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Abstract

Accessibility has become a key issue in modern rugilanning. This paper aims to
identify the impact of differences in spatial aibdity on the development of the built
environment in cities. Using a few simple accesisjbindicators, it tries to map out in a
guantitative way the detailed implications of asieidity conditions for built-up areas, on
the basis of a 25x25m grid cell approach. Thesttadil tools used are discriminant analysis
and logistic regression, followed by a GIS représgon of the empirical results for four
Dutch cities: Amsterdam, The Hague, Rotterdam, dinelcht.



1. Aimsand Scope

It is broadly recognized that the urban land usstesy and the transportation system influence
each other in a dynamic and complex manner; alréadseveral decades researchers from different
disciplinary backgrounds have tried to addresstimplex issue of accessibility (see, e.g., Blunden,
1971; Timmermans, 2003; Reggiani, 1998, de la B4889). The aim of the present contribution is
to analyse land use and transportation linkagesugtr the statistical correlation of empirical
aggregate indicators stemming from both fields. $tugly is included in a wider framework whose
aim is to obtain a data-based (in the sense thgbdatameters are calibrated on real world data)
analytical tool (Schoemakers and van der Hoorn4R0Buch a tool can be used to interpret, and
eventually forecast, land use and transportati@ngés in future time periods and under different
scenarios, while taking into account their mutudkliactions by means of appropriate statistical
parameters. These forecasts may support land dsieaansportation planning decisions by means of
assessment with the help of indicators that areubs®understand complex land-use transportation
scenarios in a clear and communicative way.

The literature about accessibility is growing inpiontance. This is especially the case in recent
years, during which sustainable development islémnotif’ of much research about land use and
transportation planning. The concept of accessilisi indeed one of the best ways to integrate the
mutual and complex relationships between land usk the transportation system in cities. But
accessibility needs to be operationalized and, egurently, many kinds of accessibility indicators
have been proposed in the literature. In this papber focus will be not on the design of new or
more effective calculations of an accessibilityigador, but rather on stressing the relationship
between accessibility and urban development. Furtbee, the dynamic and heterogeneous nature
of these complex spatial phenomena calls for apjaipstatistical analyses based on a spatial and
temporal contextualization. And therefore, the asi®lity study in this paper will be performed in
a rigorous statistical way, choosing the four mdpoutch cities as study areas. This choice for a
comparative approach is instigated by the ideaithatnteresting to analyse the same phenomenon
in different urban contexts, in terms of both lamsk/transportation planning systems and actual
urban development. Statistical analyses are peddrto assess the influence of accessibility on
urban development, in order to evaluate the impodaof accessibility as an explanatory variable
for the development of built-up areas in cities.

A quick scan of the literature on the influence aafcessibility on residential and industrial
location choice, brings to light that the numbersolid empirical studies about the impact of
accessibility on urban land use is actually ratsmall, while most of them are related just to
residential location choice, whereas — in contrastere are many empirical studies considering the
influence of land use on the transportation sysfénis limited number of studies is explained by
the relatively low significance of accessibilityasiges in urban areas in developed nations and by
the empirical difficulties inherent in the estinmatiof accessibility, which are related to the tilag
between transportation impacts and land use chi@uyelag and Pieters, 2005). Furthermore, since
the available empirical studies suggest that thHkidnce of accessibility on urban residential
location choice is positive, though rather modestmpared with the impact from other



demographic, social and urban factors, it may bleerahard to empirically identify this relatively

small influence. Moreover, there are other methogiohl issues highlighted in the literature,
notably the lack of the transferability of the réswdue to the variety of empirical applications to
different regions or zones, and the ambition tduide all possible explanatory variables in one
comprehensive analysis (Zondag and Pieters, 2005).

This paper addresses the influence of accessillitythe development of built-up areas, by
focusing on the characteristics of their spatiatrdution; therefore, the results of our studg ar
able to generate detailed localised statisticabrinfition, rather than pure statistical information.
After a brief account of the accessibility conceptthe present paper some simple accessibility
indicators are selected and described (essentiafigd on the distance to central or main facilities
the city), while next their relationship with theepence of built-up areas (as an indicator of urban
development) will be investigated. The huge ammfntiata available from our cases has been
organized in a spatial database; and an integdstedstructure for subsequent analysis at different
spatial scales has been set up, using a detaibtthlspcale (grid cells of 25 by 25 metres), and
storing all available data for different time hamiws. Appropriate statistical analyses, such as
discriminant analysis and logistic regression asiglyare then performed by means of suitable
statistical software, using as dependent varialhes development of built-up areas, and as
independent variables the accessibility indicaselected, as well as some complementary land-use
policy indicators.

The following methodological steps are therefordartaken in this study:

- design of a methodology for data-based inspectfaherelationships between urban land use
and the transportation system;

- analysis of the statistical relationships betweecessibility indicators and built-up areas for
each city under consideration;

- comparison between the various case studies, ar tmdnterpret the phenomena investigated at

a wider European scale.

The paper is organized as follows. In Section 2niVieoffer a brief and selective account of the
accessibility concept. Then, in Section 3 the $etkaccessibility indicators are described, whike t
data structure for our urban case studies is pteden Section 4. In Section 5, the methodological
rationale of our applied statistical analyses idimed, and in Section 6 the outcomes are congitdere
and interpreted. Finally, conclusions are offere&ection 7.

2. TheAccessibility Concept

This paper focuses on the influence of accessilwlit urban built-up areas. Thus, its aim is not
to propose a new accessibility indicator, but iadtéo use a simple one in order to explore its
relationships with the built environment in citie&e will start here by providing a very concise
account of some prominent existing accessibilityidators, while referring for a wider review to
relevant publications such as Geurs and van We#; 2Beurs and Ritsema, 2001; Martellato and
Nijkamp, 1999; Reggiani, 1998; Koenig, 1980.



There are many definitions of the accessibilitycapt, as well as a great amount of accessibility
measures. Generally, there are three well-knownoaghes for the computation of accessibility
indicators (Ettema and Timmerman, 2007; Geurs aitdeRRa, 2001): thenfrastructurebased
approach mainly takes into account the performarfi¢he transportation system; thetivity-based
approach deals with the consideration of the dpdis#ribution of activities, while the most recent
utility-based approach focuses on the utility that indiaig receive from accessibility to a particular
destination.

From a practical point of view, in studying and gating accessibility measures, four different
characteristics are often recognized (Geurs andeRi, 2001, Martin and Reggiani, 2007): a
transport component related to the impedance, that is tliertehecessary to reach a given
destination from a given origin; End-use component dealing with the attractiveness of the
destination; dime component addressing the specific time periodhitkwvthe measure concerned is
observed; and amdividual component tied to the perception and the oppdrésnof individuals
and therefore to the relevant socio-economic sysisting accessibility measures involve at least
one of the first two components, while the last theatures are present in a smaller number of
indicators.

In this paper, we address two issues in partictites:specification of the relationship between
the accessibility index used and the presence efbthilt-up areas, and the specification of the
distance thresholds beyond which the influence haf &ccessibility of the relevant urban and
infrastructure centres becomes negligible.

The first issue is related to the specificationtlod distance decay function; this may differ
according to transport mode, purpose of trip, attarsstics of the households and characteristics of
the destination. Since in this study very smalbaref land are regarded as origins, and since very
small distances (in fact, spatial scales at lean tvalking distances) are taken into accounty onl
the characteristics of the destination will be ¢cdesed in order to make a distinction between the
different distance decay functions.

The second issue is a common one in the specifitati accessibility measures: the threshold
choice is often a subjective one, and it may, afrse, depend on the study aims. Usually, these
thresholds are selected from statistical surveysoonmuting distances or travel times. This is good
practice in the case of large statistical survegspopulation preferences, since the maximum
distance usually forms an input into the model,edasn the most accepted distance by the
population. But these surveys are often not aviaafo that one of the tasks of our statistical
analysis is the computation of the distance thiesiheyond which the indicator is no longer
significant, thus obtaining an objective threshelthich is, of course, strongly related to the sgati
context under consideration.

A further practical issue to be dealt with is thmice of the type (zones or raster grid cells) and
the width of the origin — destination area. Usimge&s has the advantage that it is possible to deal
with a small number of origins, for which is easierhave aggregated data and official statistical
surveys at various scales, but it also has sonadismtages, in particular the lack of information
inside the zones. Besides, the scale is fixedsantktimes administrative borders do not correspond
with the borders of the zones considered for trartafion studies. Raster representation is useful t



overcome the demarcation zone problem, but it haeal with the choice of the scale and with data
disaggregation, usually surveyed at a zonal scae Rietveld and Bruinsma, 1998). In our case
study we are lucky enough to possess detailed gpbmal information that allow for a fine-scaled
raster representation.

3. Selection of Accessibility Indicators

From the broad range of accessibility indicatoiscdssed before, we select simple Euclidean
distances to the main urban centres and infrasitriqioints and lines. These can be classified as
contour activity-based measures (Geurs et al., 2001).atlvantage of these measures is that they
are rather simple to compute, although they dotaia into account the perception of users of the
various types of urban infrastructure nor the weg/ distances are perceived. Nevertheless, this kind
of indicator is particularly suitable for straightivard statistical analyses, because there aremot
many inputs and influences to take into accourdnfan operational point of view, these distances
are computed here by considering as a destinatort parious important nodes of transportation
facilities and urban centres, and as an origin @achy 25 m grid cell used to spatially represhst t
study area concerned. The transportation facilitiessen here are the regular railway stops, the
Intercity stations, the highway exits (and entrajcéhe railway lines and the highway lines. We
furthermore distinguished a number of spatial \#des to represent the urban context and spatial
planning regulations. These include the distandbdaity centre, for which we selected the histori
foundation point, the presence of natural barr{ergjor rivers) that divide the towns, and specific
zoning regulations related to noise contours onggpace preservation. In Table 1 below a concise
description of the accessibility measures and otbglanatory variables is provided. These
variables are used in a binomial logistic regras$iw the dependent variable that indicates whether
a grid cell is built-up (1) or not (0). It shoul@ ladded that we exclude from our analyses the cells
that directly refer to the highway and railway aresince these are, by our definition, not built-up

4. TheData Structurefor Different Case Studies
The four different case studies in our analyse® le@similar data organization in an ESRI geo-

database: the data for the four individual Dutctiesi (Amsterdam, Rotterdam, The Hague and
Utrecht) are directly obtained from a series oforadtl data sets. The input data for each case study
represent:

- the area of interest, chosen with the criteriorthef minimum bounding rectangle applied to

the city borders;

- the railway stations, including the Intercity stais (points);

- the highway exits (points);

- the highway lines (represented by their surfaca argolygon);

- the railway lines (polygon);

- the location of the city centre (point);

- the areas of restricted urbanization subjectetl@dtiffer-zone open-space policy (polygon);



In order to obtain suitable data to perform outistiaal analysis, the input data are processed
uniformly and systematically, in accordance witle fiollowing flow diagram (see Figure 1). In
GlScience, these schematic representations orgtapbic models are common tools describe the
spatial analysis process (Tomlin, 1990). It shdaddhoted that all data refer to 2000, except fer th
city of Utrecht, where municipality borders constk correspond to the year 1999, thus not taking
into account the subsequent annexation of a lawgeurban area.

As regards the dependent variable, which descrlbether a cell is built-up or not (1/0), it is
derived from topographical maps of the Dutch natidopographic survey.

Tablel. Accessibility measures and other explanatory végglised in the four Dutch
case studies

\Variable Name Type Measure]
unit
Euclidean distance to the city centre dis_city i@ent |Continuous km

Euclidean distance to the nearest regular tratiosténot |dis_rail_stop_km | Continuous/Categorigtath/100m
Intercity)

Euclidean distance to the nearest Intercity treatian dis_IC_stat_km | Continuous/Categorikai/100m

Euclidean distance to edge of nearest highway mkksj_rpoly_kmContinuous/Categoriceiﬂm/SOm
Euclidean distance to edge of nearest railroad raiis poly km Continuous/Categoridkfn/SOm
Euclidean distance to the nearest highway entranegit [dis_hw_ex_km Continuous/CategoriJ}ahISOm
Location in a zone of restricted urbanization sotgd to [Bufferzone Discrete (1/0)

buffer-zone open-space policy

Location in zone of restricted urbanization subjedhe [Schiphol_infl Discrete (1/0)

Dutch National Airport Regulations Act (1996) (orfityr

I Amsterdam)

Location on the Northern side of the river |J(ofdy IAdamNorth Discrete (1/0)

I Amsterdam, which was founded on the Southern shorle)

Location on Southern side of the river Rhine (dioly Rot_North Discrete (0/1)

Rotterdam, which was founded on the Northern shore

Note: Classified as individual segments of 100 Orrbetres, from 0 to the trial distance thresholsl, a
explained in Section 5; above the threshold thieiémice is considered negligible.

5. Statistical Application: Logistic Regression
This section describes the following statisticadlgses performed on our extensive data set:

1. discriminant analysisa technique to find out which of the selectedialdes is better in
discriminating between any two groups of cellsgiim case, built-up or not);

2. logistic regressiorusing all independent variables selected as contis variables, in order to
analyse the role of each individual variable iratieh to all others.

Discriminant analysis is used to find out which ighles perform better in discriminating
between two or more groups, whereas the logisticession is used to identify the effects that a
variable has on the probability of belonging tceat@in group.

The discriminant analysis applied to the indepenhdemiables mentioned above and to the
dependent variable ‘built-up or not’ led to inteneg results: the Wilks’ Lambda test appears to be



significant, which means that a linear combinatidrihe selected variables is able to discriminate
between the two groups (built-up=1, built-up=0)eTdtandardized coefficients of the discriminant
function are interpreted considering that the highe absolute value of the coefficient, the higher
the contribution of the corresponding variablehte tegression function. The discriminant power of
an independent variable is, of course, dependenitsocorrelation with the other independent
variables.

From Table 2 we can derive that the best linearldoation that discriminates a built-up cell
from a non-built-up cell, e.g. for the city of Arastlam, is the one for which the distance to the
railway polygon has the highest but negative wei@pitowed by the variable that indicates the
presence within a zone of restricted urbanizatlmrff€rzone), the distance from the railway stops
and IC stations, the distance from the city cerarnel the distance from the road polygon (the latter
has a negative impact). Although the other var@bl@msterdam-North, Schiphol_infl,
dis_hw_ex_km) have positive, but weak weights, weided to keep them as explanatory variables
in our logistic regression model. Since these adiminary results, it is clear that the weight
assigned to each variable is different dependintherurban context under examination.

The logistic regression technique is a statisticethod commonly used in the area of social and
behavioural sciences to assess the influence @frglegharacteristics on a given phenomenon that
can be represented by means of a dichotomic (@ryirvariable (see, e.g., Fragkias and Seto,
forthcoming). The aim of a logistic regressionhis same as a linear regression, but the hypotheses
at the basis of the latter method are not satisfidte dependent variable is dichotomic (Kleinbaum
and Klein, 2002; Christensen, 1997). Since theadtaristic indicator (built-up or not) for which we
want to examine the existence of a relationship wite accessibility indicator is a binary variable,
the logistic regression is an appropriate staisaoalysis to use.

Next, the application of the binomial logistic regsion using “built-up or not” as the dependent
variable and the nine independent variables (sdéeThH was performed. The statistical software
used to perform the analyses of our case studi&P8S, in which data processed from a GIS
software (ESRI Arcinfo) are imported.

The results on which we will focus our attentiorthe next part of the paper are:

- the Chi-squared statistics (also known gsd® Model %) indicating the level of significance: it
tells us how good the model is, since, if the digance is close to 0, it means that one or more

B's differ from 0, although it does not specify whimnes;

- the “-2loglikelihood” goodness of fit statistic $al known as Model Deviance or Dig\Mtells us
how bad the model is. The likelihood representspitedability of the observed results, given
the parameters estimated. Usually, the likelih@d small number less than 1; hence, in order
to handle higher numbers it is customary to usém2s the log of the likelihood (-2LL). A
good model is one that results in a high likelih@bdhe observed results. This translates into a
small value of -2LL. So if the model fits perfectihe likelihood is 1, and -2LL is equal to 0.

- the Cox and Snell R Squared and the Nagelkerke wr8d are indices analogous to tife R
statistics in the linear regression: the closeRhis to 1, the better the model fits the reality.



- the classification table that describes the effectcorrect percentage predicted from the
estimated model.

- B values and exf}j values that are th@g-values in the model with the interpretation exmpéai
in Annex A.
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Figure 1. Data processing diagram.



Table 2. Standardized Canonical Discriminant Function Caeédfits

Coefficients

Amsterdam| Utrecht Rotterdan] The Hagge
Bufferzone 0.514 0.207 0.360 0.621
Schiphol_infl 0.286 -- -- --
AdamNorth 0.212 -- - -
Rotterdam North - -- 0.030 --
Dis_rail_stop_km 0.486 0.401 0.183 -1.653
Dis_IC_stat_km 0.472 0.702 0.813 -1.715
Dis_road_poly_km -0.315 -0.680 -1.675 -2.652
Dis_rail_poly_km -0.849 -0.002 -0.163 1.872
Dis_hw_ex_km 0.154 0.358 2.013 2.996
Dis_city_centre_km 0.363 -0.137 -0.278 1.703

It should be noted that, since it is not so obvimuhink in terms of Inodds, in our interpretation
we will consider the expj, in order to take into account the expected viaria in the odds ratios.
Simply using the definitions of the logistic regses method, and th& values from the model, the
probability Prob (built-up =1) is derivable calctitey Log(Odds) as:

Log(OddgY)) = £, + 3 B 1X;.

where X is a vector representing the n independantbles; and Y is the binary dependent
variable (built-up or not), and then calculatingdS¢Y) as:

OddgY) =exp(Log(OddgY))

and eventually calculating the probability that el ¢s built-up according to the regression
applied:

P(Y) = p(built - up=1) = —299%Y)
1+0ddgY)

First, we consider the use of continuous varialildbe statistical analyses performed. Then, to
highlight that, beyond a certain threshold, a pafér distance variable loses its role in signifioa
within the regression function, we decided to tbstresults and the significance of the model by
classifying five variables (distance from road gulg, distance from railway polygon, distance from
highway exits, distance from regular railway stogsd distance from IC stations) as categorical
variables. Thus, we had to recode the variablessigaing a constant value to the defined distance
intervals, choosing a distance threshold beyonahvhie assume that the influence of that variable
is negligible (a hypothesis to be tested by cherkie significance of the regression for that value
First, the recoding was made by using a step iate#25 m and a threshold of 400m, but in this
case no meaningful differences between the subeefualues for each step were found, while for
the threshold the significance was still good. Aftéeme trial and error tests performed on data
concerning the city of Amsterdam, a better comlidmaivas found by classifying the variables in 50
steps of 50 m and a threshold value of 2500m, lebydmch the model significance for the three



different variables appeared to be reduced. TheeSamal and error” procedure was performed for
each case study, leading to the choice of diffedéstance thresholds.
In the next section the results obtained will benpared by means of GIS probability maps.

5. Interpretation and Discussion of Results

Following the framework presented in the previoestien, we will present here the most
significant results, using the output for the saiftev SPSS 13. The obtained outcomes will be
explained in detail, for the four case studies {&algles 3 and 4).

The Chi-Squared statistics were significant forheaase study; Table 3 provides information
about the model goodness-of-fit: the -2Loglikelidois quite high, but the R-Squared is alright,
while the overall correct percentage of the predictalues is good, viz. higher than 60 per cent for
each case study. The results of the logistic regreswith three categorical variables for the aty
Amsterdam are reported in Annex B: distance froadrpolygon, distance from railway polygon,
and distance from highway exits. It is worth takagloser look at the obtained coefficients and to
try to interpret them in order to derive some idabsut the distance thresholds. Considering the
constant coefficient, we see that, when all thepahdent variables are 0, the probability of having
a built-up cell is 18.315 times higher than thebaiuility of not having a built-up cell. It is
noteworthy that considering all independent vagal#qual to O implies, in this case, considering a
hypothetical cell which is exactly in the city cent0 km away from a railway stop and from an IC
station, not within the Amsterdam North zone, nahim a building restriction zone, not under the
influence of Schiphol airport, and more than 250&res away from a road polygon, a railway
polygon and highway exits.

The independent variable “distance from the citpte® has a negativ@ of -0.107, which
means that for every kilometre the Inodds decreaserate of (-0.107), whereas the @ydor that
variable is 0.899: that is, holding constant a# tither independent variables, for each kilometre
away from the centre, the probability of having @ilteup cell is 0,899 times higher than the
probability of not having a built-up cell, or, inher words, the probability of having a built-ugice
is 1/0.899 = 1.11 times lower than the probabilify not having a built-up cell. The same
interpretation must be used for the otBsr we may draw similar inferences for the indepanhde
variables ‘distance from railway stops’ and ‘digtarirom IC stations’, basically a type of behaviour
that we could have expected.

Concerning the other six variables, that are catego let us take as an example the inclusion
(or exclusion) in the Amsterdam-North zone. Hehe, ¢xp) is equal to 0.592 with a good level of
significance: that is, holding constant all theestindependent variables, if the cell is includedhie
Amsterdam-North zone, the probability of having wilteup cell is 0.592 times higher than the
probability of not having a built-up cell (or, irther words, the probability of having a built-ugice
is 1/0.592 = 1.69 times lower than the probabibtyot having a built-up cell) if compared with the
‘reference group’ made up of all the other cellsinoluded in Amsterdam-North zone.

The same happens for the independent variableidiegrthe influence of Schiphol: the ef)(
is equal to 0.395 with a good level of significanitet is, holding constant all the other indepernde



variables, if the cell is under Schiphol airpoitiluence, the probability of having a built-up lcel
0.395 times higher than the probability of not Ingvia built-up cell (or, in other words, the
probability of having a built-up cell is 1/0.395253 times lower than the probability of not having
a built-up cell), if compared with the ‘referenceogp’ made up of all the other cells not under
Schiphol airport’s influence.

Similarly, for the independent variable that reprégs the inclusion (or exclusion) within a
building restriction zone, the exff)(is equal to 0.097 with a fair level of signifie@ that is,
holding constant all the other independent varghblethe cell is included in a restricted zones th
probability of having a built-up cell is 0.097 timigher than the probability of not having a built
up cell (or, in other words, the probability of @y a built-up cell is 1/0.097 = 10.3 times lower
than the probability of not having a built-up ceélltompared with the ‘reference group’ made up of
all the other cells not included in the restricrete.

Concerning the other categorical variables, whiehraade up, for example, of 51 groups (for
the regression analyses performed assuming a tdesh2500 m), let us take as a first example the
dummy variable related to the distance from a rnpalgigon: the exf) value for the first group
(that is the group of all cells with a distancenfrooad polygon between 0 and 50 m) is equal to
0.057 with a good level of significance. This metret, holding constant all the other independent
variables, if the cell is included in this groupetprobability of having a built-up cell is 0.05mhes
higher than the probability of not having a buitt-cell (or, in other words, the probability of hagi
a built-up cell is 1/0.067 = 17.54 times lower ththa probability of not having a built-up cell), if
compared to the ‘reference group’ made up of &l ather cells that have a distance to the road
polygon of over 2500 metres.

The same holds for all other variable groups inetuth this dummy variable: we see that, for
each group of 50 metres, holding constant all ttieroindependent variables, the variation of
probability of having a built-up cell as opposechtsi having one is always higher than the previous
group; if compared with the ‘reference group’, thae coefficients are slightly unstable between
350 m and 400 m, but they rise again till 2000 immyhich case the significance is no longer good:
beyond this threshold the variable is no longee abl explain the dependent variable. The same
behaviour is found by looking at the eRpoefficients of the independent variable ‘dis@rfiom
railway polygon’, with the difference that theresigiood level of significance up till 2450 metres.

The independent variable ‘distance from highwayséxias the same interpretation, but we find
some differences in the figures. First of all, &x@@)s are all higher than 1 or very close to 1, while
for figures approaching 1, the result does not shasatisfactory significance. For the latter groups
(with exp@3) approaching 1) therefore, there are no signifiacdifferences with respect to the
reference group (the group with a distance fromhilgbway exits exceeding 2500 metres), whereas
for those groups of cells at a distance 0 to 20@@res from highway exits, the significant ep(
around 2 means that the probability of having dt4ug cell is 2 times higher than the probabilify o
not having a built-up cell. This sounds plausilsiece it is unlikely that there will be a built-apll
immediately close to a highway exit, whereas @daceivable that activity functions may be located
almost near a highway exit, and certainly not faryaway.
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Thus we expect to have efp(lower than le for the variables bufferzone, Andden North,
Schiphol influence, Rotterdam North; lower thanut increasing with the distance when categorical
for the variables railway polygon and road polygiistances; higher than 1 initially increasing then
decreasing for the variables highway exits andvegiland IC stations distances.

An overview will now be provided of the various nebatoefficients of the logistic regression
performed with all continuous variables for the rf@utch case studies and the indication of the
accessibility threshold found, along with the inmuaip of each case study and the final probability
map.

While Table 3 is able to tell us about the goodrafsBt of the model, the probability maps
represented in Figures 2-5 describe the probaliiity each cell is built-up according to the model
prediction, taking into account therefore eachtwf independent variables. Table 4 describes the
coefficients derived from the logistic regressiaing only the continuous variables, whose values
are the ones we expected.

Table3. Summary of goodness-of-fit statistics of the lagisegression performed with
all continuous variables

Statistics Case study

Amsterdam |Utrecht [Rotterdam The Hague
-2 Log likelihood 379255 138923 | 653391 230893
Cox & Snell R Squared 0.147 0.179 0.107 0.123
Nagelkerke R Squared 0.205 0.244 0.158 0.165
Overall correct model percentage |72.1 71.8 74.5 62.7

Table4. Summary of the logistic regression coefficientsf@ened with all continuous

variables
Amsterdam  |Utrecht Rotterdam The Hague

VARIABLES B Exp B) IB Exp@) IB Exp@) IB Exp@)
Bufferzone -1.672/0.188 |-0.80[D.449 |-2.3540.095 |-1.77710.169
dis rail_stop_km }0.25900.772 |-0.31®.730 |-0.1210.886 | 0.7142.042
dis IC_stat km |0.27200.762 |-0.74p.474 |-0.1220.885 | 0.6281.874
dis road_poly km |0.438|1.550 | 0.504.656 | 0.3281.388 | 0.9222.514
dis rail_poly km ]0.560|1.750 | -0.060.942 | 0.1651.179 |-0.7820.457
dis hw_ex km -0.318|0.727 |-0.08[D.917 |-0.4980.608 |-0.9960.369
dis city _centre km}-0.106/0.899 | 0.288.335 |-0.0571.058 |-0.6110.543
Schiphol_infl -0.7750.461 |-- - - -- - -
IAdamNorth -0.4230.655 |[-- -- -- -- -- --
RotterdamNorth |- -- -- -- -0.197/0.821 |-- --
Constant 0.844 |2.325 | 1.548.692 |0.282| 1.325] 0.974 2.64%

From Table 5 we see that the larger the study #neabigger the threshold value for each type
of infrastructure. Comparing the input maps, we akso see that the number, the location and the
distribution of the infrastructures are paramet@téch can explain the differences between the
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thresholds: remarkable differences can be obsdpretdeen the case study of Utrecht (for which
anyway the distance from the railway polygon isnfdtio be a non-significant explanatory variable),
which has a small but uniformly distributed centtad the city of Rotterdam, whose big threshold
values are due to the large size of the area ceadeand to the particular distribution of the
infrastructures.

The probability maps shown in Figures 2-5 are ueefdcilitate the interpretation of the results
originating from the model coefficients: in eachppaomparing them with the input variable maps,
and in particular with the buildings, we can sest the actual localization of the built-up areas ca
be considered to be predicted well by the model.

Table5. Estimated distance thresholds compared with thenéxif the built-up areas for
each case study

Amsterdam  |Utrecht Rotterdam  |TheHague
built-up areas extent 70.216 kM [28.929 kmi  [103.105 krA  [54.913 km
total area of interest* 224 knt 80.99kni  |408.233 kmi [116.970 krfi
road polygon threshold 2000 m 1000 m 4000 m 1200 m
railway polygon threshold 2500 m not significang> 4500 m 3600 m
highway exits threshold 2000 m 500 m 4000 m 300

*For the cities of Rotterdam and The Hague thd &rt@a of interest does not consider the no ddks ce

6. Retrospect and Prospect

The first aim of this study was to quantitativekptain the presence of actual built-up areas and
their spatial position in the city by means of asikility indicators and a limited set of other sgpia
variables. The probability maps and the model dciefits reported in the previous section show
that by means of our logistic model, we are ablganerate localized probability predictions of the
presence of built-up areas, which explains theagtattern with a rather good level of significance
We found that, by means of the discriminant analysiat the order of importance of the selected
variables in explaining built-up areas as follovisst the distance from the city centre, then the
presence of planning or environmental constrafotiwed by the proximity of railway stations and
highway exits.

The second aim was to find a quantitative and séiemethodology to define the threshold of
influence of different types of infrastructure dretloss of significance of the relevant categorical
variables with increasing distances. We found thatmethodology proposed appears to be a useful
and reliable tool to assess these thresholds. btaégned results are different, depending on the typ
of infrastructure and the urban space, and especialthe size of the area of interest. This is the
size of the minimum bounding rectangle of the mipility borders, very close to the size of the
town itself. The finding confirms our expectatiomsd can be related, for example, to the studies
about the influence of transportation infrastruetuon land prices: for example, the impact of the
railway is found to have a declining influence wiile distance, up to 10,000 km (Debrezion, 2006).
These outcomes also offer useful input to othadistuthat deal with the modelling of future land-
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use patterns and rely on accessibility indicatorddfine the suitability for specific land-use tgpe
(Koomen et al., 2007).

Another issue to be explicitly considered is that experiments do not provide a comprehensive
study, since they focus only on urban areas, whélglecting rural areas. Moreover, many other
variables could be considered as explanatory ®idbalization of built-up areas. Furthermore, we
used as an accessibility indicator only Euclide&stadces and a spatial scale of 25m by 25 m;
further experiments using network distances, diedéht measures of accessibility are needed, in
order to take into account, for example, even tiflaénce of travel behaviour (Geurs et al., 2006).

There is also the fundamental issue of the dataraperability to be highlighted: without
interoperability between different software, thealion and the processing weight of the analyses
would have been very high. All the results woulgédaot been observed without the flexibility and
the interoperability between different software lsuas GIS and statistical ones: these modern
software tools can be of great help to knowledgebairban and transportation planning.

It should also be stressed that, to perform med#mirggatistical analyses on the transportation
and land-use systems it is important to collech datd systematically monitor them. The statistical
analyses under study are meaningful only if thera ggjood sample of data on which perform them.
This consideration is clear if we look at the cagely of The Hague, for example, for which the
influence of highway exits is not significant sirtbere are no data on highway exits in the citg (se
the grey areas in Figure 5 on the outskirts of Flague). This contribution is part of the larger ypod
of research that tries to explain the relationshigsveen the land use and transportation system: it
only gives a methodology able to deal with problesaush as the choice of accessibility threshold,
but more study is needed to highlight the dynamiationships between these two systems.

Starting from the simple indicators selected, #hierr research subject could, for example, be the
investigation of the same relationships but chapgiifferent time periods, for the built-up are
dependent variable and the infrastructures andti@nts variables, in order to consider the well-
known chicken-egg problem: Does infrastructure aixplirbanization, or does it merely follow?

Complex land use/transportation models have beeh iburecent decades to answer this
question in a detailed manner (Geurs et al., 200@se quantitative analyses could be useful in
order to screen at a higher and macro-level whiehtlae most meaningful variables to take into
account and the direction of relationships. Evditua would be interesting to use the same
methodology to investigate this relationship fdnestmajor European cities, in order to place these
findings in an international context.
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Figure5. Study area and probability map — Den Haag
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Annex A: Logistic regression inter pretation

As mentioned above, the choice of the logistic @sgion is explained by the particular kind of
data we are dealing with, that is, they are notable for a linear regression. Since we want to
investigate the relationships between a dichotaejgendent variable, i.e. the presence or absence
of a built-up area, and a group of several quan@andependent variables, the linear regresson i
not suitable because the following assumptionperblematic:
1. alinear relationship between dependent variabieimsependent variables;
2. homoschedasticity for the errors (that is, thererasiance is constant)
3. normal distribution for the regression errors,asting the model significance.

If these assumptions are violated, the followingtakes are made:

1. if the relationship is not linear, our model is spscified;

2. if, for different values of the independent varegyl the error variance is different, it is not
possible to consider only one value df iR order to interpret the model; it would lead to
several mistakes in the description of the explhveriance;

3. if the errors are not normally distributed, thengfigance test is incorrect.

Such assumptions are simple to meet if the depéndemble is continuous. But with a
dichotomic (or categorical) dependent variabledlaee some caveats:
1. the linearity condition is not satisfied, because telationship between the variables is
concentrated around the only two values of the ddget variable;
2. the homoschedasticity is not satisfied, becausgdhable is dependent on the predicted value
3. the normal distribution of the errors cannot beiead; for example, if we consider that the
error is the difference between observed and pelicalues - when the possible observed
values are 0 or 1, while the predicted values ewbabilities - the error distribution will allways
be bimodal, with two humps, very different from ti@mal one.

As a solution, the logistic regression (Adler et 4084; Christensen, 1997; Kleinbaum and
Klein, 2002) aims to work in terms of a linear talaship, by simply carrying out a change in
variables, by extending the domain betweerand +o, and usingdds ratios

The first rationale on which the logistic regressie based is to predict not the probability of
occurrence of the dependent variable (e.g. P[bpiti]), ranging between O and 1, but the odds
ratio P/(1-P), that is the ratio between the prdlglof the event’'s occurrence and the probabitify
the event's non-occurrence. The odds ratio indic&iv much an event is more probable with
respect to its complementary event. The odds ratiges between 0 andoand has the following
functional relationships with probabilities (seebleaA.1).

Since the odds have a lower bound of 0, and arlifuggtion can have a range in the total real
number space, it is possible to eliminate it by mseaf the logarithm of the odds ratio, also known
as the logit: In(P/(1-P))=logit(Y), which rangestWeen s and +o. The specific aim of a logistic
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regression analysis is to estimate the logit fumctifable A.2 can help in understanding the effect
on the probability estimation.

Table Al. Relationships between probabilities and odds ratios

Probability Odds ratio Explanation

0.5 1 Equiprobable events

>0.5 >1 The event with p>0.5 is more probable tkmnomplement
<0.5 <1 The event with p<0.5 is less probable itmoomplement

Table A2. Relationships between probabilities, odds ratia$lagits

Probability | Odds ratigin(odds) | Explanation

0<p<0.5 O<odds<l >0 The event with p<0.5 is leshable than its complemen
0.5 1 0 Equiprobable events

>0.5 >1 <0 The event with p>0.5 is more probab#ntiis complement

The graphical relationships between the presentatttibns - according to the model
assumptions — imply that the logit has a sigmoidtienship with the probability, whereas the
independent variable has a linear relationship thighlogit.

Hence, when a logistic regression is performedameeassuming that the following function is
able to fit our data:

In(Odds(Y)) = 5, + 3 A X,

where Y is the dichotomic dependent variable; andr¥ then independent variables; the aim of the
regression is now to estimate s that can reproduce the observed data. In termglds ratios,
the same relationship can be written using a sirgb®nential transformation:

ﬂo*iﬂw X

OddgY) = € R q'J ()

The results of the logistic regression are theeefstimates of ths or the exfff)s, depending
on the regression function on which we are focusifite s may be interpreted as the expected
change in the logit when the independent variableindreases by one unit. Thg, value,
corresponding to the constant coefficient, is thigeeted change in the logit, when all independent
variables are set to null. The efpfs the rate of increase in the odds ratio for dacheasing unit
of the independent variable.

If a multiple logistic regression is applied usimgre than one independent variable, the [@xp(
values (as well aB values) cannot be regarded as the odds variatitmregpect to a unit increase
of the corresponding X, because the correlatioh wie rest of the independent variables must be
taken into account. Besides, in this case, theficaaft exp) (or B) related to the constant term
represents the expected logits (or odds) when ralependent variables are set to null. The
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coefficient exp) (or B) related to any particular X is the expected vamabf logit (or odd) for a
unit increase of X, when all other independentalalas are held constant.
In other words, the sing[& in the multiple logistic regression indicates:
1. the effect of X net of the effects due tg ¥=1...n, i#);
2. the expected variation (in logit) for a unit incseaof X, removing the variability due to;X
(i=1...n, i#) and every relationship betweenaad X.

There are some cases (for example, when thereéfeeence group set as a target group) in
which we may want to define a ‘categorical’ indegent variable. This means that the specific
independent variable is subdivided into more themdroups: the categorical variable is represented
as a series of dichotomic variables that repregentifferences between groups. For example, an
independent variable with k groups, is represeitgdneans of k-1 dummy variables in a k-
dimensional matrix, whose rows have 1 in a spegdsition for each independent variable group,
except one of them, called the ‘reference groupt tls represented only by a ‘0’ row. Using
categorical independent variables, the logisticeggjon thus estimates the effects on the dependent
variable of all the independent variable with respe the reference group.

Therefore, we may conclude regarding the resultsheflogistic regression with categorical
independent variables:

1. the constant term represents the expected variafidghe odds ratio for the reference group,

holding all other groups as O;

2. the other coefficients represent the variationsdufs ratios passing from the reference group to
the group corresponding to that dummy variable;

3. there is no coefficient present for the overall elpdhecause the effects vary from group to
group: every exfl) is related to the reference group, that is, #rieXpBitxi)-
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Annex B: Statistical results

The statistical results are shown in the followdiggrams by means of the eRp(coefficient
and the three categorical variables (distance froad polygon, distance from railway polygon,
distance from highway exits): as expected, the fiws are for lower distances less than 1, and then
globally increasing, meaning that the probabilithaving a built-up cell as opposed to not having i
is higher far from a road and railway polygon. Fe third variable the trend is different, the
coefficients are generally more than 1, first imgiag, then decreasing with the distance. The only
deviations from this trend happen to the varialgadce from the railway polygon for the city of
Rotterdam, which may be because the railway polygamcluded deep in the city, and the variable
‘distance from highway exits’ for the city of Theague that is not decreasing but stable with the
distance: far from highway exits there is no défece for the probability of having a built-up ca$l
opposed to not having it. This is understandableaflook at the city map: most of the city is
developed far from highway exits, that are not @t all.

In the diagrams below the vertical lines with tlzenge colour as the series correspond to the
threshold beyond which the influence of that vdgabn the accessibility could be considered
negligible, as previously specified in Table 5.
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exp (B) vs. distance from highway exits
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