanhouden van, als het terugkeren van BTB uitbraken. Verrassend was dat de aanwezigheid van de grote 

koedoe niet gecorreleerd was met het aanhouden van en het terugkeren van BTB. Bovendien liet ik zien 

dat de aanhouding van en de terugkeer van BTB uitbraken gecorreleerd was met verschillende 

risicofactoren. 

In Hoofdstuk 4, heb ik aangetoond dat variatie tussen soorten in hun capaciteit om ziekteverwekkers over 

te dragen gedeeltelijk kan worden verklaard door levensloopkarakteristieken. Ik heb dit onderzocht voor 

drie verschillende vector-overdraagbare aandoeningen, namelijk de ziekte van Lyme, West-Nijlziekte 

(WNE) en Eastern Equine Encephalitis (EEE). Soorten met een hoger lichaamsgewicht (voor gastheren 

van de ziekte van Lyme en WNE) of met een kleinere legselgrootte (voor gastheren van EEE) hadden een 

lagere capaciteit om de ziekte over te dragen. Gegeven het feit dat dieren met een hoger lichaamsgewicht 

en een kleinere legselgrootte een grotere kans hebben om lokaal uit te sterven, tonen deze resultaten aan 

dat het waarschijnlijk de soorten zijn met een hoge capaciteit om ziekteverwekkers over te dragen die 

overblijven in een gemeenschap als de biodiversiteit afneemt. Dit zou als gevolg kunnen hebben dat het 

risico om de ziekteverwekker over te dragen groter wordt, wat één van de onderliggende mechanismes 

zou kunnen zijn van het verdunningseffect. 
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Hierna heb ik de resultaten van de relatie tussen de capaciteit om ziekteverwekkers over te dragen en de 

levensloopkarakteristieken van een soort gecombineerd in een compartimentenmodel, waarmee ik het 

effect van landschapsverbindingen op het risico op direct overdraagbare aandoeningen in metapopulaties 

heb getest (Hoofdstuk 5). Ik vond dat verschillende ziekterisico indicatoren (de infectieprevalentie en het 

aantal geïnfecteerde individuen) anders reageerden op een toename in landschapsverbindingen. Een hoger 

aantal verbindingen kon zowel leiden tot een afname in het ziekterisico dankzij een verdunningseffect 

door een verhoogde soortenrijkdom, als tot een toename van het ziekterisico dankzij een toename in het 

contact tussen dieren uit verschillende plekken (het facilitatie-effect). Het netto effect van 

landschapsverbindingen hangt af van het relatieve belang van zowel het verdunningseffect als het 

facilitatie-effect. Deze resultaten verbeteren ons inzicht met betrekking tot de invloed van 

landschapsversnippering op ziekterisico en de algemeenheid van het verdunningseffect, en dragen ze bij 

om beter te begrijpen waarom sommige studies wel, en andere studies geen verdunngineffect vinden. 

In het laatste hoofdstuk (Hoofdstuk 6) combineerde ik mijn bevindingen en gaf ik een overzicht van de 

bewijzen voor, en de kritiek op het verdunningseffect. De meest recente studies (waaronder de studie van 

BTB in dit proefschrift) hebben geprobeerd om het identiteitseffect van een soort te testen. Dit 

identiteitseffect wordt veroorzaakt door specifieke soorten in gemeenschappen. Uit deze studies bleek dat 

het identiteitseffect en het verdunningseffect gelijktijdig kunnen voorkomen in een gemeenschap. Ik stel 

voor dat het identiteitseffect kan werken als een extra mechanisme wat het effect van soortenrijkdom op 

ziekterisico zou kunnen verklaren. Een zwakke correlatie tussen de capaciteit van een gastheer om 

ziekteverwekkers over te dragen en het risico voor die soort om lokaal uit te sterven zou een reden 

kunnen zijn voor inconsistente relaties tussen gastheersoortenrijkdom en ziekterisico. Bovendien kunnen 

verschillende ziekterisico-indicatoren anders reageren op veranderingen in soortenrijkdom. Dit zou 

kunnen verklaren waarom studies die naar verschillende indicatoren kijken (bijvoorbeeld de prevalentie 

of het aantal infecties) andere resultaten vinden. Samenvattend presenteert dit proefschrift zowel bewijs 

voor, als kritiek tegen een verdunningseffect. Omdat factoren tegelijkertijd invloed kunnen hebben op 

zowel de samenstelling van de dierengemeenschap als karakteristieken die invloed hebben op de 

overdacht van ziekteverwekkers (bijvoorbeeld vatbaarheid en de overleving van de ziekteverwekker), 

zouden toekomstige studies ook deze factoren mee moeten nemen bij het bestuderen van de relatie tussen 

soortenrijkdom en ziekterisico. 
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