Towards map-based cloning of partial resistance QTLs of barley to Puccinia hordei

Freddy Yeo Kuok San

Thesis committee

Promotor:

Prof. Dr. Richard G. F. Visser
Professor of Plant Breeding, Wageningen University \& Research Centre

Co-promotor:

Dr. Ir. Rients E. Niks
Assistant professor, Laboratory of Plant Breeding, Wageningen University \& Research Centre

Other members

Prof. Dr. Ir. Pierre J. G. M. de Wit
Wageningen University \& Research Centre

Prof. Dr. Bas J. Zwaan
Wageningen University \& Research Centre
Dr. Ir. Ing. Gert H. J. Kema
Plant Research International, Wageningen University \& Research Centre
Dr. Xinyou Yin
Wageningen University \& Research Centre
This research was conducted under the auspices of the Graduate School of Experimental Plant Sciences

Towards map-based cloning of partial resistance QTLs of barley to

 Puccinia hordei

 Puccinia hordei}

Freddy $Y_{\text {eo }}$ Kuok San

Thesis
submitted in fulfilment of the requirements for the degree of doctor
at Wageningen University
by the authority of the Rector Magnificus
Prof. Dr M.J. Kropff,
in the presence of the
Thesis Committee appointed by the Academic Board to be defended in public
on Thursday 18 September 2014
at 11 a.m. in the Aula.

Freddy Yeo Kuok San

Towards map-based cloning of partial resistance QTLs of barley to Puccinia hordei

185 pages

PhD Thesis, Wageningen University, Wageningen, NL (2014) With references, with summaries in Dutch and English

ISBN 978-94-6257-073-3

Contents

Chapter 1 1
General introduction
Chapter 2 15
Golden SusPtrit - a genetically well transformable barley line for studies on the resistance to rust fungi
Chapter 3 45
Specificity of barley near-nonhost and partial resistance QTLs towards adapted and non-adapted rust fungi
Chapter 4 67
High resolution mapping of genes involved in plant stage specific, partial resistance of barley to leaf rust
Chapter 5 103
Non-gridded BAC libraries of the barley cultivars Vada and line SusPtrit for physical mapping of Rphq2, a partial resistance QTL to Puccinia hordei
Chapter 6 147General discussion
Summary in English 173
Summary in Dutch (Samenvatting) 176
Acknowledgments 179
About the author 182
List of publications 183
Education certificate 184

Chapter 1

General Introduction

General introduction

Basal defense of plants

Plants are exposed to a vast number of potential pathogens either in the phyllosphere (aerial plant part), rhizosphere (zone of influence by root system) or endosphere (internal transport system) (Berendsen et al. 2012; Bulgarelli et al. 2013; Lambers et al. 2009; Vorholt 2012). However, not all potential pathogens can invade successfully and inflict disease on plants. Plants usually possess layers of preformed and induced defense to resist the invasion of potential pathogens (Thordal-Christensen 2003).

The first line of defense in plants are the preformed physical and chemical barriers on the surface of plant cells. Surface structures such as, cuticle, trichome and cell wall provide the physical barrier which may prevent potential pathogens from penetrating into the cells (Łaźniewska et al. 2012). Various preformed chemicals, such as saponins, cyanogenic glucosides and glucosinolates, are toxic for potential pathogens (Iriti and Faoro 2009). The physical and phytochemical barriers are not full proof defenses. Some potential pathogens may have developed strategies to breach these defenses. Plants, however, have the ability to quickly detect these pathogens and trigger induced defense.

The induced defense mechanism requires the ability of plants to recognize invaders through pattern-recognition receptors (PRRs). Those well studied PRRs can be categorized into receptor-like kinases and receptor-like proteins (Liu et al. 2013; Monaghan and Zipfel 2012). The PRRs recognize invaders directly through the perception of microbe-associated molecular pattern (MAMPs) which is also known as pathogen-associated molecular pattern (PAMPs) (Ingle et al. 2006). The MAMPs/PAMPs, here on PAMPs, are conserved molecules that are vital for fitness or survival of entire groups of microbes and are not present in the host. Well described PAMPs includes chitin, peptidoglycans, lipopolysaccharides, elongation factor Tu and flagellin (Pel and Pieterse 2012). Indirect recognition of invaders is also possible through the perception of damage-associated molecular patterns (DAMPs) (Dodds and Rathjen 2010) also known as microbe-induced molecular patterns (MIMPs) (Mackey and McFall 2006). DAMPs are endogenous molecules such as plant peptides or cell wall fragments released during microbe invasion or wounding which are also known as host-derived danger signals (Boller and Felix 2009). Stimulation of PRRs will induce an immune response called PAMP-triggered immunity (PTI) (Jones and Dangl 2006). The preformed and induced defense generally is nonhost resistance which protects plants against non-adapted pathogens (Niks and Marcel 2009).

Pathogenicity

Pathogens have to negate the defenses of plants to infect plants successfully. To overcome the preformed defenses on the plant surface, pathogens have developed specialized infection structures or digestive enzymes to penetrate the physical barriers (Łaźniewska et al. 2012). Against the phytochemical defense, adapted pathogens acquired the ability to tolerate or detoxify the phytochemical compounds with antibiotic activity (Iriti and Faoro 2009). The ability of pathogens to neutralize the preformed defenses needs to be accompanied by the ability to escape or evade the recognition by the PRRs on the plant surface (Hoefle and Hückelhoven 2008; Łaźniewska et al. 2012). Escaping or evading the recognition by PRRs is necessary especially for biotrophic pathogens which need to exploit plants without inducing PTI or with effective suppression of PTI (Laluk and Mengiste 2010).

A pathogen can escape from the recognition by PRRs when the recognition domain of its PAMP is altered under selective pressure. Since PAMPs are vital for fitness or survival of pathogens, a mutation in PAMPs is likely to put pathogens in unfavorable condition for survival. However, variations have been observed in the recognition domain of PAMPs, viz. bacterial flagellin and lipopolysaccharide which impaired the recognition by PRRs without decreasing the fitness of the pathogen (Pel and Pieterse 2012). When a pathogen tries to evade the recognition by PRRs, the pathogen will produce proteins that prevent PAMP recognition by PRRs or that interferes with PTI. The proteins that interfere with PTI are called effectors which mostly interfere the downstream of defense signaling pathways after PRRs recognition of pathogens (Pel and Pieterse 2012). Effectors are "molecules secreted by plant-associated organisms that alter host-cell structure and function" (Win et al. 2012), i.e. effectors are secreted by adapted and non-adapted pathogens, and mutualistic microorganisms.

Pathogens will secrete effectors either into the apoplast or cytoplast. For successful colonization, pathogens need to secrete effectors to the right location and at proper timing to target plant defenses (Hogenhout et al. 2009; Win et al. 2012). The effectors will manipulate the operative targets in the plant to enhance pathogen fitness (van der Hoorn and Kamoun 2008). Effectors have specific operative targets in plants. Therefore, a pathogen may fail to infect a plant if the versions of the operative targets in the plant are incompatible with the effectors of the would-be pathogen. So, the targets may not be absent, but be present in a version the effector cannot address (Niks and Marcel 2009; O'Connell and Panstruga 2006; van der Hoorn and Kamoun 2008). This explains the strong host specificity of many biotrophic pathogens, i.e. pathogenic on certain plant
species, even if plant species taxonomically, physiologically and morphologically seem to be very similar (barley versus wheat).

Plants are able to recognize effectors of pathogens through their intracellular receptors which will signal the activation of effector-triggered immunity (ETI). Many resistance genes (R genes) encode such intracellular receptors (Dodds and Rathjen 2010; Jones and Dangl 2006). Under natural selection, pathogens will shed or will have new variant effectors to negate ETI. In turn, plants also will acquire new variance of R genes to reactivate the ETI. This evolutionary arm race continues (Jones and Dangl 2006).

The resistance confirmed by R genes is race specific and functions on a gene-for-gene basis (Flor 1971; Parlevliet 1983). This resistance is not durably effective (Dodds and Rathjen 2010; Niks and Marcel 2009). For example, Puccinia striiformis f. sp. tritici (Pst) can evolve rapidly in to new races and makes previously resistant wheat cultivars susceptible. In the United States, after 49 years from the first ever recorded Pst infection, now 118 Pst races have been documented (Chen 2005; Chen et al. 2010; Hovmøller et al. 2011). The rapid emergence of new virulent races is also true for P. striiformis $\mathrm{f} . \mathrm{sp}$. hordei on barley (Chen 2008; Wan and Chen 2011) - 82 races after 18 years from the first detection in the US. Low durability of R gene resistance is probably because: (1) many effectors are dispensable, (2) virulence is restored by only one arbitrary loss-of-function mutation in the cognate effector-Avr gene and (3) pathogens with restored virulence after mutation of the cognate $A v r$ gene can reproduce much more efficiently than the avirulent genotypes, and have a tremendous selective advantage (Niks and Marcel 2009).

Genetic basis of host status in plants

A plant species is a host to a pathogen species if that pathogen can deal effectively with the basal defense mounted against them, i.e. basic compatibility is achieved. Otherwise, a plant species is a nonhost. The versions of operative targets of effectors in plants probably will determine the host status of a plant species.

Inheritance study is a strategy to identify the operative targets which determine the host status. Three different approaches are possible (Niks and Marcel 2009): (1) crossing a nonhost with a host species (Jeuken et al. 2008), (2) crossing individuals within a nonhost species with different degree of nonhost resistance (Ayliffe et al. 2011; Shafiei et al. 2007), and (3) within a marginal-host, crossing a rare susceptible individual with an accession with regular immunity (Jafary et al. 2006; 2008).

Inheritance studies by following the first approach are usually difficult because it involves interspecific crosses. The progenies obtained from interspecific crosses, if any, are associated with abnormalities which may hamper genetic studies. The second approach depends on the quantitative differences in the defense components. The quantitative differences can be relatively small which can obscure the observations and typically require laborious microscopic observations. The third approach is used in the barley-rust pathosystem (see details in the next section).

The model system: barley-rust pathosystem

Barley (Hordeum vulgare) is a host to barley leaf rust (Puccinia hordei), and a complete nonhost to most of the non-adapted rusts fungal species but a marginal-host to several others, such as P. triticina, P. hordei-murini, P. hordei-secalini, among others (Atienza et al. 2004). The marginal-host status of barley to some non-adapted rust fungi provides the opportunity to study the inheritance of nonhost resistance without resorting to interspecific crosses. The inheritance study assumes that the genetic basis of marginal-host status can help in the comprehension of full nonhost resistance by extrapolation.

Rare barley accessions with moderate susceptibility to P. triticina at seedling stage were identified. They served as genetic resources to develop an experimental line - SusPtrit. SusPtrit is, at seedling stage, not only exceptionally susceptible to P. triticina but also susceptible to at least nine other non-adapted rust fungi to which barley is a marginal-host (Atienza et al. 2004). Another experimental line is also available - SusPmur, which was developed using the same procedure, but under selection for increased susceptibility to P. hordei-murini (Atienza et al. 2004).

SusPtrit was used to develop mapping populations by crossing it with regular barley, viz. Vada (Jafary et al. 2006) and Cebada Capa (Jafary et al. 2008) which are immune to nonadapted rust fungi. The immunity of Cebada Capa and Vada inherits polygenically. Different sets of quantitative trait loci (QTLs) segregate in the two populations with few QTLs in common between the populations. Most of their QTLs confer resistance against one or two rust species which implies overlapping specificities of QTLs for resistance to non-adapted rust fungi (Jafary et al. 2006; 2008).

SusPtrit is also susceptible to P. hordei (Jafary et al. 2006). Hence, the Cebada Capa/SusPtrit and Vada/SusPtrit mapping populations were also used to study the inheritance of partial resistance to P. hordei in addition to other mapping populations of barley, viz. L94/Vada, Steptoe/Morex and Oregon Wolfe Barley (OWB). Partial resistance
to P. hordei is observed as low levels of infection despite a compatible infection type in the field due to a delay in epidemic build-up of P. hordei (Niks et al. 2011; Parlevliet 1979). Similar to nonhost resistance, partial resistance is inherited polygenically (Parlevliet 1976, 1978). To date, at least 20 QTLs against P. hordei were mapped in different mapping populations and seem to act according to a minor-gene-for-minor-gene model (González et al. 2012; Jafary et al. 2008; Marcel et al. 2007b; 2008; Niks et al. 2000; Parlevliet and Kuiper 1977; Qi et al. 1998; 1999).

On the high density consensus map of barley, the QTLs for nonhost resistance tend to colocalize significantly with the partial resistance QTLs (Jafary et al. 2006; 2008). The QTLs for nonhost and partial resistance also tend to coincide with barley peroxidase gene clusters (González et al. 2010). This observation suggests that partial and nonhost resistance may share some genes for resistance which supports an earlier suggestion of Zhang et al. (1994) and Hoogkamp et al. (1998).

The association between nonhost and partial resistance is also observed at microscopic level. Barley genotypes with partial resistance against P. hordei arrest a high proportion of infection unit at an early stage of development, coined early abortion (Niks, 1982), due to the failed attempts of haustorium formation associated to the formation of papillae. It is therefore a prehaustorial resistance, and it is not associated with a hypersensitive reaction of plant cells. The proportion of early aborted colonies is correlated to the level of partial resistance (Niks 1982, 1986). The mechanism of partial resistance is shared with, but less complete than, nonhost resistance of barley to non-adapted rust fungi (Niks 1983a, b). The evidences seem to suggest that partial resistance is a weak form of nonhost resistance (Niks and Marcel 2009; Niks et al. 2011).

The principle of partial and nonhost resistance

Many PAMPs, but not all, are highly conserved among microbes (Pel and Pieterse 2012; Thomma et al. 2011). Plausibly, P. hordei and other non-adapted rust fungi possess very similar or identical PAMPs. Therefore, P. hordei as well as non-adapted rust fungi can be recognized by the PRRs of barley and signal the activation of PTI.
P. hordei and non-adapted rust fungi will secrete effectors to suppress the PTI of barley. For haustoria-forming pathogens such as P. hordei, the large majority of effectors are assumed to be secreted through feeding structures called haustoria (Catanzariti et al. 2007; Voegele and Mendgen 2003, 2011). The mechanism of delivering effectors from haustoria to host cells remains a mystery but several hypothetical mechanisms have been proposed
(de Jonge et al. 2011; Kamoun 2007; Panstruga and Dodds 2009). The successfulness of effectors in manipulating the operative targets in barley will determine the intensity of PTI suppression, i.e. the level of susceptibility (Figure 1). For non-adapted rust fungi to which barley is a nonhost, the PTI of barley will not be suppressed by the effectors of nonadapted rust fungi. For some non-adapted rust fungi, barley is a marginal-host such as P. triticina and P. hordei-murini (Atienza et al. 2004). The effectors of these non-adapted rust fungi may have suppressed partly the PTI activated in some of the barley accessions, which result in some level of basic compatibility. Incomplete suppression of PTI is also expected when partially resistant barley genotypes are attacked by P. hordei, but for susceptible barley genotypes, the effectors of P. hordei fully suppress the PTI (Niks and Marcel 2009) and bring about high basic compatibility. The marginal host status and partial resistance of barley may represent the transitional stages during the evolution process of losing or acquiring host status to rust fungi.

The genes underlying the effect of resistance QTLs need to be cloned for further understanding of nonhost resistance, partial resistance and their possible association. The information can be applied for developing new crop varieties with efficient and durable resistance against different pathogens.

	Nonhost	Near-nonhost/ Partially resistant host	Susceptible host
	$<\mathrm{HMC}$	HMC	HMC
		(Haustorium)	(Haustorium)
Pathogen effectors			$\begin{aligned} & \diamond \bigcirc 円 \bigcirc \\ & \circ \Delta \diamond \bigcirc \end{aligned}$
Compatibility of effector-operative targets interaction		$\circlearrowleft \sum_{\square}^{\sum_{n}^{m} n^{3}} \bigcirc \sum_{\square}^{i \zeta}$	
	Effectors fail to manipulate the plant operative targets	Some of the effectors manage to manipulate the plant operative targets successfully	All of the effectors manage to manipulate the plant operative targets successfully
Plant operative targets	$\begin{aligned} & \checkmark \leftrightarrow \circlearrowleft \\ & \nabla \leftrightarrow \circlearrowleft \leftrightarrow \end{aligned}$	$\begin{aligned} & \checkmark \leftrightarrow \circlearrowleft> \\ & \nabla \leftrightarrow \circlearrowleft \infty \end{aligned}$	$\begin{aligned} & \checkmark \leftrightarrow \circlearrowleft> \\ & \nabla \leftrightarrow \circlearrowleft \infty \end{aligned}$

Figure 1: The ability of pathogen effectors in manipulating the plant operative targets in different barleyrust interactions.

Map-based cloning nonhost and partial resistance QTLs of barley to P. hordei

The identified nonhost and partial resistance QTLs of barley are presumed to be or to encode the operative targets of the pathogen's effectors (van der Hoorn and Kamoun 2008). They are expected to differ not only between plant species but also between members of a plant species as indicated by the different set of QTLs mapped for nonhost and partial resistance of barley in different mapping populations, with few shared QTLs when challenged with a particular rust pathogen (González et al. 2012; Jafary et al. 2008; Marcel et al. 2007b). Consequently, one plant genotype can be a more suitable host individual than another genotype of the same plant species, provided that the effectorsoperative targets interaction is specific. The specificity of effectors-operative targets interaction is supported by the fact that the specificity of QTL effects is observed both for nonhost and for partial resistance of barley (Figure 3) (González et al. 2012; Jafary et al. 2008).

Partial and nonhost resistance are probably resting on similar principles. Hence, studying partial resistance of barley to P. hordei is relevant to understand nonhost resistance of barley to the related non-adapted rust fungi and vice versa. In barley over 100 QTLs for partial and nonhost resistance to rust fungi and powdery mildew have been mapped in different barley mapping populations. We need to identify and isolate the genes that are responsible for the effect of these QTLs because, only then we can know and understand the molecular basis of partial and nonhost resistance.

To begin with, the QTLs identified should be validated by using near isogenic lines (NILs). NILs allows the QTL effect to be tested in a uniform genetic background without the interference of other resistance QTLs. These isogenic lines are developed by recurrently backcrossing of the QTL donor to a recurrent recipient parent to "Mendelize" the QTL (Alonso-Blanco and Koornneef 2000). The process of developing NILs can be accelerated with the assistance of molecular markers (Collard et al. 2005; Moose and Mumm 2008). The prefered barley genotype to be used as the recipient parent is SusPtrit. In SusPtrit genetic background, each QTL effect can be tested against adapted and nonadapted rust fungi.

QTLs which are identified in a mapping study are usually positioned into a large interval, depending on the mapping population size and the resolution of the linkage map. Before the identification and cloning of a gene explaining a QTL is feasible, the QTL needs to be fine-mapped into a smaller interval. NILs are usually used for QTL fine-mapping by creating multiple sub-NILs which carry different recombination points at the QTL marker support interval (Han et al. 1999; Marcel et al. 2007a; Xue et al. 2010; Zhou et al. 2010).

The QTL interval after fine mapping needs to be sufficiently small to allow the construction of a Bacterial Artificial Chromosomes contig covering the region i.e., physical mapping. The co-segregating markers of the targeted QTLs are used to fish BAC clones from the BAC libraries and also act as anchor to construct the BAC contig. Up to now, BAC clones can be fished out from BAC libraries which are made available for four barley genotypes - Morex (Schulte et al. 2011; Yu et al. 2000), Cebada Capa (Isidore et al. 2005), Haruna Nijo (Saisho et al. 2007), and a doubled haploid barley line CS134 derived from Clipper/Sahara-3771 (Shi et al. 2010). The genomic sequence of Morex (The International Barley Genome Sequencing Consortium 2012) is also valuable for assisting in physical mapping of QTLs. The genomic libraries of the four barley genotypes mentioned above may not contain the genes for targeted QTLs if they are not the QTL donor. Therefore, a BAC library should be constructed for the barley accession that was donor of the QTL of interest (Saisho et al. 2007).

The sequence information of the BAC clones will allow the identification of candidate genes for QTLs. Validation of candidate genes may possibly be conducted via either transient overexpression and silencing through virus-mediated overexpression and virusinduced gene silencing (Lee et al. 2012). However, each transiently transformed plant is unique and makes replicated disease tests not possible to validate candidate genes for their effect on quantitative resistance as are relevant in nonhost and partial resistance of barley. Stable transformation is another option for candidate genes validation. For stably transformed plants, multiple identical plants with the transgene are available because the transgene is transmitted from one generation to another through grains. Hence, disease tests with replications are possible. Unfortunately, the efficiency of stable transformation in barley is genotype-dependent (Hensel et al. 2008). Functional study of candidate genes on the appropriate barley genotypes, such as SusPtrit, can possibly be restricted by the transformation efficiency of the barley genotype. One must have an alternative for validation of candidate genes if the barley genotype of interest is not transformable.

The scope of thesis

This thesis is working on map-based cloning of QTLs for nonhost and partial resistance. We got to know SusPtrit is a valuable barley genotype for nonhost and partial resistance study, but it is not amenable to Agrobacterium-mediated transformation. Validation of candidate genes is then not possible, although preferable, on SusPtrit. In Chapter 2, we aimed to develop a new barley experimental line which can replace SusPtrit as a valuable line for studies on nonhost and partial resistance, and can be used to validate candidate genes.

From the abundantly available QTLs for partial and nonhost resistance mapped in different mapping populations, five QTLs with major effect for partial resistance and one QTLcontributing to nonhost resistance are selected for our studies (Table 1). In Chapter 3, we aimed to develop NILs for the selected QTLs by using SusPtrit as recurrent parent. We expected to confirm the effect of each QTL against a selection of adapted and non-adapted rust fungi, in a uniform genetic background.

Table 1: The QTLs selected to study of partial and nonhost resistance

*QTL	Chromosome	Explained phenotypic variance	Donor	Mapping population	References
Rphq2	2 H	36%	Vada	L94/Vada	Qi et al. (1998)
Rphq3	6 H	17%	Vada	L94/Vada	Qi et al. (1998)
Rphq4	5 H	25%	Vada	L94/Vada	Qi et al. (1998)
Rphq11	2 H	34%	Steptoe	Steptoe/Morex	Marcel et al. (2007b)
Rphq16	5 H	33%	Dom	OWB	Marcel et al. (2007b)
Rnhq	7 H	30%	Vada	L94/Vada	Niks et al. (2000)

* Rphq - QTL for partial resistance, Rnhq - QTL for nonhost resistance

Among the QTLs in Table 1, only Rphq2 and Rphq4 are fine-mapped into a sufficiently small interval for physical mapping [(Marcel et al. 2007a); Y. Wang and X. Qi, Institute of Botany, Chinese Academy of Sciences, Beijing, China]. In Chapter 4, we aimed to finemap another two QTLs, Rphq11 and Rphq16, to get them ready for physical mapping. For Rphq2, we aimed to accomplish physical mapping and then to obtain the sequence information of the region from Vada and SusPtrit to identify candidate genes explaining the resistance effect of the QTL (Chapter 5).

References

Alonso-Blanco C, Koornneef M (2000) Naturally occurring variation in Arabidopsis: An underexploited resource for plant genetics. Trends in Plant Science 5:22-29
Atienza S, Jafary H, Niks RE (2004) Accumulation of genes for susceptibility to rust fungi for which barley is nearly a nonhost results in two barley lines with extreme multiple susceptibility. Planta 220:71-79
Ayliffe M, Devilla R, Mago R, White R, Talbot M, Pryor A, Leung H (2011) Nonhost resistance of rice to rust pathogens. Molecular Plant-Microbe Interactions 24:1143-1155
Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends in Plant Science 17:478-486
Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual Review of Plant Biology 60:379-406
Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology 64:807-838
Catanzariti A, Dodds PN, Ellis JG (2007) Avirulence proteins from haustoria-forming pathogens. FEMS Microbiology Letters 269:181-188
Chen X (2005) Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat. Canadian Journal of Plant Pathology 27:314-337
Chen X (2008) Races of Puccinia striiformis f. sp. hordei in the United States from 2004 to 2007. Barley Newsletter51:WABNL51. http://wheat.pw.usda.gov/ggpages/BarleyNewsletter/51/WABNL51.htm
Chen X, Penman L, Wan A, Cheng P (2010) Virulence races of Puccinia striiformis f. sp. tritici in 2006 and 2007 and development of wheat stripe rust and distributions, dynamics, and evolutionary relationships of races from 2000 to 2007 in the United States. Canadian Journal of Plant Pathology 32:315-333
Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica 142:169-196
de Jonge R, Bolton MD, Thomma BPHJ (2011) How filamentous pathogens co-opt plants: The ins and outs of fungal effectors. Current Opinion in Plant Biology 14:400-406
Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant-pathogen interactions. Nature Reviews Genetics 11:539-548
Flor HH (1971) Current status of the gene-for-gene concept. Annual Review of Phytopathology 9:275-296
González AM, Marcel TC, Kohutova Z, Stam P, van der Linden CG, Niks RE (2010) Peroxidase profiling reveals genetic linkage between peroxidase gene clusters and basal host and non-host resistance to rusts and mildew in barley. PLoS ONE 5:e10495
González AM, Marcel TC, Niks RE (2012) Evidence for a minor gene-for-minor gene interaction explaining nonhypersensitive polygenic partial disease resistance. Phytopathology 102:1086-1093
Han F, Ullrich SE, Clancy JA, Romagosa I (1999) Inheritance and fine mapping of a major barley seed dormancy QTL. Plant Science 143:113-118
Hensel G, Valkov V, Middlefell-Williams J, Kumlehn J (2008) Efficient generation of transgenic barley: The way forward to modulate plant-microbe interactions. Journal of Plant Physiology 165:71-82
Hoefle C, Hückelhoven R (2008) Enemy at the gates: Traffic at the plant cell pathogen interface. Cellular Microbiology 10:2400-2407
Hogenhout SA, van der Hoorn RAL, Terauchi R, Kamoun S (2009) Emerging concepts in effector biology of plant-associated organisms. Molecular Plant-Microbe Interactions 22:115-122
Hoogkamp TJH, Chen WQ, Niks RE (1998) Specificity of prehaustorial resistance to Puccinia hordei and to two inappropriate rust fungi in barley. Phytopathology 88:856-861
Hovmøller MS, Sørensen CK, Walter S, Justesen AF (2011) Diversity of Puccinia striiformis on cereals and grasses. Annual Review of Phytopathology 49:197-217
Ingle RA, Carstens M, Denby KJ (2006) PAMP recognition and the plant-pathogen arms race. BioEssays 28:880-889
Iriti M, Faoro F (2009) Chemical diversity and defence metabolism: How plants cope with pathogens and ozone pollution. International Journal of Molecular Sciences 10:3371-3399

Isidore E, Scherrer B, Bellec A, Budin K, Faivre P, Waugh R, Keller B, Caboche M, Feuillet C, Chalhoub B (2005) Direct targeting and rapid isolation of BAC clones spanning a defined chromosome region. Functional \& Integrative Genomics 5:97-103
Jafary H, Albertazzi G, Marcel TC, Niks RE (2008) High diversity of genes for nonhost resistance of barley to heterologous rust fungi. Genetics 178:2327-2339
Jafary H, Szabo LJ, Niks RE (2006) Innate nonhost immunity in barley to different heterologous rust fungi is controlled by sets of resistance genes with different and overlapping specificities. Molecular PlantMicrobe Interactions 19:1270-1279
Jeuken MJW, Pelgrom K, Stam P, Lindhout P (2008) Efficient QTL detection for nonhost resistance in wild lettuce: Backcross inbred lines versus F_{2} population. Theoretical and Applied Genetics 116:845-857
Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323-329
Kamoun S (2007) Groovy times: Filamentous pathogen effectors revealed. Current Opinion in Plant Biology 10:358-365
Laluk K, Mengiste T (2010) Necrotroph attacks on plants: Wanton destruction or covert extortion? The Arabidopsis book/American Society of Plant Biologists 8
Lambers H, Mougel C, Jaillard B, Hinsinger P (2009) Plant-microbe-soil interactions in the rhizosphere: An evolutionary perspective. Plant Soil 321:83-115
Łaźniewska J, Macioszek VK, Kononowicz AK (2012) Plant-fungus interface: The role of surface structures in plant resistance and susceptibility to pathogenic fungi. Physiological and Molecular Plant Pathology 78:24-30
Lee WS, Hammond-Kosack KE, Kanyuka K (2012) Barley Stripe Mosaic Virus-mediated tools for investigating gene function in cereal plants and their pathogens: Virus-Induced Gene Silencing, Host-Mediated Gene Silencing, and Virus-Mediated Overexpression of Heterologous Protein. Plant Physiology 160:582-590
Liu W, Liu J, Ning Y, Ding B, Wang X, Wang Z, Wang G-L (2013) Recent progress in understanding PAMP- and effector-triggered immunity against the rice blast fungus Magnaporthe oryzae. Molecular Plant 6:605-620
Mackey D, McFall AJ (2006) MAMPs and MIMPs: Proposed classifications for inducers of innate immunity. Molecular Microbiology 61:1365-1371
Marcel TC, Aghnoum R, Durand J, Varshney RK, Niks RE (2007a) Dissection of the barley 2L1. 0 region carrying the 'Laevigatum' quantitative resistance gene to leaf rust using near-isogenic lines (NIL) and subNIL. Molecular Plant-Microbe Interactions 20:1604-1615
Marcel TC, Gorguet B, Ta MT, Kohutova Z, Vels A, Niks RE (2008) Isolate specificity of quantitative trait loci for partial resistance of barley to Puccinia hordei confirmed in mapping populations and nearisogenic lines. New Phytologist 177:743-755
Marcel TC, Varshney RK, Barbieri M, Jafary H, de Kock MJD, Graner A, Niks RE (2007b) A high-density consensus map of barley to compare the distribution of QTLs for partial resistance to Puccinia hordei and of defence gene homologues. Theoretical and Applied Genetics 114:487-500
Monaghan J, Zipfel C (2012) Plant pattern recognition receptor complexes at the plasma membrane. Current Opinion in Plant Biology 15:349-357
Moose SP, Mumm RH (2008) Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiology 147:969-977
Niks RE (1982) Early abortion of colonies of leaf rust, Puccinia hordei, in partially resistant barley seedlings. Canadian Journal of Botany 60:714-723
Niks RE (1983a) Comparative histology of partial resistance and the nonhost reaction to leaf rust pathogens in barley and wheat seedlings. Phytopathology 73:60-64
Niks RE (1983b) Haustorium formation by Puccinia hordei in leaves of hypersensitive, partially resistant, and nonhost plant genotypes. Phytopathology 73:64-66
Niks RE (1986) Failure of haustorial development as a factor in slow growth and development of Puccinia hordei in partially resistant barley seedlings. Physiological and Molecular Plant Pathology 28:309322
Niks RE, Fernandez E, Haperen Bv, Bekele Aleye B, Martinez F (2000) Specificity of QTLs for partial and non-host resistance of barley to leaf rust fungi. Acta Phytopathologica et Entomologica Hungarica 35:13-21

Niks RE, Marcel TC (2009) Nonhost and basal resistance: How to explain specificity? New Phytologist 182:817-828
Niks RE, Parlevliet JE, Lindhout P, Bai Y (2011) Breeding crops with resistance to diseases and pests. Wageningen Academic Publishers:198pp
O'Connell RJ, Panstruga R (2006) Tête à tête inside a plant cell: Establishing compatibility between plants and biotrophic fungi and oomycetes. New Phytologist 171:699-718
Panstruga R, Dodds PN (2009) Terrific protein traffic: the mystery of effector protein delivery by filamentous plant pathogens. Science 324:748-750
Parlevliet JE (1976) Partial resistance of barley to leaf rust, Puccinia hordei. III. The inheritance of the host plant effect on latent period in four cultivars. Euphytica 25:241-248
Parlevliet JE (1978) Further evidence of polygenic inheritance of partial resistance in barley to leaf rust, Puccinia hordei. Euphytica 27:369-379
Parlevliet JE (1979) Components of resistance that reduce the rate of epidemic development. Annual Review of Phytopathology 17:203-222
Parlevliet JE (1983) Race-specific resistance and cultivar-specific virulence in the barley-leaf rust pathosystem and their consequences for the breeding of leaf rust resistant barley. Euphytica 32:367375
Parlevliet JE, Kuiper HJ (1977) Resistance of some barley cultivars to leaf rust, Puccinia hordei; polygenic, partial resistance hidden by monogenic hypersensitivity. Netherlands Journal of Plant Pathology 83:85-89
Pel MJC, Pieterse CMJ (2012) Microbial recognition and evasion of host immunity. Journal of Experimental Botany
Qi X, Jiang G, Chen W, Niks RE, Stam P, Lindhout P (1999) Isolate-specific QTLs for partial resistance to Puccinia hordei in barley. Theoretical and Applied Genetics 99:877-884
Qi X, Niks RE, Stam P, Lindhout P (1998) Identification of QTLs for partial resistance to leaf rust (Puccinia hordei) in barley. Theoretical and Applied Genetics 96:1205-1215
Saisho D, Myoraku E, Kawasaki S, Sato K, Takeda K (2007) Construction and characterization of a bacterial artificial chromosome (BAC) library from the Japanese malting barley variety 'Haruna Nijo'. Breeding Science 57:29-38
Schulte D, Ariyadasa R, Shi B, Fleury D, Saski C, Atkins M, Wu C, Graner A, Langridge P, Stein N (2011) BAC library resources for map-based cloning and physical map construction in barley (Hordeum vulgare L.). BMC Genomics 12:247
Shafiei R, Hang CUI, Kang JG, Loake GJ (2007) Identification of loci controlling non-host disease resistance in Arabidopsis against the leaf rust pathogen Puccinia triticina. Molecular Plant Pathology 8:773-784
Shi BJ, Sutton T, Collins NC, Pallotta M, Langridge P (2010) Construction of a barley bacterial artificial chromosome library suitable for cloning genes for boron tolerance, sodium exclusion and high grain zinc content. Plant Breeding 129:291-296
The International Barley Genome Sequencing Consortium (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711-716
Thomma BPHJ, Nürnberger T, Joosten MHAJ (2011) Of PAMPs and effectors: the blurred PTI-ETI dichotomy. The Plant Cell Online 23:4-15
Thordal-Christensen H (2003) Fresh insights into processes of nonhost resistance. Current Opinion in Plant Biology 6:351-357
van der Hoorn RAL, Kamoun S (2008) From guard to decoy: A new model for perception of plant pathogen effectors. The Plant Cell Online 20:2009-2017
Voegele RT, Mendgen KW (2003) Rust haustoria: Nutrient uptake and beyond. New Phytologist 159:93-100
Voegele RT, Mendgen KW (2011) Nutriet uptake in rust fungi: How sweet is parasitic life? Euphytica 179:41-55
Vorholt JA (2012) Microbial life in the phyllosphere. Nature Reviews Microbiology 10:828-840
Wan A, Chen X (2011) Virulence, frequency, and distribution of races of Puccinia striiformis f. sp. tritici and P. striiformis f. sp. hordei identified in the United States in 2008 and 2009. Plant Disease 96:67-74

Win J, Chaparro-Garcia A, Belhaj K, Saunders DGO, Yoshida K, Dong S, Schornack S, Zipfel C, Robatzek S, Hogenhout SA, Kamoun S (2012) Effector biology of plant-associated organisms: Concepts and perspectives. Cold Spring Harbor Symposia on Quantitative Biology 77:235-247
Xue S, Li G, Jia H, Xu F, Lin F, Tang M, Wang Y, An X, Xu H, Zhang L, Kong Z, Ma Z (2010) Fine mapping Fhb4, a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics 121:147-156
Yu Y, Tomkins JP, Waugh R, Frisch DA, Kudrna D, Kleinhofs A, Brueggeman RS, Muehlbauer GJ, Wise RP, Wing RA (2000) A bacterial artificial chromosome library for barley (Hordeum vulgare L.) and the identification of clones containing putative resistance genes. Theoretical and Applied Genetics 101:1093-1099
Zhang HS, Rosa Rd, Rubiales D, Lubbers HH, Molenveld JW, Niks RE (1994) Role of partial resistance to Puccinia hordei in barley in the defence of barley to inappropriate rust fungi. Physiological and Molecular Plant Pathology 45:219-228
Zhou L, Zeng Y, Zheng W, Tang B, Yang S, Zhang H, Li J, Li Z (2010) Fine mapping a QTL qCTB7 for cold tolerance at the booting stage on rice chromosome 7 using a near-isogenic line. Theoretical and Applied Genetics 121:895-905

Chapter 2

Golden SusPtrit - a genetically well transformable barley line for studies on the resistance to rust fungi

Published in: Theor Appl Genet (2014)

Golden SusPtrit - a genetically well transformable barley line for studies on the resistance to rust fungi

Yeo FKS 1,3, Hensel G^{2}, Vozábová T^{1}, Martin-Sanz A ${ }^{1}$, Marcel TC ${ }^{1,4}$, Kumlehn J^{2}, Niks RE ${ }^{1}$
${ }^{1}$ Laboratory of Plant Breeding, Wageningen University, 6700 AJ Wageningen, The Netherlands
${ }^{2}$ Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Plant Reproductive Biology, Corrensstr. 3, D-06466 Gatersleben, Germany
${ }^{3}$ Department of Plant Science and Environmental Ecology, Faculty of Resource Science and Technology, University Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
${ }^{4}$ INRA-AgroParisTech, UR1290 BIOGER-CPP, Avenue Lucien Brétignières BP01, 78850 Thiverval Grignon, France

Abstract

Nonhost and partial resistance to Puccinia rust fungi in barley are both polygenically inherited. These types of resistance are principally prehaustorial, show a high diversity between accessions of the plant species and are genetically associated. To study nonhost and partial resistance, as well as their association, the candidate gene(s) for resistance must be cloned and tested in susceptible material where SusPtrit would be the line of choice. Unfortunately, SusPtrit is not amenable to Agrobacterium-mediated transformation. In this study, a new bi-parental doubled haploid (DH) population ($\mathrm{n}=122$) was created by crossing SusPtrit with Golden Promise to develop a 'Golden SusPtrit', i.e., a barley line combining SusPtrit's high susceptibility to non-adapted rust fungi with the high amenability of Golden Promise for transformation. At a logarithm of the odds (LOD) threshold of 10, a linkage map was constructed using 686 SNPs obtained from the ILLUMINA iSelect 9 k barley infinium chip. The total map length is 1175 cM . Quantitative trait locus (QTL) mapping identified nine genomic regions occupied by resistance QTLs against four non-adapted rust fungi and P. hordei isolate 1.2.1 (Ph.1.2.1). Among the nine genome regions, five regions conferred resistance to different rust fungi, suggesting that the responsible genes have effects on multiple rust species. Four DH lines were selected for an Agrobacterium-mediated transformation efficiency test. They were among the 12 DH lines most susceptible to the tested non-adapted rust fungi. The most efficiently transformed DH line was SG062N (11 to 17 transformants per 100 immature embryos). The level of non-adapted rust fungi infection on SG062N is either similar to or higher than the level of infection on SusPtrit. Against Ph.1.2.1, the latency period conferred by SG062N is as short as that conferred by SusPtrit. SG062N, designated 'Golden SusPtrit', will be a valuable experimental line that could replace SusPtrit in future nonhost and partial resistance studies, especially for stable transformation using candidate genes that may be involved in rust resistance mechanisms.

Keywords: DH lines, Agrobacterium-mediated, QTL mapping, Puccinia

Introduction

Nonhost resistance implies immunity of all members of a plant species against a potential pathogen species (Niks et al. 2011). The resistant plant species is referred to as nonhost, and the would-be pathogen species is referred to as non-adapted pathogen. Classification of a plant species as nonhost or host against certain potential pathogen species is not easy (Niks 1987; Niks et al. 2011). Some plant species have few accessions with an intermediate level of susceptibility to a particular pathogen. Such plant species are referred to as having a near-nonhost status (Niks 1987; Niks et al. 2011). The rare susceptibility of those few accessions may occur only at the seedling stage or under a very severe infection pressure (Niks 1987). Barley appears to be a near-nonhost to several non-adapted rust fungal species, such as Puccinia triticina and P. hordei-murini. Through the accumulation of genes for susceptibility to P. triticina from rare barley accessions with moderate susceptibility at the seedling stage, an experimental barley line called SusPtrit was developed. This line is extraordinarily susceptible to several grass rusts that are nonadapted to barley (Atienza et al. 2004). SusPtrit facilitated the development of the barleyPuccinia rust fungus model system to study the inheritance of nonhost resistance in plants. Two mapping populations - Vada/SusPtrit (V/S) and Cebada Capa/SusPtrit (C/S) - were developed using SusPtrit as one of the parents (Jafary et al. 2006; 2008).

Partial resistance is a type of host resistance that slows down epidemic development despite a compatible infection type (Niks et al. 2011). On partially resistant barley, the pathogen realizes a lower infection frequency, has a lower sporulation rate and has a longer latency period (Parlevliet 1979). The partial resistance of barley against P. hordei (the adapted rust fungus) is one of the most extensively studied cases of this type of resistance [reviewed by St. Clair (2010)].

Nonhost and partial resistance to Puccinia rust fungi in barley are both polygenically inherited. Nonhost and partial resistance quantitative trait loci (QTLs) against different rust fungi have been mapped in different bi-parental mapping populations (Qi et al. 1998; 1999; Jafary et al. 2006; 2008; Marcel et al. 2007; 2008). Nearly all of the reported QTLs were effective against only one to three rust species, and, hence, were rust speciesspecific, and some QTLs were even rust isolate-specific (Atienza et al. 2004; González et al. 2012; Jafary et al. 2006; Marcel et al. 2008). The QTLs for nonhost resistance to rust fungi tended to map in the same genomic regions as the QTLs for partial resistance to P. hordei (González et al. 2010; Jafary et al. 2008). There is evidence that nonhost and partial resistance of barley to rust fungi share important features: both are principally prehaustorial (Hoogkamp et al. 1998; Niks 1983; Niks and Marcel 2009), show a high
diversity between accessions of the plant species (Qi et al. 2000; Jafary et al. 2006; 2008) and are genetically associated (Hoogkamp et al. 1998; Zhang et al. 1994). The association was also shown in a transcriptional study wherein barley (cv. Ingrid) was exposed to a pair of adapted and non-adapted rust fungi and a pair of adapted and non-adapted powdery mildews. The induced transcriptional changes overlapped not only for the responses of cv. Ingrid to the adapted and non-adapted fungal pathogen but also for the responses to the two different pathosystems (Zellerhoff et al. 2010).

SusPtrit is useful for studying the association between nonhost and partial resistance of barley. This valuable experimental line is not only susceptible to P. triticina and several other non-adapted rust fungi but also extremely susceptible to the adapted P. hordei (Atienza et al. 2004; Jafary et al. 2006). QTLs conferring nonhost and partial resistance in other barley accessions have been introgressed into SusPtrit to develop near isogenic lines (NILs) (Chapter 3, this thesis). These QTL-NILs allow the testing of individual QTLs against non-adapted rust fungi and P. hordei without the interference of other QTLs. Subsequently, sub-NILs are developed to fine-map the responsible gene(s) to a small genetic window, which may be spanned by bacterial artificial chromosome (BAC) clones. The candidate gene(s) explaining the resistance QTLs are identified from the sequenced BAC clones, isolated and verified through complementary functional studies.

Functional studies of candidate genes may be conducted via either transient overexpression or transient silencing of genes by particle bombardment, as applied in the studies of candidate resistance genes against powdery mildew (Douchkov et al. 2005; Miklis et al. 2007). For candidate genes of barley against rust fungi, this approach is not feasible because the carriers of the gene constructs cannot reach the mesophyll cells, which are the main cell types that rust fungi target. Transient overexpression and silencing in barley are also feasible through virus-mediated overexpression (VOX) and virusinduced gene silencing (VIGS) (Lee et al. 2012). These approaches, however, are difficult for quantitative resistance because phenotyping with replication is not possible as each individually treated plant is unique. Stable transformation is another alternative for the functional study of candidate genes, although also this approach has its caveats and limiations. Primary transformants transmit the transgene to their offspring through the grains. This transmission to offspring is important because it allows the transgenic line to have multiple identical plants with the transgene, which are necessary to test the line for its level of partial resistance. Stable transformation is possible in barley, but the efficiency of barley transformation is genotype-dependent (Hensel et al. 2008). To date, barley cv. Golden Promise (GP) is the first choice for the standard method of Agrobacteriummediated transformation using immature embryos (IEs). The transformation efficiency of GP can be as high as 86.7 transformants per 100 IEs when the co-cultivation medium is
supplemented with L-cysteine and acetosyringone and the Agrobacterium strain AGL-1 is used (Hensel et al. 2008).

In a functional study, the resistance allele can be silenced in a resistant plant. In polygenic nonhost resistance, however, an immune plant may have several redundant genes for resistance. A barley accession, such as cv. Vada, may be immune to most, if not all, nonadapted rust fungi, and the resistance is encoded by several genes (QTLs) (Jafary et al. 2006). Silencing one of the resistance QTLs in Vada might be insufficient to compromise the nonhost resistance enough to alter the immunity to some level of susceptibility. Therefore, testing of the candidate genes for resistance in a susceptible line may be a better option when SusPtrit is the line of choice. SusPtrit is, unfortunately, not amenable to Agrobacterium-mediated transformation using the established procedure (Hensel et al. 2008) with minor modification (FKS Yeo and G Hensel, unpublished data). Although the non-inoculated IEs of SusPtrit appeared to be responsive to callus induction media, the callus growth of Agrobacterium-inoculated IEs ceased after approximately two weeks. A similar situation was observed by WA Harwood on cultivars Optic, Oxbridge and Tipple [unpublished data, reviewed by Harwood (2012)].

In this study, a new bi-parental population of doubled haploids was created by crossing SusPtrit with GP. The objective was to find a line, 'Golden SusPtrit,' that combines the susceptibility of SusPtrit to non-adapted rust fungi with the amenability of GP for Agrobacterium-mediated transformation. In addition, the population was used to map nonhost and partial resistance QTLs, which were compared with QTLs identified earlier in other mapping populations.

Materials and Methods

Development of recombinant doubled haploids and general outline

SusPtrit was crossed with cv. GP. F_{1} grains were sent to PLANTA Angewandte Pflanzengenetik und Biotechnologie, Germany to develop a DH population. The haploid/DH plantlets were regenerated from embryogenic pollen cultures, with the DH plants obtained through spontaneous genome duplication. Fertility of spikes was used to indicate the restoration of the diploid condition. The population was inoculated with selected non-adapted and adapted leaf rust fungi, and QTLs were mapped (see below). The most susceptible DH lines were selected and tested for amenability to Agrobacteriummediated transformation.

Whole genome genotyping and linkage map construction

Fresh young leaves of seedlings of the SusPtrit, GP and the DH populations were used to extract genomic DNA according to the CTAB-based protocol of Stewart and Via (1993). The DNA samples were sent for whole genome genotyping (TraitGenetics GmbH , Gatersleben, Germany). Genotyping was performed using an ILLUMINA iSelect 9k barley infinium chip which carries 7,864 SNPs. JoinMap 4.1 (van Ooijen 2006) was used for linkage analysis and map construction. Map distance calculations were made based on Kosambi's mapping function. The linkage groups were assigned to their respective chromosomes based on the linkage map for the Morex/Barke recombinant inbred line population, which was previously genotyped using the same chip (Comadran et al. 2012). The linkage map was used for QTL mapping. The biggest gap in the linkage map was 16 cM on chromosome 6 H .

Mapping QTLs for nonhost and partial resistance at the seedling plant stage

Four non-adapted leaf rust fungi, P. hordei-murini isolate Rhenen (Phm.R), P. hordeisecalini isolate France (Phs.F), P. persistens isolate Wageningen (Pp.W), and P. triticina isolate Flamingo (Pt.F), as well as one adapated leaf rust fungus, P. hordei isolate 1.2.1 (Ph.1.2.1), were used for disease tests. Inoculums of these pathogens were produced on their respective host plants.

The disease tests were carried out in a greenhouse. The seedlings of the SusPtrit/GP (S/G) population were inoculated with the above-mentioned leaf rust fungi in consecutive experiments. For each leaf rust fungus, three consecutive disease tests (series) were performed. In each series, every DH line of the S/G population was represented by one seedling.

Grains of the DH lines, SusPtrit and GP were sown in boxes ($37 \times 39 \mathrm{~cm}$). Twelve-day-old seedlings with unfolded primary leaves were fixed horizontally with the adaxial side facing up. For non-adapted leaf rust fungi, seven milligrams of spores per box per series were used, amounting to approximately 400 spores deposited per cm^{2}. For Ph.1.2.1, one milligram of spores (approximately 60 spores per cm^{2}) per box was applied. The spores were diluted with 10 times their volume of lycopodium spores before inoculating the box in a settling tower (Niks et al. 2011). The inoculated boxes were incubated overnight for eight hours in the dark in a dew chamber set at $18^{\circ} \mathrm{C}$ with 100% relative humidity. Following incubation, the boxes were moved to a greenhouse compartment set at $20 \pm 3^{\circ} \mathrm{C}$ with 70% relative humidity.

For non-adapted leaf rust fungi, the infection frequency (IF; number of pustules per cm^{2} leaf area) was scored at 12 days post-inoculation. For P. hordei, the latency period (LP50S) of the leaf rust was scored and calculated as described by Parlevliet (1975). Relative infection frequency (RIF) and relative latency period (RLP50S) were calculated relative to the average IF and LP50S, respectively, of all SusPtrit seedlings in each series.

The RIF and RLP50S data were used to map QTLs using MapQTL ${ }^{\circledR} 6$ (van Ooijen 2009). The logarithm of the odds (LOD) threshold to declare a QTL was determined by a permutation test. Only QTLs mapped in at least two of the three series and in the data averaged over the three series were reported. The confidence interval of a QTL is the estimated LOD-2 support interval. When the LOD-2 support interval of two QTLs overlapped, either between QTLs mapped in the different series of one rust fungus or of different rust fungi, they were considered one QTL. Declared nonhost resistance QTLs were designated as Rphmq/Rphsq/Rppq/Rptq followed by a number. Partial resistance QTLs to P. hordei were designated as $R p h q$ (host QTL) followed by a number.

Selection of S/G DH lines for Agrobacterium-mediated transformation

The S/G DH lines were ranked based on their RIFs in the first series of disease tests against Phs.F and Pt.F. Preliminary data on the infection levels of Phm.R were available and were used to provisionally rank the DH lines for selection of the most susceptible DH lines. The ten most susceptible DH lines according to the ranking, with an infection severity similar to SusPtrit against the three rust fungi, were selected for Agrobacteriummediated transformation efficiency tests.

Of the ten selected DH lines, four were used to test the amenability to genetic transformation. Growth of donor plants and the transformation protocol were essentially the same as described elsewhere (Hensel et al. 2009). Briefly, developing caryopses were harvested at 12-16 days post-pollination and surface sterilized. The IEs were excised and either pre-cultured on liquid barley co-culture medium for one day or directly inoculated with the Agrobacterium tumefaciens strain AGL-1 harboring the plasmid pGH215. The plasmid contains the selectable marker gene HYGROMYCIN PHOSPHOTRANSFERASE (HPT) driven by the doubly enhanced CaMV $35 S$ promoter and the synthetic green fluorescent protein ($g f p$) gene under the control of the maize UBIQUITIN 1 promoter with first intron. The agrobacteria were grown, inoculated and co-cultured with the IEs (Hensel et al. 2009). After co-culture, the IEs were transferred to barley callus induction medium supplemented with either 20 or $50 \mathrm{mg} / \mathrm{L}$ Hygromycin B (Roche, Mannheim, Germany) to induce calli under selective conditions. After 2 rounds of 2-week incubations in the dark at
$24^{\circ} \mathrm{C}$, the calli were transferred to barley regeneration medium supplemented with 25 mg / L Hygromycin B, then transferred to light. All regenerants (T_{0}) were transferred to soil, and genomic DNA was isolated and used for PCR with primers specific for the selectable marker and reporter genes, as described below (Table 1). The transformation efficiency was evaluated based on the number of independent transgenic regenerants per 100 IEs (transgenics/100 IEs).

Table 1: Primer sequences used for the PCR analysis of putative transgenic regenerants.

Primer	Sequence 5, - 3'	Primer binding site
35S-F2-Catrin	CATGGTGGAGCACGACACTCTC	Bp 331-352 of enhanced CaMV 35S promoter
Bie475	TTTAGCCCTGCCTTCATACG	Bp 1421-1440 of ZmUBII promoter
GH-GFP-F1	GGTCACGAACTCCAGCAGGA	Bp 680-661 of gfp gene
GH-HYG-F1	GATCGGACGATTGCGTCGCA	Bp 896-877 of $H P T$ gene

DNA gel blot analysis and analysis of reporter gene expression

Twenty one transgenic plants (T_{0}) from the most efficiently transformed line, SG062N, were randomly selected and subjected to DNA gel blot analysis to determine the transgene copy number. At least $25 \mu \mathrm{~g}$ of genomic DNA was digested with HindIII, separated by agarose gel electrophoresis and blotted onto a Hybond N membrane. A gene-specific probe (GFP or HPT) was labeled with DIG, as recommended by the supplier (Roche, Mannheim, Germany). The $21 \mathrm{~T}_{0}$ plants of SG062N produced $21 \mathrm{~T}_{1}$ populations by selfing. Between 21 and $59 \mathrm{~T}_{1}$ grains harvested from the 21 transgenic T_{0} plants of SG062N, as well as from the SG062N wild type control, were surface sterilized, germinated on solid B5 medium (Gamborg et al. 1968) and incubated under a $16 / 8 \mathrm{~h}$ light/dark regime at $24^{\circ} \mathrm{C}$. After ten to fourteen days, root tips were screened for GFP fluorescence using a Leica MZFLIII fluorescence microscope equipped with the GFP Plant filter set (Leica Microsystems, Wetzlar, Germany). Genomic DNA of four plants from each T_{1} population, preselected by the presence/absence of GFP fluorescence in the root tip, was extracted from $\sim 100 \mathrm{mg}$ of snap-frozen leaf tissue, as described in Pallotta et al. (2000). Multiplex-PCR was designed based on the amplification of 100 ng of template primed by the sequences listed in Table 1. Amplicons were separated by agarose gel electrophoresis and visualized by staining with Ethidium bromide. From each of the $21 \mathrm{~T}_{1}$ populations, three plants that tested positive in the PCR assays, as well as one plant that had lost the transgene via segregation, were subjected to DNA gel blot analysis, as
described above, to estimate the transgene copy number and to characterize the integration site(s) regarding linked/unlinked copies.

Results

DH population and linkage map construction

Of the 308 in vitro cultured plantlets, 137 survived and were fertile, thus producing grains. Through whole genome genotyping, duplicate genotypes were identified and eliminated, resulting in a population of 122 unique DH lines.

From the 7,864 SNPs on the chip, 2,943 SNP markers were polymorphic between SusPtrit and GP. Before linkage analysis was performed, 2,257 markers with identical segregation patterns were removed from the data set. We used 686 markers to construct the linkage map. At LOD threshold 10, seven linkage groups corresponding to seven barley chromosomes were detected (Supplemental Figure 1). The total map length was $1,175 \mathrm{cM}$. The map length of individual linkage groups ranged from $130 \mathrm{cM}(4 \mathrm{H}, 84 \mathrm{SNP}$ markers) to 202 cM ($5 \mathrm{H}, 122$ SNP markers). The marker order on the linkage map of S / G is in agreement with the linkage maps of V/S and C/S, which were also genotyped using the ILLUMINA iSelect 9k barley infinium chip (unpublished data). Of the 686 SNP markers, $351(51 \%)$ exhibited segregation patterns that significantly deviated from the expected 1:1 ratio. Segregation was skewed towards the SusPtrit allele for 213 markers and towards the GP allele for 138 markers. The markers showing distorted segregation occurred in clusters (14 clusters). On linkage groups corresponding to chromosomes 2 H and 3 H , all of the distorted segregation was skewed towards the SusPtrit allele. In contrast, all of the distorted segregation for markers on chromosome 4 H was skewed towards the GP allele.

Disease resistance of S/G recombinants against non-adapted and adapted leaf rust fungi.

SusPtrit is susceptible to all four non-adapted leaf rust fungi and to Ph.1.2.1. GP is immune to all four non-adapted leaf rust fungi and causes 5\% higher RLP50S (approximately eight hours longer LP) of Ph.1.2.1 than SusPtrit. Segregation in the level of resistance among the S / G population was quantitative, suggesting a polygenic inheritance pattern (Figure 1). The infection levels observed in the S/G population with the four non-adapted leaf rust fungi ranged from immune to either as susceptible as or more
susceptible than SusPtrit. Correlations between the average RIF values for the four nonadapted rust species ranged from 0.5 to 0.7 . These values indicate a moderate association in the genetic basis of resistance to these four rust species. This result is consistent with the conclusion made by Jafary et al. $(2006$; 2008) that genes underlying nonhost resistance have overlapping specificities. Due to the moderate association of susceptibilities to different rust fungi, we found $21 \mathrm{~S} / \mathrm{G}$ DH lines that were, for more than one non-adapted rust fungi, among the 20 most susceptible lines (Table 2).

Generally, the pustules formed by the non-adapted rust fungi on the SG lines were of the compatible type, i.e., they were not associated with chlorosis or necrosis. This was true even for the lines on which few pustules appeared, i.e., lines with fair levels of resistance. For all non-adapted rust types, fewer than 15 lines with Pt.F, Phs.F, or Phm.R and fewer than 30 lines tested with Pp.W displayed some chlorosis or necrosis; however, in most cases, these reactions were inconsistent over experimental runs.

Nonhost and partial resistance QTL mapping in the S/G population

For each non-adapted rust fungus, the results obtained in the three disease test series correlated well ($\mathrm{r}=0.6-0.9$); however, the correlation between the three disease test series was low for Ph.1.2.1 ($\mathrm{r}=0.2-0.4$). Based on permutation tests, a LOD threshold between 2.9 and 3.2 was used for QTL declaration in each mapping attempt.

We found two nonhost resistance QTLs for Phm.R, four for Pt.F, five for Phs.F and six for Pp.W (Table 3). As previously described by Jafary et al. (2008), declaring QTLs from LOD profiles may become arbitrary when multiple peaks are observed in the same genomic region. Such was the case for Pp-nhq5 and Pp-nhq6 located on chromosome 7H (Table 3, Figure 2), which we chose to report as two QTLs. These QTLs co-localized with two QTLs against Phs.F, Phs-nhq4 and Phs-nhq5, which were indicated by two clearly separated peaks in the LOD profile.

Figure 1: Frequency distribution of average RIF for (a) Phm.R, (b) Phs.F, (c) Pp.W, and (d) Pt.F, and (e) frequency distribution of average RLP50S for Ph.1.2.1. Values of the parental lines are indicated by arrows.

Table 2: Twenty-one S/G DH lines with levels of susceptibility similar to or higher than SusPtrit for more than one rust species. The ranking was based on the average RIF over three series of disease tests.

DH line	Phm.R	Phs.F	Pt. F	Pp.W	Ph.1.2.1	No. of species
SG019N	4	18	8	20	*	
SG020N	7	1	11	1	*	
SG037N	14	2	4	7	*	
SG048N	19	16	12	9	*	4
SG062N	10	10	9	19	*	
SG117N	2	15	17	3	*	
SG038N	14	7	*	16	8	
SG093N	8	5	*	6	15	
SG088N	20	19	6	*	*	
SG130N	*	6	16	15	*	3
SG109N	18	*	2	2	*	
SG047N	12	3	*	4	*	
SG010N	6	4	*	*	*	
SG078N	17	8	*	*	*	
SG097N	*	14	20	*	*	
SG119N	*	9	18	*	*	
SG068N	*	*	5	8	*	2
SG113N	*	*	1	10	*	
SG133N	*	*	7	11	*	
SG075N	11	*	*	17	*	
SG051N	*	12	*	12	*	
SusPtrit	13	38	13	21	17	

* The DH line ranked over 20 based on the average RIF over three series of disease tests

The QTLs mapped for the different non-adapted rust fungi occupied nine genomic regions, among which only one region on 7 H affected resistance to all four non-adapted rust species. Four regions had a QTL that significantly contributed to resistance to only one particular non-adapted rust fungus. The four other regions had a QTL that was found to confer resistance to two or three rust fungi (Table 3, Figure 2). This tendency of QTL regions to affect susceptibility to more than one non-adapted rust fungus may explain why many DHs with high IF to one non-adapted rust fungus also exhibit relatively high IFs to the other non-adapted rust fungi.

Among the QTLs, Phm-nhq2 at 7H had such a high LOD score (LOD $=21$) and such a large effect (explaining 51% of the phenotypic variation) that it could be considered a major resistance gene. Of the remaining QTLs, seven explained 10-18\% and nine explained less than 10% of the phenotypic variation. The immune parent, GP, is the sole resistance allele donor for all of the QTLs mapped for Phm.R, Pp.W and Pt.F. For the QTLs affecting resistance to Phs.F, GP donated a resistance allele for four of the QTLs and SusPtrit donated the resistance allele for one QTL. This observation is consistent with the intermediate resistance against Phs.F seen in SusPtrit (Figure 1b).

Only one QTL for partial resistance to P. hordei was detected; this QTL mapped to chromosome 6 H and explained approximately 14% of the total phenotypic variation. The resistance allele is donated by GP, as expected. The QTL is designated as Rphq3 (as explained below). This QTL co-localizes with Pp-nhq4 and Pt-nhq3 (Table 3).

Among the non-adapted rust fungi, Jafary et al. (2008) mapped nonhost resistance QTLs with the same isolates used in this study for Phs and Pt but with different isolates for Phm ($P h m$ isolate Aragón) and $P p$ ($P p$ isolate $\mathrm{RN}-8$) in the mapping populations V/S and C / S. Jafary et al. (2006) mapped QTLs for partial resistance to Ph.1.2.1 in the V/S mapping population. Recently, V/S and C/S were re-genotyped using the same ILLUMINA iSelect 9k barley infinium chip used for the present S/G map, and new SNPs linkage maps were generated for these two populations (unpublished data). The V/S, C/S and S/G maps were integrated (A. Martin-Sanz, R. Niks and P. Schweizer ERA-PG "TritNONHOST" project, ERAPG08.053; unpublished), and we compared the positions of nonhost and partial resistance QTLs mapped in S/G with those mapped in V/S and C/S. Seven out of the nine QTL regions detected in S/G coincided with QTL intervals detected in V/S and C/S. The coinciding QTLs are effective against either the same rust or to different rust species (Table 3, Figure 2). On chromosome 6 H , the only QTL conferring partial resistance to P. hordei of S/G coincided with the nonhost resistance QTLs of Jafary et al. (2008). On the barley integrated map [Barley, Integrated, Marcel 2009 available at http://wheat.pw.usda. gov/GG2/index.shtml; (Aghnoum et al. 2010)], the nonhost resistance QTLs of Jafary et al. (2008) on chromosome 6H coincided with Rphq3, a QTL for partial resistance to P. hordei mapped in L94/Vada (Marcel et al. 2008; Niks et al. 2000; Qi et al. 1998). It is possible that the partial resistance QTL of S/G also coincided with Rphq3; hence, the same name was given.

Amenability of pre-selected DH lines for Agrobacterium-mediated transformation

The four DH lines chosen for the Agrobacterium-mediated transformation efficiency test were among the 12 most susceptible lines (average ranking) to Phm.R, Phs.F and Pt.F (Supplemental Table 1). Three of the four tested DH lines were amenable to transformation. The efficiency of transformation ranged from 1 to $17 \mathrm{~T}_{0}$ plants/100 IEs (Table 4). The most efficient DH line was SG062N (11 to $17 \mathrm{~T}_{0} / 100$ IEs), and its T_{0} plants were further analyzed to determine the number of T-DNA copies that were integrated (see below). The transformation efficiency for these lines was approximately 6% less than for the GP line. Compared to other barley genotypes tested for transformation efficiency using IEs, SG062N had transformation efficiency better than the 9 barley accessions tested by Hensel et al. (2008) and other barley accessions reviewed in Goedeke et al. (2007).

Twenty-one SG062N T_{0} plants from three independent transformation attempts were randomly selected to determine the number of T-DNA copies integrated in their genomes (Figure 3). We detected one to five integrated T-DNA copies in the genomes of the $21 \mathrm{~T}_{0}$ plants using HPT and $g f p$ probes (Table 5). The $g f p$ probe suggested that $8 / 17$ of the T_{0} plants had single-copy integrations, while the HPT probe suggested $10 / 21 \mathrm{~T}_{0}$ plants had single-copy integrations. At T_{1}, GFP fluorescence (Figure 4) indicated that six out of the $17 \mathrm{~T}_{1}$ populations, instead of the expected eight T_{1} populations, were segregating for a single copy T-DNA. This result is because there were two T_{1} populations (BG398E21 and BG398E22) that gave segregation ratios of 15:1 (with reporter gene expression : no reporter gene expression), indicating that two copies of T-DNA were segregating. It is possible that the two independently integrated T-DNAs in BG398E21 and BG398E22 cannot be distinguished based on HindIII DNA digestion. Nine other T_{1} populations (excluding BG398E21 and BG398E22) segregated for two or more T-DNA copies, and among the nine, six showed segregation of linked T-DNA copies (Table 5 and Supplemental Figure 2).

Table 3: Summary of nonhost and partial resistance QTLs detected at the seedling stage in the S/G population in this study and the overlapping QTLs reported in Jafary et al. (2006; 2008).

Chr	Position (cM)	Phm. R	Phs.F	Pp.W	Pt. F	Ph.1.2.1	Previously mapped QTLs for rust resistance ${ }^{\#}$
1H	43-68		$\begin{gathered} \text { Rphsql } \\ (4,11 \%, \mathrm{G})^{*} \end{gathered}$				Phs-nhq (6,12\%,V)
	40-68			$\begin{gathered} \text { Rppq1 } \\ (4,10 \%, \mathrm{G}) \end{gathered}$	$\begin{gathered} \text { Rptq1 } \\ (4,11 \%, \mathrm{G}) \end{gathered}$		$P p^{R N}$-nhq (4,6\%,C)
	98-141		$\begin{gathered} \text { Rphsq2 } \\ (4,10 \%, \mathrm{G}) \end{gathered}$	$\begin{gathered} R p p q 2 \\ (3,8 \%, \mathrm{G}) \end{gathered}$	$\begin{gathered} \text { Rptq2 } \\ (5,12 \%, \mathrm{G}) \end{gathered}$		$P p^{R N}-n h q(5,8 \%, \mathrm{~V})$
3H	112-176	Rphmq1 $(3,5 \%, \mathrm{G})$					$\begin{gathered} \text { Phm}{ }^{A}-n h q(6,10 \%, \mathrm{C}) \\ P h s-n h q(7,12 \%, \mathrm{C}) \\ P p^{R N}-n h q(7,14 \%, \mathrm{C}) \\ P t-n h q(8,22 \%, \mathrm{C}) \end{gathered}$
4H	52-75		Rphsq3 $(3,8 \%, S)$				$\begin{gathered} \text { Pt-nhq }(3,7 \%, \mathrm{~S}) \\ \text { Phs-nhq }(5,11 \%, \mathrm{~S}) \\ P p^{R N}-n h q(6,12 \%, \mathrm{~S}) \\ \text { Phm }^{A}-n h q(8,14 \%, \mathrm{~S}) \end{gathered}$
5H	73-110			$\begin{gathered} R p p q 3 \\ (4,10 \%, \mathrm{G}) \end{gathered}$			
6H	56-88			$\begin{gathered} R p p q 4 \\ (4,9 \%, \mathrm{G}) \end{gathered}$	$\begin{gathered} R p t q 3 \\ (4,9 \%, \mathrm{G}) \end{gathered}$	$\begin{gathered} R p h q 3 \\ (4,14 \%, \mathrm{G}) \end{gathered}$	$\begin{gathered} P p^{R N}-n h q(4,5 \%, \mathrm{C}) \\ P_{t-n h q}(11,19 \%, \mathrm{~V}) \\ \text { Phm }^{A}-n h q(6,12 \%, \mathrm{C}) \\ \operatorname{Rphq} 3(16,21 \%, \mathrm{~V}) \end{gathered}$
7H	92-121		Rphsq4 (4,9\%,G)	$\begin{gathered} R p p q 55^{!} \\ (6,14 \%, \mathrm{G}) \end{gathered}$			$\begin{gathered} \text { Phs-nhq }(3,6 \%, \mathrm{~V}) \\ P^{R N}-n h q(5,10 \%, \mathrm{~V}) \\ \text { Pt-nhq }(11,21 \%, \mathrm{~V}) \\ \text { Rphq8 }(4,6 \%, \mathrm{~V}) \end{gathered}$
	141-168	$\begin{gathered} \text { Rphmq2 } \\ (21,51 \%, \mathrm{G}) \end{gathered}$	$\begin{gathered} \text { Rphsq5 } \\ (5,12 \%, \mathrm{G}) \end{gathered}$	$\begin{gathered} R p p q 6^{!} \\ (4,9 \%, \mathrm{G}) \end{gathered}$	$\begin{gathered} \text { Rptq4 } \\ (7,18 \%, \mathrm{G}) \end{gathered}$		

[^0]

Figure 2 (previous page): Skeleton linkage map with position of nonhost resistance QTLs and one partial resistance QTL mapped in this study and the co-localizing partial and nonhost resistance QTLs of Jafary et al. (2006; 2008). Only on chromosome $6 \mathrm{H}, \mathrm{V}^{*}$ is a QTL for partial resistance to P. hordei mapped in Qi et al. (1998). The QTL bars represent the QTLs of this study. The bars correspond to the rMQM LOD-1, and the extended lines correspond to the rMQM LOD-2 confidence interval. The letters inside () indicate the QTL donor ($G=\mathrm{GP} ; S=$ SusPtrit). The QTL dots represent the estimated position of the peak markers of previously mapped QTLs. The letters above the dots represent the QTL donor ($C=$ Cebada Capa; $S=$ SusPtrit; $V=V a d a)$. The ruler on the left side shows the distance in cM calculated according to Kosambi.

Table 4: Summary of transformation experiments for the four selected DH lines, expressed as the number of transformed plants per 100 plated IEs. Co-cultivation for 2-3 days and selection on $50 \mathrm{mg} /$ L Hygromycin B.

DH line	Attempt	Total IEs	${ }^{*}$ Number of $\mathrm{T}_{\mathbf{0}}$ plants	$\begin{gathered} \mathrm{T}_{0} \text { plants } / 100 \\ \text { IEs } \end{gathered}$
SG062N	BG398-1	210	35	17
	BG398-2	430	49	11
	BG398-3	122	15	12
			Average T_{0} plants/100 IEs	13
SG047N	BG396-1	${ }^{\text {a }} 420$	36	9
	BG396-2	${ }^{\text {b }} 300$	7	2
			Average T_{0} plants/100 IEs	6
SG093N	BG399-1	310	30	10
	BG399-2	180	16	9
	BG399-3	${ }^{\text {b }} 110$	1	1
			Average T_{0} plants/100 IEs	8
SG133N	BG400-1		0	
	BG400-2	${ }^{\text {b }} 420$	0	
	BG400-3	${ }^{\text {b }} 210$	0	
GP	BG405-1	200	${ }^{\mathrm{c}} 36$	18
	BG405-2	200	${ }^{c_{40}}$	20
			Average T_{0} plants/100 IEs	19

[^1](a)

(b)

Figure 3: (a) Representative blot for analysis of T-DNA copy numbers in T_{0} plants integrated with (b) HPT gene driven by CaMV $35 S$ promoter and $g f p$ gene driven by maize UBIQUITIN 1 promoter with first intron (this study). The HindIII-digested genomic DNA from SG062N T_{0} plants (E) and SG062N wild type (WT) was hybridized with DIG-labeled HPT probe.

Figure 4: Representative microscopic analysis of GFP fluorescence in SG062N transgenic plants (BG398E17 \& G398E21). Bright field (A, C, E) and epifluorescence (B, D, F) in germinating caryopses and roots of T_{1} segregants. az - azygous plant that has lost the transgene. Bar $=0.5 \mathrm{~cm}$

Table 5: Copy numbers of integrated T-DNA for the $21 \mathrm{SG} 062 \mathrm{~N} \mathrm{~T}_{0}$ plants and segregation of their T_{1} populations.

T ${ }_{0}$			T_{1} populations			
Transformants (T_{0})	Copy number according to $g f p$ probe	Copy number according to HPT probe	Reporter gene expression vs. no expression	Segregation observed (assumed)	$\begin{gathered} X^{2}- \\ \text { Value } \end{gathered}$	Likelihood (P) according to X^{2} - test
BG398E06	1	1	39:18	2.2:1 (3:1)	1.92	>0.10
BG398E07	1	1	42:17	2.5:1 (3:1)	0.64	>0.40
BG398E09	1	1	27:12	2.2:1 (3:1)	0.70	> 0.40
BG398E10	1	1	37:12	3.1:1 (3:1)	0.03	>0.90
BG398E11	1	1	36:15	2.4:1 (3:1)	0.54	> 0.40
BG398E14	1	1	25:14	1.8:1 (3:1)	2.43	> 0.10
BG398E21	1	1	35:3	12:1 (15:1)	1.33	> 0.20
BG398E22	1	1	48:1	48:1 (15:1)	1.53	> 0.20
BG398E01	2	2	21:0	21:1 (15:1)	3.40	> 0.05
BG398E12	2	2	44:4	11:1 (15:1)	0.36	> 0.60
BG398E03	2	3	26:12	2.2:1 (3:1)	2.17	>0.10
BG398E18	3	1	44:0	44:0 (15:1)	3.02	> 0.05
BG398E17	3	2	46:9	5:1 (3:1)	2.17	>0.10
BG398E16	3	3	53:0	53:0 (63:1)	2.59	>0.10
BG398E20	3	4	52:6	9:1 (15:1)	4.09	>0.05
BG398E19	4	4	45:0	45:0 (15:1)	3.00	>0.05
BG398E05	5	5	36:12	3:1 (3:1)	0.00	> 0.99
BG398E04	n.d	1	n.d	n.d	n.d	n.d
BG398E02	n.d	2	n.d	n.d	n.d	n.d
BG398E08	n.d	2	n.d	n.d	n.d	n.d
BG398E15	n.d	2	n.d	n.d	n.d	n.d

Susceptibility of SG062N to non-adapted rust fungi and Ph.1.2.1

The selection of DH lines for Agrobacterium-mediated transformation tests was based on preliminary infection data. Additional series of experiments to quantify the susceptibility level were performed following the initiation of the transformation experiments.

This study identified nine genomic regions occupied by resistant QTLs against the four non-adapted rust fungi and Ph.1.2.1. At the nine genomic regions, SG062N carried six susceptibility alleles and three resistance alleles. The resistance alleles conferred resistance to Pp.W, Pt.F and Phs.F, and each explained approximately 10% of the phenotypic variation.

Based on the three series of disease tests for QTL mapping, the level of infection in SG062N for the four non-adapted rust fungi is either similar to or higher than the level of infection in SusPtrit (Table 6). The LP50S against Ph.1.2.1 conferred by SG062N is as short as that conferred by SusPtrit in additional disease tests (data not shown). This result is expected because SG 062 N has the susceptible allele for $R p h q 3$, the only partial resistance QTL detected in this study.

Table 6: The susceptibility of SG062N, relative to SusPtrit, to the four non-adapted rust fungi tested over three series per rust species.

	Average RIF		
Non-adapted rust fungi	SusPtrit	SG062N	
Phm.R	100	104	
Phs.F*	100	189	
Pp.W	100	100	
Pt.F	100	105	

[^2]
Discussion

Genetics of nonhost and partial resistance

Nine chromosomal regions were found to segregate for nonhost resistance in S/G, and of these regions, one co-locates with the only partial resistance QTL, Rphq3, mapped in this study. Among the nonhost resistance QTLs mapped in this study, Phm-nhq2 on chromosome 7H had the largest effect and may be considered a major gene for resistance. The resistance conferred by Phm-nhq2 is not associated with a hypersensitivity response. The confidence interval of Phm-nhq2 overlapped with the estimated position of the major gene for resistance to P. hordei, Rph19.ah (Marcel 2007). This result suggests that either Phm-nhq2 is an allelic version of Rph19.ah or that they are simply at two closely linked loci. GP is not known to carry Rph19.ah.

Rphq3 was the only partial resistance QTL found in this study. GP gave an average of 5\% (8 hours) longer LP50S than SusPtrit, a relatively low level of partial resistance to P. hordei compared to Vada, which has a high level of partial resistance. The LP50S of P. hordei on Vada is approximately 25% longer than on the susceptible accessions SusPtrit (Jafary et al. 2006) and L94 (Qi et al. 1998). Additionally, Vada has three QTLs effective at the seedling stage (Jafary et al. 2006; Qi et al. 1998). It is not surprising, then, to find only Rphq3 in S/G; however, there may be other QTLs with effects too small to be detected.

GP is immune to non-adapted rust fungi and contains many genes (nine chromosomal regions) for resistance to the four non-adapted rust fungi species tested. This finding is very similar to the results obtained by Jafary et al. $(2006$; 2008) for Vada and Cebada Capa. It is, however, possible to find DH lines with susceptibility as high as, or higher than, that of SusPtrit.

Among the nine chromosomal regions with resistance QTLs identified in S/G, five regions conferred resistance to different rust fungi, suggesting that the responsible genes have effects on multiple rust species. Jafary et al. (2006) observed that QTLs affecting multiple rust species do not tend to be effective against taxonomically related rust species. Based on the phylogenetic tree of the rust species constructed by Jafary et al. (2006), we observed three genomic regions where the co-localization only involved QTLs affecting resistance to closely related rust species ($P h s . \mathrm{F}, P p . \mathrm{W}$ and $P t . \mathrm{F}$) (Table 3). In the other three regions, the QTLs were effective against less closely related rust species (QTLs for Phm.R and Ph.1.2.1 overlapped with QTLs for Phs.F, Pp.W and Pt.F). Co-localization of the QTLs for nonhost and partial resistance suggests an overlap of gene sets for these types of resistance in barley. Jafary et al. (2008) also observed similar QTL colocalization. Furthermore, several other studies (Hoogkamp et al. 1998; Zellerhoff et al. 2010; Zhang et al. 1994) have suggested that nonhost and partial host resistance may partly involve the same genes.

The tendency for co-localization of QTLs for different rust fungi may be due to either several closely linked genes, each involved in resistance to only one or two rust species, or to a single gene that contributes to resistance to multiple rust species. Fine-mapping is required to distinguish between these two possibilities.

SG062N, a new experimental line for nonhost and partial resistance studies

As in most monocotyledonous plant species, barley transformation efficiency is limited by genotype, explant, and media components, among other factors [reviewed in (Cheng et al. 2004; Goedeke et al. 2007; Harwood 2012)]. To improve transformation efficiency, adjusting treatment and tissue culture variables can be tried [e.g., the use of different Agrobacterium strains or the application of acetosyringone and L-cysteine (Hensel et al. 2008)]. Improving transformation efficiency for one genotype (e.g., GP) is helpful, but the transformable line may not be ideal for studying specific traits - in this case, GP is not suitable for the functional study of nonhost resistance. The line of choice to study nonhost resistance, SusPtrit, was unsuccessfully tested for amenability to Agrobacterium-mediated transformation (data not shown). Therefore, we applied a breeding approach to combine the amenability of GP for Agrobacterium-mediated transformation with the susceptibility of SusPtrit to non-adapted rust fungi.

Theoretically, the S/G mapping population can be used to locate genetic factors affecting transformation efficiency, as described in Cogan et al. (2002; 2004). It is not practical, however, to apply the Agrobacterium-mediated transformation procedure used in our study to a mapping population because of the labor and greenhouse space required. The high non-genetic variation in the transformation efficiency of a single line between experimental runs is another factor that complicates the mapping of such genes in barley. This variation can be attributed to variables such as the actual environmental conditions for transformation and tissue culture, the quality of explant donor plants and the individual handling of the experiment (Hensel et al. 2008). The high transformation efficiency of GP is likely a result of several genes, as in Brassica oleracea (Cogan et al. 2002; 2004). Hence, quantitative variation was observed in the transformability of the four pre-selected DH lines. We compared the genotypes of SG062N (highest transformation efficiency) and SG133N (not transformable) and found six chromosomal regions potentially involved in the transformation efficiency of barley (Supplemental Figure 3).

To date, GP is the line of choice for standard barley transformation. Notably, GP is a gamma-ray-induced mutant derived from cultivar Maythorpe (Forster 2001). The efficiency for transformation of GP is most likely not a result of the mutation, as Maythorpe can be transformed approximately as efficiently as GP. The transformation efficiency of Maythorpe ranges from 6 to 19\% (G Hensel and J Kumlehn, unpublished data) and has been reported to reach 25% in one experiment [WA Harwood, unpublished data (John Innes Centre, Norwich, UK)]. In the Germplasm Resources Information Network (GRIN, http://www.ars-grin.gov/npgs/holdings.html), the ancestors of GP/ Maythorpe are traced back to Chevalier, Hana and Gull (Supplemental Figure 4). Tracing
the ancestor that has donated the genetic factors for efficient transformation can provide valuable information.

By crossing SusPtrit with GP, the susceptibility of SusPtrit to non-adapted and adapted (P. hordei) rust fungi and the amenability of GP to Agrobacterium-mediated transformation were easily combined. Simple screening of the progeny for individual lines that had inherited traits of both SusPtrit and GP was sufficient to verify that we had achieved our objective of obtaining the valuable new experimental line - SG062N (Golden SusPtrit). The optimized transformation procedure for GP can be applied directly to Golden SusPtrit to obtain approximately 47% of transformants with single-copy T-DNA integration (based on the $g f p$ probe), which is fairly comparable to the proportion (50\%) reported by Hensel et al. (2008).

Golden SusPtrit is as susceptible as SusPtrit to P. hordei and to the four tested nonadapted rust fungi. As such, Golden SusPtrit will replace SusPtrit as a valuable experimental line for future nonhost and partial resistance studies, especially for stable transformation with candidate genes that might be responsible for resistance.

Acknowledgments

The authors wish to thank the Faculty of Resource Science \& Technology, University Malaysia Sarawak, Malaysia for granting the fellowship to FKS Yeo to work on this PhD thesis in Wageningen, and Prof RGF Visser for hosting FKS Yeo for that purpose at the Laboratory of Plant Breeding. The SNP genotyping of the SusPtrit/Golden Promise population was part of the ERA-PG "TritNONHOST" project, ERAPG08.053, which was led by Dr. P. Schweizer (IPK, Gatersleben, Germany). We particularly wish to thank Sibylle Freist and Sabine Sommerfeld for their technical assistance, and Waltraut Wackermann, Kerstin Jacobs and Enk Geyer (IPK, Gatersleben, Germany) for their careful maintenance of plant materials.

References

Aghnoum R, Marcel TC, Johrde A, Pecchioni N, Schweizer P, Niks RE (2010) Basal host resistance of barley to powdery mildew: Connecting quantitative trait loci and candidate genes. Molecular PlantMicrobe Interactions 23:91-102
Atienza S, Jafary H, Niks RE (2004) Accumulation of genes for susceptibility to rust fungi for which barley is nearly a nonhost results in two barley lines with extreme multiple susceptibility. Planta 220:71-79
Cheng M, Lowe BA, T MS, Ye X, Armstrong CL (2004) Invited review: Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro Cellular and Developmental Biology - Plant 40:31-45
Cogan NOI, Lynn JR, King GJ, Kearsey MJ, Newbury HJ, Puddephat IJ (2002) Identification of genetic factors controlling the efficiency of Agrobacterium rhizogenes-mediated transformation in Brassica oleracea by QTL analysis. Theoretical and Applied Genetics 105:568-576
Cogan NOI, Newbury HJ, Oldacres AM, Lynn JR, Kearsey MJ, King GJ, Puddephat IJ (2004) Identification and characterization of QTL controlling Agrobacterium-mediated transient and stable transformation of Brassica oleracea. Plant Biotechnology Journal 2:59-69
Comadran J, Kilian B, Russell J, Ramsay L, Stein N, Ganal M, Shaw P, Bayer M, Thomas W, Marshall D (2012) Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nature Genetics 44:1388-1392
Douchkov D, Nowara D, Zierold U, Schweizer P (2005) A high-throughput gene-silencing system for the functional assessment of defense-related genes in barley epidermal cells. Molecular Plant-Microbe Interactions 18:755-761
Forster BP (2001) Mutation genetics of salt tolerance in barley: An assessment of Golden Promise and other semi-dwarf mutants. Euphytica 120:317-328
Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Research 50:151-158
Goedeke S, Hensel G, Kapusi E, Gahrtz M, Kumlehn J (2007) Transgenic barley in fundamental research and biotechnology. Transgenic Plant Journal 1:104-117
González AM, Marcel TC, Kohutova Z, Stam P, van der Linden CG, Niks RE (2010) Peroxidase profiling reveals genetic linkage between peroxidase gene clusters and basal host and non-host resistance to rusts and mildew in barley. PLoS ONE 5:e10495
González AM, Marcel TC, Niks RE (2012) Evidence for a minor gene-for-minor gene interaction explaining nonhypersensitive polygenic partial disease resistance. Phytopathology 102:1086-1093
Harwood WA (2012) Advances and remaining challenges in the transformation of barley and wheat. Journal of Experimental Botany 63:1791-1798
Hensel G, Kastner C, Oleszczuk S, Riechen J, Kumlehn J (2009) Agrobacterium-mediated gene transfer to cereal crop plants: Current protocols for barley, wheat, triticale, and maize. International Journal of Plant Genomics 2009; Article ID 835608, 9 pages. doi:10.1155/2009/835608
Hensel G, Valkov V, Middlefell-Williams J, Kumlehn J (2008) Efficient generation of transgenic barley: The way forward to modulate plant-microbe interactions. Journal of Plant Physiology 165:71-82
Hoogkamp TJH, Chen WQ, Niks RE (1998) Specificity of prehaustorial resistance to Puccinia hordei and to two inappropriate rust fungi in barley. Phytopathology 88:856-861
Jafary H, Albertazzi G, Marcel TC, Niks RE (2008) High diversity of genes for nonhost resistance of barley to heterologous rust fungi. Genetics 178:2327-2339
Jafary H, Szabo LJ, Niks RE (2006) Innate nonhost immunity in barley to different heterologous rust fungi is controlled by sets of resistance genes with different and overlapping specificities. Molecular PlantMicrobe Interactions 19:1270-1279
Lee WS, Hammond-Kosack KE, Kanyuka K (2012) Barley Stripe Mosaic Virus-mediated tools for investigating gene function in cereal plants and their pathogens: Virus-Induced Gene Silencing, Host-Mediated Gene Silencing, and Virus-Mediated Overexpression of Heterologous Protein. Plant Physiology 160:582-590
Marcel TC (2007) Genetic architecture of basal resistance of barley to Puccinia hordei. PhD thesis, Wageningen University, The Netherlands: 159 pp

Marcel TC, Gorguet B, Ta MT, Kohutova Z, Vels A, Niks RE (2008) Isolate specificity of quantitative trait loci for partial resistance of barley to Puccinia hordei confirmed in mapping populations and nearisogenic lines. New Phytologist 177:743-755
Marcel TC, Varshney RK, Barbieri M, Jarary H, de Kock MJD, Graner A, Niks RE (2007) A high-density consesus map of barley to compare the distribution of QTLs for partial resistance to Puccinia hordei and of defence gene homologues. Theoretical and Applied Genetics 114: 487-500
Miklis M, Consonni C, Bhat RA, Lipka V, Schulze-Lefert P, Panstruga R (2007) Barley MLO modulates actin-dependent and actin-independent antifungal defense pathways at the cell periphery. Plant Physiology 144:1132-1143
Niks RE (1983) Comparative histology of partial resistance and the nonhost reaction to leaf rust pathogens in barley and wheat seedlings. Phytopathology 73:60-64
Niks RE (1987) Nonhost plant species as donors for resistance to pathogens with narrow host range I. Determination of nonhost status. Euphytica 36:841-852
Niks RE, Fernandez E, Haperen Bv, Bekele Aleye B, Martinez F (2000) Specificity of QTLs for partial and non-host resistance of barley to leaf rust fungi. Acta Phytopathologica et Entomologica Hungarica 35:13-21
Niks RE, Marcel TC (2009) Nonhost and basal resistance: How to explain specificity? New Phytologist 182:817-828
Niks RE, Parlevliet JE, Lindhout P, Bai Y (2011) Breeding crops with resistance to diseases and pests. Wageningen Academic Publishers:198pp
Pallotta MA, Graham RD, Langridge P, Sparrow DHB, Barker SJ (2000) RFLP mapping of manganese efficiency in barley. Theoretical and Applied Genetics 101:1100-1108
Parlevliet JE (1975) Partial resistance of barley to leafrust, Puccinia hordei. I. Effect of cultivar and development stage on latent period. Euphytica 24:21-27
Parlevliet JE (1979) Components of resistance that reduce the rate of epidemic development. Annual Review of Phytopathology 17:203-222
Qi X, Fufa F, Sijtsma D, Niks RE, Lindhout P, Stam P (2000) The evidence for abundance of QTLs for partial resistance to Puccinia hordei on the barley genome. Molecular Breeding 6:1-9
Qi X, Jiang G, Chen W, Niks RE, Stam P, Lindhout P (1999) Isolate-specific QTLs for partial resistance to Puccinia hordei in barley. Theoretical and Applied Genetics 99:877-884
Qi X, Niks RE, Stam P, Lindhout P (1998) Identification of QTLs for partial resistance to leaf rust (Puccinia hordei) in barley. Theoretical and Applied Genetics 96:1205-1215
St.Clair DA (2010) Quantitative disease resistance and quantitative resistance loci in breeding. Annual Review of Phytopathology 48:247-268
Stewart CN, Via LE (1993) A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques 14:748-750
van Ooijen JW (2006) JoinMap ${ }^{\circledR}$ 4, software for the calculation of genetic linkage maps in experimental populations. Kyazma B V, Wageningen, Netherlands
van Ooijen JW (2009) MapQTL ${ }^{\circledR}$ 6, software for the mapping of quantitative trait loci in experimental populations of diploid species. Kyazma B V, Wageningen, Netherlands
Zellerhoff N, Himmelbach A, Dong W, Bieri S, Schaffrath U, Schweizer P (2010) Nonhost resistance of barley to different fungal pathogens is associated with largely distinct, quantitative transcriptional responses. Plant Physiology 152:2053-2066
Zhang HS, Rosa Rd, Rubiales D, Lubbers HH, Molenveld JW, Niks RE (1994) Role of partial resistance to Puccinia hordei in barley in the defence of barley to inappropriate rust fungi. Physiological and Molecular Plant Pathology 45:219-228

Supplemental Figures

[^3]

Supplemental Figure 2: Transgenic loci linkage analysis of three segregating T_{1} progenies. Genomic DNA of four T_{1} plants from each primary transgenic line $\left(\mathrm{T}_{0}\right)$ were digested by HindIII, separated, blotted and hybridized with DIG-labeled HPT or $g f p$ probes.

Supplemental Figure 3: The six tentative chromosomal regions determining the transformation efficiency of GP.

Supplemental Figure 4: The pedigree of GP. Information extracted from GRIN. Symbol \uparrow indicates that the pedigree was not traced further.

Supplemental Table

Supplemental Table 1: The average ranking of susceptibility against Pt.F, Phm.R and Phs.F for the four DH lines selected for transformation efficiency tests.

Line	Pt (IF)	Phm (Severity score)	Phs (IF)	Average ranking	No. of susceptible QTL alleles
SG093N	20	4	21	8	6
SG062N	$\mathbf{1 3}$	$\mathbf{4}$	$\mathbf{4 9}$	$\mathbf{8}$	$\mathbf{6}$
SG133N	18	4	17	12	6
SG047N	11	5	17	16	6
Line on rank 1	33	5	49	-	-
SusPtrit	20	5	18	8	9

* Severity score

0 : Immune
1: Less than 3 pustules and medium or many flecks
2: 3-10 pustules
3: 10-100 pustules
4: More than 100 pustules
5: More than 500 pustules
Ranking involved 137 DH lines and SusPtrit.
'SusPtrit ranked number 1 in the average ranking.

Chapter 3

Specificity of barley near-nonhost and partial resistance QTLs towards adapted and non-adapted rust fungi

To be submitted

Specificity of barley near-nonhost and partial resistance QTLs towards adapted and non-adapted rust fungi

Yeo FKS, Martin-Sanz A, Wang C, Loriaux A, Marcel TC, and Niks RE
Laboratory of Plant Breeding, Wageningen University, 6700 AJ Wageningen, The Netherlands

Abstract

Partial resistance of barley to Puccinia hordei and nonhost resistance to non-adapted rust fungi inherits polygenically. The two types of resistance seem to share some genes and have a similar prehaustorial mechanism of resistance, but partial resistance is less complete than nonhost resistance of barley. Partial resistance to adapted rusts fungi seems, therefore, like a weak form of nonhost resistance to non-adapted rust fungi. If partial resistance and nonhost resistance are indeed based on the same principles, one can understand nonhost resistance by studying partial resistance and vice versa. Four partial resistance QTLs and one for nonhost resistance were selected to study their effect in near isogenic lines (NILs). SusPtrit and L94 are appropriate recurrent parents for NIL development because they are extremely susceptible to P. hordei and unusually susceptible to some non-adapted rust fungi at seedling stage. This allows the QTL effect in L94 and SusPtrit genetic backgrounds to be tested against different isolates of P. hordei and different species and isolates of non-adapted rust fungi. NILs of Rphq2, Rphq3, Rphq4 and Rnhq in L94 background were already available. In this study, we developed NILs in SusPtrit background for Rphq2, Rphq3, Rphq11, Rphq16 and two alleles of Rnhq. Whole genome genotyping of the NILs with the ILLUMINA iSelect 9k barley infinium chip showed some NILs to be free from unwanted donor genomes but some are not. The L94and SusPtrit-NILs were inoculated with selected adapted and non-adapted rust fungi. Some QTLs were rust isolate and rust species specific but others have a broader resistance spectrum, such as Rphq3 and Rphq11. However, the NILs may overestimate the spectrum of effectiveness for the gene underlying the QTL effect. If the spectrum of effectiveness for a QTL is confirmed, this study suggests some genes may be involved in partial as well as nonhost resistance. The NILs are suitable materials to start fine-mapping of the responsible genes for the QTLs they carry.

Keywords: NILs, Quantitative Trait Locus (QTL), Specificity, Puccinia

Introduction

Nonhost resistance is defined as resistance shown by all genotypes of a plant species to all genotypes of a potential pathogen species (Niks et al. 2011). It is impossible to test all genotypes of a plant species to all genotypes of potential pathogens. Hence, all 'nonhost' qualifications are virtually based on limited evidence.

Under certain conditions, such as under very high inoculum dose applied to seedling leaves, a low percentage of accessions of a putative nonhost species may turn out to be somewhat susceptible to a potential pathogen (Niks 1987). This marginal host status may qualify the plant species as near-nonhost to a certain tested potential pathogens. For example, after screening a set of 109 spring barley (Hordeum vulgare) accessions with different rust fungi, barley was classified as nonhost to most non-adapted rust fungi but as a marginal host, or near-nonhost, to some other non-adapted rust fungi like Puccinia triticina and P. hordei-murini (Atienza et al. 2004). In the context of our work, nonadapted rust fungi are rust fungi that are poorly or not adapted to barley, but primarily to one or few other plant species. The near-nonhost status of barley to some non-adapted rust fungi has opened up the opportunity to study barley nonhost resistance without resorting to interspecific crosses. The assumption is that the genetic basis of near-nonhost status may help to understand, by extrapolation, the genetic basis of full nonhost resistance. Rare barley accessions which were at the seedling stage moderately susceptible to P. triticina were intercrossed to develop an experimental line - SusPtrit, which is at the seedling stage exceptionally susceptible to P. triticina. SusPtrit is at seedling stage also susceptible to at least nine other non-adapted rust fungi to which barley is a near-nonhost (Atienza et al. 2004). Mapping populations developed by crossing SusPtrit with regular barley - Cebada Capa/SusPtrit (C/S) and Vada/SusPtrit (V/S) - showed that the immunity of Cebada Capa and Vada to the non-adapted rust fungi inherited polygenically. The two mapping populations segregated for different sets of quantitative trait loci (QTLs) with only few QTLs in common between the populations. Most mapped QTLs in the C/S and V/S were effective to only one or two rust species indicating high but overlapping specificities of QTLs for resistance to non-adapted rust fungi (Jafary et al. 2006; 2008).

Partial resistance is defined as resistance that delays the epidemic development despite a compatible infection type (Niks et al. 2011; Parlevliet 1979). Partial resistance of barley accessions to the barley leaf rust fungus (P. hordei) is due to a lower infection frequency, lower sporulation rate and longer latency period of the pathogen (Parlevliet 1979). As with the resistance of barley to non-adapted rust fungi, partial resistance of barley to P. hordei inherits polygenically and to date, more than 20 QTLs for partial resistance to P. hordei
have been mapped in different bi-parental populations at seedling and adult plant stages. Each mapping population segregates for a different set of QTLs with few QTLs shared (Marcel et al. 2007b; Qi et al. 2000). Some of the mapped QTLs were shown to have an isolate specific effect (González et al. 2012; Marcel et al. 2008; Niks et al. 2000; Qi et al. 1999).

Nonhost resistance of barley to non-adapted rust fungi and partial resistance to P. hordei are both based on reduced success in haustorium formation by the pathogen (Niks 1983a, b). Partial resistance to P. hordei seems, therefore, like a weak form of nonhost resistance to non-adapted rust fungi (Niks and Marcel 2009; Niks et al. 2011). Partial and nonhost resistance may share some genes because QTLs for partial resistance mapped in C/S and V/S tend to co-localise significantly with QTLs for resistance to non-adapted rust fungi (Jafary et al. 2008). For both resistances QTLs tend to coincide with peroxidase gene clusters (González et al. 2010). Transcriptomics on powdery mildew-inoculated barley suggested that partial resistance and nonhost resistance to powdery mildew are functionally associated (Zellerhoff et al. 2010). We hypothesize that nonhost and partial resistance are both based on the pathogen-associated molecular pattern-triggered (PAMPtriggered) defense system. The near-nonhost resistance and partial resistance of barley would result from incomplete suppression of PAMP-triggered defense by effectors of the pathogen (Niks and Marcel 2009). In the view of co-evolution, partial resistance may represent a transitional stage of losing or acquiring host status to a certain rust fungus.

If partial and nonhost resistance are indeed based on the same principles, one can understand nonhost resistance by studying partial resistance and vice versa. Five major QTLs for partial resistance to P. hordei were selected to study the molecular basis this resistance. Map-based cloning of the responsible genes at these QTLs has been initiated (Marcel et al. 2007b; Chapter 6 (Rphq2), this thesis; Y. Wang and X. Qi, Institute of Botany, Chinese Academy of Sciences, Beijing, unpublished). The effect of each QTL can be tested using QTL-near isogenic lines (QTL-NILs). A QTL is Mendelized when it is introgressed into a NIL (Alonso-Blanco and Koornneef 2000). The QTL effect is then evaluated in a uniform genetic background without the interference of other genes influencing the same trait. Such QTL-NILs are an important stage in map-based cloning of the responsible gene(s) determining the effect of the QTL.

SusPtrit and L94 served as recurrent parents. Both SusPtrit and L94 are extremely susceptible to P. hordei (Jafary et al. 2006). They are also susceptible to some non-adapted rust fungi at seedling stage, although L94 is not as susceptible as SusPtrit (Atienza et al. 2004). The QTL effect in L94 and SusPtrit genetic backgrounds can be tested not only against different isolates of P. hordei but also against different species and isolates of non-
adapted rust fungi to test whether genes for partial resistance may also play a role in resistance to non-adapted rust fungi.

The current study aims to develop NILs in SusPtrit genetic background (SusPtrit-NILs) for four partial resistance QTLs (Rphq) mapped in various mapping populations and derived from various donors. Two different alleles of nonhost resistance QTL (Rnhq) are also included to develop SusPtrit-NILs. The newly developed SusPtrit-NILs in this study together with the L94-NILs developed by van Berloo et al. (2001) and Marcel et al. (2007a) were inoculated with different adapted and non-adapted rust fungi to test the specificity of the introgressed QTLs against the different rust fungi.

Materials and Methods

SusPtrit-NILs development and whole genome genotyping

The plant materials used to develop SusPtrit-NILs for each QTL are listed in Table 1. SusPtrit was crossed with each donor accession to obtain an F_{1} generation. F_{1} individuals were backcrossed to SusPtrit for five or six rounds to obtain near-isogenic lines in BC_{5} to BC_{6}. SusPtrit was used as the female plant throughout the NILs development program.

Table 1: Plant materials for SusPtrit-NIL for resistance QTLs of interest

QTL	Immediate donor	Original donor	Recurrent parent	References
Rphq2	L94-Rphq2	Vada	SusPtrit	van Berloo et al. (2001) Marcel et al. (2007a)
Rphq3	L94-Rphq3	Vada	SusPtrit	van Berloo et al. (2001)
Marcel et al. (2007a)				
Rphq11	Steptoe	Steptoe	SusPtrit	Marcel et al. (2007b)
Rphq16	DOM	DOM	SusPtrit	Marcel et al. (2007b)
Rnhq.V	L94-Rnhq.V	Vada	SusPtrit	Niks et al. (2000)
Rnhq.L	L94	L94	SusPtrit	

At each round of backrossing, the donor allele of the QTL was selected by molecular markers, i.e. marker assisted selection (MAS). No whole genome selection against donor background was applied. For Rphq2, Rphq3, Rnhq.L. and Rnhq.V, their donor (L94 or L94-NILs) was not expected to contribute any other allele(s) for quantitative resistance to
rust fungi. Hence, only selection for the respective target QTLs was required. The MAS for Rphq11 and Rphq16 required positive selection for those QTLs and negative selection against a second QTL detected in the same donor. Steptoe, the donor of Rphq11 and DOM, the donor of Rphq16, each carry one additional partial resistance QTL - Rphq15 and Rphq17, respectively (Marcel et al. 2007b). The markers used for the selection in favour or against each QTL are listed in Table 2.

At generation $\mathrm{F}_{2} \mathrm{BC}_{5} \mathrm{~S}_{1}$ or $\mathrm{BC}_{6} \mathrm{~S}_{1}$, two SusPtrit-NILs (Sister NILs) were selected for each QTL (only one selected for Rphq2 and Rphq16). These SusPtrit-NILs together with the L94-NILs (Marcel et al. 2007a; van Berloo et al. 2001), Vada, SusPtrit, Steptoe, Dom and L94 were subjected to whole genome genotyping using the ILLUMINA iSelect 9k barley infinium chip which carries 7864 SNPs. Total DNA was extracted from young leaves using a CTAB-based method (Stewart and Via 1993).

The barley SNP integrated map (A. Martin-Sanz, R. Niks and P. Schweizer ERA-PG "TritNONHOST" project, ERAPG08.053; unpublished), was used as a guide to estimate the position and the size of the donor genome introgression in the NIL.
Table 2: The list of markers used for QTL selection in the NIL development program

QTLs	Chrom	Position (cM) ${ }^{\text {b }}$	No. of backcrossing cycles	Markers !	Position (cM) ${ }^{\text {b }}$	Types	References of marker
Rphq2	2H	148	6	```k00345 c scP15M51-204 besV76P5D5AR GBMS216 }\mp@subsup{}{}{\circ```	$\begin{gathered} 147 \\ 150 \\ - \\ 150 \end{gathered}$	$\begin{gathered} \text { CAPs } \\ \text { SCAR } \\ \text { SCAR } \\ \text { SSR } \end{gathered}$	Hori et al. (2005); Marcel et al. (2007a) Marcel et al. (2007a) Chapter 5, this thesis Li et al. (2003); Varshney et al. (2007)
Rphq3	6H	61	6	GBM1212 ${ }^{\text {c }}$ WBE201 HVM14 HVM22a ABG388 ${ }^{\text {c }}$	$\begin{aligned} & 54 \\ & 58 \\ & 61 \\ & 61 \\ & 72 \end{aligned}$	$\begin{gathered} \text { SSR } \\ \text { CAPs } \\ \text { SSR } \\ \text { SSR } \\ \text { CAPs } \end{gathered}$	Varshney et al. (2006); Varshney et al. (2007) Marcel et al. (2007a) Liu et al. (1996); Varshney et al. (2007) Liu et al. (1996); Varshney et al. (2007) Marcel et al. (2007a)
Rphq11	2H	90	5	$\begin{aligned} & \text { GBM1062 } \\ & \text { GBS0512 } \\ & \text { GBMS244 } \end{aligned}$	$\begin{gathered} 91 \\ 92^{*} \\ 97 \end{gathered}$	$\begin{gathered} \text { SSR } \\ \text { CAPs } \\ \text { SSR } \end{gathered}$	Thiel et al. (2003); Varshney et al. (2007) Stein et al. (2007); Chapter 4, this thesis Li et al. (2003); Varshney et al. (2007)
Rphq15 ${ }^{\text {® }}$	6H	22	-	scssr09398 ${ }^{\text {c }}$ MWG966 GBMS033 ${ }^{\text {c }}$	$\begin{gathered} 5 \\ 18 \\ 26 \end{gathered}$	$\begin{gathered} \text { SSR } \\ \text { CAPs } \\ \text { SSR } \end{gathered}$	Ramsay et al. (2004); Varshney et al. (2007) Graner et al. (1991); Chapter 4, this thesis Li et al. (2003); Varshney et al. (2007)
Rphq16	5H	170	6	$\begin{gathered} \text { scsnp03275 } \\ \text { Dst-33 } \\ \text { GMS002 }^{\mathrm{c}} \end{gathered}$	$\begin{aligned} & 163 \\ & 179 \end{aligned}$	CAPs SCAR SSR	Rostoks et al. (2005); Chapter 4, this thesis BarleyWorld.org; Chapter 4, this thesis Struss and Plieske (1998); Varshney et al. (2007)
Rphq17 ${ }^{\text {® }}$	3H	64	-	Bmag0136 Bmac0067	$\begin{aligned} & 64 \\ & 67 \end{aligned}$	$\begin{aligned} & \text { SSR } \\ & \text { SSR } \end{aligned}$	Ramsay et al. (2000); Varshney et al. (2007) Ramsay et al. (2000); Varshney et al. (2007)
Rnhq.V Rnhq.L	7H	89	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	WBE101 ${ }^{\text {c }}$ SKT1 MWG2031 GBM1303 ${ }^{\text {c }}$	$\begin{gathered} 83^{+} \\ - \\ 87 \\ 88^{+} \end{gathered}$	$\begin{aligned} & \text { CAPs } \\ & \text { CAPs } \\ & \text { CAPs } \\ & \text { SSR } \end{aligned}$	Marcel et al. (2007a) Kikuchi et al. (2003) Kikuchi et al. (2003) Varshney et al. (2007); Marcel et al. (2007a)

[^4]
Inoculum and disease tests

The levels of resistance of the NILs were determined for eight adapted and non-adapted Puccinia species and formae speciales. Four of these, P. hordei, P. hordei-secalini, P. hordei-bulbosi and P. triticina, were represented by more than one isolate (Table 3).

Table 3: Rust isolates used in this study.

Adapted			
Puccinia sp	Isolate	Origin	Abbreviation
P. hordei	1.2.1	Netherlands	Ph.1.2.1
P. hordei	Cordoba 4	Spain	Ph.Co4 ${ }^{\alpha}$
P. hordei	Uppsala	Sweden	Ph.Upp ${ }^{\beta}$
P. graminis f. sp. tritici		Hungary	Pgt
Non-adapted			
P. graminis f. sp. lolii	Rhenen	Netherlands	Pgl
P. hordei-murini	Rhenen	Netherlands	Phm. R
P. hordei-secalini	French	France	Phs.F
P. hordei-secalini	Groningen	Netherlands	Phs.G
P. hordei-secalini	Wageningen	Netherlands	Phs.W
P. hordei-bulbosi	Iran	Iran	Phb.Ir ${ }^{\gamma}$
P. hordei-bulbosi	Israel	Israel	Phb.Is ${ }^{\text {® }}$
P. triticina	BWR96258	Switzerland	Pt. $\mathrm{B}^{\text {E }}$
P. triticina	Flamingo	Netherlands	Pt.F
P. triticina	INRA	France	Pt. I^{η}
P. persistens	Wageningen	Netherlands	Pp.W

[^5]The disease tests were carried out at seedling stage in a greenhouse compartment with two to three series. The L94-NILs and SusPtrit-NILs together with the reference lines L94 and SusPtrit were sown in boxes ($37 \times 39 \mathrm{~cm}$). Each NIL and the relevant reference line were represented by five seedlings in each disease test. Twelve days after sowing, the unfolded primary leaf of each seedling was fixed horizontally with adaxial side up and inoculated in a settling tower (Niks et al, 2011).

For P. hordei, one milligram of inoculum per box (about 60 spores $/ \mathrm{cm}^{2}$) was used. For P. graminis f. sp. tritici ($P g t$) and the non-adapted rust fungi, two milligram of inoculum per box was applied. Lycopodium spores were used to dilute the inoculum about 10 times. The inoculated boxes were subjected to overnight incubation in a dew chamber, set at $18^{\circ} \mathrm{C}$ with 100% relative humidity, for 8 hours overnight, in the dark. After the incubation, the boxes were transferred to a greenhouse compartment. The temperature in the compartment was set at $20 \pm 3^{\circ} \mathrm{C}$ with 70% relative humidity.

Latency period (LP50S) of the P. hordei isolates was scored as described in Niks et al. (2011). From the day the first pustules became visible, a mid-section of each seedling leaf was delimited by marker pen, and mature pustules in this section were counted daily using a pocket lens ($\times 10$), until the number did not increase anymore (5 or 6 days). The LP of the pathogen on each seedling was evaluated by estimating the number of hours from inoculation to the moment at which 50% of the ultimate number of uredinia was visible. For Pgt, the percentage of area covered with lesions (ACL) was scored for SusPtrit and SusPtrit-NILs (as in Jafary et al. 2006). This is because the neighboring pustules and surrounding halos often merged. Such a merge of colonies was not observed in L94 and L94-NILs. Therefore, for $P g t$ infection frequency (IF - total number of pustules $/ \mathrm{cm}^{2}$) was scored on L94 and L94-NILs, at 12 days post inoculation. For non-adapted rust fungi, IF was scored at 12 days post inoculation. The relative latency period (RLP50S) and relative infection frequency (RIF) were calculated relative to the LP50S and IF on SusPtrit for SusPtrit-NILs and on L94 for L94-NILs. The data were tested for significant differences by the linear mixed model using GenStat ${ }^{\circledR} 14^{\text {th }}$ edition (VSN International Ltd. 2011). The least significant difference, $\mathrm{P}<0.05\left(\mathrm{LSD}_{0.05}\right)$ was used to declare if the L94-NILs and SusPtrit-NILs were significantly different from L94 and SusPtrit, respectively. The reported RLP50S and RIF data are the predicted means according to the linear mixed model.

Preliminary histological observations on non-adapted rust fungi in QTL-NILs

For six QTL-NIL/rust isolate combinations in which the macroscopic data suggested a relatively strong effect of the QTL on resistance level, histology of the infection was characterized. The selected combinations were sown and inoculated as for the macroscopic tests. For each QTL-rust interaction, two leaf segments were sampled on the fifth day post inoculation (5dpi). The collected leaf segments were bleached in acetic/ethanol (1:3) for a week, and stained with Uvitex 2B (Ciba-Geigy) (Rubiales and Niks 1996). A fluorescence microscope (Zeiss Axiophot, exciter filter BP 395-440, chromatic beam splitter FT 460 nm and barrier filter LP 420) was used to observe the leaf
segments. Approximately, 50 infection units were screened for each leaf segment and were classified into different stages of development (Niks 1982). Infection units with six or less haustorial mother cells were considered as early aborted. Infection units with more than six haustorial mother cells were classified as established, and their longest diameter was measured using an eyepiece micrometer. The number of infection units associated with autofluorescent cells, indicating plant cell necrosis, was recorded. For testing the diameter of established infection units for differences between barley accessions, a linear mixed model was performed using GenStat ${ }^{\circledR} 14^{\text {th }}$ edition (VSN International Ltd. 2011) unless indicated otherwise.

Results

Genome purity of L94- and SusPtrit- NILs

The whole genome genotyping for L94-Rphq2, L94-Rnhq.V, Sus-Rphq11.6 and SusRphq16 did not indicate any donor marker allele away from the target introgression, and hence these NILs may be clear from unwanted segments from the donor. The other NILs contained segment(s) of unwanted donor genome with size ranges from approximately 2 cM to 30 cM (Figure 1). The SusPtrit sister NILs did not tend to have the same inadvertent undesired donor fragments.

Marcel et al. (2007a) reported on the basis of 226 amplified fragment length polymorphism (AFLP) markers that L94-Rphq2 and L94-Rphq4 are free of unwanted donor segments, and L94-Rphq3 has a segment at the end of chromosome 3HL. The present genome-wide screen with SNP markers from the ILLUMINA iSelect 9k barley infinium chip did not reveal other donor fragments in L94-Rphq2, and confirmed the donor fragment at the end of chromosome 3HL for L94-Rphq3, but indicated three unwanted donor fragments in L94-Rphq4.

We compared the estimated size of QTL introgressions based on the integrated SNP map with the size estimated based on the position of their flanking markers on the barley integrated map [Marcel 2009, (Aghnoum et al., 2010)]. No discrepancy was observed except for the Rphq3- and Rnhq.V-introgressions in L94; Rphq2-, Rphq11- and Rnhq.Vintrogressions in SusPtrit, which may have donor DNA beyond the flanking markers of the QTL.

Figure 1: The graphical genotypes of L94- and SusPtrit-NILs carrying partial and nonhost resistance QTLs of interest. The introgression size in cM is indicated on the right hand side of the chromosome bars. The grey boxes in the chromosome bars indicate unwanted donor genome introgressions. The black boxes in the chromosome bars indicate the targeted introgressions carrying the QTLs.

Partial and nonhost resistance QTLs against adapted and non-adapted rust fungi

Table 4 summarizes the infection tests on the L94-NILs and SusPtrit-NILs with adapted and non-adapted rust fungi. Compared to the susceptible recurrent parent, some NILs were significantly more resistant only to P. hordei, others also to one or more non-adapted rust fungi (for example, compare SusPtrit-Rphq11 versus SusPtrit-Rphq16). L94-Rnhq gave a similar latency period of P. hordei as L94, but showed a significantly higher level of resistance than L94 when inoculated with four of the non-adapted rust species tested. These observations indicate that the responsible genes varied in spectrum of effectiveness to rust species and rust isolates. The data also indicate that QTLs may be effective to some rust isolates and not to others. Such isolate specificity occurred for resistance to the adapted P. hordei as well as to some non-adapted rust fungi. It seems surprising that for
some rust fungi relatively small differences in RIF values are significant, whereas in others large differences are not. The lack of significance in some cases where the difference is large may be due to a large experimental error in the experiment (see Pt.B and Pt.I in Table 4).

L94-Rphq4 was not included in the disease test against Ph.1.2.1 and Ph.Co4 because Rphq4 is only effective against Ph.1.2.1 at adult stage (Qi et al. 1998) and it was not detected in the L/V mapping population against Ph.Co4 at seedling stage (González et al. 2012). We could not confirm a significant effect of Rphq4 at the seedling stage to Ph.Upp, as reported by Marcel et al. (2008). L94-Rphq4 also showed a similar level of infection as L94 to Phm.R, the three isolate of Pt and the three isolates of Phs, and hence at the seedling stage Rphq4 did not appear to be effective to any of the non-adapted rust fungi tested here (data not shown).

Rphq2, Rphq3 and Rnhq. V-introgressions were available in two genetic backgrounds, viz. in SusPtrit and in L94. Some background effect was suggested. For example, the Rphq2introgression was effective against Ph.Co4 in L94 background, but not in SusPtrit background; Rnhq.V was effective against Ph.Upp in SusPtrit but not in L94 background. In other cases isolate specificity was consistently found in both backgrounds (e.g. Rphq3 against $P h . C o 4$ and the three isolates of $P h s$). Among the adapted rust fungi, $P h . U p p$ was the isolate to which the highest number QTL-introgressions were effective (five QTLintrogressions), and among the non-adapted rust fungi, it was isolate Pt.F (four QTLintrogressions).

The Sus-Rphq11 sister NILs had a higher level of resistance than SusPtrit to almost all the rust fungi tested and they were nearly completely resistant to Phb.Ir (Figure 2). No hypersensitivity response was observed macroscopically on Sus-Rphq11 sister NILs against all the rust fungi tested.

Figure 2: The urediospores of Phb.Ir on the leaf segment of SusPtrit and Sus-Rphq11.
Table 4: The resistance of L94-NIls and SusPtrit-NILs against adapted and non-adapted rust fungi.

Nils	Adapted rust fungi				Non-adapted rust fungi										
	$\begin{aligned} & P h .1 .2 .1 \\ & \text { RLP50S } \end{aligned}$	$\begin{aligned} & \text { Ph.Upp } \\ & \text { RLP50S } \end{aligned}$	$\begin{gathered} \text { Ph.Co4 } \\ \text { RLP50S } \end{gathered}$	$\begin{gathered} \text { Pgt }{ }^{*} \\ \text { RIF/ ACL (\%) } \end{gathered}$	$\begin{aligned} & P g l \\ & \text { RIF } \end{aligned}$	$\begin{gathered} \text { Phs.F } \\ \text { RIF } \end{gathered}$	$\begin{aligned} & \text { Phs.W } \\ & \text { RIF } \end{aligned}$	$\begin{aligned} & \text { Phs.G } \\ & \text { RIF } \end{aligned}$	$\begin{aligned} & \text { Phm.R } \\ & \text { RIF } \end{aligned}$	$\begin{gathered} \text { Pt.B! } \\ \text { RIF } \end{gathered}$	$\begin{aligned} & \text { Pt.F } \\ & \text { RIF } \end{aligned}$	$\begin{aligned} & \text { Pt.I ! } \\ & \text { RIF } \end{aligned}$	$\begin{gathered} P p . \mathrm{W} \\ \text { RIF } \end{gathered}$	$\begin{aligned} & \text { Phb.Is } \\ & \text { RIF } \end{aligned}$	Phb.Ir RIF
L94	100	100	100	100	100	100	100	100	100	100	100	100	n.d	n.d	100
L94-Rphq2	104	106	106	99	89	24	96	53	67	60	88	109	n.d	n.d	84
L94-Rphq3	103	105	106	36	9	19	52	30	77	36	35	31	n.d	n.d	86
L94-Rnhq.V	n.d	101	100	97	4	n.d	15	10	26	48	75	61	n.d	n.d	93
SusPtrit	100	100	100	60	100	100	100	100	100	100	100	100	100	100	100
Sus-Rphq2.1	103	102	99	68	83	159	79	153	109	112	116	126	155	134	136
Sus-Rphq3.1	105	105	101	53	22	131	105	120	74	60	54	76	104	74	85
Sus-Rphq3.6	105	104	102	52	35	113	113	170	84	63	60	73	135	94	90
Sus-Rphq11.6	104	106	102	38	27	69	44	83	46	36	98	56	65	52	3
Sus-Rphq11.12	104	106	102	43	38	42	43	42	42	43	75	58	49	37	2
Sus-Rphq16	107	107	106	63	102	163	109	119	112	105	91	91	200	100	91
Sus-Rnhq.La	101	99	100	56	59	91	71	77	89	198	85	139	77	61	86
Sus-Rnhq.Lb	100	100	99	53	54	63	68	68	95	114	85	119	76	66	87
Sus-Rnhq.V7	100	104	102	54	44	70	60	68	79	105	82	94	55	53	70
Sus-Rnhq.V10	101	104	101	58	64	77	71	66	95	119	91	101	80	69	73

Shaded cells contain values that differ significantly from the value of the respective recurrent parent for that rust fungus ($\alpha=0.05$).
*IF was scored for L94 and L94-NILs, ACL for Sus and SusPtrit-NILs
'Due to the great experimental error in some experiments, some NILs with fairly low RIF value were not significantly different from the reference line L94 or SusPtrit. n.d , not determined

Preliminary histological observations on partial and nonhost resistance QTL NILs against non-adapted rust fungi

The NILs with Rphq3, Rphq11 and Rnhq.V-introgression had a higher level of resistance than NILs containing one of the other introgressions when inoculated with a certain nonadapted rust fungi (Table 4). For those introgressions and a selection of rust fungi we determined the fate of about 50 infection units on two leaf samples per NIL/rust combination by UV microscopy (Table 5).

Rphq11-introgression in SusPtrit

The resistance observed on the NIL Sus-Rphq11 to non-adapted rust fungi was for Phb.Ir and Phs.W due to high early abortion without hypersensitivity but for Phm.R and Pp.W no enhanced level of early abortion was observed. The Rphql1introgression was not associated with high levels of autofluorescence near early aborted or established colonies. The established colonies on the sister NILs also did not necessary have smaller diameter than those on SusPtrit.

Rphq3-introgression in SusPtrit and L94

The Rphq3-introgression in SusPtrit and L94 affected resistance against Pt.F (Table 4) by increasing the proportion of early aborted colonies, with hardly or no induction of hypersensitivity. The introgression seemed to slow down the growth of established Pt.F colonies more obviously in L94 than in SusPtrit.

The background resistance present in L94 against Phs.G already caused a substantial early abortion of that rust fungus. The Rphq3-introgression did not increase early abortion further. The introgression seemed, however, to slow down the growth of established Phs.G colonies. We did not test the effect of the introgression in SusPtrit background, since in that background it did not seem to cause resistance (Table 4).

Rnhq.V-introgression in L94

The Rnhq.V-introgression affected resistance against non-adapted rust fungi such as Phs.W, Phs.G and Phm.R in L94 genetic background but not in SusPtrit background (Table 4). The resistance against Phs.W, Phs.G and Phm.R conferred by the Rnhq. V-introgression was not due to an enhanced proportion of early aborted colonies and was not associated with high levels of autofluorescence near
early aborted or established colonies. The introgression seemed to slow down the growth of established colonies of those non-adapted rust fungi.

In general, the resistance observed either increases the proportion of early abortion or restricts the growth of colonies or both. We also observed resistance confer by a QTL which seems to affect neither the proportion of early abortion nor the diameter of established colony, such as Rphq11-introgression against Phm.R and Pp.W. There is no systematic difference in the mechanism between the QTL-introgressions.

Table 5: The histology of the resistance to a selection of non-adapted rust fungi, conferred by introgressions carrying Rphq11 or Rphq3 or Rnhq.V in either SusPtrit or L94 background

QTL	Rust fungus	Line	$\mathrm{EA} \%(\mathrm{EA}+\mathrm{N})^{\alpha}$	Est \% $(\text { Est }+\mathrm{N})^{\beta}$	Diameter of Est infection units ($\mu \mathrm{m}$)
Rphq11	Phb.Ir ${ }^{\text {! }}$	SusPtrit	4 (0)	96 (0)	346
		Sus-Rphq11.6	24 (0)	76 (4)	232*
	Phs.W	SusPtrit	4 (0)	96 (0)	245
		Sus-Rphq11.6	29 (0)	71 (4)	265
		Sus-Rphq11.12	31 (4)	69 (3)	237
	Phm.R	SusPtrit	17 (17)	83 (36)	247
		Sus-Rphq11.6	19 (10)	81 (29)	228
		Sus-Rphq11.12	27 (35)	73 (50)	259
	Pp.W	SusPtrit	46 (0)	54 (0)	251
		Sus-Rphq11.6	34 (0)	66 (8)	266
		Sus-Rphq11.12	60 (0)	40 (7)	234
Rphq3	Phs.G	L94	50 (16)	50 (22)	199
		L94-Rphq3	40 (13)	60 (43)	139*
	Pt.F	L94	17 (0)	83 (7)	338
		L94-Rphq3	41 (6)	59 (16)	172*
		SusPtrit	23(0)	77 (1)	360
		Sus-Rphq3.1	49(0)	51(0)	336
		Sus-Rphq3.6	60(0)	40(0)	324
Rnhq.V	Phs.W	L94	17 (0)	83 (42)	336
		L94-Rnhq.V	25 (19)	75 (41)	203*
	Phs.G	L94	50 (16)	50 (22)	199
		L94-Rnhq.V	56 (9)	44 (38)	129*
	Phm.R	L94	37 (6)	63 (5)	344
		L94-Rnhq.V	39 (3)	61 (11)	241*

n.d. not determined

EA, early aborted colonies
Est, established colonies
+N , associated with autofluorescence
${ }^{\alpha}$ in () is the percentage of EA +N colonies from the total EA colonies
${ }^{\beta}$ in () is the percentage of Est +N colonies from the total Est colonies

* The means of L94-NILs significantly smaller than the mean of L94 or SusPtrit-NILs from SusPtrit ($\alpha=0.05$)
! t-test was used to analyse the data
Bold: The proportion of EA on the NIL is more than in the recurrent parent (not statistically tested)

Discussion

The susceptibility of L94 and SusPtrit to P. hordei made these lines suitable for development of NILs to study partial resistance. These NILs could also be studied to determine a possible pleiotropic effect of partial resistance genes on nonhost resistance to non-adapted rust fungi. SusPtrit is an experimental line which is at the seedling stage susceptible to at least nine non-adapted rust fungi (Atienza et al. 2004), and L94 has a remarkable level of susceptibility to several non-adapted rust fungi (Niks 1983a), but less extreme than SusPtrit in direct comparison (Atienza et al 2004). The substantial level of nonhost resistance in L94 makes it less ideal than SusPtrit to study a possible pleiotropic effect of partial resistance genes on nonhost resistance to non-adapted rust fungi.

The NILs can serve as materials to fine-map the QTLs in the introgressions, and later to map-based clone and functional characterization of the responsible genes. In this study, the NILs developed were used to confirm the resistance QTLs found in earlier mapping studies, to quantify their effect without the interference of other QTLs, and to study their spectrum of effectiveness to several adapted and non-adapted rust fungi.

The QTL-NILs suggested that the effects of the partial resistance genes depended on rust species and rust isolate. Some introgressions conferred a broader resistance spectrum than others, the broadest being Rphq11-introgression. This introgression was selected to be introduced into SusPtrit on the basis of its relatively large contribution (30% explained variation) to partial resistance to P. hordei in the population Steptoe x Morex (Marcel et al, 2007b). In the NILs the introgression appeared to confer broad spectrum resistance to nearly all non-adapted rust fungi included in the test. The NILs may overestimate the spectrum of effectiveness of the partial resistance genes for two reasons. First, some NILs contain inadvertent donor genome in the background (away from QTL region, Figure 1) which by chance may have additional resistance genes to the same or other rust isolate/species. Second, the introgressed QTL region may contain several resistance genes, each with a narrow spectrum of effectiveness, but together conferring a broad resistance spectrum against different rust isolates/species. Therefore, individual genes may be more specific than suggested by the data in Table 4. If a certain QTL-NIL has resistance to one rust isolate but not to another, the specificity should be real, since the same QTL-NIL was tested against different rust isolates, such as the Rphq2, Rphq16 and Rnhq.V-introgressions in SusPtrit against Ph.1.2.1. Isolate and species specificity of nonhost and partial resistance QTLs were observed in previous studies as well (González et al. 2012; Jafary et al. 2006; 2008; Marcel et al. 2008; Parlevliet 1977; 1978).

We compared the effect of Rphq2, Rphq3 and Rnhq.V against adapted and non-adapted rust fungi in SusPtrit and in L94 background. If an introgressed QTL is effective in L94 but not in SusPtrit and vice versa to a certain rust fungus (species/isolate), this may be due to the size of the introgressions in the two recurrent parents that may not cover an identical stretch of the chromosome, and hence absence or presence of additional resistance gene(s) on either of the introgressions. Possible inadvertent undesired donor segments in the background can also cause the different QTL effect observed in L94 and SusPtrit (as explained above). For example, Rphq3 confers resistance to the three isolates of Phs in L94 but not in SusPtrit background. The resistance may be due to the extra length of Rphq3-introgression in L94 (35 cM) compared to SusPtrit (16 cM) or the inadvertent undesired donor segments on 3 H and 5 H respectively (Figure 1).

The SusPtrit and L94 NILs are also different in recurrent genome and cytoplasmic materials since SusPtrit and L94 were the female recurrent parents during the NIL development program. The difference in the spectrum of effectiveness for a gene in two backgrounds may be due to interactions between the introgressed gene with other gene elsewhere on the genome (Holland 2007; Lagudah 2011) or with a cytoplasmic factor (Akula et al. 2012; Levings and Siedow 1992; Mazouz et al. 2002) present in one of the two backgrounds.

The resistance of the NILs against different non-adapted rust fungi does not seem to be associated with a hypersensitive response but ranges from occasionally to heavily associated with hypersensitive response at macroscopic level (Figure 3). This hypersensitive response can also be observed on the reference lines viz. L94 and SusPtrit against some non-adapted rust fungi.

Figure 3: The range of hypersensitive response on NILs inoculated with non-adapted rust fungi.

At microscopic level, the resistance observed on the NILs carrying Rphq11 and Rphq3 to non-adapted rust fungi involved for some rust fungi a prehaustorially acting mechanism and may involve some level of hypersensitivity in the L94-Rphq3-Pt.F interaction. For other rust fungi (Phm.R, Pp.W and Phs.G) the resistance is not due to a high proportion of early aborted colonies and this is also true for L94-Rnhq.V inoculated with Phs.W, Phs.G and Phm.R. The resistance conferred by the introgressions against the respective rust fungi can probably be due to slower growth of infection units, leading to smaller colony size such as the interaction between L94-Rphq3 with Phs.G and L94-Rnhq.V against Phs.W, Phs.G and Phm.R, but not on the sister NILs of Rphqll inoculated with Pp.W and Phm.R. The resistance conferred by Rphqll-introgression against $P p . \mathrm{W}$ and Phm.R probably is due to late abortion, i.e. abortion of colonies after establishment, but before sporulation (Niks 1982). The growth and development of colonies may have been arrested at a later stage than the moment we collected the leaf segments (5dpi). Further histological investigation is needed to establish the fungal development stage in which the resistance interferes with the infection process.

Our disease tests show that QTLs such as Rphq2 and Rphq16 in SusPtrit background affect resistance specifically to P. hordei. Other QTLs such as Rphq3 in L94 background and Rphq11 in SusPtrit background seem to have broader resistance spectrum. However, the NILs that we developed may overestimate the spectrum of effectiveness for a QTL. If the spectrum of effectiveness of the introgressions reflects indeed the pleiotropic effect of a single (quantitative) gene is true, this study would add evidence that partial resistance and nonhost resistance are (partly) based on the same genes, and hence are evolutionary and mechanistically part of the same principal (González et al. 2010; Jafary et al. 2008; Niks and Marcel 2009; Zellerhoff et al. 2010).

Acknowledgments

We particularly wish to thank Anton Vels for his careful maintenance of plant materials. The SNP genotyping of the NILs was part of the ERA-PG "TritNONHOST" project, ERAPG08.053, which was led by Dr. P. Schweizer (IPK, Gatersleben, Germany). The authors wish to thank the University Malaysia Sarawak, Malaysia for granting the fellowship to FKS Yeo to work on this PhD thesis in Wageningen.

References

Aghnoum R, Marcel TC, Johrde A, Pecchioni N, Schweizer P, Niks RE (2010) Basal host resistance of barley to powdery mildew: Connecting quantitative trait loci and candidate genes. Molecular PlantMicrobe Interactions 23:91-102
Akula UV, Poluru PG, Jangam AK, Jagannath PV (2012) Influence of types of sterile cytoplasm on the resistance to sorghum shoot fly (Atherigona soccata). Plant Breeding 131:94-99
Alonso-Blanco C, Koornneef M (2000) Naturally occurring variation in Arabidopsis: An underexploited resource for plant genetics. Trends in Plant Science 5:22-29
Atienza S, Jafary H, Niks RE (2004) Accumulation of genes for susceptibility to rust fungi for which barley is nearly a nonhost results in two barley lines with extreme multiple susceptibility. Planta 220:71-79
González AM, Marcel TC, Kohutova Z, Stam P, van der Linden CG, Niks RE (2010) Peroxidase profiling reveals genetic linkage between peroxidase gene clusters and basal host and non-host resistance to rusts and mildew in barley. PLoS ONE 5:e10495
González AM, Marcel TC, Niks RE (2012) Evidence for a minor gene-for-minor gene interaction explaining nonhypersensitive polygenic partial disease resistance. Phytopathology 102:1086-1093
Graner A, Jahoor A, Schondelmaier J, Siedler H, Pillen K, Fischbeck G, Wenzel G, Herrmann RG (1991) Construction of an RFLP map of barley. Theoretical and Applied Genetics 83:250-256
Holland JB (2007) Genetic architecture of complex traits in plants. Current Opinion in Plant Biology 10:156-161
Hori K, Sato K, Nankaku N, Takeda K (2005) QTL Analysis in Recombinant Chromosome Substitution Lines and Doubled Haploid Lines Derived from a Cross between Hordeum vulgare ssp. vulgare and Hordeum vulgare ssp. spontaneum. Molecular Breeding 16:295-311
Jafary H, Albertazzi G, Marcel TC, Niks RE (2008) High diversity of genes for nonhost resistance of barley to heterologous rust fungi. Genetics 178:2327-2339
Jafary H, Szabo LJ, Niks RE (2006) Innate nonhost immunity in barley to different heterologous rust fungi is controlled by sets of resistance genes with different and overlapping specificities. Molecular PlantMicrobe Interactions 19:1270-1279
Kikuchi S, Satoh K, Nagata T, Kawagashira N, Doi K, Kishimoto N, Yazaki J, Ishikawa M, Yamada H, Ooka H, Hotta I, Kojima K, Namiki T, Ohneda E, Yahagi W, Suzuki K, Li CJ, Ohtsuki K, Shishiki T, Sequencing FoAoISG, Group: A, Otomo Y, Murakami K, Iida Y, Sugano S, Fujimura T, Suzuki Y, Tsunoda Y, Kurosaki T, Kodama T, Masuda H, Kobayashi M, Xie Q, Lu M, Narikawa R, Sugiyama A, Mizuno K, Yokomizo S, Niikura J, Ikeda R, Ishibiki J, Kawamata M, Yoshimura A, Miura J, Kusumegi T, Oka M, Ryu R, Ueda M, Matsubara K, RIKEN:, Kawai J, Carninci P, Adachi J, Aizawa K, Arakawa T, Fukuda S, Hara A, Hashidume W, Hayatsu N, Imotani K, Ishii Y, Itoh M, Kagawa I, Kondo S, Konno H, Miyazaki A, Osato N, Ota Y, Saito R, Sasaki D, Sato K, Shibata K, Shinagawa A, Shiraki T, Yoshino M, Hayashizaki Y (2003) Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science 301:376-379
Lagudah ES (2011) Molecular genetics of race non-specific rust resistance in wheat. Euphytica 179:81-91
Levings CS, III, Siedow JN (1992) Molecular basis of disease susceptibility in the Texas cytoplasm of maize. Plant Molecular Biology 19:135-147
Li JZ, Sjakste TG, Röder MS, Ganal MW (2003) Development and genetic mapping of 127 new microsatellite markers in barley. Theoretical and Applied Genetics 107:1021-1027
Liu ZW, Biyashev RM, Maroof MAS (1996) Development of simple sequence repeat DNA markers and their integration into a barley linkage map. Theoretical and Applied Genetics 93:869-876
Marcel TC, Aghnoum R, Durand J, Varshney RK, Niks RE (2007a) Dissection of the barley 2L1. 0 region carrying the 'Laevigatum' quantitative resistance gene to leaf rust using near-isogenic lines (NIL) and subNIL. Molecular Plant-Microbe Interactions 20:1604-1615
Marcel TC, Gorguet B, Ta MT, Kohutova Z, Vels A, Niks RE (2008) Isolate specificity of quantitative trait loci for partial resistance of barley to Puccinia hordei confirmed in mapping populations and nearisogenic lines. New Phytologist 177:743-755
Marcel TC, Varshney RK, Barbieri M, Jafary H, de Kock MJD, Graner A, Niks RE (2007b) A high-density consensus map of barley to compare the distribution of QTLs for partial resistance to Puccinia hordei and of defence gene homologues. Theoretical and Applied Genetics 114:487-500

Mazouz H, Saadaoui EM, Jlibene M, El Bouami F (2002) Evidence of cytoplasm contributing resistance to specific groups of virulence of Mycosphaerella graminicola (Fuckel) Shroeter in two bread wheat genotypes (Triticum aestivum L.). Field Crops Research 79:197-206
Niks RE (1982) Early abortion of colonies of leaf rust, Puccinia hordei, in partially resistant barley seedlings. Canadian Journal of Botany 60:714-723
Niks RE (1983a) Comparative histology of partial resistance and the nonhost reaction to leaf rust pathogens in barley and wheat seedlings. Phytopathology 73:60-64
Niks RE (1983b) Haustorium formation by Puccinia hordei in leaves of hypersensitive, partially resistant, and nonhost plant genotypes. Phytopathology 73:64-66
Niks RE (1987) Nonhost plant species as donors for resistance to pathogens with narrow host range I. Determination of nonhost status. Euphytica 36:841-852
Niks RE, Fernandez E, Haperen Bv, Bekele Aleye B, Martinez F (2000) Specificity of QTLs for partial and non-host resistance of barley to leaf rust fungi. Acta Phytopathologica et Entomologica Hungarica 35:13-21
Niks RE, Marcel TC (2009) Nonhost and basal resistance: How to explain specificity? New Phytologist 182:817-828
Niks RE, Parlevliet JE, Lindhout P, Bai Y (2011) Breeding crops with resistance to diseases and pests. Wageningen Academic Publishers:198pp
Parlevliet JE (1977) Evidence of differential interaction in the polygenic Hoerdeum vulgare-Puccinia hordei relation during epidemic development. Phytopathology 67:776-778
Parlevliet JE (1978) Race-specific aspects of polygenic resistance of barley to leaf rust, Puccinia hordei. Netherlands Journal of Plant Pathology 84:121-126
Parlevliet JE (1979) Components of resistance that reduce the rate of epidemic development. Annual Review of Phytopathology 17:203-222
Qi X, Fufa F, Sijtsma D, Niks RE, Lindhout P, Stam P (2000) The evidence for abundance of QTLs for partial resistance to Puccinia hordei on the barley genome. Molecular Breeding 6:1-9
Qi X, Jiang G, Chen W, Niks RE, Stam P, Lindhout P (1999) Isolate-specific QTLs for partial resistance to Puccinia hordei in barley. Theoretical and Applied Genetics 99:877-884
Qi X, Niks RE, Stam P, Lindhout P (1998) Identification of QTLs for partial resistance to leaf rust (Puccinia hordei) in barley. Theoretical and Applied Genetics 96:1205-1215
Ramsay L, Macaulay M, Ivanissevich Sd, MacLean K, Cardle L, Fuller J, Edwards KJ, Tuvesson S, Morgante M, Massari A, Maestri E, Marmiroli N, Sjakste T, Ganal M, Powell W, Waugh R (2000) A simple sequence repeat-based linkage map of barley. Genetics 156:1997-2005
Ramsay L, Russell J, Macaulay M, Booth A, Thomas WTB, Waugh R (2004) Variation shown by molecular markers in barley: Genomic and genetic constraints. Aspects of Applied Biology 72:147-154
Rostoks N, Mudie S, Cardle L, Russell J, Ramsay L, Booth A, Svensson JT, Wanamaker SI, Walia H, Rodriguez EM, Hedley PE, Liu H, Morris J, Close TJ, Marshall DF, Waugh R (2005) Genomewide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Molecular Genetics and Genomics 274:515-527
Rubiales D, Niks RE (1996) Avoidance of rust infection by some genotypes of Hordeum chilense due to their relative inability to induce the formation of appressoria. Physiological and Molecular Plant Pathology 49:89-101
Stein N, Prasad M, Scholz U, Thiel T, Zhang H, Wolf M, Kota R, Varshney RK, Perovic D, Grosse I, Graner A (2007) A 1,000-loci transcript map of the barley genome: New anchoring points for integrative grass genomics. Theoretical and Applied Genetics 114:823-839
Stewart CN, Via LE (1993) A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques 14:748-750
Struss D, Plieske J (1998) The use of microsatellite markers for detection of genetic diversity in barley populations. Theoretical and Applied Genetics 97:308-315
Thiel T, Michalek W, Varshney R, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theoretical and Applied Genetics 106:411-422
van Berloo R, Aalbers H, Werkman A, Niks R (2001) Resistance QTL confirmed through development of QTL-NILs for barley leaf rust resistance. Molecular Breeding 8:187-195
van Dijk T (2007) Characterization of a QTL for nonhost resistance in barley. MSc thesis. Wageningen University, The Netherlands.
Varshney R, Marcel TC, Ramsay L, Russell J, Röder MS, Stein N, Waugh R, Langridge P, Niks RE, Graner A (2007) A high density barley microsatellite consensus map with 775 SSR loci. Theoretical and Applied Genetics 114:1091-1103
Varshney RK, Grosse I, Hähnel U, Siefken R, Prasad M, Stein N, Langridge P, Altschmied L, Graner A (2006) Genetic mapping and BAC assignment of EST-derived SSR markers shows non-uniform distribution of genes in the barley genome. Theoretical and Applied Genetics 113:239-250
Zellerhoff N, Himmelbach A, Dong W, Bieri S, Schaffrath U, Schweizer P (2010) Nonhost resistance of barley to different fungal pathogens is associated with largely distinct, quantitative transcriptional responses. Plant Physiology 152:2053-2066

Supplemental Table

Supplemental Table 1: The markers used for marker assisted selection in the development of NILs for targeted QTLs

QTLs	Name	Type	Chrom	Restriction enzyme	Tm (${ }^{\circ} \mathrm{C}$)	Primer sequences
Rphq2	k00345	CAPs	2H	SduI	56	F : TTCCTTCCATGGCTTTTGAC R : AAGGCACACATCCACCTTTC
	besV76P5D5AR	SCAR	2H		56	F : GAGGAGCCGTGTCGTCTTGT R : CCGTTTCCGTTCACTGGTTAT
	scP15M51-204	SCAR	2H		56	F : CGGAGGAAACATGGACAACGAA R : AGCGAGCTCACTGCCAATCTACC
	GBMS216	SSR	2H			Confidential
Rphq3	ABG388	CAPs	6H	NlaIII		F : GCACTGGCATAGTCTCACAA R : CGATGCTGGTTCGGTCATAC
	WBE201	CAPs	6H	MnlI	58	F : GGTCAGCAATTCCCCAAAGTT R : AATGCCGAAATCTCCCAAATGA
	GBM1212	SSR	6H			F : TGTTGCAAGAAGCAAGGATG R : GCGCTTACTCTCTCGTCGTC
	HVM14	SSR	6H			F : CGATCAAGGACATTTGGGTAAT R : AACTCTTCGGGTTCAACCAATA
	HVM22	SSR	6H			F : TTTTGGGGGATGCCTACATA R : TTTCAAATGGTTGGATTGGA
Rphq11	GBS0512	CAPs	2H	AciI	58	F : CCACATGCTGCGGAGGT R : CGTTGAGGATGATGCTGAGG
	GBM1062	SSR	2H			Confidential
	GBMS244	SSR	2 H			Confidential
Rphq15	MWG966	CAPs	6H	NlaIV	57	F: ATGCGTGCCCTTTGGAACA R : TGGCCTGCGATATGGAGACC
	GBMS033	SSR	6H			Confidential
	scssr09398	SSR	6H			F : AGAGCGCAAGTTACCAAGC R : GTGCACCTCAGCGAAAGG
Rphq16	scsnp03275	CAPs	5H	BgIII	65	F : AACGGCCAGGCTATAACCATCACA R : CGGCGGCTTCATCAATTTCACTAA
	Dst-33	SCAR	5H		45	F : GCACACATATTATCATGAAAAAGAGC R : ACCCCAAATGAGTTTCGATG
	GMS002	SSR	5H			F : CCGACAACATGCTATGAAGC R : CTGCAGCAAATACCCATGTG
Rphq17	Bmag0136	SSR	3H			$\begin{aligned} & F: \text { GTACGCTTTCAAACCTGG } \\ & R: \text { GTAGGAGGAAGAATAAGGAGG } \end{aligned}$
	Bmac0067	SSR	3H			F : AACGTACGAGCTCTTTTTCTA R : ATGCCAACTGCTTGTTTAG
Rnhq.V Rnhq. L	MWG2031	CAPs	7H	MwoI	55	F : TGTGACCTGTCAGACTGTTCAAGTT R : TACGTCGGCATAATTGGCA
	SKT1	CAPs	7H	AluI	60	F : TGGACCTCATAGCAGCCTTT R : GGTGCCACTGAGATTCACCT
	WBE101	CAPs	7H	HpyCH4IV	52	F : CGAGCGCCTGACGGACGAT R: CTCACGGCCCAGACATAGC
	GBM1303	SSR	7H			F : TCTTTTTGGAGGGGTTTCCT R : ATCATCTTCACGCTTCCTCC

Chapter 4

High resolution mapping of genes involved in plant stage specific, partial resistance of barley to leaf rust

To be submitted

High resolution mapping of genes involved in plant stage specific, partial resistance of barley to leaf rust

Yeo FKS, Bouchon R, Kuiken R, Loriaux A, Boyd C, Niks RE and Marcel TC

Laboratory of Plant Breeding, Wageningen University, 6700 AJ Wageningen, The Netherlands

Abstract

Partial resistance QTLs, Rphq11 and Rphq16, were first mapped against Puccinia hordei isolate 1.2.1 in seedlings of the mapping populations Steptoe/Morex (S / M) and Oregon Wolfe Barleys (OWB), respectively. In this study, QTL mapping was performed at adult plant stage for the two mapping populations challenged with the same rust isolate. In none of the series of disease tests for S/M and OWB we detected our target QTLs Rphq11 and Rphq16. Therefore, it is likely that these two QTLs are effective only at the seedling stage, and not at the adult plant stage. Cloning of several genes responsible for partial resistance of barley to P. hordei is undertaken in order to elucidate the molecular basis of this type of plant defence. A map-based cloning approach implies first to fine-map the QTL in a narrow genetic window. The commonly followed fine-mapping strategy makes use of near isogenic lines (NIL). NIL development is very laborious and time consuming. For barley, the development of a NIL with approximately 95% genome of the recurrent parent at generation BC_{4} will take approximately two years and four months. Another year will be necessary to obtain enough seeds of homozygous recombinant plants (i.e. sub-NILs) to allow fine-mapping. In total, about three years and four months are needed to fine-map a QTL to a certain genetic window. In this study, fine-mapping of partial resistance QTLs Rphq11 and Rphq16 was carried out using an approach aiming at speeding-up the development of plant material and simplifying its evaluation. The plant materials for finemapping were identified from early breeding materials (F_{2} for Rphq11 and $\mathrm{BC}_{1} / \mathrm{BC}_{2}$ for Rphq16) developed to produce QTL-NILs. The material was first selected to carry the targeted QTL in heterozygous condition and susceptibility alleles at other resistance QTLs in homozygous condition. This strategy took four to five generations to obtain fixed QTLrecombinants (i.e. homozygous recombinants at the Rphq11/Rphq16 QTL alleles, homozygous susceptible at the non-targeted QTL alleles). Their genomic background was still segregating, but expected not to be of influence on the resistance level. In less than 2 years, Rphqll was fine-mapped into a 0.2 cM genetic interval and a 1.4 cM genetic interval for Rphq16. The strongest candidate gene for Rphqll is phospholipid hydroperoxide glutathione peroxidase (PHGPx). This gene corresponds to the new Rphql1 peak marker - WBE129, located within the refined 0.2 cM genetic interval and was one of the candidate genes for Rphqll identified through eQTL mapping on S/M challenged with the same rust isolate. There was no clear candidate gene identified for Rphq16.

Keywords: High Resoltuion Mapping, Quantitative Trait Locus (QTL), Specificity, Puccinia, Barley

Introduction

Partial resistance of barley against barley leaf rust (Puccinia hordei) results in a reduced epidemic, despite a compatible infection type (Parlevliet 1979). The epidemic reduction is due to a lower infection frequency, lower sporulation rate and longer latency period of the pathogen on barley accessions with high levels of partial resistance (Parlevliet 1979). Partial resistance is a prehaustorial resistance, where failed attempts to form haustoria are associated with cell wall reinforcements, called papillae (Niks 1986; O'Connell and Panstruga 2006). The failure of a proportion of the haustorium formation reduces the capacity for nutrient extraction from the plant and for delivery of pathogenicity promoting effectors into the plant cells (Catanzariti et al. 2007; de Jonge et al. 2011). This mechanism of resistance is similar to, but less complete than, nonhost resistance of barley to non-adapted rust fungi like P. recondita and P. triticina (Niks 1983, 1989).

Partial resistance of barley to P. hordei is polygenically inherited and is supposed to act on a minor-gene-for-minor-gene model (González et al. 2012; Marcel et al. 2008; Niks et al. 2000; Parlevliet and Zadoks 1977; Qi et al. 1999). There is an abundance of quantitative trait loci (QTL) for partial resistance against barley leaf rust. To date, at least 20 partial resistance QTLs against barley leaf rust have been mapped in different bi-parental mapping populations. In each barley mapping population, a different set of QTLs was identified, with few QTLs shared among the populations. The explained phenotypic variation per QTL ranges from around three to 50 per cent (Jafary et al. 2008; Marcel et al. 2007b; 2008; Niks et al. 2000; Qi et al. 1998; 1999; Yeo et al. 2014).

QTL mapping studies indicated that the resistance QTLs can be effective across different stages of plant development or only at specific stages (Qi et al. 1998), which was confirmed on QTLs that were introgressed into near isogenic lines (NILs) (Wang et al. 2010). Plant growth stage dependent effects of resistance QTLs have also been observed in other plant-pathosystems (Aghnoum et al. 2010; Dedryver et al. 2009; Shankar et al. 2008; Steffenson et al. 1996). Consequently, different sets of QTLs will protect barley plants against leaf rust at different growth stages. It is important to know the effect of QTLs at different growth stages before to design breeding strategies or to engage in a positional cloning procedure.

Cloning of several genes responsible for partial resistance of barley to P. hordei is undertaken in order to elucidate the molecular basis of this type of plant defence (Marcel et al. 2007a). Fine-mapping and positional cloning requires the evaluation of very large numbers of plants in a controlled environment and a similar physiological condition,
which is often only feasible at the seedling stage. To date, no QTLs for resistance to rust fungi or powdery mildew have been cloned in barley. However, three large-effect resistance QTLs have been cloned in rice; two against Magnaporthe oryzae (Fukuoka et al. 2009; Hayashi et al. 2010) and one wide-spectrum QTL against Rhizoctonia solani and M. oryzae (Manosalva et al. 2009). There are two cloned QTLs in wheat; one against P. striiformis (Fu et al. 2009) and one wide-spectrum QTL against P. triticina, P. striiformis and Blumeria graminis (Krattinger et al. 2009). All the genes cloned so far belong to different gene families and are involved in different functions, suggesting a wide diversity of mechanisms underlying partial resistance.

A map-based cloning approach implies first to fine-map the QTL in a genetic window sufficiently narrow to make physical mapping feasible. This approach requires the effect of the QTL to be sufficiently clear to infer the QTL genotype from its phenotype; the phenotypic variation explained by the QTL should be more than 10% according to Kou and Wang (2012). The commonly followed fine-mapping strategy makes use of near isogenic lines (NIL). In non-isogenic plant materials, other QTLs may be segregating in the genetic background blurring the determination of the phenotypic effect of the QTL of interest. The NIL carrying the targeted QTL is crossed with its recurrent parent to "Mendelize" the QTL in the resulting progeny. Then, a selection of plants recombining at the QTL containing chromosome region (i.e. sub-NILs) and the evaluation of their phenotype allow to pin-point the targeted QTL into a refined genetic position (Han et al. 1999; Marcel et al. 2007a; Xue et al. 2010; Zhou et al. 2010). Fine-mapping using this strategy is efficient but very laborious and time consuming in generating the plant materials, marker development and genotyping.

Rphq11 and Rphq16 are partial resistance QTLs that were first mapped against P. hordei isolate 1.2 .1 in seedlings of the mapping populations Steptoe/Morex (S / M) and Oregon Wolfe Barleys (OWB), respectively (Marcel et al. 2007b). They are effective at seedling stage in their respective mapping population, each explaining approximately 30% of the phenotypic variance. Rphqll was mapped at seedling stage near the middle of chromosome 2 HL and the resistance allele was contributed by Steptoe. It was also detected by Chen et al. (2010) as an expression QTL (eQTL) co-locating with the phenotypic QTL (pQTL) in the same mapping population. Six candidate genes were suggested by those authors that may explain Rphq11. Rphq16 was mapped at seedling stage near the telomeric region of chromosome 5 HL and the resistance allele was contributed by Dom.

The first objective of this study was to test whether Rphq11 and Rphq16 are also effective at adult plant stage. The second objective was to fine-map Rphqll and Rphq16 using an
approach aimed at speeding-up the development of plant material and simplifying its evaluation with the final aim of cloning them. Rphq11 and Rphq16 qualify for map-based cloning to study partial resistance because of sufficient effect size at seedling stage.

Materials and methods

Inoculum

All the disease tests in this study were done with P. hordei isolate 1.2 .1 (Ph.1.2.1), the same isolate used in (Marcel et al. 2007b). This isolate is a monospore purification of the isolate 1.2 collected in the Netherlands in 1971 (Parlevliet 1976).

QTL mapping on adult plants

The Doubled Haploids (DH) mapping populations S/M (Kleinhofs et al. 1993) and OWB (Costa et al. 2001) were used to map QTLs for non-hypersensitive quantitative resistance at the adult plant developmental stage (heading stage Z51-Z55 on Zadoks' growth scale). Marker segregation data of S/M (150 DH lines) and OWB (94 DH lines) were extracted from the barley integrated map [Barley, Integrated, Marcel 2009 available at http://wheat.pw.usda.gov/GG2/index.shtml; (Aghnoum et al. 2010)]. Data comprise 3561 segregating markers in S/M and 882 in OWB. Skeletal maps were generated for S/M and OWB by selecting markers homogeneously distributed over the integrated map, spaced at approximately $1-5 \mathrm{cM}$ intervals.

The parental lines Steptoe and Morex or Dom and Rec and the reference barley lines L94 and Vada were included in each experiment. Parental and reference lines were sown continuously every 3 days from one week before to one week after the sowing of the DH lines of the two mapping populations. For each line, three seeds were sown in a pot. To ensure the uniformity of the developmental stage of the plants at the time of inoculation, plants of a mapping population were divided into 3-4 subgroups based on their heading date. For each subgroup, plants of parental and reference lines with a similar developmental stage were added. Three series - at different times of the year, were performed with three individuals per DH line for the first and second series, and one individual per DH line for the third series. The first and second series were conducted at a different greenhouse facility than the third series.

Plants were inoculated after the flag leaf was unfolded (around heading stage Z52). Per pot, one milligram of spores diluted 10 times with lycopodium spores were used as inoculum. Before the inoculation, the pots were lined-up two by two. Then, the inoculum was dusted over the plants as uniformly as possible. The inoculated plants were then placed in a humidity chamber overnight (8 hours) at 100% relative humidity in the dark at $18^{\circ} \mathrm{C}$ to allow the spores to germinate. After incubation, the plants were transferred to a greenhouse compartment where the temperature was set at $20 \pm 3^{\circ} \mathrm{C}$ with $30-70 \%$ relative humidity.

The flag leaf (F) of the three plants in each pot was scored for latency period (LP50A). It was scored daily by counting the mature pustules on a marked area of the F leaf until all the pustules matured. Latency period estimates the period of time in hours at which 50% of the total number of pustules is mature. It is among the most informative components of barley partial resistance to leaf rust and is relatively easy to measure (Niks et al. 2011; Parlevliet 1979). Relative latency period (RLP50A) was calculated relative to LP50A of Steptoe for S/M and relative to LP50A of Dom for OWB.

ANOVA was performed using GenStat ${ }^{\circledR} 14^{\text {th }}$ edition (VSN International Ltd. 2011). QTLs were mapped using MapQTL ${ }^{\circledR} 6$ (van Ooijen 2009). A permutation test was performed to set the LOD threshold to declare a QTL. The confidence interval of a QTL is the estimated LOD-2 support interval.

The data for heading date (HD) and plant height (PH) of S/M were downloaded from GrainGenes (http://wheat.pw.usda.gov/GG2/index.shtml). The QTLs for HD and PH were mapped on the S / M skeletal map generated from the barley integrated map [(Barley, Integrated, Marcel 2009; (Aghnoum et al. 2010)].

Selecting plant material segregating for a single target QTL

Previous QTL mapping studies at seedling stage revealed in the S/M population two QTLs contributed by Steptoe, Rphq11 and Rphq15, and in the OWB population two QTLs contributed by Dom, Rphq16 and Rphq17 (Marcel et al. 2007b). Steptoe and Dom were first crossed, and then recurrently backcrossed with the susceptible experimental line SusPtrit (Atienza et al. 2004). Molecular markers flanking the QTLs were used to select for the susceptible QTL alleles of Rphq15 and Rphq17, and to select for the resistance QTL alleles of Rphq11 and Rphq16 at each generation. Rphq11 and Rphq16 were finally introgressed into SusPtrit by backcrossing over five generations for Rphqll and six
generations for Rphq16 to obtain NILs (Figure 1). Details and results obtained with the NILs will be published elsewhere.

For Rphq11, the backcross of F_{1} plants to SusPtrit yielded a low number of BC_{1} seeds. Therefore, some F_{1} individuals were selfed to obtain the F_{2} generation. At the F_{2} generation, the resistance allele of Rphq1l was selected with three simple sequence repeat (SSR) markers (Bmag0125, GBM1062 and GBMS244) while the susceptibility allele (from SusPtrit) of Rphq15 was selected with two SSR markers (scssr09398 and GBM033) and a cleaved amplified polymorphic sequence (CAPS) marker (MWG966) (Table 1). The selected plants were heterozygous for the target QTL but lacked the second gene for resistance of the donor line at the other QTL. They were selfed, and $97 \mathrm{~F}_{3}$ seedlings were inoculated with Ph.1.2.1 (Figure 1). Their latency period was scored (LP50S) and the relative latency period (RLP50S) was calculated relative to SusPtrit. The F_{3} seedlings were also genotyped with the markers flanking Rphq11. The plants were grouped according to their QTL allele, homozygous Steptoe (AA), heterozygous (AB) and homozygous SusPtrit (BB), to estimate the effect and the dominance/recessiveness of Rphq11 at the seedling stage. Plants that had a recombination between the QTL flanking markers were excluded from the analysis. The data were analysed with Unbalanced One-way ANOVA using GenStat ${ }^{\circledR} 14^{\text {th }}$ edition (VSN International Ltd. 2011).

For Rphq16, the backcross of F_{1} plants to SusPtrit was successful and a sufficient number of BC_{1} seeds were obtained. The resistance allele of Rphq16 was selected with two CAPS markers (ABG390 and ABG391) and two SSR markers (GMS002 and scssr09041) while the susceptibility allele (from SusPtrit) of Rphql7 was selected with two SSR markers (Bmac0067 and Bmag0136) (Table 1). Similar to Rphq11, the selected plants were heterozygous for Rphq16 but lacked the other resistance QTL Rphq17 allele. Those plants were selfed and $52 \mathrm{BC}_{1} \mathrm{~S}_{1}$ seedlings were inoculated with Ph.1.2.1 (Figure 1). The QTL effect and the dominance/ recessiveness of Rphq16 were estimated as described for Rphq11.

Fine-mapping Rphq11 and Rphq16

Among the $97 \mathrm{~F}_{3}$ plants for Rphq11 and among the $52 \mathrm{BC}_{1} \mathrm{~S}_{1}$ plants for Rphq16, there were 12 and 18 recombinant plants, respectively. These plants were grown to set seeds which were then used to identify plants with homozygous recombination. These plants were then homozygous recombinants at the Rphql1/Rphq16 QTL alleles, homozygous susceptible at the Rphq15/Rphq17 QTL alleles, but their genomic background was still segregating. For simplicity, these plants will be called "fixed QTL-recombinants" from
this point onwards. These fixed QTL-recombinants were already used to refine the positions of Rphq11 and Rphq16 (data not shown). Based on the refined positions, new flanking markers were selected for Rphq11 (GBS0512 and GBMS244) and for Rphq16 (scsnp03275 and GMS002) (Table 1).

Figure 1: Procedure for fine-mapping a) Rphq11 and b) Rphq16 in parallel with their NIL development programs.

Table 1: Molecular markers used to select alleles at QTLs for resistance to P. hordei from barley cultivars Steptoe and Dom.

QTLs	Chrom.	Position ${ }^{\text {a }}$	Markers	Position ${ }^{\text {a }}$	Types	Ref. ${ }^{\text {b }}$
Rphq11 ${ }^{\text {d }}$	2H	90	Bmag0125	84	SSR	Varshney et al. (2007)
			GBM1062	91	SSR	Varshney et al. (2007)
			GBS0512	92	CAPS	Stein et al. (2007)
			GBMS244	97	SSR	Varshney et al. (2007)
Rphq15*	6H	22	scssr09398	5	SSR	Varshney et al. (2007)
			MWG966	18	CAPS	Graner et al. (1991)
			GBMS033	26	SSR	Varshney et al. (2007)
Rphq16 ${ }^{\text {S }}$	5H	170	ABG391	154	CAPS	Rostoks et al. (2005)
			ABG390	158	CAPS	Rostoks et al. (2005)
			scsnp03275	-	CAPS	Rostoks et al. (2005)
			GMS002	179	SSR	Varshney et al. (2007)
			scssr09041	179	SSR	Varshney et al. (2007)
Rphq17*	3 H	64	Bmag0136	64	SSR	Varshney et al. (2007)
			Bmac0067	67	SSR	Varshney et al. (2007)

${ }^{\mathbf{a}}$ The position is based on the integrated map (GrainGenes: Marcel 2009)
${ }^{\mathrm{b}}$ References for the CAPS markers give the origin of the sequences obtained for marker development. Primer sequences and annealing temperature are available in supplemental data
${ }^{\$}$ Resistance allele selected for

* Resistance allele selected against

In order to further fine-map Rphq11 and Rphq16, the F_{3} plants heterozygous for Rphq11 and BC_{2} plants heterozygous for Rphq16 were selfed to produce a large number of seeds. New recombinants for Rphq11 and Rphq16 were identified by screening the F_{4} and $\mathrm{BC}_{2} \mathrm{~S}_{1}$ plants with the new flanking markers for Rphq11 (GBS0512 and GBMS244) and Rphq16 (scsnp03275 and GMS002). The same markers were used to identify fixed-QTL recombinants for both QTLs in the subsequent generation. The fixed QTL-recombinants were then genotyped with all molecular markers located in the QTLs vicinities to generate high resolution genetic maps around Rphq11 and Rphq16.

The fixed QTL-recombinants were subjected to four rounds of disease tests for Rphq11 and three for Rphq16 (Figure 2). At each round, a different subset of the fixed QTLrecombinants was strategically selected based on previous results of disease tests in order to progressively refine the map position of the QTL. This strategy allowed more individuals to be tested per fixed QTL-recombinant at each round, increasing the confidence in the phenotype. SusPtrit was included in all disease tests as susceptible reference.

Figure 2: Rounds of disease test with fixed QTL-recombinants for (a) Rphq11 and (b) Rphq16. The graphical genotypes represent the fixed QTL-recombinants tested in each round. The white bars represent homozygous SusPtrit; black bars represent homozygous Steptoe (a) or Dom (b); grey bars represent intervals where recombination occured. Markers in bold are the flanking markers used after preliminary fine-mapping. M - New markers obtained (Figure 7).

Disease tests were performed at seedling stage following the method of Qi et al. (1998). The latency period (LP) was measured. The relative latency period on seedlings (RLP50S) was calculated by setting SusPtrit at 100. Data from different rounds of disease test were analyzed together under a linear mixed model with GenStat ${ }^{\circledR} 14^{\text {th }}$ edition (VSN International Ltd. 2011). The significant difference in mean RLP50S between fixed QTLrecombinants and SusPtrit was determined based on the least significant difference (LSD, $\mathrm{P}<0.05$).

Genomic DNA of the plant materials for recombinant screening was extracted following the method of Wang et al. (1993), adjusted for a 96-well format. This method allows quick genotyping of large numbers of plants, to recover rare recombinant plants. sbeadex ${ }^{\circledR}$ maxi plant kit (LGC Genomics) was used to isolate DNA of recombinant plants for selection of fixed QTL-recombinants.

Marker saturation of Rphq11 and Rphq16 intervals

Two approaches were followed to develop 20 molecular markers in the approximately 13 cM interval of Rphq11 and to develop 27 molecular markers in the approximately 25 cM interval of Rphq16. All the markers developed are polymorphic in SusPtrit/Steptoe as well as in SusPtrit/Dom.

Approach I: Molecular markers that mapped within the intervals of Rphq11 and Rphq16 on the integrated map (GrainGenes: Barley, Integrated, Marcel 2009) were targeted for generating new PCR based markers segregating in our material. Sequence information of targeted Restriction Fragment Length Polymorphism (RFLP) markers and Transcript Derived Markers (TDM) were used to design specific primer pairs. For RFLPs, sequences were downloaded from the GrainGenes database (http://wheat.pw.usda.gov/GG2/index .shtml). For TDMs, unigene sequences were downloaded from the Barley SNP Database (http://germinate.scri.ac.uk/barley_snpdb/dbStats_contig.html) (Potokina et al. 2008). For Sequence Tagged Sites (STS) markers, the primer sequences were obtained directly from the GrainGenes database. The primer sequences of Simple Sequence Repeat (SSR) were obtained from literature (Varshney et al. 2007). Sequence for the Diversity Array Technology (DArT) marker ctg 15632 and primers for the Cleaved Amplified Polymorphic Sequence (CAPS) marker Uni19962 have been reported elsewhere (Boyd et al. 2007).

Approach II: Conserved microsynteny between barley, rice and Brachypodium distachyon was also used to generate new markers closely linked to Rphq11 and Rphq16. The sequences of EST-based markers mapped in the vicinity of Rphqll and Rphq16 were
used for blast searches of rice and Brachypodium distachyon (B. distachyon) homologous genes, respectively, in the Rice Genome Annotation Project blast search (http://rice. plantbiology.msu.edu/analyses_search_blast.shtml) and in the B. distachyon blast portal (http://blast.brachypodium.org/). Rice and B. distachyon gene sequences within the identified synteny blocks were in turn blasted against the barley EST tentative consensus (TC) sequences from the barley TIGR Gene Indices database (http://www.tigr.org/tdb/tgi/ index.shtml). Only barley TC sequences with a blast hit having an E-value $\leq 10^{-15}$ were further considered for primer design and marker development. To maximise the chance of developing markers that map in the target regions of the barley genome, only barley TC sequences having an homologous gene in the syntenic regions of both rice and B. distachyon were further considered for primer design and marker development.

Primers were designed using the Lasergene software (DNASTAR® 8 Inc., Madison, WI, USA). For each primer pair a gradient PCR was performed to determine the optimal annealing temperature. Sequence Characterized Amplified Region (SCAR) markers were obtained by finding length polymorphism or allele-specific amplification directly after PCR on parental lines (SusPtrit, Steptoe - Rphq11 donor, and Dom - Rphq16 donor). For primers that amplified bands of the same size in parental lines, CAPS markers were developed. The PCR products were sent for sequencing (BaseClear, Leiden, the Netherlands). SNPs were identified from the sequence obtained, using the Lasergene software. The dCAPS finder program [http://helix.wustl.edu/ dcaps/dcaps.html; (Neff et al. 2002)] was then used to find discriminating restriction enzymes.

Markers developed based on TDMs, synteny and eQTL candidate genes were named as WBE for Wageningen Barley ESTs.

Results

Mapping QTL for partial resistance at adult stage in S/M and OWB populations

A significant series x genotype effect was observed for the adult plant disease tests of both S/M and OWB mapping populations. Consequently, QTL mapping was performed for each series independently. In both populations and in each series, RLP50A showed a continuous distribution of phenotypes with transgressive segregation (Supplemental Figure 1). On Steptoe and Rec RLP50A was always higher than on Morex and Dom, respectively, except in the first series for the OWBs where Rec and Dom had nearly the same RLP50A. A permutation test suggested a LOD threshold of 3 for each series. A QTL
was declared only when its LOD profile surpassed this threshold in at least two series of the same population.

Two partial resistance QTLs were mapped in S/M, viz. on chromosomes 1 H and 3 H (Table 2). These two QTLs were mapped in regions where no partial resistance QTL was reported before (Supplemental Figure 2). They are designated as Rphq22 and Rphq23, respectively. Rphq22 was mapped in all three series of the disease test. Rphq23 was mapped in two series of the disease test while its LOD score in the third series was just below the threshold. Rphq22 explained approximately 26% of the phenotypic variation and Rphq23 explained around 22%. For both QTLs, the resistance allele was donated by Steptoe. Also for another possible QTL mapped on chromosome 6 H the resistance allele was donated by Steptoe. But that third QTL was only detected in one series, and is therefore not reported in Table 2. No QTL resistance allele was found to be contributed by Morex despite the observed transgressive segregation in the mapping population. This most probably indicates the presence of QTLs with effects too small to be detected in this experiment.

The QTLs for heading date (HD) and plant height (PH) segregating in S/M were also positioned on the integrated map. Rphq22 and Rphq23 collocate neither with the HD nor the PH QTLs.

Table 2: Summary of partial resistance QTLs against barley leaf rust isolate 1.2.1 detected at adult plant stage in S/M DH mapping population. The QTL features are based on the series with the highest LOD score using MAPQTL ${ }^{\circledR} 6$ (van Ooijen 2009)

QTL	Chrom.	Peak marker	cM^{1}	LOD	Exp $^{2}{ }^{2}$	Donor
Rphq22	1 H	Contig8593	134.4	8.6	26.1	Steptoe
Rphq23	3 H	Contig10370	101.9	6.1	21.7	Steptoe

${ }^{1}$ Peak marker position on the integrated map "Barley, Integrated, Marcel 2009"
${ }^{2}$ Percentage of explained phenotypic variance (MapQTL ${ }^{\circledR} 6$)

For OWB, the correlation between series was very weak (data not presented). There was no QTL identified in at least two series of the disease test. In each series, a different unique QTL was identified on chromosomes $2 \mathrm{H}, 5 \mathrm{H}$ and 7 H , respectively.

In none of the three series of disease tests for S/M and OWB we detected our target QTLs Rphq11 and Rphq16. Therefore, it is likely that these two QTLs are effective only at the seedling stage (Marcel et al. 2007b), and not at the adult plant stage.

Markers developed for Rphq11 and Rphq16

Twenty markers were developed that supposedly mapped on chromosome 2 HL in the region of Rphq11 flanked by the markers Bmag0125 and GBMS244 (Supplemental Table 1). Among those, 16 markers mapped between the flanking markers while the other four markers (one CAPS and three SSR) mapped near but outside the flanked QTL interval. The 16 markers consist of two SSR, two SCAR and 12 CAPS markers. Seven of the linked markers are synteny-based markers, developed using rice and B. distachyon annotated genes. The rice syntenic region on chromosome 4 was identified by blast with Uni19962 and GBM1062 sequences. Uni19962 is homologous to Loc_Os04g47040 in rice and GBM1062 is homologous to Loc_Os 04 g 46820 in rice. However, there is no B. distachyon homolog for Uni19962 and GBM1062. Therefore the B. distachyon syntenic region on chromosome Bd5 was based on the rice homolog of Uni19962 and GBM1062, as well as two EST based markers, WBE144 and WBE129, which were flanked by Uni19962 and GBM1062. WBE144 is homologous to Bradi5g17980 in B. distachyon and WBE129 is homologous to Bradi5g18000 in B. distachyon

For Rphq16, twenty-seven markers were developed that supposedly mapped on chromosome 5HL in the QTL confidence interval flanked by the markers ABG391 and GMS002 (Supplemental Table 2). Among those, 18 markers mapped between the flanking markers of the QTL while the other nine markers (one SCAR, five CAPS and three SSR) mapped near but outside the flanked QTL interval. Three of the markers closely linked to Rphq16 are synteny-based markers. The rice syntenic region on chromosome 3 and B. distachyon syntenic region on chromosome Bd1 was identified by blast with WBE320 and GBS0408 sequences. WBE320 is homologous to Loc_Os03g63450 in rice and Bradi1g01500 in B. distachyon. GBS0408 is homologous to Loc_Os03g63940 in rice and Bradi1g00990 in B. distachyon.

High-resolution genetic map for Rphq11 and Rphq16

There were 89 fixed QTL-recombinants identified for Rphq11 and 135 for Rphq16 (described in the next section). These fixed QTL-recombinants were genotyped with the newly developed markers and high-resolution genetic maps were generated (Figure 3 and 4).

On the new high-resolution genetic map of the Rphq11 region, the distance between markers GBS0512 and GBMS244, flanking Rphq11, is approximately 6 cM . Their interval on the barley integrated map [Barley, Integrated, Marcel 2009; (Aghnoum et al. 2010)] is
comparable (5 cM). Sixteen markers were mapped in this interval, providing an average marker density of one marker per 0.4 cM . Marker positions of GBS0512, WBE301 and GBM1062 around Rphq11 in the new high resolution genetic map were slightly different compared to the integrated map, Marcel 2009. GBS0512 (Stein et al. 2007) and WBE301 (Potokina et al. 2008) were originally mapped in S/M, and GBM1062 in OWB (Varshney et al. 2007), which can explain the inaccuracy of their order on the integrated map. The 6 cM genetic window comprising Rphqll is in synteny with rice chromosome 4 and B. distachyon chromosome Bd5. The orientation of the syntenic block delimited by Uni19962 and WBE307 in barley is inverted compared to rice and B. distachyon, and microsyntenic rearrangements in marker order are also observed within the block. The orientation of the syntenic block and the order of markers are perfectly conserved between rice and B. distachyon (Figure 3).

On the new high-resolution genetic map of the Rphq16 region, the distance between markers scsnp03275 and GMS002, flanking Rphq16, is approximately 11 cM . Their interval is approximately 20 cM on the barley integrated map [Barley, Integrated, Marcel 2009; (Aghnoum et al. 2010)]. The estimated 20 cM interval was based on MWG2193, WBE310 and WBE314 which shared the same position as scsnp03275 on the highresolution genetic map because scsnp03275 was not mapped in the integrated map.

There were 18 markers mapped in this interval, providing an average marker density of one marker per 0.6 cM . Marker order at Rphq16 was in agreement with marker order on the integrated map, Marcel 2009. The 11 cM genetic window comprising Rphq16 is in synteny with rice chromosome 3 and B. distachyon chromosome Bd1. The orientation of this syntenic region and marker order are perfectly conserved between barley and rice but inverted in B. distachyon (Figure 4).
Figure 3: Alignment of (a) the integrated map, Marcel 2009 and (b) the high resolution map generated in this study, at the Rphq11 region on barley chromosome 2 HL with (c) the physical map of rice chromosome 4, and (d) the physical map of B. distachyon chromosome Bd5. The filled grey areas inside chromosome bars indicate the position of Rphq11. The bold marker on (a) is the peak marker of Rphq11. The bold markers on (b) are the flanking markers used for recombinant screening and the markers with an asterisk on (b) are syntenybased markers. The dashed lines show homologous sequences found between only two of the three
species barley, rice and B. distachyon.

Figure 4: Alignment of (a) the integrated map, Marcel 2009 and (b) the high resolution map generated in this study, at the Rphq16 region on barley choromosome 5HL with (c) the physical map of rice chromosome 3, and (d) the physical map of B. distachyon Bd 1 . The filled grey areas inside chromosome bars indicate the position of Rphq16. The bold marker on (a) is the peak marker of Rphq16. The bold markers on (b) are the flanking markers used for recombinant screening and the markers with an asterisk on are synteny-based markers. The dashed line shows a homologous sequence between barley and B. distachyon, which was only found in rice on another chromosome.

Fine-mapping of Rphq11 and Rphq16

At the early backcross generations, the disease test on $97 \mathrm{~F}_{3}$ plants segregating for Rphq11 showed that Rphq11 is an incompletely dominant gene, while the disease test on $52 \mathrm{BC}_{1} \mathrm{~S}_{1}$ plants segregating for Rphq16 shows that Rphq16 behaves predominantly as a recessive gene (Figure 5). The RLP50S comparison between the group of plants with homozygous donor allele (AA) and the group of plants without the donor allele (BB) shows that Rphqll gives an approximately 21 hours (11%) prolongation of latency period on the seedling leaves and Rphq16 an approximately 14 hours (7\%) prolongation.

Figure 5: Histograms of the averaged RLP50S of (a) F_{3} seedlings segregrating for Rphq11 and (b) $\mathrm{BC}_{1} \mathrm{~S}_{1}$ seedlings segregating for Rphq16. ' A ' is the allele from Steptoe/ Dom and ' B ' is the allele from SusPtrit. Similar letters above the bars indicate that the variance do not differ significantly according to the unbalanced one-way ANOVA analysis.

Recombinant plant screening of 730 plants at $\mathrm{F}_{4} / \mathrm{F}_{5}$ resulted in 89 fixed QTL-recombinants at Rphql1 representing ten recombination points between all the markers mapped between Uni19962 and GBM1062. For Rphq16, recombinant plant screening of 655 plants at $\mathrm{BC}_{2} \mathrm{~S}_{1} / \mathrm{BC}_{2} \mathrm{~S}_{2}$ resulted in 135 fixed QTL-recombinants representing nine recombination points between all the markers mapped between WBE320 and GBS0408.

After several rounds of disease tests on a subset of the fixed QTL-recombinants, Rphq11 was fine-mapped into a genetic window of 0.2 cM flanked by markers Uni19962/WBE306 proximal and WBE307/WBE308 distal. Indeed, the peak of the LOD profile generated by performing QTL mapping on the fixed QTL-recombinants supports this position of Rphq11 (Figure 6a). This is consistent with an RLP50S between 107 and 110 for fixed

QTL-recombinants having the Rphq11 allele, which is always significantly longer than the RLP50S on SusPtrit. And this is consistent with an RLP50S between 101 and 107 for fixed QTL-recombinants having the rphq11 allele, which is however not always significantly shorter than those having the Rphq11 allele.

Similarly, Rphq16 was fine-mapped into a genetic window of 1.4 cM flanked by markers WBE313 proximal and MWG2249/WBE320 distal. The peak of the LOD profile generated by performing QTL mapping on the fixed QTL-recombinants supports this position of Rphq16 (Figure 6b). This is consistent with RLP50S on fixed QTLrecombinants having the Rphq16 allele ranging from 106 to 111, which is always significantly longer than the RLP50S on SusPtrit. And this is also consistent with RLP50S on fixed QTL-recombinants having the rphq16 allele ranging from 100 to 105 , which is not always significantly shorter than those having the Rphq16 allele.

The refined position of Rphq11 in a 0.2 cM interval corresponds to the syntenic region inverted between barley and rice (Figure 4). The 0.2 cM in barley corresponds to physical distances of 161 kb with 18 annotated genes in rice and 79 kb with nine annotated genes in B. distachyon. Concerning Rphq16, its refined position of 1.4 cM in barley corresponds to physical distances of 118 kb with 20 annotated genes in rice and 188 kb with nine annotated genes in B. distachyon.

Discussion

Plant stage specific QTLs in S/M and OWB

The seedlings and adult plants of S/M and OWB mapping population were challenged with Ph.1.2.1. None of the partial resistance QTLs that were detected at seedling stage (Marcel et al. 2007b) were also detected in any of the three series of disease test at the adult plant developmental stage (this study). This indicates that Rphq11 and Rphq16 are plant growth stage dependent and that their characterization can only be performed at the seedling stage. Rphq22 and Rphq23, which were detected in this study at the adult stage in S/M, are also plant growth stage dependent, since they were not detected in the earlier seedling tests. This plant stage dependence of QTLs for partial resistance against P. hordei was also reported for other partial resistance QTLs (Qi et al. 1998; Wang et al. 2010).

Plant growth characteristics, such as heading date and plant height may influence the resistance of plants (Klahr et al. 2007; Williams 2003). In rice, the germin-like protein 1
was demonstrated to be involved in regulating plant height and disease resistance (Banerjee and Maiti 2010). Rphq22 and Rphq23 did not collocate with any heading date and plant height QTLs, which suggest that the resistance conferred by these two QTLs is not a pleiotropic effect of genes affecting heading date or plant height.

Adult plant QTLs from S/M and OWB are affected by the environment

In both populations, a clear series x genotype effect was observed, which was especially strong in the OWBs. From the three QTLs mapped in S/M, one was identified in only one of the three series. And all three QTLs mapped in OWB were identified in only one of the three series.

Environmental effect may be one of the contributing factors for the inconsistency of QTL identification. The disease tests were carried out at different time periods of the year and the third series was carried out at a different greenhouse facility. The performance of DH lines can be sensitive to the difference in fluctuations of temperature and light intensity or quality in the greenhouse, leading to the detection of different QTLs depending on the conditions. For example, detection of partial resistance QTL Rphq4 is generally detected only at adult plant stage, but in plants that germinated at low temperature, the gene is also clearly effective at young plant stages (Xiaoquan Qi, Institute of Botany, Chinese Academy of Sciences, Beijing, pers. comm.). In S/M, the one extra QTL mapped on chromosome 6 H in only one of the series can also be due to an interaction between genotype and environment (GxE).

The high morphological variation between the OWB lines may also have contributed to the inconsistency of QTLs mapped in this population. Indeed, the parental lines of the OWB population have been developed by systematically crossing recessive alleles for morphological and physiological trait into one parent and dominant alleles into the other parent, maximizing the genetic, morphological and agronomic diversity segregating in the population (Costa et al. 2001). The variation in plant height may affect the uniformity of inoculum deposition. Heading date variation can also influence the result of a disease test as the sequential inoculation of different groups of lines according to their heading date may also compromise uniformity and randomisation of DH lines over batches. Notably, the disease resistance of DH lines may vary based on the age of the flag leaf used. It is difficult to homogenise the disease tests for this population due to the high morphological variation between lines.

Figure 6: Graphical genotypes and phenotype means (RLP50S) for fixed QTLrecombinants of (a) Rphq11 and (b) Rphq16; the phenotype means were compiled from results of the different rounds of disease test. The white bars represent homozygous SusPtrit. Black bars represent homozygous Steptoe (a) or Dom (b). Grey bars represent intervals where recombination took place. RLP50S values with an asterisk are significantly longer than the RLP50S on SusPtrit. The number between two markers on the chromosome bar indicates the recombination frequency observed. The new genetic window of Rphq11 and Rphq16 is indicated between the long dash lines.

Efficient fine-mapping of Rphq11 and Rphq16

A QTL can be fine-mapped without the interference of other QTLs if a NIL were used as starting material. The NIL development is, however, laborious and time consuming. For barley, one generation is approximately four months, thus the development of a NIL with approximately 95% genome of recurrent parent at generation BC_{4} will take two years and four months. Another year will be necessary to obtain enough seeds of homozygous recombinant plants (i.e. sub-NILs) to allow fine-mapping. In total, about three years and four months are needed to fine-map a QTL to a certain genetic window. One way to shorten this procedure is by exploiting individual lines from recombinant inbred lines (RILs), DH lines, chromosome segment substitution lines (CSSL) and backcross inbred lines (BILS) (Gao et al. 2004; Liu and Bai 2010; Zhang et al. 2011). Effectively, individual line(s) which contain only the targeted donor allele of the QTL can be crossed with a susceptible parent in order to generate recombinant plants that will be used for finemapping. However, the construction of RILs, CSSL and BILs are as laborious and time consuming as NIL and sub-NILs development.

The fine-mapping strategy followed in this study aimed at identifying recombinants in early breeding material developed to produce QTL-NILs. The material was first selected to carry the targeted QTL in heterozygous condition and susceptibility alleles at other resistance QTLs in homozygous condition. This strategy took 4-5 generations to obtain fixed QTL-recombinants. This way, it became possible to fine-map a QTL in less than two years. In parallel, the NIL of the targeted QTLs were developed, which allowed the confirmation of the effect of Rphq11 and Rphq16 in an isogenic background (data not shown).

The position of Rphqll has been narrowed down to a genetic window of 0.2 cM (1460 gametes scored) and Rphq16 to a genetic window of 1.4 cM (1310 gametes scored). The fixed QTL-recombinants were not monitored for the presence of donor genome outside the regions of the targeted QTLs. Theoretically, the plant materials used to fine-map Rphq11 should have approximately 50% of donor genome (i.e. F_{3}). For Rphq16, the plant materials may still have approximately 13% of donor genome (i.e. $\mathrm{BC}_{2} \mathrm{~S}_{1}$). Consequently, previously undetected minor effect QTLs for resistance may still be present and even segregate in the material used to fine-map Rphq11 and Rphq16. As a result of this heterogeneous genetic background, we may expect genetic and hence phenotypic noise in determining the QTL position and assessment of its effect. This may explain that several of the fixed QTL-recombinants carrying the susceptible allele at the target QTL gives a significantly longer latency period than the susceptible line SusPtrit used for crossing.

Nevertheless, it was still possible to dissect the position of Rphq11 and Rphq16 as the RLP50 range between fixed QTL-recombinants carrying the susceptibility allele and fixed QTL-recombinants carrying the resistance allele at the corresponding QTL were nearly distinct (i.e. RLP50S was 101-107 versus 107-110 for Rphql1, and 100-105 versus 106111 for Rphq16). Moreover, the positions of Rphq11 and Rphq16 were supported by mapping QTLs on the high-resolution map. The peak marker of Rphq11 became WBE129. The peak marker for Rphq16 became MWG2249/WBE320, which is one of the markers flanking the window. Note that MWG2249/WBE320 has the second highest LOD score. The peak LOD score for Rphq16 was in a marker interval. The new small genetic window of Rphq11 and Rphq16 remains consistent with the position of their peak marker originally identified (Figure 3 and 4). The position of Rphq11 is further supported by an eQTL mapping performed in the S/M population by Chen et al. (2010). The authors mapped eQTL with measures of transcript abundance obtained in the S/M population 18 hours after inoculation with P. hordei isolate 1.2.1. They analysed the correlation between the identified eQTL and the pQTL including Rphq11. They identified 54 eQTL located in the confidence interval of Rphqll and six genes were proposed as candidate genes for Rphq11. Of these six, 'Unigene2453' encoding a phospholipid hydroperoxide glutathione peroxidase (PHGPx) was considered the strongest candidate for Rphq11. Interestingly, the marker developed on 'Unigene2453', WBE129, indeed was the peak marker of Rphq11 located within the refined 0.2 cM position of this pQTL .

Rphq11 and Rphq16 are the second and third fine-mapped QTLs for barley partial resistance to leaf rust. The fine-mapping strategy followed in this study has proven efficient to fine-map these two QTLs with a slightly smaller effect on the resistance level than of Rphq2. The latter gene explained 50% of the phenotypic variance, and was finemapped in another study (Marcel et al. 2007a). However, in order to fine-map smaller effect QTLs it would probably be necessary to reduce the noise caused by genetic background by starting the fine-mapping process at BC_{3} or at even later backcross generations as suggested by Yang et al. (2012).

Disrupted synteny between barley, rice and B. distachyon at Rphq11 and Rphq16

The evolutionary history of grasses - Poaceae reveals that Oryza (rice), Hordeum (barley) and Brachypodium (purple false brome) are split into sister taxa Ehrhartoideae (Oryza) and Pooideae (Hordeum and Brachypodium) (GPWG 2001; Kellogg 2001). Due to their evolutionary history, genomes of grasses are highly collinear. Collinearity can be defined as a specific form of synteny between two or more organisms with conserved gene order (Tang et al. 2008). Disruption of genome collinearity can occur during the evolution of
grasses. Comparative genomics between rice, barley and B. distachyon shows that barley has higher genome colinearity with B. distachyon in comparison with rice (Mayer et al. 2011). Disruption of genome collinearity is observed in the vicinity of Rphqll and Rphq16.

The genetic window of Rphq11 is syntenic with rice chromosome 4, in agreement with Pourkheirandish et al. (2007), and with B. distachyon chromosome Bd5 (Mayer et al. 2011). The orientation of the syntenic region corresponding to Rphqll is conserved between rice and B. distachyon but inverted in barley, which leads to a disruption in genome collinearity. Despite this reordering in gene order, the synteny was useful to saturate the Rphqll region with new molecular markers. The size of the Rphqll syntenic region in rice is approximately 161 kb , with 18 annotated genes. In B. distachyon, the size is approximately 79 kb with nine annotated genes. None of the genes found in this region are of the NBS-LRR type. However, several of them belong to gene families previously shown to be involved in resistance in other plant-pathogen systems. These genes include an actin-depolymerizing factor (Tian et al. 2009), a glutathione peroxidase (Lamb and Dixon 1997) and glucosyltransferases (Langlois-Meurinne et al. 2005; von Saint Paul et al. 2011). All of them are conserved between rice and B. distachyon.

Glutathione peroxidase is the best candidate gene for Rphq11. The peak marker for Rphq11 on the high-resolution genetic map is WBE129, which has been developed on the candidate gene Unigene 2453 encoding for the phospholipid hydroperoxide glutathione peroxidase (PHGPx). This PHGPx gene has also been identified as the strongest candidate to explain Rphqll by Chen et al. (2010), because it was detected as a high-LOD cisregulated expressed-QTL with significantly different transcript abundances between Steptoe and Morex.

The PHGPx gene corresponding to Unigene2453 is the strongest candidate gene for Rphq11. As it is conserved across rice, B. distachyon and barley, it may also have a conserved function in defence against pathogens across plant species. In rice, the expression of rice PHGPx homolog - OsPHGPx - is induced by infection by Magnaporthe grisea (Agrawal et al. 2002). The tomato PHGPx homolog - LePHGPx - also confers resistance, viz., against Botrytis cinerea, when stably expressed in tobacco (Chen et al. 2004).

The genetic window of Rphq16 is syntenic with rice chromosome 3, in agreement with Close et al. (2009), and B. distachyon chromosome Bd1 (Mayer et al. 2011). The orientation of the syntenic region corresponding to Rphq16 is conserved between barley and rice, but it is inverted in B. distachyon. The telomeric region, where Rphq16 is
mapped, is indeed prone to dynamic chromosomal evolution (See et al. 2006). The size of the syntenic region is approximately 118 kb with 20 annotated genes in rice, and 188 kb with nine annotated genes in B. distachyon. Several of these genes belong to gene families involved in resistance in other plant-pathogen systems, including an oxidoreductase (Montesano et al. 2003), an aspartokinase (Stuttmann et al. 2011), and a proteasome subunit (Yao et al. 2012) which are conserved between rice and B. distachyon. There is also a glutathione S-transferase (Dean et al. 2005) and a transcription factor BTF3 (Huh et al. 2012) found only in the rice syntenic region, as well as a protein kinase C (Subramaniam et al. 1997), protein tyrosine phosphatases (He et al. 2012), glycosyltransferases (Langlois-Meurinne et al. 2005) and an NBS-LRR gene (Loutre et al. 2009) found only in the B. distachyon syntenic region. There is no favourite candidate gene in the interval for the moment.

The genome comparison between barley, rice and B. distachyon showed that the observed inversion of gene order can be specific to one of the three genomes or shared between two genomes (Mayer et al. 2011). If synteny remains a powerful tool to saturate a region of interest with molecular markers for high-resolution mapping, it should always be used with caution, notably regarding the transferability of candidate genes from one species to the other. Besides that, the genetic distance is not a precise estimation of physical size. Rphqll has a smaller genetic interval than Rphq16. The comparison of their physical size in rice and B. distachyon does not tally to their genetic interval. The Rphqll syntenic region in rice has approximately 1 gene in every 9 kb . In B. distachyon, there is approximately 1 gene in every 6 kb . The Rphq16 syntenic region in rice and B. distachyon has approximately 1 gene in every 6 kb .

Feasibility of map-based cloning Rphq11 and Rphq16

A map-based cloning approach starts with fine-mapping the QTL in a genetic window sufficiently narrow to make physical mapping feasible. The QTL phenotypic effect has also to be strong enough to be unambiguously recognised. The fixed-QTL recombinants (obtained from $\mathrm{F}_{4} / \mathrm{F}_{5}$ and $\mathrm{BC}_{2} \mathrm{~S}_{1} / \mathrm{BC}_{2} \mathrm{~S}_{2}$ recombinant screen for Rphql1 and Rphq16, respectively) which carry the QTL allele Rphq11 or Rphq16 prolong the latency period by 12 hours in comparison to SusPtrit, which is sufficient to differentiate plants with the resistance allele QTL from those with the susceptibility allele. In agreement with this observation, the effect of Rphq11 and of Rphq16 was confirmed in their NIL (data not shown). Consequently, the phenotypic effect of Rphq11 and Rphq16 in their respective genetic background is high enough to pursue fine-mapping.

Rphq11 and Rphq16 were fine-mapped to barley regions of 0.2 cM and 1.4 cM , respectively, following a time-efficient strategy. Even though there is phenotypic noise, it was still possible to dissect the position of Rphq11 and Rphq16. Rphq11 mapped in a high recombination rate region $(1.1 \mathrm{Mb} / \mathrm{cM})$ of barley chromosome 2 H , and Rphq16 in a very high recombination rate region $(0.2-0.9 \mathrm{Mb} / \mathrm{cM}$) of barley chromosome 5 H (Künzel et al. 2000). This offers good perspectives for the map-based cloning of the gene(s) underlying these two QTLs. Indeed, according to the given ratios, Rphq11 is now estimated to be located in a region of approximately 220 kb , and Rphq16 in a region of approximately $200-900 \mathrm{~kb}$ of the barley genome.

Many QTLs for partial resistance were mapped in barley against barley leaf rust but the underlying genes have not been identified so far. Rphq2 has previously been fine-mapped to a genetic interval of 0.11 cM (Marcel et al. 2007a), encompassing a barley region of approximately 190 kb . Eight candidate genes to explain Rphq2 have been identified and are currently being tested functionally. The precise mapping of Rphq11 and Rphq16 is a new step towards the understanding of the genetic basis of partial resistance to barley leaf rust. The sequenced Morex genome (The International Barley Genome Sequencing Consortium 2012) can be the reference for constructing the physical map and identifying candidate genes for Rphql1 and Rphq16. This is followed by functional studies of those candidate genes. If the gene for Rphq11 and Rphq16 is not present in Morex, bacterial artificial chromosomes (BACs) for Steptoe (Rphql1 donor) and DOM (Rphq16 donor) should be constructed. These BAC libraries are then used to build physical maps for Rphq11 and Rphq16, respectively. Alignment of Rphq11 and Rphq16 sequences from Morex, Steptoe and DOM, respectively, can help to find the candidate genes that cannot be found in Morex. The identified gene(s) for Rphq2, Rphq11 and Rphq16 will reveal if the genes for barley partial resistance at seedling stage belong to the same gene family or if different types of genes are involved.

Acknowledgments

The authors wish to thank the University Malaysia Sarawak, Malaysia for granting the fellowship to FKS Yeo to work on this PhD thesis in Wageningen, and Prof RGF Visser for hosting FKS Yeo for that purpose at the Laboratory of Plant Breeding. We particularly wish to thank Anton Vels for his careful maintenance of plant materials.

References

Aghnoum R, Marcel TC, Johrde A, Pecchioni N, Schweizer P, Niks RE (2010) Basal host resistance of barley to powdery mildew: Connecting quantitative trait loci and candidate genes. Molecular PlantMicrobe Interactions 23:91-102
Agrawal GK, Rakwal R, Jwa N-S, Agrawal VP (2002) Effects of signaling molecules, protein phosphatase inhibitors and blast pathogen (Magnaporthe grisea) on the mRNA level of a rice (Oryza sativa L.) phospholipid hydroperoxide glutathione peroxidase (OsPHGPX) gene in seedling leaves. Gene 283:227-236
Atienza S, Jafary H, Niks RE (2004) Accumulation of genes for susceptibility to rust fungi for which barley is nearly a nonhost results in two barley lines with extreme multiple susceptibility. Planta 220:71-79
Banerjee J, Maiti MK (2010) Functional role of rice germin-like protein1 in regulation of plant height and disease resistance. Biochemical and Biophysical Research Communications 394:178-183
Boyd CN, Horsley R, Kleinhofs A (2007) Barley chromosome 2 (2H) bin 10 fusarium head blight resistance QTL: Mapping and development of isolines. 2007 National Fusarium Head Blight Forum. Citeseer, p 170
Catanzariti A, Dodds PN, Ellis JG (2007) Avirulence proteins from haustoria-forming pathogens. FEMS Microbiology Letters 269:181-188
Chen S, Vaghchhipawala Z, Li W, Asard H, Dickman MB (2004) Tomato phospholipid hydroperoxide glutathione peroxidase inhibits cell death induced by bax and oxidative stresses in yeast and plants. Plant Physiology 135:1630-1641
Chen X, Hackett CA, Niks RE, Hedley PE, Booth C, Druka A, Marcel TC, Vels A, Bayer M, Milne I (2010) An eQTL analysis of partial resistance to Puccinia hordei in barley. PLoS ONE 5:e8598
Close T, Bhat P, Lonardi S, Wu Y, Rostoks N, Ramsay L, Druka A, Stein N, Svensson J, Wanamaker S, Bozdag S, Roose M, Moscou M, Chao S, Varshney R, Szucs P, Sato K, Hayes P, Matthews D, Kleinhofs A, Muehlbauer G, DeYoung J, Marshall D, Madishetty K, Fenton R, Condamine P, Graner A, Waugh R (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics 10:582
Costa JM, Corey A, Hayes PM, Jobet C, Kleinhofs A, Kopisch-Obusch A, Kramer SF, Kudrna D, Li M, Riera-Lizarazu O (2001) Molecular mapping of the Oregon Wolfe Barleys: A phenotypically polymorphic doubled-haploid population. Theoretical and Applied Genetics 103:415-424
de Jonge R, Bolton MD, Thomma BPHJ (2011) How filamentous pathogens co-opt plants: The ins and outs of fungal effectors. Current Opinion in Plant Biology 14:400-406
Dean JD, Goodwin PH, Hsiang T (2005) Induction of glutathione S-transferase genes of Nicotiana benthamiana following infection by Colletotrichum destructivum and C. orbiculare and involvement of one in resistance. Journal of Experimental Botany 56:1525-1533
Dedryver F, Paillard S, Mallard S, Robert O, Trottet M, Nègre S, Verplancke G, Jahier J (2009) Characterization of genetic components involved in durable resistance to stripe rust in the bread wheat 'Renan'. Phytopathology 99:968-973
Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J (2009) A kinaseSTART gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357-1360
Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M (2009) Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 325:998-1001
Gao W, Clancy JA, Han F, Jones BL, Budde A, Wesenberg DM, Kleinhofs A, Ullrich SE (2004) Fine mapping of a malting-quality QTL complex near the chromosome 4HS telomere in barley. Theoretical and Applied Genetics 109:750-760
González AM, Marcel TC, Niks RE (2012) Evidence for a minor gene-for-minor gene interaction explaining nonhypersensitive polygenic partial disease resistance. Phytopathology 102:1086-1093
GPWG (2001) Phylogeny and subfamilial classification of the grasses (Poaceae) v. 882001
Graner A, Jahoor A, Schondelmaier J, Siedler H, Pillen K, Fischbeck G, Wenzel G, Herrmann RG (1991) Construction of an RFLP map of barley. Theoretical and Applied Genetics 83:250-256
Han F, Ullrich SE, Clancy JA, Romagosa I (1999) Inheritance and fine mapping of a major barley seed dormancy QTL. Plant Science 143:113-118

Hayashi N, Inoue H, Kato T, Funao T, Shirota M, Shimizu T, Kanamori H, Yamane H, Hayano-Saito Y, Matsumoto T, Yano M, Takatsuji H (2010) Durable panicle blast-resistance gene Pb 1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication. The Plant Journal 64:498-510
He H, Su J, Shu S, Zhang Y, Ao Y, Liu B, Feng D, Wang J, Wang H (2012) Two homologous putative protein tyrosine phosphatases, OsPFA-DSP2 and AtPFA-DSP4, negatively regulate the pathogen response in transgenic plants. PLoS ONE 7:e34995
Huh SU, Kim K-J, Paek K-H (2012) Capsicum annuum basic transcription factor 3 (CaBtf3) regulates transcription of pathogenesis-related genes during hypersensitive response upon Tobacco mosaic virus infection. Biochemical and Biophysical Research Communications 417:910-917
Jafary H, Albertazzi G, Marcel TC, Niks RE (2008) High diversity of genes for nonhost resistance of barley to heterologous rust fungi. Genetics 178:2327-2339
Kellogg EA (2001) Evolutionary History of the Grasses. Plant Physiology 125:1198-1205
Klahr A, Zimmermann G, Wenzel G, Mohler V (2007) Effects of environment, disease progress, plant height and heading date on the detection of QTLs for resistance to Fusarium head blight in an European winter wheat cross. Euphytica 154:17-28
Kleinhofs A, Kilian A, Saghai Maroof MA, Biyashev RM, Hayes P, Chen FQ, Lapitan N, Fenwick A, Blake TK, Kanazin V (1993) A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome. Theoretical and Applied Genetics 86:705-712
Kou Y, Wang S (2012) Toward an understanding of the molecular basis of quantitative disease resistance in rice. Journal of Biotechnology 159:283-290
Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360-1363
Künzel G, Korzun L, Meister A (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154:397412
Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annual Review of Plant Physiology and Plant Molecular Biology 48:251-275
Langlois-Meurinne M, Gachon CMM, Saindrenan P (2005) Pathogen-responsive expression of glycosyltransferase genes UGT73B3 and UGT73B5 is necessary for resistance to Pseudomonas syringae pv tomato in Arabidopsis. Plant Physiology 139:1890-1901
Liu S, Bai G (2010) Dissection and fine mapping of a major QTL for preharvest sprouting resistance in white wheat Rio Blanco. Theoretical and Applied Genetics 121:1395-1404
Loutre C, Wicker T, Travella S, Galli P, Scofield S, Fahima T, Feuillet C, Keller B (2009) Two different CC-NBS-LRR genes are required for Lr10-mediated leaf rust resistance in tetraploid and hexaploid wheat. The Plant Journal 60:1043-1054
Manosalva PM, Davidson RM, Liu B, Zhu X, Hulbert SH, Leung H, Leach JE (2009) A germin-like protein gene family functions as a complex quantitative trait locus conferring broad-spectrum disease resistance in rice. Plant Physiology 149:286-296
Marcel TC, Aghnoum R, Durand J, Varshney RK, Niks RE (2007a) Dissection of the barley 2L1. 0 region carrying the 'Laevigatum' quantitative resistance gene to leaf rust using near-isogenic lines (NIL) and subNIL. Molecular Plant-Microbe Interactions 20:1604-1615
Marcel TC, Gorguet B, Ta MT, Kohutova Z, Vels A, Niks RE (2008) Isolate specificity of quantitative trait loci for partial resistance of barley to Puccinia hordei confirmed in mapping populations and nearisogenic lines. New Phytologist 177:743-755
Marcel TC, Varshney RK, Barbieri M, Jafary H, de Kock MJD, Graner A, Niks RE (2007b) A high-density consensus map of barley to compare the distribution of QTLs for partial resistance to Puccinia hordei and of defence gene homologues. Theoretical and Applied Genetics 114:487-500
Mayer KFX, Martis M, Hedley PE, Šimková H, Liu H, Morris JA, Steuernagel B, Taudien S, Roessner S, Gundlach H, Kubaláková M, Suchánková P, Murat F, Felder M, Nussbaumer T, Graner A, Salse J, Endo T, Sakai H, Tanaka T, Itoh T, Sato K, Platzer M, Matsumoto T, Scholz U, Doležel J, Waugh R, Stein N (2011) Unlocking the barley genome by chromosomal and comparative genomics. The Plant Cell Online 23:1249-1263

Montesano M, Hyyti, auml, inen H, Wettstein R, Palva ET (2003) A novel potato defence-related alcohol:NADP+ oxidoreductase induced in response to Erwinia carotovora. Plant Molecular Biology 52:177-189
Neff MM, Turk E, Kalishman M (2002) Web-based primer design for single nucleotide polymorphism analysis. Trends in Genetics 18:613-615
Niks RE (1983) Comparative histology of partial resistance and the nonhost reaction to leaf rust pathogens in barley and wheat seedlings. Phytopathology 73:60-64
Niks RE (1986) Failure of haustorial development as a factor in slow growth and development of Puccinia hordei in partially resistant barley seedlings. Physiological and Molecular Plant Pathology 28:309322
Niks RE (1989) Induced accessibility and inaccessibility of barley cells in seedling leaves inoculated with two leaf rust species. Journal of Phytopathology 124:296-308
Niks RE, Fernandez E, Haperen Bv, Bekele Aleye B, Martinez F (2000) Specificity of QTLs for partial and non-host resistance of barley to leaf rust fungi. Acta Phytopathologica et Entomologica Hungarica 35:13-21
Niks RE, Parlevliet JE, Lindhout P, Bai Y (2011) Breeding crops with resistance to diseases and pests. Wageningen Academic Publishers:198pp
O’Connell RJ, Panstruga R (2006) Tête à tête inside a plant cell: Establishing compatibility between plants and biotrophic fungi and oomycetes. New Phytologist 171:699-718
Parlevliet JE (1976) Evaluation of the concept of horizontal resistance in the barley/Puccinia hordei hostpathogen relationship. Phytopathology 66:494-497
Parlevliet JE (1979) Components of resistance that reduce the rate of epidemic development. Annual Review of Phytopathology 17:203-222
Parlevliet JE, Zadoks JC (1977) The integrated concept of disease resistance: A new view including horizontal and vertical resistance in plants. Euphytica 26:5-21
Potokina E, Druka A, Luo Z, Wise R, Waugh R, Kearsey M (2008) Gene expression quantitative trait locus analysis of 16000 barley genes reveals a complex pattern of genome-wide transcriptional regulation. The Plant Journal 53:90-101
Pourkheirandish M, Wicker T, Stein N, Fujimura T, Komatsuda T (2007) Analysis of the barley chromosome 2 region containing the six-rowed spike gene vrs1 reveals a breakdown of rice-barley micro collinearity by a transposition. Theoretical and Applied Genetics 114:1357-1365
Qi X, Jiang G, Chen W, Niks RE, Stam P, Lindhout P (1999) Isolate-specific QTLs for partial resistance to Puccinia hordei in barley. Theoretical and Applied Genetics 99:877-884
Qi X, Niks RE, Stam P, Lindhout P (1998) Identification of QTLs for partial resistance to leaf rust (Puccinia hordei) in barley. Theoretical and Applied Genetics 96:1205-1215
Rostoks N, Mudie S, Cardle L, Russell J, Ramsay L, Booth A, Svensson JT, Wanamaker SI, Walia H, Rodriguez EM, Hedley PE, Liu H, Morris J, Close TJ, Marshall DF, Waugh R (2005) Genomewide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Molecular Genetics and Genomics 274:515-527
See DR, Brooks S, Nelson JC, Brown-Guedira G, Friebe B, Gill BS (2006) Gene evolution at the ends of wheat chromosomes. Proceedings of the National Academy of Sciences of the United States of America 103:4162-4167
Shankar M, Walker E, Golzar H, Loughman R, Wilson RE, Francki MG (2008) Quantitative trait loci for seedling and adult plant resistance to Stagonospora nodorum in wheat. Phytopathology 98:886-893
Steffenson BJ, Hayes PM, Kleinhofs A (1996) Genetics of seedling and adult plant resistance to net blotch (Pyrenophora teres f. teres) and spot blotch (Cochliobolus sativus) in barley. Theoretical and Applied Genetics 92:552-558
Stein N, Prasad M, Scholz U, Thiel T, Zhang H, Wolf M, Kota R, Varshney RK, Perovic D, Grosse I, Graner A (2007) A 1,000-loci transcript map of the barley genome: New anchoring points for integrative grass genomics. Theoretical and Applied Genetics 114:823-839
Stuttmann J, Hubberten H-M, Rietz S, Kaur J, Muskett P, Guerois R, Bednarek P, Hoefgen R, Parker JE (2011) Perturbation of Arabidopsis amino acid metabolism causes incompatibility with the adapted biotrophic pathogen Hyaloperonospora arabidopsidis. The Plant Cell Online 23:2788-2803
Subramaniam R, Després C, Brisson N (1997) A functional homolog of mammalian protein kinase C participates in the elicitor-induced defense response in potato. The Plant Cell Online 9:653-664

Tang H, Bowers JE, Wang X, Ming R, Alam M, Paterson AH (2008) Synteny and collinearity in plant genomes. Science 320:486-488
The International Barley Genome Sequencing Consortium (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711-716
Tian M, Chaudhry F, Ruzicka DR, Meagher RB, Staiger CJ, Day B (2009) Arabidopsis actindepolymerizing factor AtADF4 mediates defense signal transduction triggered by the Pseudomonas syringae effector AvrPphB. Plant Physiology 150:815-824
van Ooijen JW (2009) MapQTL ${ }^{\circledR}$ 6, software for the mapping of quantitative trait loci in experimental populations of diploid species. Kyazma B V, Wageningen, Netherlands
Varshney R, Marcel TC, Ramsay L, Russell J, Röder MS, Stein N, Waugh R, Langridge P, Niks RE, Graner A (2007) A high density barley microsatellite consensus map with 775 SSR loci. Theoretical and Applied Genetics 114:1091-1103
von Saint Paul V, Zhang W, Kanawati B, Geist B, Faus-Keßler T, Schmitt-Kopplin P, Schäffner AR (2011) The Arabidopsis glucosyltransferase UGT76B1 conjugates isoleucic acid and modulates plant defense and senescence. The Plant Cell Online 23:4124-4145
Wang H, Qi M, Cutler AJ (1993) A simple method of preparing plant samples for PCR. Nucleic Acids Research 21:4153-4154
Wang L, Wang Y, Wang Z, Marcel TC, Niks RE, Qi X (2010) The phenotypic expression of QTLs for partial resistance to barley leaf rust during plant development. Theoretical and Applied Genetics 121:857-864
Williams KJ (2003) The molecular genetics of disease resistance in barley. Crop and Pasture Science 54:1065-1079
Xue S, Li G, Jia H, Xu F, Lin F, Tang M, Wang Y, An X, Xu H, Zhang L, Kong Z, Ma Z (2010) Fine mapping Fhb4, a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics 121:147-156
Yang Q , Zhang D , Xu M (2012) A sequential quantitative trait locus fine-mapping strategy using recombinant-derived progeny. Journal of Integrative Plant Biology 54:228-237
Yao C, Wu Y, Nie H, Tang D (2012) RPN1a, a 26S proteasome subunit, is required for innate immunity in Arabidopsis. The Plant Journal 71:1015-1028
Yeo FKS, Hensel G, Vozábová T, Martin-Sanz A, Marcel TC, Kumlehn J, Niks RE (2014) Golden SusPtrit: a genetically well transformable barley line for studies on the resistance to rust fungi. Theoretical Applied Genetics 127:325-337
Zhang Y, Wang Q, Jiang L, Liu L, Wang B, Shen Y, Cheng X, Wan J (2011) Fine mapping of qSTV11 KAS , a major QTL for rice stripe disease resistance. Theoretical and Applied Genetics 122:1591-1604
Zhou L, Zeng Y, Zheng W, Tang B, Yang S, Zhang H, Li J, Li Z (2010) Fine mapping a QTL qCTB7 for cold tolerance at the booting stage on rice chromosome 7 using a near-isogenic line. Theoretical and Applied Genetics 121:895-905

Supplemental Figures

[^6]
Supplemental Figure 2: The map position of QTLs for partial resistance to P. hordei mapped in five barley mapping populations (including the QTLs detected in this study) on the integrated map, Marcel 2009. The length of the QTL bars corresponds approximately to the rMQM one LOD confidence interval and the extended lines from the QTL bars corresponds approximately to the rMQM two LOD confidence interval. QTLs with an asterisk are QTLs detected in this study. The black bars within chromosome bars correspond to plant height QTLs and grey bars to heading date QTLs. Numbers on the left side of chromosome bars show the distance in cM (according to Kosambi).

Supplemental Tables

Supplemetal Table 1: The new markers developed for Rphq11 on chromosome 2H

Name	Type	Restriction enzyme	$\begin{aligned} & \mathrm{Tm} \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	Primer sequences ($5^{\prime}-3$ ')	Source ${ }^{\text {! }}$
Ctg 15632	CAPS	MboII	58	F : TGGCAAATGACGGGGCACTAAAAC R : AACCGGCCTACAGATCGCAACCTT	Boyd et al. (2007)
GBM1062	SSR			Confidential	Li et al. (2003)
GBMS244	SSR			Confidential	Thiel et al. (2003)
GBS0512	CAPS	AciI	58	F: CCACATGCTGCGGAGGT R: CGTTGAGGATGATGCTGAGG	Stein et al. (2007)
k04002	SCAR		60	F : GACACAGGACCTGAAGCACA R: CGGCAGGCTCTACTATGAGG	Hori et al. (2005)
Uni19962	CAPS	MseI	58	F : GTCCCACATCACTGCACATC R: CAGTCGCAGAAGTTACTGAAG	Boyd et al. (2007)
WBE129	CAPS	HpyCHY4IV	58	F: СССССАAACTCCCAACT R : CTCCAGCCAGCAGGTCTAA	Rice synteny
WBE130	dCAPS	XapI	58	F : CTCGTATGTTGTGTGGAATTGTGAGCCCAATCTTAATCCTAAGATCTCGAA R: GGTCTCCCAGCTAAAGTCTCC	Rice synteny
WBE144	CAPS	BsrI	58	F : GAGGCCCTTATCATTCTGTTGTCC R : ATGCTGGCGCGTTTTTGGGTATG	Rice synteny
WBE301	SCAR		65	F : TCGATGAGCGGATGGGTAAGGTAT R : ATTCCCAGCTGCCCAGTGTTTCT	Potokina et al. (2008)
WBE302	CAPS	Tsp4CI	65	F: ATGATCTTCGCCCTCGTCTACTGC R : TGGTCTTGAATGGGATCGCTCTGA	Potokina et al. (2008)
WBE304	CAPS	SacII	65	F : AGCTAGCTGTTGGGCGTGAAAATC R : CAAGGGGGTGGAGGAGGAAGAAGT	Potokina et al. (2008)
WBE305	CAPS	MwoI	65	F: CCGTCCCGTCACCCGAGTCC R: TCAGGCCTTCCAGTAGCGAGTTCC	Rice synteny
WBE306	CAPS	NdeI	65	F: CGGGGGCGCCTCCTCTACTC R : GTCCGGGTCATCATCTTCCACAAC	Rice synteny
WBE307	CAPS	SduI	65	F: GGCGCTCCGTGCAAAGAAGA R : GGAGACGAGGAGCAAAAGACACAA	Rice synteny
WBE308	CAPS	ClaI	65	F : CTGAGCCTGGGAAACAAAGTCG R: CAGCGCTGATGCAACAATAGGAT	Rice synteny
Bmac0216*	SSR			F : GTACTATTCTTTGCTTGGGC R : ATACACATGTGCAAAACCATA	Ramsay et al. (2000)
Bmag0125*	SSR			F : AATTAGCGAGAACAAAATCAC R : AGATAACGATGCACCACC	Ramsay et al. (2000)
GBM1440*	SSR			F : CTACCGAGCTCCTCCTCCTC R : GGCCTCCTTCTTGTCGTAGA	Marcel et al. (2007b)
scsnp06130*	CAPS	HinfI	56	F : GACGTCCCTCGCGTAAATGG R : TTGGCCGGGAACTTATGGTG	Rostok et al. (2005)

* The markers which were mapped near but outside the flanked QTL interval
! The references for CAPS and SCAR markers give the origin of the sequences obtained for marker development.

Supplemetal Table 2: The new markers developed for Rphq16 on chromosome 5H.

Name	Type	Restriction enzyme	Tm $\left({ }^{\circ} \mathrm{C}\right)$	Primer sequences ($5^{\prime}-3{ }^{\prime}$)	Source ${ }^{\text {! }}$
DsT-33	SCAR		45	F : GCACACATATTATCATGAAAAAGAGC R : ACCCCAAATGAGTTTCGATG	BarleyWorld.org
GBS0408	CAPS	MseI	56	F : ATGCCACCCCTTATGAATCCT R : TTGCCCGTTGAAAAGTCCA	Stein et al. 2007
GBS0576	CAPS	BspLI	56	F : GTCCGGGCACAAGAACCTC R : GGCTGGGCATCATCCTCAA	Stein et al. 2007
GMS002	SSR			F : CCGACAACATGCTATGAAGC R : CTGCAGCAAATACCCATGTG	Struss and Plieske (1998)
MWG2193	CAPS	AluI	56	F : CAAACCCTTGAGGTCAGTTGC R: TCAGCTCTAAGATGCAGCACG	Graner et al. (1991)
MWG2249	CAPS	DdeI	56	F : GGCATGTGAGGGAAGCAATGG R : TGGAGAAGAACGTGTGGGTCG	Graner et al. (1991)
scsnp03275	CAPS	BgIII	65	F : AACGGCCAGGCTATAACCATCACA R : CGGCGGCTTCATCAATTTCACTAA	Rostoks et al. (2005)
scsnp03683	CAPS	HpyCHY4IV	56	F: CAACGGCGCCACCTTCTACT R: CACATACCCCACTGCCATGC	Rostoks et al. (2005)
WBE310	SCAR		65	F: GGCGCTTTTGGTTTTCCTGA R: CGGCCTGGTATAATTAAGAGTGTG	Potokina et al. (2008)
WBE311	SCAR		65	F : CCAGAAAGGCGAGGAAGG R: TCGGATTATTGCACACCAGAAAAC	Potokina et al. (2008)
WBE312	CAPS	MseI	58	F : TGTGCCGTGTTATAATGGGGAATG R : CACAAAATCGGGCCTGCTTATCTT	Potokina et al. (2008)
WBE313	CAPS	Mwor	58	F : TGCCGAGTCGCCTAACCATA R : TCAACAACTACCTGCCAAATACCA	Potokina et al. (2008)
WBE314	CAPS	SphI	65	F : CCAGGGAATTACCAGGGAGACA R : TGAAGCCGACAACAAAAACAGG	Potokina et al. (2008)
WBE315	CAPS	HinfI	65	F : CCCCCTTCGCCGGCTTCTCAACC R: ATTCACAAAGCGCCGGCACACCAG	Potokina et al. (2008)
WBE317	CAPS	AcyI	65	F : ATCCCAGCCGACAGCATCC R : GAGAGCAGGCACCCGCATAG	Rice synteny
WBE318	CAPS	Hin1II	65	F : ACGGTGGTGGTGGTGGTCA R: GCCCGCAGCGTCTCGTAG	Rice synteny
WBE319	CAPS	HhaI	65	F : GATGGGTAGGCTTAAGCAGAAACT R : AACGCGCCTAACACAAACTCCTAC	Rice synteny
WBE320	CAPS	MseI	58	$\begin{aligned} & \text { F: CCCCCGGCTGGTGTGGA } \\ & \text { R: CAGCTGTGGCGTGATGTATTTGTA } \end{aligned}$	Potokina et al. (2008)
ABC622*	CAPs	AluI	65	F : AGGGAAGGGCTGCAAACTGTA R : ACCAACTGATCGCTGCCTGTGTAT	Rostoks et al. (2005)
ABG390*	CAPs	AluI	56	F : TGTTCCCAGCATTTGAACAG R : CGGCAATCCTAATTTTTGGA	Rostoks et al. (2005)
ABG391*	CAPs	AluI	56	F : GCAAGTGCACTGCTGTACAA R : TGTTCTCGTACCATGACTTC	Rostoks et al. (2005)
CMWG650*	CAPs	Hin1II	56	F : ATGCCTGGGTACAAAAATCAAATG R : TCACCCAGCCTACCAAAATAACAG	Stein et al. 2007
GMS001*	SSR			F : CTGACCCTTTGCTTAACATGC R : TCAGCGTGACAAACAATAAAGG	Struss and Plieske (1998)
scsnp00635*	CAPS	HinfI	65	F : TGAGCAGCCGTGTCAGCTTC R : AAACATTGGATTGGGCACGC	Rostoks et al. (2005)
scsnp07825*	SCAR		65	F: GGCGCGGCGGACTGACAAG R : GTGGTGCTGCGACGAGGAGACG	Rostoks et al. (2005)
scssr03907*	SSR			F: CTCCCATCACACCATCTGTC R : GACATGGTTCCCTTCTTCTTC	Ramsay et al. (2004)
scssr09041*	SSR			F: CATGTCAGTGGGGTTCTAGC R: TCTACTTGGACCTGCTGACC	Ramsay et al. (2004)

[^7]Supplemetal Table 3: The new markers developed for Rphq15 and Rphq17.

Name	Type	Chrom.	Restriction enzyme	Tm $\left({ }^{\circ} \mathrm{C}\right)$	Primer sequences ($5^{\prime}-3$)	Source ${ }^{\text {! }}$
Rphq15						
Bmag0500	SSR	6H			F : GGGAACTTGCTAATGAAGAG R: AATGTAAGGGAGTGTCCATAG	Ramsay et al. (2004)
GBM1355	SSR	6H			F: ATCCGTCGTATTCGCATCTC R : GCTGGTACTGGGAGAAATGG	Varshney et al. (2006)
GBMS033	SSR	6H			Confidential	Li et al. 2003
MWG966	CAPS	6H	BspLI	57	F: ATGCGTGCCCTTTGGAACA R: TGGCCTGCGATATGGAGACC	Graner et al. (1991)
scssr09398	SSR	6H			F : AGAGCGCAAGTTACCAAGC R : GTGCACCTCAGCGAAAGG	Ramsay et al. (2004)
Rphq17						
Bmac0067	SSR	3H			F : AACGTACGAGCTCTTTTTCTA R: ATGCCAACTGCTTGTTTAG	Ramsay et al. (2004)
Bmag0136	SSR	3H			F : GTACGCTTTCAAACCTGG R : GTAGGAGGAAGAATAAGGAGG	Ramsay et al. (2004)

* The markers which were mapped near but outside the flanked QTL interval
${ }^{\text {! }}$ The references for CAPS and SCAR markers give the origin of the sequences obtained for marker development.

Supplemental References: Literature cited in Supplemental Table 1 to 3

Boyd CN, Horsley R, Kleinhofs A (2007) Barley chromosome 2 (2H) bin 10 fusarium head blight resistance QTL: Mapping and development of isolines. 2007 National Fusarium Head Blight Forum. Citeseer, p 170

Graner A, Jahoor A, Schondelmaier J, Siedler H, Pillen K, Fischbeck G, Wenzel G, Herrmann RG (1991) Construction of an RFLP map of barley. Theoretical and Applied Genetics 83:250-256
Hori K, Sato K, Nankaku N, Takeda K (2005) QTL Analysis in Recombinant Chromosome Substitution Lines and Doubled Haploid Lines Derived from a Cross between Hordeum vulgare ssp. vulgare and Hordeum vulgare ssp. spontaneum. Molecular Breeding 16:295-311
Li JZ, Sjakste TG, Röder MS, Ganal MW (2003) Development and genetic mapping of 127 new microsatellite markers in barley. Theoretical and Applied Genetics 107:1021-1027

Marcel TC, Varshney RK, Barbieri M, Jafary H, de Kock MJD, Graner A, Niks RE (2007b) A high-density consensus map of barley to compare the distribution of QTLs for partial resistance to Puccinia hordei and of defence gene homologues. Theoretical and Applied Genetics 114:487-500

Potokina E, Druka A, Luo Z, Wise R, Waugh R, Kearsey M (2008) Gene expression quantitative trait locus analysis of 16000 barley genes reveals a complex pattern of genome-wide transcriptional regulation. The Plant Journal 53:90-101
Ramsay L, Macaulay M, Ivanissevich Sd, MacLean K, Cardle L, Fuller J, Edwards KJ, Tuvesson S, Morgante M, Massari A, Maestri E, Marmiroli N, Sjakste T, Ganal M, Powell W, Waugh R (2000) A simple sequence repeat-based linkage map of barley. Genetics 156:1997-2005
Ramsay L, Russell J, Macaulay M, Booth A, Thomas W, Waugh R (2004) Variation shown by molecular markers in barley: Genomic and genetic constraints. Aspects of Applied Biology 72:147-154

Rostoks N, Mudie S, Cardle L, Russell J, Ramsay L, Booth A, Svensson JT, Wanamaker SI, Walia H, Rodriguez EM, Hedley PE, Liu H, Morris J, Close TJ, Marshall DF, Waugh R (2005) Genomewide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Molecular Genetics and Genomics 274:515-527

Stein N, Prasad M, Scholz U, Thiel T, Zhang H, Wolf M, Kota R, Varshney RK, Perovic D, Grosse I, Graner A (2007) A 1,000-loci transcript map of the barley genome: New anchoring points for integrative grass genomics. Theoretical and Applied Genetics 114:823-839

Struss D, Plieske J (1998) The use of microsatellite markers for detection of genetic diversity in barley populations. Theoretical and Applied Genetics 97:308-315
Thiel T, Michalek W, Varshney R, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theoretical and Applied Genetics 106:411-422
Varshney RK, Grosse I, Hähnel U, Siefken R, Prasad M, Stein N, Langridge P, Altschmied L, Graner A (2006) Genetic mapping and BAC assignment of EST-derived SSR markers shows non-uniform distribution of genes in the barley genome. Theoretical and Applied Genetics 113:239-250

Chapter 5

Non-Gridded BAC libraries of the barley cultivars Vada and SusPtrit for physical mapping of Rphq2, a partial resistance QTL to
Puccinia hordei

To be submitted

Non-gridded BAC libraries of the barley cultivar Vada and line SusPtrit for physical mapping of Rphq2, a partial resistance QTL to Puccinia hordei

Yeo FKS, Wang, Y, Kohutova Z, Huneau C, Niks RE, Leroy P, Chalhoub B, Marcel TC

Laboratory of Plant Breeding, Wageningen University, 6700 AJ Wageningen, The Netherlands

Abstract

Evidence suggests partial resistance of barley to powdery mildew and rust fungi to be a weak form of nonhost resistance based on pathogen-associated molecular pattern (PAMP)triggered immunity. A better understanding of partial resistance may help us to gain more insight into nonhost resistance, and vice versa. More than 20 partial resistance quantitative trait loci (QTLs) to Puccinia hordei have been mapped at seedling and adult plant stages. In order to determine the genes underlying those QTLs, we need to identify and validate the candidate genes of a selection of QTLs. Two non-gridded BAC libraries were constructed from the partially resistant cultivar Vada and from the very susceptible line SusPtrit. Based on the observed insert sizes of the BAC clones, the estimated genome coverage of the Vada BAC library is 2.6 x and of the SusPtrit BAC library 3.7x. Together, the two BAC libraries give more than 99% probability of recovering any specific sequence from the barley genome. Three BAC clones of Vada which cover the Rphq2 genetic window were sequenced. Three BAC clones of SusPtrit were also sequenced but they did not cover the entire Rphq2 genetic window. The obtained sequences between markers flanking Rphq2 encompassed 195 Kbp in Vada and 226 Kbp in SusPtrit. This difference in size is linked to the lack of homology between the Vada sequence derived from an introgression from the exotic Hordeum laevigatum and the SusPtrit sequence homologous to other barley genotypes such as Morex and L94. The TriAnnot pipeline predicted 12 genes on both Vada and SusPtrit contigs. Among the predicted genes, only five were common between Vada and SusPtrit. No nucleotide-binding-site-leucine-rich repeat resistance gene was annotated in the Rphq2 region. The possible candidate genes for $R p h q 2$ code for peroxidases, kinases and a member of Seven in absentia protein family.

Keywords: Barley, Bacterial Artificial Chromosome (BAC) Library, Partial Resistance, Quantitative Trait Locus (QTL), Puccinia

Introduction

Partial resistance is an incomplete host resistance which retards epidemic development despite a compatible infection type (Niks et al. 2011; Parlevliet and van Ommeren 1975). Partially resistant barley to Puccinia hordei has lower infection frequency, lower sporulation rate and longer latency period of the pathogen, and such effects are not associated with hypersensitivity. Evidence suggests partial resistance of barley to powdery mildew and rust fungi to be a weak form of nonhost resistance based on pathogenassociated molecular pattern (PAMP)-triggered immunity (PTI) (Jones and Dangl 2006; Niks and Marcel 2009; Niks et al. 2011; Trujillo et al. 2004). Nonhost resistance is, by definition, a resistance observed in all genotypes of a nonhost plant species to all genotypes of a potential pathogen species (Niks et al. 2011). However, plant species may turn out to have a marginal host or near-nonhost status to some pathogen species (Niks 1987). Barley (Hordeum vulgare) is such a marginal host or near-nonhost to Puccinia triticina, Puccinia hordei-murini and some other non-adapted rust fungi because a small proportion of barley accessions (less than 10\%) are susceptible (> 10 pustules on the first leaf) at seedling stage when inoculum is applied at high density (Atienza et al. 2004). In the context of this paper, non-adapted rust fungi are rust fungi that are poorly or not adapted to barley, but primarily to one or few other plant species. We try to investigate nonhost resistance by dissecting the genetics of near-nonhost resistance with the assumption that we can extrapolate the findings to explain also the basis of full nonhost resistance. SusPtrit was developed for such purpose by accumulating susceptibility genes from rare barley accessions which were somewhat susceptible to P. triticina at seedling stage. SusPtrit is, at seedling stage, highly susceptible to P. triticina and to at least nine other non-adapted rust fungi (Atienza et al. 2004). This experimental line was used to develop mapping populations Vada/SusPtrit (Jafary et al. 2006), Cebada Capa/SusPtrit (Jafary et al. 2008) and SusPtrit/Golden Promise (Chapter 2, this thesis), and near isogenic lines (Chapter 3, this thesis). Resistance of barley to non-adapted rust fungi inherits polygenically just like partial resistance to P. hordei, the barley leaf rust fungus (Jafary et al. 2006; 2008; Marcel et al. 2007b; Niks et al. 2000; Qi et al. 1998).

The locations of genes for resistance to non-adapted rust fungi tend to overlap with those for partial resistance to P. hordei (González et al. 2010; Jafary et al. 2008; Niks and Marcel 2009) and they share the same prehaustorial resistance mechanism, viz. a high rate of failed attempt to haustorium formation (Niks 1983a, b). If both the partial resistance to adapted fungi and nonhost resistance to non-adapted fungi are mainly based on PTI, a better understanding of partial resistance will help us to gain more insight into nonhost resistance, and vice versa. More than 20 partial resistance quantitative trait loci (QTLs) to
P. hordei have been mapped at seedling and adult plant stages (Jafary et al. 2006; Marcel et al. 2007b; 2008; Niks et al. 2000; Qi et al. 1998; 1999). In order to determine the underlying genes of those QTLs, we need to identify and validate the candidate genes of a selection of QTLs. To date, five large-effect resistance QTLs have been cloned (Fu et al. 2009; Fukuoka et al. 2009; Hayashi et al. 2010; Krattinger et al. 2009; Manosalva et al. 2009). The cloned QTL are different from each other in gene structure and function, which implies a diversity of mechanisms underlying partial resistance. The genes that have been cloned thus far do not have the typical modular NB-LRR structure of R-genes. Rphq2 is one of the partial resistance QTLs to P. hordei mapped in L94/Vada (Qi et al. 1998), Vada/SusPtrit (Jafary et al. 2006) and in an association mapping study comprising 146 barley genotypes (Kraakman et al. 2006). In L94/Vada and Vada/SusPtrit populations, Vada is the donor of Rphq2. Vada is a cultivar developed from Hordeum laevigatum/Gold (Dros 1957). Near isogenic lines (NILs) are available for Rphq2 in L94 genetic background (L94-Rphq2) (Marcel et al. 2007a; van Berloo et al. 2001) and for rphq2 of L94 in Vada background (Vada-rphq2) (Marcel et al. 2007a). L94 is an Ethiopian landrace-derived line that has some level of susceptibility to some non-adapted rust fungi (e.g Puccinia hordei-secalini and P. hordei-murini) (Atienza et al. 2004). When L94Rphq2 was inoculated with P. hordei-secalini and P. hordei-murini, it had a significantly lower infection level compared to L94 (Chapter 3, this thesis). This suggests that the postulated Rphq2 gene explaining the resistance to P. horde i also affects the resistance to some non-adapted rust species. Substitution mapping by using sub-NILs generated from Vada-rphq2 allowed pinpointing Rphq2 to an interval of about 0.1 cM , corresponding to about 121 to 198 kb (Marcel et al. 2007a). This estimated physical interval is sufficiently small to justify the development of a Bacterial Artificial Chromosomes (BAC) library in order to pin down Rphq2 to one or few more candidate genes.

Construction and organization of BAC libraries remains laborious and costly, especially from organisms with large and complex genomes like barley [5.1 Gb (Doležel et al. 1998); 4.6 Gb (Jones and Pašakinskienė 2005); 4.98 Gb (The International Barley Genome Sequencing Consortium 2012)]. In barley, about 200,000 clones with an average insert size of 120 kb would be required to achieve a genome coverage of five genomeequivalents, which is needed for a more than 99% probability of recovering any specific sequence of interest. To date, gridded BAC libraries are available for barley cv. Morex (Schulte et al. 2011; Yu et al. 2000), Haruna Nijo (Saisho et al. 2007) and a doubled haploid barley line CS134 derived from Clipper/Sahara-3771 (Shi et al. 2010). The inconveniences linked to the gridding, storage and maintenance of such a quantity of clones can be circumvented by the pooled library approach described by Ma et al. (2000) for wheat and Isidore et al. (2005) for barley. This approach consists of pooling several hundreds of clones together without the need of picking and storing individual clones. The
first pooled BAC library of barley developed from cv. Cebada Capa was successfully used to establish a single contig of six BAC clones spanning 230 kb at the Rph7 locus on chromosome 3 H (Isidore et al. 2005). The BAC libraries from the four mentioned barley genotypes could help in the construction of physical maps around any target gene, but to isolate genes of interest in plants, it is often essential to construct BAC libraries from specific genotypes. Indeed, the gene content may vary between individuals of the same species and the gene of interest may not be present in the genomic libraries of related genotypes. This consideration is especially relevant concerning the genes involved in resistance to pathogens, which are known to be under strong selective pressure (Meyers et al. 2005; Salvaudon et al. 2008; Shen et al. 2006).

The current study aimed to develop two non-gridded BAC libraries from cultivar Vada and line SusPtrit which will allow the isolation of genes for partial and nonhost resistances. Having a BAC library from the resistant parent as well as from a susceptible parent is required because genes involved in such resistances can either be a resistance or susceptibility factor. After screening the newly developed BAC libraries, we identified and sequenced BAC clones in the Rphq2 region of both genotypes. The assembly and annotation of BAC sequences revealed several genes that might be responsible for the phenotypic contrast between Vada and SusPtrit for partial resistance due to Rphq2.

Materials and Methods

The methodology followed to construct the two BAC libraries has been described in detail by Peterson et al. (2000), with several modifications proposed in subsequent papers (Allouis et al. 2003; Chalhoub et al. 2004; Isidore et al. 2005).

Preparation of high-molecular-weight DNA

About 500 seeds from Vada and from SusPtrit were sown in plastic trays and placed in a greenhouse compartment. Leaves were harvested twice from the same plants between two and four-weeks after sowing, flash-frozen in liquid nitrogen and stored at $-80{ }^{\circ} \mathrm{C}$. Before each harvest the plants were kept in the dark during 48 hours to promote the burst of chloroplasts and limit chloroplast DNA in the BAC libraries. About 40-50 g of leaf were used to extract nuclei and prepare high molecular weight (HMW) DNA following the protocol described by Peterson et al. (2000), with modifications (Allouis et al. 2003; Chalhoub et al. 2004). The modifications consisted mainly in the omission of polyvinyl
pyrolidone 40000 (PVP-40) and ascorbic acid from the sucrose-based extraction buffer (SEB) and from the lysis buffer. The quantity of PVP-40 in the wash buffers (WB-A, -B, C) was lowered to 0.25% instead of 2%.

Partial digestion and size fractionation

Plugs of HMW DNA were prepared in 0.75% InCert ${ }^{\circledR}$ agarose (BMA) as described by Peterson et al. (2000). Twelve plugs macerated in the HindIII modified restriction (H3M) buffer were digested at different enzyme concentrations: $0.2,0.5,1.0,2.0,5.0,7.5,10.0$, $15.0,20.0$ and 40.0 units. The partial digestion was performed in a $37^{\circ} \mathrm{C}$ water bath during exactly 20 minutes. Then, the plugs were migrated together on a 1.0% SeaKem® Gold agarose gel (Cambrex) in 0.25 x TBE in a CHEF-Mapper apparatus (Bio-Rad) with the following conditions: pulse linear ramping from 1 to 40 sec , angle 120°, current $6.0 \mathrm{~V} / \mathrm{cm}$ and 21 hours run time at $14^{\circ} \mathrm{C}$. After electrophoresis, the partially digested DNA was subjected to a single size selection. The flanking lanes loaded with the lambda ladder PFGE marker (New England Biolabs) were removed from the gel and stained with ethidium bromide to indicate the location of the size ranges. For each library, five slices of agarose-containing DNA in the ranges $50-100 \mathrm{~kb}$ (H0 fraction), 100-150 kb (H1 fraction), $150-200 \mathrm{~kb}$ (H2 fraction), 200-250 kb (H3 fraction) and 250-300 (H4 fraction) were excised from the gel and stored at $4{ }^{\circ} \mathrm{C}$ in 1 x TAE buffer.

The HMW DNA was isolated by electro-elution using a BioRad Electroelution system run one hour at 60 mA direct current and 90 V alternating current. From each agarose slice, 40 to $80 \mu \mathrm{l}$ was recovered with a wide-bored tip.

Ligation and transformation

The insert DNA from H0 to H 4 fractions was ligated separately into the pIndigoBAC vector (CalTech) prepared for high efficiency cloning with HindIII as described by Chalhoub et al. (2004) or into the commercial pIndigoBAC-5 vector (Epicentre Biotechnologies). Ligations were performed in a $50 \mu 1$ reaction volume with $33 \mu \mathrm{l}$ insert DNA (50-100 ng), 50 ng of vector DNA, $10 \mu \mathrm{l}$ of 5 x reaction buffer and 5 units of T4 DNA ligase (Invitrogen). Ligation mixtures were incubated at $16{ }^{\circ} \mathrm{C}$ overnight and dialyzed 90 min at $4{ }^{\circ} \mathrm{C}$ as described by Chalhoub et al. (2004). Sixteen microliters of desalted ligation were mixed with 110μ I ElectroMax DH10B electrocompetent cells (Invitrogen). Seventeen microliters of the mixture were electroporated at 330 V and the
electroporations were pooled in a tube containing 2 ml SOC medium (Sambrook et al. 1989) with 0.3 ml of 2 M glucose.

Pooling of the BAC clones

Transformed cells diluted with SOC were incubated at $37{ }^{\circ} \mathrm{C}$ under gentle agitation (220 rpm) for 60 min and plated on a selective LB medium (Luria-Bertani medium) with 12.5 $\mu \mathrm{g}$ chloramphenicol (CAM), 0.55 mM IPTG (isopropylthio- β-D-galactoside) and $80 \mu \mathrm{~g} / \mathrm{ml}$ X-Gal (5-bromo-4-chloro-3-indolyl- β-D-galactoside) (Sambrook et al. 1989). A test plating of each transformation was performed in order to allow an average of about 1,500 colonies per plate as suggested by Isidore et al. (2005). The plates were incubated at $37{ }^{\circ} \mathrm{C}$ for 20 hours. The clones were collected from each plate in 3 ml storage buffer (LB medium supplemented with 50% glycerol) and homogenized for 30 min under gentle agitation (220 rpm). Each of the resulting 3 ml cultures represents a pool. The pools were then aliquot into four tubes, each corresponding to one copy of the library (copies A, B, C and D). Copy A is stored in a $-80{ }^{\circ} \mathrm{C}$ freezer at Unité de Recherche en Génomique Végétale (URGV - Evry, France), copy B at Institute of Botany, Chinese Academy of Sciences (IBCAS - Beijing, China). Copies C and D are stored at Wageningen UR, Plant Breeding (WUR - the Netherlands).

Characterization of the BAC libraries

Twenty-four BAC clones were randomly selected from the fractions $\mathrm{H} 1, \mathrm{H} 2$ and H 3 of each library (i.e. 72 BAC clones per library) and grown for 24 hours at $37^{\circ} \mathrm{C}$ in 1.5 ml LB medium containing $12.5 \mu \mathrm{~g}$ CAM. The BAC DNA was extracted following an alkaline lysis procedure (Sambrook et al. 1989) with ready-to-use buffers P1, P2 and P3 (Qiagen) and digested overnight with NotI (New England Biolabs). Digested products were separated on a 1% SeaKem® LE agarose gel (BMA) in 0.5 x TBE in a CHEF-DR ${ }^{\text {TM }}$ II apparatus (BioRad) with the following pulsed field gel electrophoresis parameters: 200 V , $5-15 \mathrm{sec}$ switch time, for 14.3 hours at $10{ }^{\circ} \mathrm{C}$. The insert sizes of selected BAC clones were estimated after comparison with the CHEF DNA size standard lambda ladder (Bio-Rad) run in the same gel.

BAC-pool DNA was isolated from 250μ aliquot per pool from the copy D of the libraries as described previously. The two barley BAC libraries were characterized for genome representation by PCR-screening of 46 pools per library with one microsatellite marker from each of the 14 barley chromosome arms. The markers were selected from the barley
microsatellite consensus map of Varshney et al. (2007). The reverse primer of each microsatellite was labeled with IRDye-700 or IRDye-800 and the PCR-product visualized on a LICOR 4200 DNA sequencer (LICOR® Biosciences).

Screening the library for BAC clones spanning the Rphq2 locus

The work flow for identifying Vada and SusPtrit BAC clones spanning the Rphq2 locus is presented in Figure 1. The solid and liquid selective LB media (here onwards LBA and LB, respectively) used were supplemented with $20 \mu \mathrm{~g} / \mathrm{ml}$ of CAM unless indicated otherwise. The BAC libraries were screened following a PCR based method (Figure 1a). In a first step, we used molecular markers known to be closely linked to Rphq2 to screen the BAC pools and to identify positive BAC clones. In a second step, after the identification and sequencing of several positive BAC clones, we used primers designed to amplify the BAC-end-sequences (bes), the genes annotated in these clones and newly developed markers. We also used primers to amplify sequences at the edges of gaps in the already assembled BAC sequences (Table 1).

For each BAC pool that was positive in the PCR screen, test plating was performed in order to allow an average of about 2,000 to 3000 colonies on a large square Petri dish ($506.25 \mathrm{~cm}^{2}$) which is used for robotic picking of BAC clones (Figure 1b). Each positive BAC pool was then diluted accordingly and 2 ml of the diluted positive BAC pools were plated on large Petri dishes containing LBA (Figure 1c). The BAC clones were grown at $37^{\circ} \mathrm{C}$ for about 14 hours, and afterwards kept at $4{ }^{\circ} \mathrm{C}$ until use. The BAC clones on the large Petri dishes were picked using a picking robot (Genomic Solutions Flexsys picker) and cultured in 384-well plates containing LB-freeze [LB, $36 \mathrm{mM} \mathrm{K}_{2} \mathrm{HPO}_{4}, 13.2 \mathrm{mM}$ $\mathrm{KH}_{2} \mathrm{PO}_{4}, 1.7 \mathrm{mM}$ trisodium citrate, $0.4 \mathrm{mM} \mathrm{MgSO} 4,6.8 \mathrm{mM}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}, 4.4 \%$ ($\mathrm{vol} / \mathrm{vol}$) glycerol] with $20 \mu \mathrm{~g} / \mathrm{ml}$ CAM. The picked BAC clones were grown at $37{ }^{\circ} \mathrm{C}$ for 14 to 16 hours and stored at $-80{ }^{\circ} \mathrm{C}$ (Figure 1d). Each 384 -well plate was replicated onto a small square Petri dish $\left(144 \mathrm{~cm}^{2}\right)$ containing LBA. The replicates were kept at $37{ }^{\circ} \mathrm{C}$ overnight. On each plate, 3 ml of LB were added and the clones were scrapped and collected (subpool) into a culture tube (Figure 1e). The DNA of each sub-pool was isolated (Sambrook et al. 1989) and PCR-screened to identify the positive sub-pool. The 384 -well plate corresponding to the positive sub-pool was replicated again as described above onto three small square Petri dishes (Figure 1f).

In one of the small square Petri dishes, BAC clones from each column were pooled (24 column-pools). In another Petri dish, BAC clones from each row were pooled (16 rowpools) (Figure 1g). The pooling was done by streaking across a column or row using an
autoclaved toothpick and the pooled BAC clones were cultured overnight at $37{ }^{\circ} \mathrm{C}$ in culture tube containing 3 ml of LB. The DNA of each column- and row-pool was isolated (Sambrook et al. 1989) and PCR-screened to identify positive pools. The intersection between a positive column-pool and row-pool indicates a positive BAC clone. The positive BAC clone was picked from the third Petri dish using a toothpick and grown in a culture tube containing 3 ml LB at $37{ }^{\circ} \mathrm{C}$ overnight. The liquid culture was then diluted 10,000 to $20,000 \mathrm{x}$ and $100 \mu \mathrm{l}$ of the culture was plated on a small round Petri dish (094 x 16 mm) containing LBA and grown at $37^{\circ} \mathrm{C}$ overnight. Five single-colonies were picked using a toothpick and grown as described above (labeled as 'a' to 'e'). Their DNA was isolated (Sambrook et al. 1989) and the colonies validated after PCR-amplification with the markers and primers used during the screening process. The positive single-colonies were maintained in glycerol stock (LB supplemented with 25% glycerol). The insert size of the BAC clones was determined as described in the previous section before further analyses (see below). The BAC clones were named as follow: "BAC pool number; Subpool number (384-well plate number); row letter; column number; single-colony letter" (eg. V41 P7 L $\underline{3} \underline{\text { A }}$).

Figure 1: Work flow for the identification of BAC clones spanning the Rphq2 locus in Vada and in SusPtrit.

Table 1: Primer pairs used to identify BAC clones of Vada and SusPtrit at the Rphq2 locus

Name	Primers sequences ($5^{\prime}-3^{\prime}$)	$\mathrm{Ta}^{\circ} \mathrm{C}$
${ }^{\text {M }}$ WBE114 ${ }^{\text {VS }}$	F: GGCGACCTCCAGCGTATC R: GTGGTTCGGTCCTTGATGAG	58
${ }^{\text {M }}$ WBE115 ${ }^{\text {Vs }}$	F : GGCGGTCGGCATCGTCCAGT R : ATGCGTCCACAAAACCAATCTTCA	61
${ }^{\text {M P }} 15 \mathrm{M} 51-204{ }^{\text {V }}$	F : CGGAGGAAACATGGACAACGAA R : AGCGAGCTCACTGCCAATCTACC	56
${ }^{\text {M P } 14 M 54-252 ~}{ }^{\text {s }}$	F : AGACCAGCATTACCTAAGCAGAGA R : AGAGGAGAGTGAGTGTAGGTGTCG	56
${ }^{\text {M }}$ besV76P5D5AR ${ }^{\text {V }}$	F : GAGGAGCCGTGTCGTCTTGT R: CCGTTTCCGTTCACTGGTTAT	56
${ }^{\text {M }}$ besS35P2K14EF ${ }^{s}$	F : TTGAAACAGCTGGGGTCTT R : TGGTACACAAATATTCGTCTGC	58
${ }^{\text {MG }}$ Rphq2.S01 ${ }^{\text {S }}$	F : TGAAGGCGGGTTTGGTGTGGTGTA R: CCCGCGTATGATTCTCTGCCTCTT	58
${ }^{\mathrm{MG}}$ Rphq2.V30 ${ }^{\text {s }}$	F : CGGCGGTGCGATCATAGAAT R: TCCCCGGCCGTAGAGTCC	65
${ }^{\text {G Rphq2.V32 }}{ }^{s}$	F : GGGGCCCCGGCTATCGTGTA R : AACTTTCCGCGGCAATCCTTCTTCT	65
*S35P100001F4 ${ }^{\text {S }}$	F : CCTCGCTAGTCAAGGAGGTG R: GTGGCTGTTGTAGGGACGAT	65
*S35P100004F2 ${ }^{s}$	F : TTAATTTCTGCTCGCGTGTG R: TGCATGCACTCCTCGTTTAG	65
${ }^{\mathrm{M}} \mathrm{S} 7300002 \mathrm{~F}{ }^{\text {S }}$	F : GACGTTGAGGAGAGCAAAGG R : GCCGTTTATCACGAGGTTGT	65

[^8]
BAC clones fingerprinting

All the confirmed positive BAC clones from the Vada and SusPtrit libraries were fingerprinted following the AFLP procedure from Brugmans et al. (2006) using the HindIII/TaqI restriction enzyme combination. The generated fragments were separated on a LICOR 4200 DNA sequencer (LI-COR Biosciences, Lincoln, NE, USA). The fingerprints were scored manually. Shared bands between BAC clones indicated sequence overlaps between the clones.

BAC-end sequencing

The extremities of all the confirmed positive BAC clones were sequenced (i.e. BAC-ends sequencing). The clones were digested individually with 12 different blunt-end restriction endonucleases (AluI, Bsh1236I, BspLI, BsuRI, DpnI, DraI, Exo32I, HincII, KspAI, RsaI, ScaI, SmaI and SspI), and ligated with non-specific blunt adapters (genome walker adapter). The restriction-ligations were performed in $50 \mu \mathrm{l}$ reaction volume comprising 50-100 ng DNA template, 1 x restriction and ligation buffer (RL buffer), 0.02 unit T4 DNA ligase, 0.1 unit restriction enzyme, $0.5 \mu \mathrm{M}$ genome walker adapter (GWadp; top: 5'-GTAATACGACTCACTATAGGGCACGCGTGGTCGACGGCCCGGGCTGGA-3'; bottom: $5^{\prime}-\mathrm{PO}_{4}$-TCCAGCCC- $\mathrm{NH}_{2}-3^{\prime}$), and 0.2 mM adenosine triphosphate (ATP). The reactions were incubated overnight at $37{ }^{\circ} \mathrm{C}$ and diluted 20x with MilliQ water (RLDNA). For each sample, a nested PCR approach with two rounds of amplification were carried out on the 12 RL-DNA in order to obtain PCR products as specific as possible before sequencing. The first PCR was performed in 20μ reaction volume comprising $5 \mu \mathrm{l}$ RL-DNA, $1 x$ PCR buffer, 0.2 mM dNTPs, 0.15 mM forward-1 pIndigoBAC/ pIndigoBAC-5 primer (5^{\prime}-GGATGTGCTGCAAGGCGATTAAGTTGG-3'), 0.15 mM adapter primer-1 (5^{\prime} 'TAATACGACTCACTATAGGGC-3'), and 0.02 unit Taq DNA polymerase. A separate PCR reaction was performed using the reverse-1 pIndigoBAC/ pIndigoBAC-5 primer (5'-CTCGTATGTTGTGTGGAATTGTGAGC-3'). The first-PCR product was diluted 50x in MilliQ water (Merck Millipore) and $5 \mu \mathrm{l}$ of the diluted PCR product was used as template for the second PCR. The second PCR was performed in 20 $\mu 1$ reaction volume. The PCR reaction mixture was similar to the first PCR, except for the primers that were used. They were the forward- 2 pIndigoBAC/ pIndigoBAC-5 primer (5^{\prime} -ACGGCCAGTGAATTGTAATA-3') and adapter primer-2 (5'-ACTATAGGGCACG CGTGGT-3'). A separate PCR reaction was performed using the reverse-2 pIndigoBAC/ pIndigoBAC-5 primer (5'-GGAAACAGCTATGA CCATGA-3').

The first PCR reaction was carried out with 24 cycles of 30 seconds denaturation at $94^{\circ} \mathrm{C}$, 30 seconds annealing at $56{ }^{\circ} \mathrm{C}$ and 90 seconds extension at $72{ }^{\circ} \mathrm{C}$ (Profile A). The second PCR reaction was carried out with 5 minutes of initial denaturation at $94{ }^{\circ} \mathrm{C}, 35$ cycles of Profile A and 7 minutes of final extension at $72{ }^{\circ} \mathrm{C}$. The final PCR product was visualized on 1% agarose gel. For each BAC clone, the largest fragment (depending on the initial restriction endonuclease) obtained in the final PCR product of the forward and of the reverse PCR reactions was selected for sequencing. Primers which amplify the BAC-ends were designed by using Lasergene software (DNASTAR® 8 Inc., Madison, WI, USA).

BAC clone sequencing and annotation

The Rphq2 genetic window is delimited by proximal (WBE114) and distal (WBE115) markers for which at least one recombination event has been found with Rphq2. Three BAC clones which fully covered the Rphq2 genetic window (V41P7L3A, V48P5B18A and V76P5D5A) were sequenced following a shotgun approach at Macrogen. One SusPtrit BAC clone was sequenced via a shotgun approach as well, S35P2K14E. The number of reads obtained for the BAC clones of Vada and SusPtrit ranges from 1000 to 1740 reads with an average length of 867 bp , corresponding to 8 x sequencing depths. For each BAC clone, the short shotgun sequences were assembled in contigs and ordered by Macrogen. Several gaps remained within the BAC clones with five to 14 contigs per clone. Therefore, the three BAC clones of Vada and S35P2K14E of SusPtrit were resequenced following a 454 sequencing approach at Greenomics ${ }^{\text {TM }}$ in order to bridge the gaps. Two additional BAC clones of SusPtrit (S35P1J10A and S73P5N20A) were also sequenced following this 454 sequencing approach. The three SusPtrit BAC clones, S35P2K14E with S35P1J10A and S73P5N20A, together cover only partially the targeted Rphq2 genetic window. The number of reads per BAC clone obtained from 454 sequencing ranges from 15570 to 38120 reads with an average length of 350 bp , correponding to 20x sequencing depths for each BAC clone. For each BAC clone, the short sequences of 454 sequencing were assembled in contigs by Greenomics ${ }^{\mathrm{TM}}$.

The obtained 454 sequence contigs were aligned to the previously assembled shotgun sequence contigs [Lasergene software (DNASTAR® 8 Inc., Madison, WI, USA)]. No discrepancy was observed between the assemblies obtained via both approaches. Based on the AFLP fingerprints of the BAC clones of Vada, V76P5D5A overlaps proximally with V41P7L3A and distally with V48P5B18A. We identified the overlapping sequences and confirmed the fingerprints. According to the AFLP fingerprints of the BAC clones of SusPtrit, S73P5N20A overlaps with S35P2K14E, and S35P1J10A is located proximally and not overlapping. We identified the overlapping sequences between S73P5N20A and S35P2K14E which also helped us to order the 454 sequence contigs. The 454 sequence contigs obtained for clone S35P1J10A were ordered according to a dot plot analysis (MUMMER; https://bacregistry.potatogenome.net) against V41P7L3A which share the same marker (WBE114).

The consensus sequence corresponding to the Rphq2 genetic window of Vada, flanked by markers WBE114 and WBE115, was generated and annotated using the TriAnnot pipeline (Leroy et al. 2012) following the architecture for barley (http://wheat-urgi.versailles.inra. fr/Tools/Triannot-Pipeline/Architecture). The consensus sequence corresponding to the

Rphq2 genetic window of SusPtrit were annotated separately using the same TriAnnot pipeline.

Marker saturation of the regions containing Rphq2

Between the flanking markers (WBE114 and WBE115), BAC-end sequences and annotated gene sequences were used to develop sequence characterized amplified regions (SCAR) and cleaved amplified polymorphic sequence (CAPS) markers, polymorphic between Vada, SusPtrit and L94. Markers polymorphic between Vada and L94 was genetically mapped using homozygous recombinant plants from Marcel et al. (2007a) in order to confirm their position and order. SCAR and CAPS markers were also developed from the AFLP fingerprints by converting polymorphic bands to single locus PCR markers following the strategy proposed by Brugmans et al. (2003). Primers were designed using Lasergene software (DNASTAR® 8 Inc., Madison, WI, USA). The markers developed were used to assist in ordering of BAC clones.

WBE114 and WBE115 (Table 1) together with two newly developed markers, viz. Rphq2.S01 (Table 1) and Rphq2.V09; F: 5’-GCCTCTACTTCCACGACTGC-3', R: 5’CCGGAGATGAC GATGATGT-3') were used to screen the Morex BAC library (Nils Stein, Leibniz Institute of Plant Genetic and Crop Plant Research, IPK) to identify the homologous Rphq2 region in the Morex genomic sequence.

Comparative mapping in barley, rice and Brachypodium

The sequence of annotated genes in the physical window of Rphq2 were used for blast searches of rice and Brachypodium distachyon homologous genes, respectively, in the Rice Genome Annotation Project blast search (http://rice.plantbiology. msu.edu/analyses_ search_blast.shtml) and in the B. distachyon blast portal (http://blast. brachypodium.org/). For each annotated gene in barley, the best blast hit was retained above a threshold e-value $\leq 1.0 \mathrm{E}-15$.

Results

We have constructed two non-gridded BAC libraries of barley from the cv. Vada and from the experimental line SusPtrit, respectively. Vada not only carries the resistance allele of our target QTL for map-based cloning, Rphq2, but also for many other QTLs for partial and nonhost resistances to adapted and non-adapted rust species (Jafary et al., 2006; 2008), for which SusPtrit contains the susceptibility allele.

Construction and characterization of the BAC libraries

The Vada BAC library was generated from 6 different ligation reactions with pIndigoBAC vector and 8 different ligation reactions with pIndigoBAC-5 vector. The Vada library was organized in 116 pools named V1 to V116 (Supplemental Table 1), containing an average of 1,435 clones per pool. The percentage of (white) recombinant clones was estimated to be 96.8% based on the count of blue (non-recombinant) and white (recombinant) colonies per plate. Thus, the library consists of approximately 161,000 recombinant clones. The average size of inserts ranges from 67 Kbp to 98 Kbp . The observed insert sizes for each fraction do not correspond to the expectations based on the size selection (Table 2).

Table 2: Composition of the Vada BAC library

Size selection range (Kbp)	Number of pools	White colonies	Blue colonies ${ }^{1}$	Insert size 2 (Kbp)	Coverage 3 (Mbp)
H0: 50-100	3	225	0	$-*$	-
H1: 100-150	41	1636	45	98.3	$6,593.6$
H2: 150-200	35	1724	79	67.4	$4,066.9$
H3: 200-250	34	963	20	71.9	$2,354.1$
H4: 250-300	3	97	1	$-*$	-
Total	$\mathbf{1 1 6}$	$\mathbf{1 3 8 9}$	$\mathbf{4 6}$	$\mathbf{8 1 . 2}$	$\mathbf{1 3 , 0 1 4 . 6}$

[^9]The SusPtrit BAC library was generated from six different ligation reactions with pIndigoBAC vector and seven different ligation reactions with pIndigoBAC-5 vector. The SusPtrit library was organized in 110 pools named S1 to S110 (Supplemental Table 2),
containing an average of 1,606 clones per pool. The percentage of recombinant clones was estimated to be 97.9 \% based on the count of blue and white colonies per plate. Thus, the library consists of approximately 173,000 recombinants clones. The average size of SusPtrit inserts ranged from 107 Kbp for selected fraction H1 to 141 Kbp for selected fraction H3 (Table 3).

Table 3: Composition of the SusPtrit BAC library

Size selection range (Kbp)	Number of pools	White colonies	Blue colonies ${ }^{1}$	Insert size 2 (Kbp)	Coverage 3 (Mbp)
H0: 50-100	9	3,316	3	$83.0 *$	$2,477.1$
H1: $100-150$	37	1,716	43	106.7	$6,775.8$
H2: $150-200$	38	1,704	48	110.5	$7,152.9$
H3: $200-250$	26	571	12	140.6	$2,087.7$
H4: $250-300$	-	-	-	-	-
Total	$\mathbf{1 1 0}$	$\mathbf{1 , 5 7 2}$	$\mathbf{3 4}$	$\mathbf{1 0 8 . 0}$	$\mathbf{1 8 , 4 9 3 . 5}$

${ }^{1}$ Estimation of the average number of colonies per pool
${ }^{2}$ Average insert size estimated with 24 randomly selected BAC clones per fraction

* corresponds to the insert size of a single BAC clone isolated from fraction H0
${ }^{3}$ Calculated with the estimated number of white colonies and their average insert size.

Based on a haploid barley genome size of 4.98 Gb (The International Barley Genome Sequencing Consortium 2012) and on the genome coverage of each fraction of the libraries (Tables 2 and 3), we estimated that the coverage of the Vada and SusPtrit BAC libraries are approximately 2.6 and 3.7 genome-equivalents, respectively. Together, the libraries cover 6.4 genome-equivalents that allow for a probability greater than 99% of recovering any specific sequence from the barley genome (Clarke and Carbon 1976).

Genome representation of the BAC libraries

To verify the genome representation of the libraries, we screened 46 pools of Vada (V1 to V46) and 46 pools of SusPtrit (S1 to S46) corresponding approximately to 1.4 and 1.9 genome-equivalents, respectively, with 14 microsatellite markers, each representing a chromosome arm of barley (Table 4). The microsatellite markers were mapped on a consensus map of barley (Varshney et al. 2007). We selected in priority the most robust markers that were also polymorphic between Vada and SusPtrit. For only two microsatellites, GBMS062 and GBM1482, Vada and SusPtrit had the same allele (Table
4). The number of positive pools was determined (Table 4) by counting the number of pools displaying a band of similar size as the one of the parental genomic DNA run on the same gel. None of the bands amplified in a BAC pool from one genotype had the size of the allele from the other genotype, indicating that the contamination of one library with clones from the other library is unlikely.

An average of 2.7 positive pools per microsatellite marker was obtained for the Vada library and an average of 3.5 positive pools for the SusPtrit library (Table 4). All markers were represented at least once in the 46 pools of the SusPtrit library and only two markers were not represented in the 46 pools of the Vada library, indicating that the overall barley genome is well represented in our BAC libraries. Based on the average representation of the 14 microsatellite markers in 46 pools per library, we estimated that the total coverage of the Vada and SusPtrit BAC libraries are 5.0 and 6.8 genome-equivalents, respectively.

Table 4: PCR-based screening of the Vada and SusPtrit BAC libraries with microsatellite markers representing each chromosome arm of barley on a subset of 46 pools per library (representing approximately 1.4 and 1.9 barley genome-equivalents)

Chrom.	Position $(\mathrm{cM})^{1}$	Microsatellite	Vada allele 2 (bp)	SusPtrit allele 2 (bp)	Nr. Pools Vada 3	Nr. Pools SusPtrit 3
1HS	25.0	GBMS062	127	127	2	8
1HL	73.4	Bmac0032	-	220	1	2
2HS	28.6	HVM36	126	108	6	4
2HL	90.9	GBM1062	215	219	3	2
3HS	35.4	scssr10559	210	216	3	4
3HL	150.5	HVM62	260	250	2	4
4HS	47.1	GBM1482	210	210	12	5
4HL	125.5	GBM1015	232	220	0	1
5HS	21.2	GBM1176	-	300	1	4
5HL	88.0	Bmag0223	174	170	1	5
6HS	4.6	Bmac0316	169	165	1	3
6HL	129.2	GBM1087	201	198	4	2
7HS	18.6	Bmag0007	200	204	2	4
7HL	87.7	GBM1359	151	145	0	1

[^10]
Generation of Vada and SusPtrit sequences at Rphq2

We used four pairs of primers for the BAC library of Vada and ten primer pairs for the BAC library of SusPtrit (Table 1) to screen for BAC clones spanning the Vada or SusPtrit allele at Rphq2. For Vada, the four primer pairs detected 16 positive BAC pools in total from the Vada BAC library and for SusPtrit the ten primer pairs detected a total of 21 positive BAC pools in the SusPtrit BAC library (Supplemental Table 3). The BAC pools positive for two or more primer pairs were prioritized for BAC clones picking. We picked around 1900 (five 384-well plates) to 5760 (15384 -well plates) colonies per positive pool. Then, we identified the 384 -well plates (sub-pools) positive for the primer pairs. Consecutively, we confirmed the amplification with primer pairs on row and column pools of the positive sub-pool. Finally, we validated seven Vada BAC clones originating from four Vada BAC pools and 17 SusPtrit BAC clones originating from nine SusPtrit BAC pools. All BAC clones were fingerprinted. The order of the BAC clones was not only based on the BAC fingerprint, but also on the primer amplification.

From the seven BAC clones of Vada, the AFLP fingerprint revealed a minimum tiling path of only three clones [V41P7L3A (120 Kbp), V76P5D5A (87 Kbp) and V48P5B18A (150 Kbp)], which were overlapping each other to cover the Rphq2 genetic window between markers WBE114 and WBE115. Based on the primer amplification, the three Vada BAC clones were bridged together by V76P5D5A. This BAC clone overlapped with V41P7L3A harboring WBE114 and V48P5B18A harboring WBE115 (Table 5).

From the 17 BAC clones of SusPtrit, six had an identical AFLP fingerprint with S35P1J10A (105 Kbp) which harbored WBE114, but were not overlapping with any of the other identified SusPtrit BAC clones. On the other side, three BAC clones positive for WBE115 were overlapping with each other [S35P2K14E (140 Kbp), S7P2C21A (80 Kpb) and S81P2C6A (135 Kbp)], and with a fourth BAC clone [S73P5N20A (165 Kbp)] (Table 5). S35P2K14E was selected for sequencing because it was positive not only for WBE115 but also for P14M54-252, a marker mapped closer to Rphq2 (Marcel et al. 2007a; Figure 2). S73P5N20A was also selected for sequencing because it overlapped with S35P2K14E distal to WBE115, and was expected to extend further into the Rphq2 genetic window.

The three BAC clones of Vada were sequenced following both shotgun and 454 sequencing approaches. The sequences obtained with one or the other approaches were assembled independently. The sequence assembly obtained from shotgun sequencing had ten gaps between WBE114 and WBE115, while the sequence assembly obtained from 454 sequencing had 12 gaps. Aligning both assemblies led to a consensus sequence with only two gaps left. One of the gaps was between two sequence contigs from V76P5D5A and
the other gap was between two sequence contigs of V48P5B18A. Together, the two gaps represent approximately 7 Kbp , estimated by comparing the estimated insert size of the BAC clone with the size of the consensus sequence. The physical length of the three contigs covering the Vada BAC sequence from WBE114 to WBE115 is approximately 195 kb not including the two gaps.

Three BAC clones were sequenced from the SusPtrit library. The BAC clone S35P2K14E was sequenced following both shotgun and 454 sequencing approaches while the other two BAC clones S73P5N20A and S35P1J10A were sequenced following a 454 sequencing approach only. The sequences obtained with one or the other approaches were assembled independently. The sequence assembly of S35P2K14E from shotgun sequencing had six gaps, while the sequence assembly obtained from 454 sequencing for this clone had four gaps. Aligning both assemblies led to a consensus sequence of 122 Kbp with no gap for S35P2K14E. The sequence assemblies for the other two SusPtrit clones were composed of four contigs each (three gaps for each clone). The consensus sequence of S73P5N20A and S35P1J10A contigs resulted in three contigs of sizes 139 $\mathrm{Kbp}, 563 \mathrm{bp}$, and 60 Kbp . Based on the available sequences, we estimated a 226 Kbp length for the complete SusPtrit consensus sequence between WBE114 and WBE115.
Table 5: Ordering of the BAC clones from Vada (A) and SusPtrit (B) libraries according to positive PCR amplification with developed primers at the Rphq2 locus.

(a)		$\begin{aligned} & \text { z } \\ & \text { 区 } \\ & \text { 菏 } \end{aligned}$								(b)					$\begin{aligned} & \pi \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & 0 \end{aligned}$									
V41P7L3A	$+$	+	+	+	-	-	-	-	-	S35P1J10A	+	+	+	-	-	-	-	-	-	-	-	-	-	-
V76P5D5A	-	-	+	+	+	+	+	-	-	S73P5N20A*	-	-	-	+	+	NT	NT	+	+	NT	NT	-	-	NT
V48P5B18A	-	-	-	-	-	+	+	+	+	S35P2K14E	-	-	-	+	NT	+	+	NT	+	+	+	+	+	-
										S7P2C21A	-	-	-	-	NT	-	-	NT	-	+	+	-	-	-
										S81P2C6A	-	-	-	-	NT	-	+	NT	+	+	+	+	+	+

Grey boxes indicate the positive amplification of the primers on the respective BAC clones.

* We failed to obtained primers which can amplify the BAC ends.
a " + " indicates the positive amplification.
NT, Not tested.
Marker name "bes..." refers to marker developed from bac end sequence, and "bfs..." refers to marker developed from bac AFLP-fingerprint sequence Marker information is available in supplemental Table 4

Sequence annotation

The TriAnnot pipeline (Leroy et al. 2012) predicted 12 genes on both Vada and SusPtrit contigs. On Vada contigs, the predicted genes encoded three peroxidases (V.Perox-1, -2, 3), two kinases (V.Kin-1, -2), one Seven in absentia protein family (V.SINA), one protein legume lectin domain (V.Leg-Lec-D), and five unknown function/hypothetical/ uncharacterized proteins (V.UF/HP/UP. On SusPtrit contigs, the predicted genes encoded three kinases (S.Kin-1, -2, -3), two peroxidases (S.Perox-1, -2), and seven unknown function/hypothetical/uncharacterized proteins (S.UF/HP/UP). Among the predicted genes, V.Perox-1, V.Perox-2, V.UP, V.Kin-1 and V.Kin-2 from Vada were positioned at the same locus (allelic) as S.Perox-1, S.Perox-2, S.UP, S.Kin-2 and S.Kin-3 from SusPtrit, respectively. Their positions were supported by co-dominant markers except the locus of V.Perox-2 and S.Perox-2 (Figure 2). The common genes between Vada and SusPtrit shared at least 99% similarity except for V.Kin-1 and S.Kin-2 which had similarity of at least 90%. The other annotated genes were not shared between Vada and SusPtrit (Figure 2). The V.UF and V.HP from Vada were not aligning to the S.UF and S.HP from SusPtrit, respectively, and were regarded as different loci. The likelihood of genes listed in Figure 2 to be candidates for Rphq2 will be discussed in the Discussion section.

Using the sequence information between WBE114 and WBE115, we developed 38 new markers that were polymorphic between Vada, SusPtrit and L94. Interestingly, SusPtrit and L94 have the same genotype for all the markers obtained. Together with two AFLPconverted single locus PCR markers developed by Marcel et al. (2007a), 40 markers were mapped between the flanking markers WBE114 and WBE115 (Supplemental Table 5). The genetic positions of the 40 markers were resolved based on their physical order and position on the sequence between WBE114 and WBE115. Among the 40 markers, 20 were dominant markers amplifying Vada DNA and 17 were dominant markers amplifying SusPtrit DNA (Figure 2). There were three co-dominant markers; two were developed based on the common annotated genes between Vada and SusPtrit and one based on a random sequence from one of the sequence contigs of S73P5N20A. These three codominant markers were located close to each other near WBE115. Based on the sequence annotation and the dominant nature of most of the newly developed markers located between WBE114 and WBE115, there seems to be a lack of homology between Vada and SusPtrit for the region containing Rphq2. This is further supported by a dot plot analysis (MUMMER; https://bacregistry.potatogenome.net) which compares the sequence of Vada and SusPtrit between WBE114 and WBE115 (Figure 3). Sequence similarity is only observed on approximately the first 36 Kbp of S35P1J10A which included WBE114.

Figure 2: A schematic presentation of the 0.1 cM marker interval between WBE114 and WBE115 containing Rphq2: linkage map, the BAC contig of Vada and SusPtrit, and the Triannot annotated genes in the contigs. Markers with * are AFLP-converted single locus PCR markers developed by Marcel et al. (2007a).

Figure 3: Dot plots suggest low homology between the Rphq2 sequence of Vada and SusPtrit. (a) Alignment between sequences of Vada and SusPtrit
proximal to the gap in SusPtrit BAC contig. (b) Alignment between sequences of Vada and SusPtrit distal from the gap in SusPtrit BAC contig

We searched for the homologous Rphq2 region in the Morex genomic sequence (The International Barley Genome Sequencing Consortium 2012). A pair of primers which amplifies an annotated gene in Vada, Peroxidase 2 (Rphq2.V09) detected four BAC clones of Morex (HVVMRXALLEA0011E05, HVVMRXALLEA0179K22, HVVMRXALLe A0269J17 and HVVMRXALLeA0278A17). These four BAC clones are overlapping with each other and positioned between 806 to 981 kb of contig 44195 (1.9Mb) on chromosome 2HL (http://mips.helmholtz-muenchen.de/plant/barley/index.jsp). Another pair of primers which amplifies an annotated gene in SusPtrit, Kinase 1 (Rphq2.S01; Table 1) detected one BAC clone, HVVMRXALLeA0299N24 which also belongs to contig 44195, positioned between 961 and 1101 kb of the contig. A total of 118 Morex sequence contigs (Mor_cont) from the BAC contig 44195 (kindly provided by Nils Stein, Leibniz Institute of Plant Genetic and Crop Plant Research, IPK) were aligned to the sequence between WBE114 and WBE115 of Vada and SusPtrit using Lasergene software with a minimum sequence match of 80% (DNASTAR® 8 Inc., Madison, WI, USA). Eleven of the 118 Mor_cont from BAC contig 44195 aligned to the Vada sequences and 17 to the SusPtrit sequences (Table 6). We found that Mor_cont 43090 was approximately 300 bp distal from WBE114. Another one, the Mor_cont 2546833, aligned to a region including WBE115. We estimated the physical distance between WBE114 and WBE115 of Morex to be of approximately 254 kb which is very similar to the estimated physical distance in SusPtrit. More sequences from SusPtrit could be aligned on the Morex sequences indicating that SusPtrit and Morex are likely to be more similar than Vada and Morex at the Rphq2 locus.

The synteny between barley, rice and Brachypodium

The Rphq2 region is located in the barley 2L1.0 region, which has a syntenic relationship with a region on rice Chromosome 4 (Marcel et al. 2007a) and a region on Brachypodium Chromosome 5 (Mayer et al. 2011). Homologs of the two genes used to develop markers WBE114 and WBE115 have indeed been identified on rice Chromosome 4 and on Brachypodium Chromosome 5 (Table 7). The interval between the rice homologs Loc_Os04g59260 and Loc_Os04g59320 contains five annotated genes encoding a hypothetical protein, two retrotransposon proteins, a strictosidine synthase, and a phospholipase C. The interval between the Brachypodium homologs Bradi5g27210 and Bradi5g27240 contains 2 genes encoding a peroxidase and a phospholipase C. The gene used to develop the marker WBE114 encodes a peroxidase precursor. Interestingly, this gene is present in a single copy in rice, in two copies in Brachypodium and in barley line SusPtrit, and in three copies in barley cultivar Vada (Table 7). In addition, only two additional genes seem to be shared between the three species and the two barley genotypes
including a phospholipase C and a protein kinase used to develop marker WBE115. The remaining 7 genes predicted only from the Vada sequence and 7 genes predicted only from the SusPtrit sequence have no homolog in the identified synthetic regions of rice and Brachypodium. The best blast hits (threshold $\leq 1.0 \mathrm{E}-15$) obtained for some of those genes are located outside of the Rphq2 syntenic interval (Table 7).

Table 6: Alignment of 18 Morex sequence contigs on Vada and SusPtrit sequence assemblies between WBE114 and WBE115 (corresponding to Morex BAC contig 44195)

Morex contigs; (sequence size, bp)	Align to Vada	Align to SusPtrit
Mor_cont 43090; (5993)/WBE114*	Yes $^{\$}$	Yes
Mor_cont 53633; (3569)	Yes	No
Mor_cont 2267159; (240)	No	Yes
Mor_cont 88428; (1710)	No	Yes
Mor_cont 2550490; (9192)	No	Yes
Mor_cont 2343918; (327)	No	Yes
Mor_cont 41082; (7623)	No	Yes
Mor_cont 442275; (1129)	No	Yes
Mor_cont 280043; (1061)	No	Yes
Mor_cont 1590687; (2251)	Yes	Yes
Mor_cont 287733; (1989)	Yes	Yes
Mor_cont 224400; (1060)	Yes	Yes
Mor_cont $321571 ;(308)$	Yes	Yes
Mor_cont 60124; (3413)	Yes	Yes
Mor_cont $1588307 ; ~(1769)$	Yes	Yes
Mor_cont $1572547 ; ~(2594)$	Yes	Yes
Mor_cont $8886 ;(1904)$	Yes	Yes
Mor_cont $2546833 ;(3163) /$ WBE115	Yes	

[^11]Table 7: Best blast hits ($\leq 1.0 \mathrm{E}-15$) of the predicted genes in Vada and SusPtrit sequences with the rice and the Brachypodium gene catalogues

Vada	Rice	Brachypodium	SusPtrit	Rice	Brachypodium
* Peroxidase 1	$\begin{gathered} \text { Loc_Os04g59260 } \\ (5.6 \mathrm{E}-127) \end{gathered}$	$\begin{gathered} \text { Bradi5g27210 } \\ (1.3 \mathrm{E}-134) \end{gathered}$	* Peroxidase 1	Loc_Os04g59260 (3.4E-128)	$\begin{gathered} \text { Bradi5g27210 } \\ (2.7 \mathrm{E}-134) \end{gathered}$
Na			Hypothetical protein	x	x
Peroxidase 2	Loc_Os04g59260 (3.9E-103)	$\begin{gathered} \text { Bradi5g27220 } \\ (9.7 \mathrm{E}-119) \end{gathered}$	Peroxidase 2	Loc_Os04g59260 (1.0E-103)	$\begin{gathered} \text { Bradi5g27220 } \\ (3.0 \mathrm{E}-119) \end{gathered}$
Na			Hypothetical protein	X	X
Na			Hypothetical protein	x	X
Na			Unknown function	$\begin{gathered} \text { LOC_Os07g35310 } \\ (4.2 \mathrm{E}-61) \end{gathered}$	$\begin{gathered} \text { Bradi1g25552 } \\ (3.0 \mathrm{E}-73) \end{gathered}$
Hypothetical protein	x	x	Na		
Seven in Absentia protein	$\begin{gathered} \text { LOC_Os05g06070 } \\ (1.7 \mathrm{E}-32) \end{gathered}$	$\begin{gathered} \text { Bradi2g01770 } \\ (7.7 \mathrm{E}-43) \end{gathered}$	Na		
Peroxidase 3	Loc_Os04g59260 (3.8E-108)	$\begin{gathered} \text { Bradi5g27220 } \\ (4.1 \mathrm{E}-120) \end{gathered}$	Na		
Protein containing legume lectin domain	LOC_Os08g03002 (4.4E-60)	$\begin{gathered} \text { Bradi1g28320 } \\ (7.2 \mathrm{E}-63) \end{gathered}$	Na		
Na			Hypothetical protein	$\begin{gathered} \text { LOC_Os11g30140 } \\ (1.7 \mathrm{E}-24) \end{gathered}$	x
Na			Hypothetical protein	x	X
Hypothetical protein	x	x	Na		
Unknown function	$\begin{gathered} \text { LOC_Os10g37260 } \\ (1.4 \mathrm{E}-66) \end{gathered}$	$\begin{gathered} \text { Bradi3g30820 } \\ (4.4 \mathrm{E}-63) \end{gathered}$	Na		
Unknown function	$\begin{gathered} \text { LOC_Os10g37260 } \\ (4.0 \mathrm{E}-28) \end{gathered}$	$\begin{gathered} \text { Bradi3g30820 } \\ (1.2 \mathrm{E}-20) \end{gathered}$	Na		
Na			Kinase 1	$\begin{gathered} \text { LOC_Os07g35310 } \\ (1.4 \mathrm{E}-136) \end{gathered}$	$\begin{gathered} \text { Bradi1g25552 } \\ (5.0 \mathrm{E}-194) \end{gathered}$
Kinase 1	$\begin{gathered} \text { LOC_Os08g03020 } \\ (5.4 \mathrm{E}-140) \end{gathered}$	$\begin{gathered} \text { Bradi1g28320 } \\ (8.7 \mathrm{E}-225) \end{gathered}$	Na		
Na			Kinase 2	$\begin{gathered} \text { LOC_Os08g02996 } \\ (4.6 \mathrm{E}-145) \end{gathered}$	$\begin{gathered} \text { Bradi1g28320 } \\ (3.5 \mathrm{E}-221) \end{gathered}$
Uncharacterizaed Protein	$\begin{gathered} \text { Loc_Os04g59310 } \\ (5.3 \mathrm{E}-138) \end{gathered}$	$\begin{gathered} \text { Bradi5g27230 } \\ (7.0 \mathrm{E}-160) \end{gathered}$	Uncharacterizaed Protein	$\begin{gathered} \text { Loc_Os04g59310 } \\ (2.8 \mathrm{E}-137) \end{gathered}$	$\begin{gathered} \text { Bradi5g27230 } \\ (1.9 \mathrm{E}-159) \end{gathered}$
Kinase 2	$\begin{gathered} \text { Loc_Os } 04 \mathrm{~g} 59320 \\ (1.5 \mathrm{E}-201) \end{gathered}$	$\begin{gathered} \text { Bradi5g27240 } \\ (2.4 \mathrm{E}-222) \end{gathered}$	Kinase 3	$\begin{gathered} \text { Loc_Os04g59320 } \\ (1.5 \mathrm{E}-201) \end{gathered}$	$\begin{gathered} \text { Bradi5g27240 } \\ (2.4 \mathrm{E}-222) \end{gathered}$

Na ; Not annotated
x; No hit or no significant hit
Grey boxes indicate the syntenic interval of Rphq2 with rice chromosome 4 (indicated by Loc_Osㅇ4) and
Brachypodium chromosome 5 (indicated by Bradis).
WBE114 is located within this annotated gene.
: WBE115 is located within this annotated gene.

Discussion

Map-based cloning is one of several approaches to isolate the gene(s) responsible for a QTL with an effect explaining more than 10% of the phenotypic variation (Kou and Wang 2012). For rice, map-based cloning was successful to isolate the genes responsible for two resistance QTLs against Magnaporthe oryzae (Fukuoka et al. 2009; Hayashi et al. 2010). For wheat, genes were isolated for one resistance QTL against P. striiformis (Fu et al. 2009) and one wide-spectrum QTL against P. triticina, P. striiformis and Blumeria graminis (Krattinger et al. 2009) following a map-based cloning approach. The partial resistance QTL Rphq2 explains 35\% of the phenotypic variation in L94/Vada recombinant inbred lines population (Qi et al. 1998) and therefore, map-based cloning of Rphq2 should be possible.

Vada and SusPtrit BAC libraries

Two non-gridded BAC libraries were constructed for Vada and SusPtrit barley genotypes. We observed in the Vada BAC library that the average size of inserts decreased from 98.3 Kbp for selected fraction H1 to 71.9 Kbp for selected fraction H3 (Table 2), while fractions H 1 to H 3 correspond to size selected fragments increasing from 100 to 250 kb , respectively. This could be due to a bias in the size selection procedure during library construction. Indeed, only one size selection was performed instead of two or three as recommended by different authors (Chalhoub et al. 2004; Peterson et al. 2000). If the first size selection allows selection of mostly DNA fragments longer than 100 Kbp , some small DNA fragments may remain trapped within the longer ones; and this may be especially true when the DNA concentration in the plugs is relatively high (Peterson et al. 2000). The average insert size over the complete Vada BAC library was 81 Kbp , with individual clones ranging from 18 to 209 Kbp (Supplemental Figure 1a; Table 2). In contrast to the Vada BAC library, the average size of inserts in the SusPtrit BAC library logically increased from 107 Kbp for selected fraction H1 to 140.6 Kbp for selected fraction H3. We presume that a lower concentration of SusPtrit DNA in the size fraction gel resulted in a lower amount of small DNA fragments being trapped than for Vada DNA. Consequently, the average insert size over the complete SusPtrit BAC library was 108 Kbp, with individual clones ranging from 33 to 274 Kbp (Supplemental Figure 1b; Table 3). On average SusPtrit inserts are 27 Kbp longer than Vada inserts. The average insert size of the Vada BAC library is the smallest among the BAC libraries available for barley. Such small average insert size is also observed in BAC libraries from other plant species such as wheat (Janda et al. 2004; Nilmalgoda et al. 2003) and soy bean (Xia et al. 2014).

The average insert size of the Vada and SusPtrit BAC libraries is still comparable to three of the Morex BAC libraries (HVVMRXALLrA, HVVMRXALLhB and HVVMRXALLh C) recently made available by Schulte et al. (2011). However, the average insert size of the constructed BAC libraries is smaller than the one reported for the Cebada Capa BAC library (140 Kbp) which was constructed using the same protocol (Isidore et al. 2005).

Repeated size selections can increase the average insert size but may also be followed by a severe drop in transformation efficiency (Cai et al. 1995; Chalhoub et al. 2004). The balance to find between those two parameters depends on the final use of the BAC library. If a BAC library is to be used for genome-wide physical mapping and genome sequencing, then maximizing the average size of inserts is essential to limit walking. However, if a BAC library is to be used for positional cloning of genes that have already been confined to a very small interval, then having a large number of clones is more important in order to increase the chance to find the gene of interest. The principal aim of our BAC libraries is to isolate genes involved in basal resistance to cereal rust fungi after their high-resolution genetic mapping. Consequently, our priority was to obtain a large number of clones at lower cost.

Mostly, DNA fractions H1, H2 and H3 were used to construct the libraries. The percentage of non-recombinant clones (blue colonies) was below 4\%. Such a high proportion of recombinant clones over the non-recombinant clones reduce the problem of a possible bias in the libraries caused by faster growth of non-recombinant clones during the short amplification step (Isidore et al. 2005).

Genome representation of the BAC libraries

Based on the observed insert sizes of the BAC clones, the estimated genome coverage of the Vada BAC library is 2.6x and of the SusPtrit BAC library 3.7x. The genome coverage of the Vada library is comparable to the genome coverage of the Morex HVVMRXALLhB library, and SusPtrit to HVVMRXALLeA (Schulte et al. 2011). The estimation of the genome coverage based on microsatellite markers indicates, however, coverages of 5.0x and 6.8x for the Vada and the SusPtrit BAC libraries, respectively. The discrepancy between both estimations may be due to an underestimation of the average size of the BAC clones. As it is often observed in monocots (Peterson et al. 2000), several bands of identical sizes may be obtained after NotI restriction of BAC clones, which may result in the underestimation of the insert size from some clones. On the other hand, half of the microsatellite markers used for screening the BAC pools were derived from barley ESTs/genes (i.e. EST-SSR markers), implying that a marker amplifying a member from a
gene family may in some cases amplify other genes from the same family as well unless the sequences of the primer pairs are unique (Thiel et al. 2003). Indeed, the pressure of a primer to anneal on a similar but not identical sequence is much stronger on BAC DNA than it is on full genomic DNA. Therefore, the genome coverage of the two libraries remains uncertain, but is probably slightly higher for SusPtrit than for Vada. Based on insert sizes, the BAC library of Vada gives at least 93% probability of identifying a clone corresponding to any sequence of Vada and for BAC library of SusPtrit a probability of 98% is expected (Clarke and Carbon 1976). Together, the two BAC libraries give more than 99% probability of recovering any specific sequence from the barley genome.

Physical map of the Rphq2 locus

Rphq2 is positioned at the telomeric region of chromosome 2 HL which is known to be a gene rich region containing genes for different agronomic traits, including flowering time and disease resistance (Chen et al. 2009). Rphq2 is a partial resistance QTL against P. hordei, but it seems also to be effective to some non-adapted rust species (Jafary et al. 2006; Chapter 3, this thesis). Recently, Johnston et al. (2013) suggested that Rphq2 is possibly a weaker allelic form of a novel leaf rust resistance gene Rph22 (or Rph22.ak) found in H. bulbosum, a nonhost species for P. hordei. Similar to Rphq2, Rph22 confers a non-hypersensitive reaction resistance. Therefore, it is interesting to clone Rphq2 which will provide molecular information to further study partial and nonhost resistances, and their possible association.

The donor of Rphq2 is Vada (Jafary et al. 2006; Qi et al. 1998), which is a cultivar developed from Hordeum laevigatum/Gold (Dros 1957). The Rphq2 locus of Vada was donated by H. laevigatum (Arru et al. 2003; Giese et al. 1993). The name of the latter accession is taxonomically invalid, since it suggests a different (wild) species in the Hordeum genus. However, it is perfectly crossable with H. vulgare accessions and also has the H. vulgare general morphology, including non-shattering spikes. Therefore it should be regarded as H. vulgare. It occurs in the ancestry of many West-european cultivars, including Emir, Delta and Minerva [(Hickey et al. 2012); Germplasm Resources Information Network (GRIN) http://www.ars-grin.gov/npgs/holdings. html]. SusPtrit was bred from a double cross; Menelik/L100//Trigo Biasa/Nigrinudum [GRIN; (Atienza et al. 2004)]. The very low degree (or even absence) of homology in the Rphq2 region is mainly due to the West-european cultivar Vada and hence due to the donor line H. laevigatum that contributed this chromosome section (Marcel et al. 2007a). The Rphq2-introgression from H. laevigatum is approximately 188 Kbp starting from approximately three Kbp distal from the WBE114 to WBE115. Other barley lines, viz the Ethiopian L94, the American
cultivar Morex and SusPtrit as a descendant from various exotic barley accessions, seem to have maintained their homology in this area, as it appears from the alignment of the Morex genome sequences with the SusPtrit sequences and not with the Vada sequences (Table 6). Accordingly, the primer pairs designed on SusPtrit sequences did amplify DNA of L94 while primer pairs designed on Vada sequences did not. A practical consequence is that we do not expect further recombination between WBE114 and WBE115, as in heterozygous material the chromosome regions will probably hardly pair. Indeed we failed to obtain recombinant plants in this area after screening more than 3000 plants (data not shown). Suppression of recombination prevents further fine-mapping of Rphq2. This lack of homology implies that having a BAC library from the parent donor of the resistance allele (Vada) is a necessity, and that if we would have used BAC libraries from other genotypes we might have had great difficulties to acquire sequence information in the region and to identify the candidate genes from Vada.

Gene annotation at the Rphq2 locus

The annotation of the Rphq2 region using Triannot with the architecture for barley identified 12 genes in Vada and 12 genes in SusPtrit, but only five of the annotated genes are shared between Vada and SusPtrit. These four annotated genes were also conserved in rice and B. distachyon. No nucleotide-binding-site-leucine-rich repeat (NBS-LRR) resistance gene was annotated in the Rphq2 region. The candidate genes for Rphq2 might be a resistance factor in Vada or a susceptibility factor in SusPtrit. A study of differentially expressed genes between L94 and L94-Rphq2 NIL suggested seven candidates for Rphq2 (Chen et al. 2010). Among the candidates, only one gene, unigene2111 (encoding a peroxidase), was similar to an annotated gene at Rphq2. Unigene2111 has 99% identity with the coding sequence of V.Perox-2 of Vada and S.Perox-2 of SusPtrit. This suggests peroxidase 2 as a good candidate to explain Rphq2. This is also supported by the fact that peroxidases are known to be involved in defense reactions i.e. cell wall reinforcement and hypersensitive reaction [reviewed in Hückelhoven and Kogel (2003); (Almagro et al. 2009)]. Furthermore, González et al. (2010) found 61% of the QTLs for partial resistance to adapted rust fungi (including Rphq2) co-localize with the peroxidase based markers. The same phenomenon is true for resistance QTLs for powdery mildew fungi (Schweizer and Stein, 2011). The kinases as well are good candidates to explain Rphq2. Kinases are involved in various signaling pathways including plant defense system against pathogens [Reviewed in Rodriguez et al. (2010); (Antolín-Llovera et al. 2012)]. It is possible that one of the peroxidase or kinase genes identified in the physical window of Rphq2 affects the resistance phenotype observed. Another possibility is that peroxidase or kinase gene members function as a complex QTL as observed in rice where the resistance effect of a

QTL on chromosome 8 was shown to be contributed by a cluster of germin-like protein genes (Manosalva et al. 2009).

A gene from the Seven in absentia protein family (SINA) was annotated only on the Rphq2 sequence of Vada. This might be a candidate as well. SINA proteins are E3 ligases with a RING finger domain at the N-terminal followed by a conserved SINA domain which has a function in substrate binding and dimerization (Hu and Fearon 1999). One particular SINA protein is found, in a symbiotic interaction, to impair the rhizobial infection in Medicago truncatula (Mbengue et al. 2010) and Lotus japonicus (Den Herder et al. 2012). The candidate genes for Rphq2 resemble to none of the partial resistance genes cloned previously (Fu et al. 2009; Fukuoka et al. 2009; Hayashi et al. 2010; Krattinger et al. 2009; Manosalva et al. 2009). Genes for partial resistance can be resistance factors, such as ABC transporter gene of Lr34 (Krattinger et al. 2009), or susceptibility factors, such as a proline-rich protein of Pi21 (Fukuoka et al. 2009). Therefore, the candidate genes of Rphq2 might be either a resistance factor from Vada or a susceptibility factor from SusPtrit.

Stable transformation of candidate genes for resistance in a susceptible barley genotype can be performed using Golden SusPtrit, a new genetically well transformable barley line (Chapter 2, this thesis). Golden SusPtrit inherited the susceptibility of SusPtrit to P. hordei and to non-adapted rust fungi, as well as the transformability of Golden Promise. The transformants in the genetic background of Golden SusPtrit will allow the testing of Rphq2 candidate genes affecting resistance to adapted and non-adapted rust fungi. This will be valuable information to understand partial resistance in barley and its possible association with nonhost resistance.

Acknowledgments:

We particularly wish to thank Dr. D. Schulte and Dr. R. Arriyadasa (IPK, Gatersleben, Germany) for providing information and assistance concerning the exploration of the Morex BAC libraries. We are also grateful to Dr N. Stein (IPK, Gatersleben, Germany) for kindly providing the Morex genomic sequences. We acknowledge Harry Belcram (INRA URGV, France) for helping with the construction of the two BAC libraries. The authors wish to thank the University Malaysia Sarawak, Malaysia for granting the PhD fellowship to FKS Yeo allowing this work at Wageningen University, the Netherlands.

References

Aghnoum R, Marcel TC, Johrde A, Pecchioni N, Schweizer P, Niks RE (2010) Basal host resistance of barley to powdery mildew: Connecting quantitative trait loci and candidate genes. Molecular PlantMicrobe Interactions 23:91-102
Allouis S, Moore G, Bellec A, Sharp R, Faivre Rampant P, Mortimer K, Pateyron S, Foote TN, Griffiths S, Caboche M (2003) Construction and characterisation of a hexaploid wheat (Triticum aestivum L.) BAC library from the reference germplasm 'Chinese Spring'. Cereal Research Communications 31:331-338
Almagro L, Gómez Ros LV, Belchi-Navarro S, Bru R, Ros Barceló A, Pedreño MA (2009) Class III peroxidases in plant defence reactions. Journal of Experimental Botany 60:377-390
Antolín-Llovera M, Ried MK, Binder A, Parniske M (2012) Receptor kinase signaling pathways in plantmicrobe interactions. Annual Review of Phytopathology 50:451-473
Arru L, Francia E, Pecchioni N (2003) Isolate-specific QTLs of resistance to leaf stripe (Pyrenophora graminea) in the 'Steptoe' \times 'Morex' spring barley cross. Theoretical and Applied Genetics 106:668675
Atienza S, Jafary H, Niks RE (2004) Accumulation of genes for susceptibility to rust fungi for which barley is nearly a nonhost results in two barley lines with extreme multiple susceptibility. Planta 220:71-79
Brugmans B, Hutten RGB, Rookmaker ANO, Visser RGF, Eck HJ (2006) Exploitation of a marker dense linkage map of potato for positional cloning of a wart disease resistance gene. Theoretical and Applied Genetics 112:269-277
Brugmans B, van der Hulst RGM, Visser RGF, Lindhout P, van Eck HJ (2003) A new and versatile method for the successful conversion of AFLP ${ }^{\text {TM }}$ markers into simple single locus markers. Nucleic Acids Research 31: e55
Cai LI, Taylor JF, Wing RA, Gallagher DS, Woo SS, Davis SK (1995) Construction and characterization of a bovine bacterial artificial chromosome library. Genomics 29:413-425
Chalhoub B, Belcram H, Caboche M (2004) Efficient cloning of plant genomes into bacterial artificial chromosome (BAC) libraries with larger and more uniform insert size. Plant Biotechnology Journal 2:181-188
Chen A, Brûlé-Babel A, Baumann U, Collins NC (2009) Structure-function analysis of the barley genome: The gene-rich region of chromosome 2HL. Functional \& Integrative Genomics 9:67-79
Chen X, Niks R, Hedley P, Morris J, Druka A, Marcel T, Vels A, Waugh R (2010) Differential gene expression in nearly isogenic lines with QTL for partial resistance to Puccinia hordei in barley. BMC Genomics 11:629
Clarke L, Carbon J (1976) A colony bank containing synthetic CoI EI hybrid plasmids representative of the entire E. coli genome. Cell 9:91-99
Den Herder G, Yoshida S, Antolín-Llovera M, Ried MK, Parniske M (2012) Lotus japonicus E3 ligase SEVEN IN ABSENTIA4 destabilizes the symbiosis receptor-like kinase SYMRK and negatively regulates rhizobial infection. The Plant Cell Online 24:1691-1707
Doležel J, Greilhuber J, Lucretti S, Meister A, Lysák MA, Nardi L, Obermayer R (1998) Plant genome size estimation by flow cytometry: Inter-laboratory comparison. Annals of Botany 82:17-26
Dros J (1957) The creation and maintenance of two spring barley varieties. Euphytica 6:45-48
Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J (2009) A kinaseSTART gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357-1360
Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M (2009) Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 325:998-1001
Giese H, Holm-Jensen AG, Jensen HP, Jensen J (1993) Localization of the Laevigatum powdery mildew resistance gene to barley chromosome 2 by the use of RFLP markers. Theoretical and Applied Genetics 85:897-900
González AM, Marcel TC, Kohutova Z, Stam P, van der Linden CG, Niks RE (2010) Peroxidase profiling reveals genetic linkage between peroxidase gene clusters and basal host and non-host resistance to rusts and mildew in barley. PLoS ONE 5:e10495

Hayashi N, Inoue H, Kato T, Funao T, Shirota M, Shimizu T, Kanamori H, Yamane H, Hayano-Saito Y, Matsumoto T, Yano M, Takatsuji H (2010) Durable panicle blast-resistance gene Pb 1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication. The Plant Journal 64:498-510
Hickey LT, Lawson W, Platz GJ, Dieters M, Franckowiak J (2012) Origin of leaf rust adult plant resistance gene Rph20 in barley. Genome 55:396-399
Hu G, Fearon ER (1999) Siah-1 N-terminal RING domain is required for proteolysis function, and Cterminal sequences regulate oligomerization and binding to target proteins. Molecular and Cellular Biology 19:724-732
Hückelhoven R, Kogel K-H (2003) Reactive oxygen intermediates in plant-microbe interactions: Who is who in powdery mildew resistance? Planta 216:891-902
Isidore E, Scherrer B, Bellec A, Budin K, Faivre P, Waugh R, Keller B, Caboche M, Feuillet C, Chalhoub B (2005) Direct targeting and rapid isolation of BAC clones spanning a defined chromosome region. Functional \& Integrative Genomics 5:97-103
Jafary H, Albertazzi G, Marcel TC, Niks RE (2008) High diversity of genes for nonhost resistance of barley to heterologous rust fungi. Genetics 178:2327-2339
Jafary H, Szabo LJ, Niks RE (2006) Innate nonhost immunity in barley to different heterologous rust fungi is controlled by sets of resistance genes with different and overlapping specificities. Molecular PlantMicrobe Interactions 19:1270-1279
Janda J, Bartoš J, Šafář J, Kubaláková M, Valárik M, Číhalíková J, Šimková H, Caboche M, Sourdille P, Bernard M, Chalhoub B, Doležel J (2004) Construction of a subgenomic BAC library specific for chromosomes 1D, 4D and 6D of hexaploid wheat. Theoretical and Applied Genetics 109:13371345

Johnston PA, Niks RE, Meiyalaghan V, Blanchet E, Pickering R (2013) Rph22: mapping of a novel leaf rust resistance gene introgressed from the non-host Hordeum bulbosum L. into cultivated barley (Hordeum vulgare L.). Theoretical and Applied Genetics 126:1613-1625
Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323-329
Jones N, Pašakinskienė I (2005) Genome conflict in the gramineae. New Phytologist 165:391-410
Kou Y, Wang S (2012) Toward an understanding of the molecular basis of quantitative disease resistance in rice. Journal of Biotechnology 159:283-290
Kraakman ATW, Martínez F, Mussiraliev B, Eeuwijk FA, Niks RE (2006) Linkage disequilibrium mapping of morphological, resistance, and other agronomically relevant traits in modern spring barley cultivars. Molecular Breeding 17:41-58
Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360-1363
Leroy P, Guilhot N, Sakai H, Bernard A, Choulet F, Theil S, Reboux S, Amano N, Flutre T, Pelegrin C, Ohyanagi H, Seidel M, Giacomoni F, Reichstadt M, Alaux M, Gicquello E, Legeai F, Cerutti L, Numa H, Tanaka T, Mayer K, Itoh T, Quesneville H, Feuillet C (2012) TriAnnot: A versatile and high performance pipeline for the automated annotation of plant genomes. Frontiers in Plant Science 3:1-14
Ma Z, Weining S, Sharp PJ, Liu C (2000) Non-gridded library: A new approach for BAC (bacterial artificial chromosome) exploitation in hexaploid wheat (Triticum aestivum). Nucleic Acids Research 28:e106
Manosalva PM, Davidson RM, Liu B, Zhu X, Hulbert SH, Leung H, Leach JE (2009) A germin-like protein gene family functions as a complex quantitative trait locus conferring broad-spectrum disease resistance in rice. Plant Physiology 149:286-296
Marcel TC, Aghnoum R, Durand J, Varshney RK, Niks RE (2007a) Dissection of the barley 2L1. 0 region carrying the 'Laevigatum' quantitative resistance gene to leaf rust using near-isogenic lines (NIL) and subNIL. Molecular Plant-Microbe Interactions 20:1604-1615
Marcel TC, Gorguet B, Ta MT, Kohutova Z, Vels A, Niks RE (2008) Isolate specificity of quantitative trait loci for partial resistance of barley to Puccinia hordei confirmed in mapping populations and nearisogenic lines. New Phytologist 177:743-755

Marcel TC, Varshney RK, Barbieri M, Jafary H, de Kock MJD, Graner A, Niks RE (2007b) A high-density consensus map of barley to compare the distribution of QTLs for partial resistance to Puccinia hordei and of defence gene homologues. Theoretical and Applied Genetics 114:487-500
Mayer KFX, Martis M, Hedley PE, Šimková H, Liu H, Morris JA, Steuernagel B, Taudien S, Roessner S, Gundlach H, Kubaláková M, Suchánková P, Murat F, Felder M, Nussbaumer T, Graner A, Salse J, Endo T, Sakai H, Tanaka T, Itoh T, Sato K, Platzer M, Matsumoto T, Scholz U, Doležel J, Waugh R, Stein N (2011) Unlocking the barley genome by chromosomal and comparative genomics. The Plant Cell Online 23:1249-1263
Mbengue M, Camut S, de Carvalho-Niebel F, Deslandes L, Froidure S, Klaus-Heisen D, Moreau S, Rivas S, Timmers T, Hervé C, Cullimore J, Lefebvre B (2010) The Medicago truncatula E3 ubiquitin ligase PUB1 interacts with the LYK3 symbiotic receptor and negatively regulates infection and nodulation. The Plant Cell Online 22:3474-3488
Meyers BC, Kaushik S, Nandety RS (2005) Evolving disease resistance genes. Current Opinion in Plant Biology 8:129-134
Niks RE (1983a) Comparative histology of partial resistance and the nonhost reaction to leaf rust pathogens in barley and wheat seedlings. Phytopathology 73:60-64
Niks RE (1983b) Haustorium formation by Puccinia hordei in leaves of hypersensitive, partially resistant, and nonhost plant genotypes. Phytopathology 73:64-66
Niks RE (1987) Nonhost plant species as donors for resistance to pathogens with narrow host range I. Determination of nonhost status. Euphytica 36:841-852
Niks RE, Fernandez E, Haperen Bv, Bekele Aleye B, Martinez F (2000) Specificity of QTLs for partial and non-host resistance of barley to leaf rust fungi. Acta Phytopathologica et Entomologica Hungarica 35:13-21
Niks RE, Marcel TC (2009) Nonhost and basal resistance: How to explain specificity? New Phytologist 182:817-828
Niks RE, Parlevliet JE, Lindhout P, Bai Y (2011) Breeding crops with resistance to diseases and pests. Wageningen Academic Publishers:198pp
Nilmalgoda SD, Cloutier S, Walichnowski AZ (2003) Construction and characterization of a bacterial artificial chromosome (BAC) library of hexaploid wheat (Triticum aestivum L.) and validation of genome coverage using locus-specific primers. Genome 46:870-878
Parlevliet JE, van Ommeren A (1975) Partial resistance of barley to leaf rust, Puccinia hordei. II. Relationship between field trials, micro plot tests and latent period. Euphytica 24:293-303
Peterson DG, Tomkins JP, Frisch DA, Wing RA, Paterson AH (2000) Construction of plant bacterial artificial chromosome (BAC) libraries: An illustrated guide. Journal of Agricultural Genomics 5:1100
Qi X, Jiang G, Chen W, Niks RE, Stam P, Lindhout P (1999) Isolate-specific QTLs for partial resistance to Puccinia hordei in barley. Theoretical and Applied Genetics 99:877-884
Qi X, Niks RE, Stam P, Lindhout P (1998) Identification of QTLs for partial resistance to leaf rust (Puccinia hordei) in barley. Theoretical and Applied Genetics 96:1205-1215
Rodriguez MCS, Petersen M, Mundy J (2010) Mitogen-activated protein kinase signaling in plants. Annual Review of Plant Biology 61:621-649
Saisho D, Myoraku E, Kawasaki S, Sato K, Takeda K (2007) Construction and characterization of a bacterial artificial chromosome (BAC) library from the Japanese malting barley variety 'Haruna Nijo'. Breeding Science 57:29-38
Salvaudon L, Giraud T, Shykoff JA (2008) Genetic diversity in natural populations: A fundamental component of plant-microbe interactions. Current Opinion in Plant Biology 11:135-143
Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, a laboratory manual $2^{\text {nd }}$ ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY:626
Schulte D, Ariyadasa R, Shi B, Fleury D, Saski C, Atkins M, Wu C, Graner A, Langridge P, Stein N (2011) BAC library resources for map-based cloning and physical map construction in barley (Hordeum vulgare L.). BMC Genomics 12:247
Schweizer P, Stein N (2011) Large-Scale data integration reveals colocalization of gene functional groups with meta-QTL for multiple disease resistance in barley. Molecular Plant-Microbe Interactions 24:1492-1501

Shen J, Araki H, Chen L, Chen J, Tian D (2006) Unique evolutionary mechanism in R-genes under the presence/absence polymorphism in Arabidopsis thaliana. Genetics 172:1243-1250
Shi BJ, Sutton T, Collins NC, Pallotta M, Langridge P (2010) Construction of a barley bacterial artificial chromosome library suitable for cloning genes for boron tolerance, sodium exclusion and high grain zinc content. Plant Breeding 129:291-296
The International Barley Genome Sequencing Consortium (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711-716
Thiel T, Michalek W, Varshney R, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theoretical and Applied Genetics 106:411-422
Trujillo M, Troeger M, Niks RE, Kogel K, Hückelhoven R (2004) Mechanistic and genetic overlap of barley host and non-host resistance to Blumeria graminis. Molecular Plant Pathology 5:389-396
van Berloo R, Aalbers H, Werkman A, Niks R (2001) Resistance QTL confirmed through development of QTL-NILs for barley leaf rust resistance. Molecular Breeding 8:187-195
Varshney R, Marcel TC, Ramsay L, Russell J, Röder MS, Stein N, Waugh R, Langridge P, Niks RE, Graner A (2007) A high density barley microsatellite consensus map with 775 SSR loci. Theoretical and Applied Genetics 114:1091-1103
Xia Z, Wu H, Watanabe S, Harada K (2014) Construction and targeted retrieval of specific clone from a non-gridded soybean bacterial artificial chromosome library. Analytical Biochemistry 444:38-40
Yu Y, Tomkins JP, Waugh R, Frisch DA, Kudrna D, Kleinhofs A, Brueggeman RS, Muehlbauer GJ, Wise RP, Wing RA (2000) A bacterial artificial chromosome library for barley (Hordeum vulgare L.) and the identification of clones containing putative resistance genes. Theoretical and Applied Genetics 101:1093-1099

Supplemental Figures

Supplemental Figure 1: Analysis of 24 randomly selected barley BAC clones from Vada, fraction VH2 (a), and from SusPtrit, fraction SH3 (b), on an ethidium bromide-stained CHEF gel ($5-15 \mathrm{sec}$ switch time, 14.3 hours) showing insert DNA above and below the common 7.5 Kbp pIndigoBAC or pIndigoBAC-5 vector band.

Supplemental Tables

Supplemental Table 1: The descriptions of the 116 BAC pools of Vada.

Pool	White *	Blue *	Fraction	Vector	Insert size	Individual pool genome contribution ${ }^{\text {! }}$
V1	20	0	H0	pIndigoBAC-5	83	1660
V2	411	0	H0	pIndigoBAC-5	83	34113
V3	244	0	H0	pIndigoBAC-5	83	20252
V4	864	30	H1	pIndigoBAC	99	85536
V5	1871	39	H1	pIndigoBAC	99	185229
V6	1871	39	H1	pIndigoBAC	99	185229
V7	1871	39	H1	pIndigoBAC	99	185229
V8	1871	39	H1	pIndigoBAC	99	185229
V9	1871	39	H1	pIndigoBAC	99	185229
V10	1871	39	H1	pIndigoBAC	99	185229
V11	1871	39	H1	pIndigoBAC	99	185229
V12	966	12	H1	pIndigoBAC-5	83	80178
V13	156	4	H1	pIndigoBAC	111	17316
V14	2604	76	H1	pIndigoBAC	111	289044
V15	2604	76	H1	pIndigoBAC	111	289044
V16	2604	76	H1	pIndigoBAC	111	289044
V17	2604	76	H1	pIndigoBAC	111	289044
V18	2604	76	H1	pIndigoBAC	111	289044
V19	2604	76	H1	pIndigoBAC	111	289044
V20	2604	76	H1	pIndigoBAC	111	289044
V21	1160	50	H1	pIndigoBAC-5	83	96280
V22	966	12	H1	pIndigoBAC-5	83	80178
V23	1871	39	H1	pIndigoBAC	83	155293
V24	966	12	H1	pIndigoBAC-5	83	80178
V25	966	12	H1	pIndigoBAC-5	83	80178
V26	966	12	H1	pIndigoBAC-5	83	80178
V27	966	12	H1	pIndigoBAC-5	83	80178
V28	966	12	H1	pIndigoBAC-5	83	80178
V29	966	12	H1	pIndigoBAC-5	83	80178
V30	966	12	H1	pIndigoBAC-5	83	80178
V31	966	12	H1	pIndigoBAC-5	83	80178
V32	606	12	H1	pIndigoBAC-5	96	58176
V33	1786	67	H1	pIndigoBAC-5	96	171456
V34	1786	67	H1	pIndigoBAC-5	96	171456
V35	1786	67	H1	pIndigoBAC-5	96	171456
V36	1786	67	H1	pIndigoBAC-5	96	171456
V37	1786	67	H1	pIndigoBAC-5	96	171456
V38	1786	67	H1	pIndigoBAC-5	96	171456
V39	1786	67	H1	pIndigoBAC-5	96	171456
V40	1786	67	H1	pIndigoBAC-5	96	171456
V41	1786	67	H1	pIndigoBAC-5	96	171456
V42	1786	67	H1	pIndigoBAC-5	96	171456
V43	1786	67	H1	pIndigoBAC-5	96	171456
V44	1786	67	H1	pIndigoBAC-5	96	171456
V45	319	1	H2	pIndigoBAC	94	29986
V46	2136	34	H2	pIndigoBAC	94	200784
V47	2136	34	H2	pIndigoBAC	94	200784
V48	2136	34	H2	pIndigoBAC	94	200784
V49	2136	34	H2	pIndigoBAC	94	200784
V50	2136	34	H2	pIndigoBAC	94	200784
V51	2136	34	H2	pIndigoBAC	94	200784
V52	84	0	H2	pIndigoBAC	129	10836
V53	995	8	H2	pIndigoBAC	129	128355
V54	995	8	H2	pIndigoBAC	129	128355
V55	995	8	H2	pIndigoBAC	129	128355

Supplemental Table 1: Cont...

Pool	White *	Blue *	Fraction	Vector	Insert size	Individual pool genome contribution !
V56	995	8	H2	pIndigoBAC	129	128355
V57	995	8	H2	pIndigoBAC	129	128355
V58	725	31	H2	pIndigoBAC-5	55	39875
V59	1947	57	H2	pIndigoBAC-5	55	107085
V60	1947	57	H2	pIndigoBAC-5	55	107085
V61	1947	57	H2	pIndigoBAC-5	55	107085
V62	1947	57	H2	pIndigoBAC-5	55	107085
V63	1947	57	H2	pIndigoBAC-5	55	107085
V64	1947	57	H2	pIndigoBAC-5	55	107085
V65	1947	57	H2	pIndigoBAC-5	55	107085
V66	508	12	H2	pIndigoBAC-5	50	25400
V67	2051	178	H2	pIndigoBAC-5	50	102550
V68	2149	144	H2	pIndigoBAC-5	50	107450
V69	2100	161	H2	pIndigoBAC-5	50	105000
V70	2100	161	H2	pIndigoBAC-5	50	105000
V71	2100	161	H2	pIndigoBAC-5	50	105000
V72	2100	161	H2	pIndigoBAC-5	50	105000
V73	2100	161	H2	pIndigoBAC-5	50	105000
V74	2100	161	H2	pIndigoBAC-5	50	105000
V75	2100	161	H2	pIndigoBAC-5	50	105000
V76	2100	161	H2	pIndigoBAC-5	50	105000
V77	2100	161	H2	pIndigoBAC-5	50	105000
V78	2100	161	H2	pIndigoBAC-5	50	105000
V79	2100	161	H2	pIndigoBAC-5	50	105000
V80	168	5	H3	pIndigoBAC	104	17472
V81	377	11	H3	pIndigoBAC	104	39208
V82	377	11	H3	pIndigoBAC	104	39208
V83	377	11	H3	pIndigoBAC	104	39208
V84	377	11	H3	pIndigoBAC	104	39208
V85	46	3	H3	pIndigoBAC	40	1840
V86	515	8	H3	pIndigoBAC	40	20600
V87	515	8	H3	pIndigoBAC	40	20600
V88	1322	34	H3	pIndigoBAC-5	92	121624
V89	1024	5	H3	pIndigoBAC-5	92	94208
V90	1024	5	H3	pIndigoBAC-5	92	94208
V91	1024	5	H3	pIndigoBAC-5	92	94208
V92	1024	5	H3	pIndigoBAC-5	92	94208
V93	1024	5	H3	pIndigoBAC-5	92	94208
V94	1024	5	H3	pIndigoBAC-5	92	94208
V95	1024	5	H3	pIndigoBAC-5	92	94208
V96	1024	5	H3	pIndigoBAC-5	92	94208
V97	1024	5	H3	pIndigoBAC-5	92	94208
V98	1024	5	H3	pIndigoBAC-5	92	94208
V99	1024	5	H3	pIndigoBAC-5	92	94208
V100	1024	5	H3	pIndigoBAC-5	92	94208
V101	870	10	H3	pIndigoBAC-5	54	46980
V102	1294	42	H3	pIndigoBAC-5	54	69876
V103	1294	42	H3	pIndigoBAC-5	54	69876
V104	1294	42	H3	pIndigoBAC-5	54	69876
V105	1294	42	H3	pIndigoBAC-5	54	69876
V106	1294	42	H3	pIndigoBAC-5	54	69876
V107	1294	42	H3	pIndigoBAC-5	54	69876
V108	1294	42	H3	pIndigoBAC-5	54	69876
V109	1294	42	H3	pIndigoBAC-5	54	69876
V110	1294	42	H3	pIndigoBAC-5	54	69876
V111	1294	42	H3	pIndigoBAC-5	54	69876
V112	1294	42	H3	pIndigoBAC-5	54	69876

Supplemental Table 1: Cont...

Pool	White *	Blue *	Fraction	Vector	Insert size	Individual pool genome contribution !
V113	1294	42	H3	pIndigoBAC-5	54	69876
V114	20	1	H4	pIndigoBAC-5	83	1660
V115	112	0	H4	pIndigoBAC-5	83	9296
V116	158	0	H4	pIndigoBAC-5	83	13114

* The estimated number of white and blue colonies
! The genome contribution of the individual pool calculated by multiplying the number of white colonies with the estimated insert size

Supplemental Table 2: The descriptions of the 110 BAC pools of SusPtrit.

Pool	White *	Blue *	Fraction	Vector	Insert size	Individual pool genome contribution !
S1	218	11	H0	pIndigoBAC-5	89	19402
S2	3703	2	H0	pIndigoBAC-5	89	329567
S3	3703	2	H0	pIndigoBAC-5	89	329567
S4	3703	2	H0	pIndigoBAC-5	89	329567
S5	3703	2	H0	pIndigoBAC-5	89	329567
S6	3703	2	H0	pIndigoBAC-5	89	329567
S7	3703	2	H0	pIndigoBAC-5	89	329567
S8	3703	2	H0	pIndigoBAC-5	89	329567
S9	3703	2	H0	pIndigoBAC-5	89	329567
S11	790	14	H1	pIndigoBAC	95	75050
S10	1957	40	H1	pIndigoBAC	95	185915
S12	1957	40	H1	pIndigoBAC	95	185915
S13	1957	40	H1	pIndigoBAC	95	185915
S14	1957	40	H1	pIndigoBAC	95	185915
S15	1957	40	H1	pIndigoBAC	95	185915
S16	1957	40	H1	pIndigoBAC	95	185915
S17	1957	40	H1	pIndigoBAC	95	185915
S18	276	0	H1	pIndigoBAC	124	34224
S19	2609	61	H1	pIndigoBAC	124	323516
S20	2609	61	H1	pIndigoBAC	124	323516
S21	2609	61	H1	pIndigoBAC	124	323516
S22	2609	61	H1	pIndigoBAC	124	323516
S23	2609	61	H1	pIndigoBAC	124	323516
S24	1702	86	H1	pIndigoBAC-5	106	180412
S25	1126	23	H1	pIndigoBAC-5	106	119356
S26	1126	23	H1	pIndigoBAC-5	106	119356
S27	1126	23	H1	pIndigoBAC-5	106	119356
S28	1126	23	H1	pIndigoBAC-5	106	119356
S29	1126	23	H1	pIndigoBAC-5	106	119356
S30	1126	23	H1	pIndigoBAC-5	106	119356
S31	1126	23	H1	pIndigoBAC-5	106	119356
S32	1126	23	H1	pIndigoBAC-5	106	119356
S33	1126	23	H1	pIndigoBAC-5	106	119356
S34	1126	23	H1	pIndigoBAC-5	106	119356
S35	1126	23	H1	pIndigoBAC-5	106	119356
S36	1126	23	H1	pIndigoBAC-5	106	119356
S37	1126	23	H1	pIndigoBAC-5	106	119356
S38	1126	23	H1	pIndigoBAC-5	106	119356
S39	578	4	H1	pIndigoBAC-5	104	60112
S40	2522	82	H1	pIndigoBAC-5	104	262288
S41	2522	82	H1	pIndigoBAC-5	104	262288
S42	2522	82	H1	pIndigoBAC-5	104	262288
S43	2522	82	H1	pIndigoBAC-5	104	262288
S44	2522	82	H1	pIndigoBAC-5	104	262288
S45	2522	82	H1	pIndigoBAC-5	104	262288
S46	2522	82	H1	pIndigoBAC-5	104	262288
S47	280	9	H2	pIndigoBAC	108	30240
S48	1954	32	H2	pIndigoBAC	108	211032

Supplemental Table 2: Cont...

Pool	White *	Blue *	Fraction	Vector	Insert size	Individual pool genome contribution !
S49	1954	32	H2	pIndigoBAC	108	211032
S50	1954	32	H2	pIndigoBAC	108	211032
S51	1954	32	H2	pIndigoBAC	108	211032
S52	1954	32	H2	pIndigoBAC	108	211032
S53	27	0	H2	pIndigoBAC	161	4347
S54	609	6	H2	pIndigoBAC	161	98049
S55	609	6	H2	pIndigoBAC	161	98049
S56	609	6	H2	pIndigoBAC	161	98049
S57	609	6	H2	pIndigoBAC	161	98049
S58	609	6	H2	pIndigoBAC	161	98049
S59	1464	54	H2	pIndigoBAC-5	116	169824
S60	1029	28	H2	pIndigoBAC-5	116	119364
S61	1029	28	H2	pIndigoBAC-5	116	119364
S62	1029	28	H2	pIndigoBAC-5	116	119364
S63	1029	28	H2	pIndigoBAC-5	116	119364
S64	1029	28	H2	pIndigoBAC-5	116	119364
S65	1029	28	H2	pIndigoBAC-5	116	119364
S66	1029	28	H2	pIndigoBAC-5	116	119364
S67	1029	28	H2	pIndigoBAC-5	116	119364
S68	1029	28	H2	pIndigoBAC-5	116	119364
S69	1029	28	H2	pIndigoBAC-5	116	119364
S70	1029	28	H2	pIndigoBAC-5	116	119364
S71	1029	28	H2	pIndigoBAC-5	116	119364
S72	460	2	H2	pIndigoBAC-5	105	48300
S73	3113	102	H2	pIndigoBAC-5	105	326865
S74	3113	102	H2	pIndigoBAC-5	105	326865
S75	3113	102	H2	pIndigoBAC-5	105	326865
S76	3113	102	H2	pIndigoBAC-5	105	326865
S77	3113	102	H2	pIndigoBAC-5	105	326865
S78	3113	102	H2	pIndigoBAC-5	105	326865
S79	3113	102	H2	pIndigoBAC-5	105	326865
S80	3113	102	H2	pIndigoBAC-5	105	326865
S81	3113	102	H2	pIndigoBAC-5	105	326865
S82	3113	102	H2	pIndigoBAC-5	105	326865
S83	3113	102	H2	pIndigoBAC-5	105	326865
S84	3113	102	H2	pIndigoBAC-5	105	326865
S85	209	5	H3	pIndigoBAC	154	32186
S86	949	9	H3	pIndigoBAC	154	146146
S87	949	9	H3	pIndigoBAC	154	146146
S88	949	9	H3	pIndigoBAC	154	146146
S89	949	9	H3	pIndigoBAC	154	146146
S90	949	9	H3	pIndigoBAC	154	146146
S91	949	9	H3	pIndigoBAC	154	146146
S92	25	0	H3	pIndigoBAC	168	4200
S93	199	1	H3	pIndigoBAC	168	33432
S94	303	0	H3	pIndigoBAC	168	50904
S95	251	1	H3	pIndigoBAC	168	42168
S96	251	1	H3	pIndigoBAC	168	42168
S97	251	1	H3	pIndigoBAC	168	42168
S98	346	13	H3	pIndigoBAC-5	124	42904
S99	491	21	H3	pIndigoBAC-5	124	60884
S100	491	21	H3	pIndigoBAC-5	124	60884
S101	491	21	H3	pIndigoBAC-5	124	60884
S102	491	21	H3	pIndigoBAC-5	124	60884
S103	491	21	H3	pIndigoBAC-5	124	60884
S104	491	21	H3	pIndigoBAC-5	124	60884
S105	128	4	H3	pIndigoBAC-5	127	16256

Supplemental Table 2: Cont...

Pool	White *	Blue ${ }^{*}$	Fraction	Vector	Insert size	Individual pool genome contribution !
S106	849	24	H3	pIndigoBAC-5	127	107823
S107	849	24	H3	pIndigoBAC-5	127	107823
S108	849	24	H3	pIndigoBAC-5	127	107823
S109	849	24	H3	pIndigoBAC-5	127	107823
S110	849	24	H3	pIndigoBAC-5	127	107823

* The estimated number of white and blue colonies
! The genome contribution of the individual pool calculated by multiplying the number of white colonies with the estimated insert size

Supplemental Table 3: The positive BAC pools from Vada and SusPtrit BAC libraries detected using 12 PCR primers.

The shaded areas indicate no amplification was expected from the primers on the respective BAC library.
NT; Not tested

Supplemental Table 4: The primers used for determining the order of BAC clones in Table 5

Name	Primers sequences (5^{\prime} - 3^{\prime})	$\begin{gathered} \mathrm{Ta} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	Source
WBE114	Refer Table 1		Marcel et al. (2007a)
WBE115	Refer Table 1		Marcel et al. (2007a)
besV41P7L3AF	F : GTTGCTTCATGTATACTTCTTCTT R : ATCTTCCCAACGTCAACAAATC	56	BAC end
besV41P7L3AR	F : ATAATCTTAGCCCTCACATCACCA R : AGTTCCAAGCAAAGCGTCGTAG	56	BAC end
besV76P5D5AF	F : ATAGGGATGCTTACCACTGAA R : AAATTACTAGCTAGACTCCCACTC	56	BAC end
besV76P5D5AR	Refer Supplemental Table 5		BAC end
besV48P5B18AR	Refer Supplemental Table 5		BAC end
besV48P5B18AF	F: TACTATCCTTCCGCTCACAACTCA R: GGGACCCCTATTACCACCAG	58	BAC end
Rphq2.S01	Refer Supplemental Table 5		SusPtrit annotated gene
P14M54-252	Refer Supplemental Table 5		Marcel et al. (2007a)
besS35P1J10AF	F: CTGCCACTCTTTATCTTTTTG R: TAGTATCGGGGAGTATTAGC	56	BAC end
besS35P1J10AR	F : TCCGGTATGCACGAAAAC R: CCTGCCGGTAAACGAGAT	58	BAC end
besS35P2K14EF	Refer Supplemental Table 5		BAC end
besS35P2K14ER	F: TGTTCCGTTCATACTCACCTT R : ACCATAGAACGACCCTCACA	56	BAC end
besS7P2C21EF	F : GAAGTATATGCCGACAACCAAATG R : GAAAACCGTCCAACCTCTACAAGT	58	BAC end
besS81P2C6AF	F : CCCTAGGGAAAGCCATCATACG R: GGGTTTGCCTCATCCATAGC	58	BAC end
besS81P2C6AR	F : CGCCGTTTTGACATCCATCTG R : TCAAATCCGAGGGCAAAGTGTT	58	BAC end
bfsS35P2K14EF-267	Refer Supplemental Table 5		BAC AFLP
bfsS35P2K14EF-283	F: ATGCGACCTATTGCATGTCT R: TGACGGTAAACAAGCCTTTC	56	BAC AFLP
bfsS35P2K14EF-468	F : CTCATGGAAGCAGCAAAACTA R : GCCGGCATACTCACCACT	58	BAC AFLP

Supplemental Table 5: The 40 molecular markers developed and mapped between flanking markers WBE114 and WBE115 of Rphq2

Name	Tm $\left({ }^{\circ} \mathrm{C}\right)$	Restriction Enzyme	Primers sequences $\left(5^{\prime}-3^{\prime}\right)$	Source
			nt markers amplifying Vada	
besV76P5D5AR	56		F: GAGGAGCCGTGTCGTCTTGT R: CCGTTTCCGTTCACTGGTTAT	BAC end
bfsS35P2K14E-267	56		F: CGCCGTATACCAAGGCTATT R: ATGAGCTCGTAGACCAGCAG	BAC AFLP
FQ2D1F6	65		F : ATGTGGGCCAACGGTGCAAATCAGG R: CAATACGGAGGTGTCGCCCATAAC	Vada BAC sequence
FQ2D3F	65		F: CGTCTGCGGCCCCGTCGTCTCC R: GATGGGCGCGGTGGTCTTGTTCTTG	Vada BAC sequence
FQ2D4F9	65		F : GCCCCGTGCATCCGTTCGT R : TCCGCAGATTTCATAGGCAGGTGT	Vada BAC sequence
FQ2D4F14	65		F : TTTGATGCGCAGGGTTTGGAGAGGT R: GGGAGGGGTGAGGGGGCTGGAG	Vada BAC sequence
FQ2D4F15	65		F : TCCTCCACGGCACCTACCAAGACG R: CCCGGACGGACGCCTGAAG	Vada BAC sequence
FQ2D6F	65		F : TAGGGGCGATAGAACCAGAAAGT R : CTCCCCAAGGCCAAGATAAGA	Vada BAC sequence
FQ2D6F2	65		F: CCCGCCGGAATAGCAGAATCAGG R: GCATCCGGCCACGTCCAGTCAG	Vada BAC sequence
FQ2D6F3	65		F: CATCCGCGCAGCCACACCTTTCATA R: ACATTTCCCGCCATTTCCGACAACT	Vada BAC sequence
FQ2D6F4	65		F : TCTTGCATCTGGCGGAGGAACTG R : TTTGGCACCGTATACCGAGGCTGAG	Vada BAC sequence
FQ2D7F2	65		F : AGAAACTCCAACTCCTCGGCTCCAT R : TGTCGACGCAATCTTAACCTTCTGA	Vada BAC sequence
FQ2D7F6	65		F : GGATGCCATATTTCACGTAGACAGG R : TCGTGGGAGGCATTGAGATTTGAGG	Vada BAC sequence
FQ2D8F6	65		F : GTGACAACCGACCAACGAC R: GCGAGCGCCTTATCCATTAG	Vada BAC sequence
FQ2D9F9	65		F: GCGGGTAGGCCTTGGTCTGTTC R: GGGAGGTGCATGCCAAAAAGTCAAT	Vada BAC sequence
FQ2D10F2	60		F: CATGGCGGATTATTGGTGTTAGTAG R: CAGTGCGGTGGGGTGCTC	Vada BAC sequence
P15M51-204	56		F : CGGAGGAAACATGGACAACGAA R : AGCGAGCTCACTGCCAATCTACC	Marcel et al. (2007a)
Rphq2V14	58		F : CGCCGCCAACTGCAGCAAGAATCC R: CAACGTCGACGGCAGTCCCGATG	Vada annotated gene
Rphq2V16	58		F : TTGCGGTGGAGTTCGACATCTTCA R: GTCATCGGGTCCACTTTGCCTTCC	Vada annotated gene
Rphq2V19	65		F: CCCCGCGGTCTCATTCCTT R: TCTTTTTATCTTGGGCAACCGTGTA	Vada annotated gene
Rphq2V25	65		F : TGTCTTCCTTCGGTTCCTTCC R: TCCGCCATGGCCACGATACG	Vada annotated gene

Supplemental Table 5: Cont...

Dominant markers amplifying SusPtrit				
Name	Tm $\left({ }^{\circ} \mathrm{C}\right)$	Restriction Enzyme	Primers sequences $\left(5^{\prime}-3^{\prime}\right)$	Source
besS35P2K14EF	58		F : TTGAAACAGCTGGGGTCTT R : TGGTACACAAATATTCGTCTGC	BAC end
FsQ2N2F3	56		F : GCACGGGCGGCCACAGAGGAG R : TGTCGCCCAGCAGCTACGGAACC	SusPtrit BAC sequence
FsQ2N2F8	62		F : TGGCGGAGTCAAAATCAAGAGTT R : TCGTGGATATAGCGGCAGAGGTC	SusPtrit BAC sequence
FsQ2N4F3	58		F : GCTGATCCCACCCGCCATTC R: CATTCCTACCGCCCGCTTTCTTACG	SusPtrit BAC sequence
FsQ2N5F5	63		F: CCGCCGAGGACTGATACTT R: GCAACCAAACGCACCCTTAGA	SusPtrit BAC sequence
FsQ2N11F6	62		F: CACTTCTCCAATGACTGCCCTTATG R : ATCGCCTTTACGTGAACTATCCAG	SusPtrit BAC sequence
FsQ2N11F8	58		F : GAAATAATCAACTTGTGGCATAC R : CTTAGGGCAGCGAGGTTAG	SusPtrit BAC sequence
FsQ2N11F9	62		F: CATCATATTGGCAGCAGTGG R : AATCCCGAGCCTTCTTGACATA	SusPtrit BAC sequence
FsQ2N12F3	63		F: ACTGGTGGGTCCCCTTCTGGTA R: GCTTTGCCGGTCTTGTTCGTATT	SusPtrit BAC sequence
FsQ2N13F2	63		F : AGCCCCTCGACAGTTCCAGCATAGA R: CAGCCCGACCACATACCTCCACAGT	SusPtrit BAC sequence
FsQ2N13F3	63		F: AAAGAGGAGGGTGGCGGTGGTAGGA R : GGGGTGCTCGCGTCTGAACTCTGAA	SusPtrit BAC sequence
FsQ2N13F9	60		F : AGCGGTCTTAGTCTGGTCGTTGTA R : TCTTCAGGGCCATTTTCTATTTATC	SusPtrit BAC sequence
FsQ2N13F10	62		F : GGCCTCACTAACCAAAACGCAGAC R : ATGATTTTCCGACCACGACAACGAT	SusPtrit BAC sequence
FsQ2N16F3	63		F : GGGTGCTTGTGCCATGGGAGTAGG R : GGGGGTGGAGTGCGGAGGAAGAC	SusPtrit BAC sequence
P14M54-252	56		F: AGACCAGCATTACCTAAGCAGAGA R: AGAGGAGAGTGAGTGTAGGTGTCG	Marcel et al. (2007a)
Rphq2S01	58		F: TGAAGGCGGGTTTGGTGTGGTGTA R: CCCGCGTATGATTCTCTGCCTCTT	SusPtrit annotated gene
			Co-dominant markers	
Rphq2V30	65	MboII	F: CGGCGGTGCGATCATAGAAT R: TCCCCGGCCGTAGAGTCC	Vada annotated gene
Rphq2V34	58	TaqI	F: ACCCCGGCTCCCTCGTCCTC R: CTTTTGCCGCAGCGCCTTCATCT	Vada annotated gene
S7300002F	65	$S d u \mathrm{I}$	F : GACGTTGAGGAGAGCAAAGG R: GCCGTTTATCACGAGGTTGT	SusPtrit BAC sequence

Supplemental Reference: Literature cited in Supplemental Table 4 and 5

Marcel TC, Aghnoum R, Durand J, Varshney RK, Niks RE (2007a) Dissection of the barley 2L1. 0 region carrying the 'Laevigatum' quantitative resistance gene to leaf rust using near-isogenic lines (NIL) and subNIL. Molecular Plant-Microbe Interactions 20:1604-1615

Chapter 6
 General Discussion

Introduction

Partial resistance results in reduced epidemic development, despite a compatible infection type (Niks et al. 2011). Partial resistance inherits polygenically as was demonstrated for various pathosystems: (1) barley-rust (Marcel et al. 2007b; Qi et al. 1998) (2) barleypowdery mildew (Aghnoum et al. 2010) (3) wheat-rust (Singh et al. 2005; Lowe et al. 2011) and sunflower-Phoma macdonaldii (Darvishzadeh et al. 2007). Partial resistance is supposed to act on a minor-gene-for-minor-gene model (González et al. 2012; Marcel et al. 2008; Darvishzadeh et al. 2007; Qamar and Niks 2007). In the barley-rust pathosystem, the quantitative trait loci (QTLs) for partial resistance against barley leaf rust are abundantly available for breeders, viz. per cultivar a different set, per developmental stage a different set, per rust species a different set. Even to some extent per isolate a different set (González et al. 2012; Marcel et al. 2007b; 2008; Qi et al. 1998; 1999). Stacking of QTLs for partial resistance has been shown to increase the disease resistance in plants and even achieving near immunity (Castro et al. 2003a,b; Richardson et al. 2006; Singh et al. 2000; 2005).

Nonhost resistance provides immunity to all members of a plant species (nonhost) against a potential pathogen species (non-adapted/heterologous pathogen species). Different approaches can be used to investigate the inheritance of nonhost resistance: (1) interspecific crosses between the host and nonhost plant species (2) crossing individuals within a nonhost species with different levels of resistance to a particular non-adapted pathogen and (3) within a near-nonhost/marginal host species, crossing a rare susceptible individual with the one of common nonhost resistance (Niks and Marcel 2009). Nonhost resistance inherits polygenically as was demonstrated in various pathosystems; Based on approach (1), Lactuca-Bremia (Jeuken et al. 2008), approach (2), Arabidopsis-wheat leaf rust (Shafiei et al. 2007), approach (3) barley-powdery mildew (Aghnoum and Niks 2010) and barley-rust (Jafary et al. 2006; 2008). In barley-rust pathosystem, the QTLs for nonhost resistance against various rust fungi are abundantly available (Jafary et al. 2006; 2008).

Nonhost resistance can be an attractive source of resistance for breeding. Zhang et al (2009) stacked different combinations of nonhost resistance QTLs to Bremia lactucae, from a nonhost species (Lactuca saligna) into a host species (L. sativa) which is susceptible to B. lactucae. The stacking of a particular combination of QTLs increased the level of resistance for L. sativa against B. lactucae and one particular QTL combination even led to a complete resistance. For barley (Hordeum vulgare), which is a host to Puccinia hordei, an introgression of a resistance gene Rph22 from a nonhost species Hordeum bulbosum into cultivar Golden Promise gave a very high level of partial
resistance to P. hordei on adult plants and seedlings (Johnston et al. 2013). Nonhost resistance can be used in breeding through a pre-breeding program to avoid introducing undesirable traits from the nonhost species into the new variety or elite cultivars of host species. Other approaches are by identifying the homologs of nonhost resistance genes in the host species which give resistance and be used for breeding.

In the barley-rust pathosystem, evidence suggests partial and nonhost resistance to be probably associated. At microscopic level, the mechanism of partial resistance is shared with, but less complete than, nonhost resistance of barley to non-adapted rust fungi (Niks 1983a, b). Based on genetic studies, partial and nonhost resistance of barley may share some genes for resistance (Jafary et al. 2006; 2008). Partial resistance seems to be a weak form of nonhost resistance (Niks and Marcel 2009; Niks et al. 2011) which probably rests on similar principles. One can understand nonhost resistance by studying partial resistance and vice versa.

The adapted and non-adapted rust fungal species plausibly share similar pathogenassociated molecular patterns (PAMPs). Consequently, both the adapted and non-adapted rust fungal species will activate PAMP-triggered immunity (PTI). The adapted and nonadapted rust fungal species will try to suppress PTI by secreting effectors. The genes explaining the effects of QTLs (or their corresponding transcripts or proteins) for partial and nonhost resistance are probably the operative targets of pathogen effectors. The ability of effectors to manipulate these operative targets will determine the suppression level of the defense response. Adapted pathogens should generally be much more successful in suppressing defense than non-adapted pathogens in a particular plant species. Stacking of resistance QTLs/operative targets would result in a resistance phenotype as a result of unsuppressed defense response. In contrast, stacking the variants of operative targets which can be manipulated by the effectors would result in a susceptible phenotype. Accumulation of such operative targets may explain the susceptibility of barley experimental lines such as SusPtrit and SusPmur against some non-adapted rust fungi (Atienza et al. 2004). It is probably also true for barley experimental lines, viz. SusBgtsc and SusBgt ${ }_{\text {DC }}$, which are somewhat susceptible to certain non-adapted powdery mildew fungi (Aghnoum and Niks 2010)

In order to understand the molecular basis of partial and nonhost resistance, the genes explaining the QTLs need to be identified, cloned and validated for their function in resistance. Knowing the principles underlying nonhost resistance may allow the development of methods to engineer new nonhost-like types of resistance in hosts to their adapted pathogens/and or to select partial resistance more effectively.

Map-based cloning of minor genes for partial and nonhost resistance of barley

Map-based cloning or positional cloning is a step-by-step procedure to position a QTL into the smallest possible genetic interval and then anchoring it to a corresponding physical interval where candidate genes can be identified and validated. In the previous chapters, we presented work in progress towards cloning minor genes for partial and nonhost resistance and we have developed different tools which are necessary assets to clone them.

QTL validation

After QTLs have been identified in mapping populations, they need to be confirmed. Such a validation of QTLs is usually performed using NILs. These isogenic lines provide a uniform genetic background to test the effect of a single QTL without the interference of other QTLs influencing the same trait. In Chapter 3, we describe the development of NILs in SusPtrit genetic background for four partial resistance QTLs (Rphq2, Rphq3, Rphq11 and Rphq16) and two alleles of one nonhost resistance QTL viz. Vada and L94 alleles (Rnhq.V and Rnhq.L). Marker assisted selection enabled the backcrossing procedure. These newly developed NILs together with the NILs in L94 genetic background containing Rphq2, Rphq3, Rphq4 (Marcel et al. 2007a; van Berloo et al. 2001) and Rnhq.V (Niks, unpublished) were inoculated with different rust fungal species/isolates.

All the QTLs selected for validation had a proportion of the explained phenotypic variance ranges from 15 to 35%. In the NILs, the effect of all the QTLs was confirmed. The effect of QTLs can possibly be isolate- and species-specific when tested against different rust fungal species/isolates. For example, the Rphq16 introgression in SusPtrit affects resistance only to P. hordei and was effective against all three isolates of P. hordei. In contrast, the Rphq11 introgression in SusPtrit not only conferred resistance to P. hordei in an isolate-specific fashion, but the introgression was also effective to other rust fungal species, such as P. hordei-bulbosi isolate Iran where the Rphqll introgression resulted in near immunity. Based on the disease tests on NILs, it seems that partial and nonhost resistance indeed share some genes. We cannot rule out the possibility that we may have overestimated the resistance spectrum of the QTL introgressions because the wide resistance spectrum conferred by some introgressions may be due to presence of: (1) additional resistance genes to the same or other rust isolate/species introgressed from the donor away from the introgression, and (2) several resistance genes in the QTL introgression, each with a narrow spectrum of effectiveness, but together conferring a broader resistance spectrum against different rust fungal species/rust or (3) resistance conferred by an introgression may be the result of several infection reducing and even
promoting genes within the introgression, as was reported in Lactuca saligna-derived nonhost resistance in lettuce (L. sativa) to Bremia lacticae (den Boer et al. 2013).

Rphq2, Rphq3 and Rnhq.V seemed to affect the resistance differently in different genetic backgrounds. For example, Rphq2 introgression in L94 was effective against P. hordei and two non-adapted rust species, but in SusPtrit, the Rphq2 introgression conferred isolatespecific resistance to Ph.1.2.1 and not to other rust species. In contrast, Rnhq.V introgression in L94 was effective against four non-adapted rust species but not to adapted rust fungi. In SusPtrit, Rnhq.V introgression was effective to P. hordei isolate Uppsala. The different resistance phenotypes conferred by a QTL in different genetic backgrounds can result from the interactions between the QTL introgression with other gene(s) elsewhere in the genome (Holland 2007; Lagudah 2011) or with cytoplasmic factor(s) (Akula et al. 2012; Levings and Siedow 1992; Mazouz et al. 2002). Another explanation would be difference in the size of the introgressions in SusPtrit and L94 which may lead to difference in resistance genes present in the NILs.

In the future, these NILs can serve as parents to accumulate different combinations of resistance QTLs. We can later test the effect of different combinations of QTLs against different rust fungi. For example, the combination of Rphq2 and Rphq3 in L94 resulted in higher level of resistance compared to NILs with a single QTL introgression (Marcel et al. 2007a). Combinations of QTLs may or may not result in additive effects on the level of resistance (Zhang et al. 2009). Studying the combinational effect of different QTLs is crucial for breeders to plan the QTL pyramiding strategy.

Fine-mapping

The NILs can also be used as the starting materials to delimit QTLs to the smallest possible genetic interval as described in Marcel et al. (2007a) for fine mapping of Rphq2. Development of NILs followed by fine-mapping of QTLs into a certain genetic interval is time consuming. We suggest to develop NILs and to fine-map QTLs in parallel to reduce the time. In Chapter 4, fine-mapping of Rphqll and Rphq16 was initiated by identifying plants from the early backcrossing generation. Molecular markers were used to select plants which carry recombinations at the targeted QTL region. Since the donor of Rphq11 (Steptoe) and Rphq16 (DOM) also carry one additional QTL (Marcel et al. 2007b), molecular marker assisted selection was required against the additional QTL, i.e. the SusPtrit susceptibility allele was selected for those QTLs. In less than two years, i.e. before the NILs are ready, we managed to perform two rounds of fine-mapping and positioned Rphq11 into a 0.2 cM genetic interval and 1.4 cM for Rphq16. Further fine-
mapping of the QTLs, if needed, can be done by backcrossing a strategic recombinant to the recurrent parent or obtain heterozygous plant materials from the backcross program and search for additional recombinations to further reduce the genetic interval. The drawback of this approach is the heterogeneous genetic background of the recombinants which may interfere the accuracy of phenotyping the QTL effect during fine-mapping.

Fine-mapping of Rphq11 and Rphq16 using this "dirty" procedure demonstrated that there was still a substantial noise by segregating genetic background but this did not hamper the fine-mapping. We suggest that, to follow this "dirty" fine-mapping approach, it is particularly important that the targeted QTL effect is relatively large, stable and that we know whether additional QTLs are contributed by the same donor parent. If so, such QTLs should be selected against. This fine-mapping approach can be further improved by initiating fine-mapping at a later stage of backcrossing such as BC_{3} or subsequent generations (Figure 1) as suggested by Yang et al. (2012). At BC_{3}, we expect that only six percent of the donor genome outside the regions of the targeted QTLs remains in the recurrent parent. Such a low proportion of donor genome in the background will cause little, if any, phenotypic noise during fine-mapping.

Fine-mapping requires the QTL region to be saturated with markers. A higher resolution of the genetic map in the QTL region helps to identify more informative recombinations in the region to effectively delimit a new and smaller marker interval around the responsible gene. The high-density barley integrated map which contains 6,990 markers [Barley, Integrated, Marcel 2009 available at http://wheat.pw.usda.gov/GG2/index.shtml; (Aghnoum et al. 2010)] is a great tool to recruit polymorphic markers for fine-mapping. In this integrated map 43% of the markers are based on EST or gene sequences. Another integrated map based on SNPs of ILLUMINA iSelect 9k barley infinium chip was made available recently by A. Martín-Sanz, R. Niks and P. Schweizer (ERA-PG "TritNONHOST" project, ERAPG08.053; unpublished). These integrated maps are useful to identify candidate genes as well as to search for synteny in grass species such as rice and Brachypodium in which whole genome sequences are available (Mayer et al. 2011; Schmidt 2000). Synteny between barley, rice and Brachypodium can be used for dissecting a QTL region provided there is no disrupted collinearity and the gene of interest is conserved in the syntenic interval of rice and Brachypodium (Chapter 4 and Chapter 5). Successful usage of synteny for map-based cloning of genes is demonstrated for ror2, rym4/5 and Ppd-H1 genes in barley. However, map-based cloning using synteny for Rpg1, Rpg5, rpg4, and Vrsl genes in barley was not effective, because either the orthologs were located at non-syntenous positions or were absent (Graner et al. 2010).

Figure 1: The procedure of fine mapping runs in parallel with NILs development.

The synteny between barley, rice and Brachypodium was successfully exploited to saturate the region of Rphq2 (Marcel et al. 2007a). The physical map of Rphq2 (Chapter 5) revealed three conserved genes between the three species. One of the conserved genes, a peroxidase, is present in a single copy in rice, in two copies in Brachypodium and in barley line SusPtrit, and in three copies in barley cultivar Vada. The other two conserved genes are present in a single copy in all three species. The remaining seven genes predicted only from the Vada sequence and 8 genes predicted only from the SusPtrit sequence have no homolog in the identified syntenic regions of rice and Brachypodium. Since the microsynteny is not conserved between barley, rice and Brachypodium, we may not be successful in isolating the gene(s) for Rphq2 if based solely on synteny, and therefore we have to resort to physical mapping.

Physical mapping

A physical map of a genome, chromosome or a chromosome region shows the physical locations of loci. Generating a physical map requires the construction of a genomic library. Such a library consists of a large number of DNA fragments inserted into a cloning vector, and together representing a few times the genome of the organism. A genomic library is preferably composed of clones with large average insert size and can be kept stably for a long term. Large insert cloning vectors with different insert capacity such as yeast artificial chromosomes (YAC), bacterial artificial chromosomes (BAC), P1 phage-derived artificial chromosomes (PAC), among others (Gibson and Muse 2004; Monaco and Larin 1994) are used to construct genomic libraries. YAC has the capacity to accommodate insert sizes up to $100-2000 \mathrm{~Kb}$ which implies that fewer YAC clones are required to cover a genome or a targeted chromosome region (Burke et al. 1987; Monaco and Larin 1994). This insert capacity is desirable especially for constructing a genomic library for a large-genome species. Unfortunately, YAC has problems with the stability and chimerism of the inserts as well as with the efficiency of purifying the inserted DNA from the YAC DNA (Monaco and Larin 1994; Zhang and Wu 2001). YAC libraries are available for barley (Kleine et al. 1993; 1997; Schmidt et al. 2001) and problems with the stability and chimerism of DNA inserts were observed when used for map-based cloning (Lahaye et al. 1998; Schmidt et al. 2001).

Bacterial-based cloning vectors such as BAC (Shizuya et al. 1992) and PAC (Ioannou et al. 1994) are developed to circumvent the problems with YAC. Although BAC and PAC have relatively smaller insert capacity compared to YAC [insert sizes are up to 300 Kb (Monaco and Larin 1994)], they have a better stability and low frequency of chimerism of inserts. Additionally, purifying the DNA of BAC and PAC from the bacterial host DNA is
much easier than purifying the DNA of YAC from the yeast host DNA (Copeland and Jenkins 2001; Giraldo and Montoliu 2001; Zhang and Wu 2001). The isolation of BAC is done using the existing plasmid isolation protocols. In contrast, isolation of YAC requires tedious methods (Giraldo and Montoliu 2001; Monaco and Larin 1994). In Chapter 5, we decided to construct one BAC library from Vada and another one from SusPtrit.

The BAC cloning vectors had fertility factor (F factor) genes (parA and parB). These genes maintain a low copy number of BAC (one to two copies) in a bacterium (Ioannou et al. 1994) which reduces the chances of recombination between DNA inserts. The BAC libraries constructed for barley so far, have an average insert size ranging from 80 to 140 Kb [Chapter 5, this thesis; (Isidore et al. 2005; Saisho et al. 2007; Schulte et al. 2011; Yu et al. 2000)]. Fine-mapping of QTLs should result in a sufficiently small genetic interval to ease the construction of a physical map using a minimum number of BAC clones and to contain a manageable number of candidate genes in the region. It is difficult, but possible, to fine-map a QTL into a genetic interval containing only one candidate gene (Ashikari et al. 2005; Fridman et al. 2000; Zhang et al. 2012) provided there are sufficient recombination events in the QTL region.

Construction and organization of a gridded BAC library from an organism, especially those with a large genome, is not only laborious and costly but also requires robotic technology as well as large freezer space for storage and maintenance. If the BAC library is only used for map-based cloning or generating markers at regions of interest, construction of a gridded BAC library is not necessary for such applications (Ma et al. 2000). Constructing a gridded BAC library from multiple cultivars is irrational and not cost-effective. Still, one may need to construct BAC libraries from the genotypes of interest. This is, because the targeted gene might be absent in the genomic libraries available for other genotypes due to disrupted intraspecific collinearity (Springer and Stupar 2007). A non-gridded BAC library which can be constructed rapidly and less costly is a good alternative. The BAC libraries of Vada and SusPtrit that we developed (Chapter 5) are non-gridded where the clones are organized in pools instead of individual clones in separate wells. Pooling clones together may create a competition for detection among the clones, but pooling of less than 2000 clones per pool will not hamper the detection efficiency appreciably (Ma et al. 2000). For barley, a BAC library with five genomeequivalents needs about 200,000 clones with an average insert size of 120 Kb . In order to organize the BAC clones to have a gridded BAC library, 520384 -well plates are required, against only 100 pools of BAC clones (2000 clones per pool) kept in 100 microcentrifuge tubes for a non-gridded BAC library. To date, BAC libraries (gridded or non-gridded) are available for six barley genotypes (Table 1).

Table 1: List of BAC libraries currently available for barley.

Barley genotype	BAC library	References
Morex	Six gridded BAC libraries - Constructed by partial digestion with HindIII (three), with EcoRI (one) and with MboI (one) - One constructed by mechanical shearing	Yu et al. 2000; Schulte et al. 2011
Haruna Nijo	One gridded BAC library - Constructed by partial digestion with HindIII	Saisho et al. 2007
CS134*	One gridded BAC library - Constructed by partial digestion with HindIII	Shi et al. 2010
Cebada Capa	One non-gridded BAC library - Constructed by partial digestion with HindIII	Isidore et al. 2005
Vada	One non-gridded BAC library - Constructed by partial digestion with HindIII	This thesis, Chapter 5
SusPtrit	One non-gridded BAC library - Constructed by partial digestion with HindIII	This thesis, Chapter 5

a doubled haploid line derived from a cross between Clipper and Sahara 3771

In Chapter 5, we screened the non-gridded BAC library of Vada and SusPtrit and constructed a contig spanning Rphq2 of Vada and a contig covering partially the rphq2 window of SusPtrit. The study in Chapter 5 together with that of Isidore et al. (2005) shows the usefulness of a non-gridded BAC library for map-based cloning. The screening strategy suggested in both studies was efficient in retrieving specific BAC clones of interest. One part of the screening procedure used in Chapter 5 and Isidore et al. (2005) involves robotic picking of BAC clones which may not be affordable for most laboratories. Recently, Xia et al. (2014) constructed a non-gridded BAC library for soybean and suggested an efficient screening method without resorting to robotic picking of BAC clones.

The non-gridded BAC library of Vada and SusPtrit are not only useful for map-based cloning of Rphq2, but also for cloning of other minor genes for partial and nonhost resistance to rust fungi such as Rphq3, Rphq4, Rnhq, among others. The BAC libraries also can be used for map-based cloning of other minor genes such as minor genes for resistance to powdery mildew as were mapped by Aghnoum et al. (2010), minor genes for heading date and plant height (Qi et al. 1998), and other genetic traits for which these accessions contrast. The non-gridded BAC library of Vada and SusPtrit are however, not suitable for whole genome physical mapping. The two BAC libraries were constructed by partial digestion with a single restriction enzyme, HindIII, which will lead to a biased BAC library, i.e., having an under-representation of some genomic regions due to
nonrandom distribution of the enzyme restriction sites in the genome (Ariyadasa and Stein 2012; Schulte et al. 2011).

Once we identified the BAC clones spanning the targeted chromosomal region, the BAC clones were sequenced. One can sequence the BAC clones either by Sanger sequencing or by using the next generation sequencing technology platforms such as the Roche 454 Genome Sequencer FLX system (Zhou et al. 2010). The sequence can be annotated using the annotation pipelines available on the web such as RiceGAAS (Sakata et al. 2002), FPGP (Amano et al. 2010), MAKER (Cantarel et al. 2008), iPlant (http://dnasubway. iplantcollaborative.org/), and TriAnnot (Leroy et al. 2012). TriAnnot was chosen for annotation of Rphq2 sequence from Vada and SusPtrit because the panels in the annotation pipeline can be customized for annotating barley sequences.

Candidate gene validation

In the barley-rust pathosystem, the rust fungi target mainly the mesophyll cells of barley. As a result, validation of candidate genes via transient (over)expression and silencing of candidate genes by particle bombardment is not suitable for barley-rust pathosystem, because the carriers of the gene constructs cannot reach the mesophyll cells. This is in contrast to the barley-powdery mildew pathosystem, where the pathogen only infects epidermal cells, and transient (over)expression and silencing of candidate genes by particle bombardment are successfully applied (Douchkov et al. 2005; Miklis et al. 2007). Other options are virus-mediated overexpression (VOX) and virus-induced gene silencing (VIGS).

VOX and VIGS are rapid and easy techniques to validate candidate genes. Barley stripe mosaic virus (BSMV) is usually the vector for these two approaches. Until recently, BSMV-VOX only worked efficiently with small inserts (140 to 500 bp) like transient overexpression of effectors (Chapman et al. 2008; Christie et al. 2012; Lee et al. 2012). Larger inserts, such as green fluorescent protein (GFP) with 720 bp did not work well in BSMV-VOX due to a stability problem of the inserts, as in BSMV-VIGS, which then results in patchy expression (Lee et al. 2012). BSMV-VIGS is a well-established and powerful tool for validating candidate genes (Delventhal et al. 2011; Duan et al. 2013; Liang et al. 2012; Várallyay et al. 2012; Wang et al. 2013). Using this system on barley, the candidate genes are silenced at the most extensive level on the fifth leaf about 14 days after the inoculation was made on the fully expanded second leaf (Burch-Smith et al. 2004; Holzberg et al. 2002). This implies that VIGS cannot be used for candidate genes which are expected to express best at an earlier plant development stage, such as first
seedlings leaves as used in the phenotyping for near-nonhost resistance and partial host resistance to rust fungi. For example, the effect of Rphq2 against Ph.1.2.1 is most effective on the first leaf of seedlings and gradually become less effective starting from the third leaf onward (Wang et al. 2010). Evaluating the phenotype of Rphq2 on the fifth leaf will not be informative. The same problem may also be true for Rphq11 and Rphq16 which were mapped only at the seedling stage, on the first leaf (Chapter 4). Another possible limitation is the genotype-dependent efficiency of BSMV-VIGS (Bruun-Rasmussen et al. 2007). As an example, the pairs of NILs of QTLs in L94 and SusPtrit genetic background (Chapter 3) are available for validating candidate genes through BSMV-VIGS. Unfortunately, BSMV-VIGS is not effective on L94. The silencing of phytoene desaturase (PDS) in L94 only resulted 10% of photobleaching on the fourth leaf, 14 days after inoculation on the first leaf. For SusPtrit, 40% of photobleaching was observed which suggests incomplete silencing of candidate genes. Such incomplete silencing would in case of quantitative resistance genes lead to inconclusive genotypes (T.C. Marcel, Wagenigen UR Plant Breeding, unpublished data). Besides that, if the candidate genes introgressed in SusPtrit are for nonhost resistance, the SusPtrit NILs are also not suitable for validating the candidate genes through BSMV-VIGS. The susceptible phenotype conferred by the alleles of SusPtrit to non-adapted rust fungi is particularly clear in first leaves of seedlings, and not at adult plant stage (Atienza et al. 2004) or intermediate development stages (R.E. Niks, Wageningen UR Plant Breeding, unpublished data). So, the fourth leaf is phenotypically not so contrasting between SusPtrit and regular immune barley accessions. Silencing the candidate genes, even if the genes are expressing at the fourth leaf, will not give a sufficiently contrasting phenotype between SusPtrit NILs and SusPtrit.

For polygenic nonhost resistance there is one more reason that makes transient or stable gene silencing not a suitable approach for analyzing the candidate genes. Barley accessions, such as Vada that are immune to non-adapted rust fungi probably have a high gene dose to confer this resistance (Jafary et al. 2006). Silencing one of those genes might be insufficient to alter the immunity to some level of susceptibility.

Another strategy to validate candidate genes is by targeting induced local lesions in genomes (TILLING). TILLING is particularly applied on species or genotypes that are not well amenable to genetic transformation, such as barley. TILLING aims to produce a large range of mutant phenotypes by creating mutations, such as missense changes, truncation and mutations in splice junction sequences (Kurowska et al. 2011). Several TILLING populations are available for barley, such as Optic (Caldwell et al. 2004), Morex (Talamè et al. 2008), Barke (Gottwald et al. 2009), Lux (Lababidi et al. 2009), among others (Kurowska et al. 2011). Recently, a TILLING population was created for Vada (Y. Wang
and X. Qi, Institute of Botany, Chinese Academy of Sciences, Beijing, China, unpublished), the donor of partial resistance QTLs, Rphq2, Rphq3, Rphq4 (Qi et al. 1998) and nonhost resistance QTL, Rnhq (Niks et al. 2000). By creating a TILLING population, we circumvent the problems which may arise from validating candidate genes by using BSMV-VIGS. However, for the same reason as explained for the BSMV-VIGS, also for TILLING it applies that a loss-of-function of one gene contributing to nonhost resistance might not alter the phenotype to susceptibility to non-adapted rust fungi, since several more genes remain to confer immunity.

A better approach for testing the candidate genes for resistance would be expressing them in a susceptible barley line by using Agrobacterium-mediated stable transformation. In Chapter 2, we developed a new experimental line called Golden SusPtrit to test candidate genes for partial and nonhost resistance. Golden SusPtrit was developed to replace SusPtrit for the studies of partial and nonhost resistance. Golden SusPtrit is about as susceptible as SusPtrit to Ph.1.2.1 and non-adapted rust fungi tested in Chapter 2, but, in contrast to SusPtrit, it is also amenable to Agrobacterium-mediated stable transformation. Stable transformation with a candidate gene allows the transgene to be transmitted to the offspring through grains. As a result, we can obtain multiple identical plants with the transgene inserted at the same chromosomal position and consequently, the phenotype of a candidate gene can be tested with replications. This is not possible for transient assays, because each individually treated plant is unique. Stably expressed candidate genes for partial and nonhost resistance in Golden SusPtrit also provide the possibility to test the gene effect against adapted and non-adapted rust fungi on the same material, as we did for the NILs (Chapter 3). Such disease tests to multiple pathogens can show whether a gene for partial resistance plays a role in nonhost resistance and vice versa (Jafary et al. 2008; Chapter 3).

Molecular basis of partial resistance

Various postulations were made on the molecular basis of partial resistance based on evidences such as the association of resistance phenotypes with developmental phenotype, co-localization of partial resistance QTLs with resistance and defense gene analogues, among others (Poland et al. 2009). These postulations are speculative unless the genes explaining the QTLs are isolated and functionally tested. Only recently scientists have started to harvest their efforts of cloning the minor genes for partial resistance.

The minor genes for partial resistance with large effect cloned thus far belong to different types of genes or gene families. They can be categorized into three different classes as
described by Poland et al. (2009): (1) QTLs are minor genes involved in basal defense and defense signal transduction, (2) QTLs are weak form of R-genes, and (3) QTLs are unique genes that were previously unknown to contribute to disease resistance.

QTLs are genes involved in basal defense and defense signal transduction

There are three cloned minor genes for partial resistance belonging to this category. One of them is Yr 36 , a temperature dependent race non-specific stripe rust resistance gene (Fu et al. 2009). Yr36 confers partial resistance to adult plants (Uauy et al. 2005) and seedlings (Fu et al. 2009) against P. striiformis f. sp. tritici (Pst) effectively at high temperature (25 to $35^{\circ} \mathrm{C}$). The gene of $Y r 36$ encodes a protein with an N terminal kinase domain and a predicted steroidogenic acute regulatory protein-related lipid transfer domain (START) at the C terminal. This gene has been validated using a TILLING population of 1536 mutagenized lines and was confirmed through stable transformation of the gene into a susceptible wheat variety. The combination of kinase and START domains is unique and not present in other organisms. The START domain is postulated to bind lipids from Pst (Fu et al. 2009) and to trigger the kinase domain to send out signals for defense response. Further studies are needed to characterize this gene.

Lr34, previously known as LrT2 (Dyck 1977, 1987), is another cloned minor gene for resistance in wheat (Krattinger et al. 2009). Lr34 not only confers partial resistance of adult plants against leaf rust, Puccinia triticina (Pt) (Dyck et al. 1966), it also cosegregates with the adult plant resistance genes Yr18 against stripe rust (Pst) (McIntosh 1992; Singh 1992) and Pm38 against powdery mildew (Blumeria graminis f. sp. tritici) (Spielmeyer et al. 2005). Depending on the genetic background, Lr34 also is effective against stem rust (Puccinia graminis f. sp. tritici) (Dyck 1987). Lr34 has been finemapped into a 0.15 cM genetic interval by using three high-resolution backcross populations developed from three pairs of parents (-Lr34/+Lr34): (1) Arina/Fomo, (2) Thatcher/PI5848, and (3) Avocet/Parula. The 0.15 cM genetic interval has been sequenced from Lr34-containing wheat cultivar Chinese Spring and revealed six candidate genes. The coding sequences of the six candidate genes from the three pairs of parental lines of the high-resolution backcross populations were compared. Among the candidate genes, only the coding sequence of ATP-binding cassette (ABC) transporter gene was consistently polymorphic between the alleles of all parental pairs. Then, mutants of the ABC transporter gene were obtained from γ-irradiation and sodium azide-induced mutation. The mutants were more susceptible to Pt, Pst, B. graminis f. sp. tritici and P. graminis f. sp. tritici. This strongly suggests Lr34 to be an ABC transporter gene contributing strongly to the partial resistance against the different pathogens. This gene
belongs to the pleiotropic drug resistance subfamily of ABC transporters, the same family as penetration deficient gene 3 (PEN3) of Arabidopsis. The gene has two cytosolic nucleotide binding domains and two hydrophobic transmembrane domains (Krattinger et al. 2009). Lr34 may have a similar function as proposed for PEN3 which transports toxic compounds derived from glucosinolates into the plant apoplast at the interaction sites with pathogen (Lipka et al. 2008; 2010). The Lr34 haplotype of Chinese Spring also occurs in Australian cultivar H45 but this cultivar is highly susceptible to Pt and Pst. However, H45 recovered its resistance to Pst when it was crossed with Avocet which is also susceptible to Pst. This implies that the Lr34 haplotype of Chinese Spring may interact with an unknown factor(s) to confer resistance (Lagudah 2011). It is not known whether the cross between H 45 with Avocet recovered the resistance of H 45 to Pt. In Chapter 3, the Rphq2-, Rphq3- and the Vada allele of Rnhq-introgression in L94 conferred resistance against certain non-adapted rust fungi but not in SusPtrit background. Maybe similar to Lr34, the QTL introgressions in L94 confer resistance by interacting with an unknown factor(s) not present in SusPtrit.

The third cloned minor gene for partial resistance that also is involved in basal defense and defense signal transduction is a QTL in rice which contributes to resistance against M. oryzae and Rhizoctonia solani (Manosalva et al. 2009). The QTL co-localized with oxalate oxidase-like genes now known as germin-like protein (GLP) genes which are candidate defense response genes. Within the QTL interval, there is a cluster of 12 highly conserved GLP gene members. The involvement of these genes in defense response is validated by silencing some to all of these genes through RNA interferences. The transgenic plants became more susceptible to M. oryzae as well as to R. solani when more of the GLP genes were silenced. This implies that the GLP genes control disease resistance as a complex locus in with each gene contributes a small additive effect. The hypothetic function of the GLP genes in disease resistance involves the production of superoxide dismutase which generates hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ that might be involved in the cell wall defense, hypersensitive cell death, signaling in systemic acquired resistance and in the induction of defense response gene expression (Manosalva et al. 2009).

QTLs are weak forms of R-genes

Panicle blast 1 (Pbl) is a cloned rice gene explaining a QTL effect against M. oryzae (Hayashi et al. 2010) derived from cultivar Modan (Fujii et al. 1999). The candidate genes explaining the QTL were validated through genetic transformation of the genes into the susceptible cultivar Norin 8. Pbl is a gene encoding coiled-coil-nucleotide-binding-site-leucine-rich repeat (CC-NBS-LRR) which is the characteristic of R genes. The R genes
mediate gene-for-gene race specific resistance, but a cultivar carrying Pb1, a NIL of Pb1 and transformants overexpressing Pbl, all showed increased resistance to widely distributed blast races compared to cultivars/lines not carrying Pbl(Hayashi et al. 2010). Pbl encodes an atypical R protein-like protein. In the NBS domain of Pbl , the prominently conserved P-loop, Walker B, Resistance-NBS-B (RNBS-B) and Gly-Leu-Pro-Leu (GLPL) motifs are diverged from the typical R gene (DeYoung and Innes 2006). The pentapeptide EDVID motif located between the CC sequences is another important and conserved motif of R genes (Bai et al. 2002) that also is not conserved in Pbl . Hayashi et al. (2010) speculated on the implications of the atypical CC-NBS-LRR structure of Pb1 on the resistance.

QTLs are unique genes previously unknown to be involved in disease resistance

A QTL in rice, Pi2l encodes a gene which was unknown to be involved in disease resistance (Fukuoka et al. 2009). Pi21 is a recessive resistance QTL (pi21) mapped against rice blast (Magnaporthe oryzae) by Fukuoka and Okuno (2001). Pi21 is fine-mapped into a $1,705 \mathrm{bp}$ region containing only one gene, Os 04 g 0401000 , which encodes a protein containing a heavy metal-transport/detoxification protein domain in the N -terminal region. Comparison of the $1,705 \mathrm{bp}$ sequence of a resistant cultivar (Owarihatamochi) with that of two susceptible cultivars (Aichiasahi and Kasalath) revealed seven nucleotide polymorphisms but only two located in the open reading frame associated with the phenotypes. Transformation of the resistance allele pi21 (from Owarihatamochi) into a susceptible cultivar (Aichiasahi) did not confer resistance. However, transformation of the susceptibility allele Pi2l (from Aichiasahi) into a NIL carrying pi2l resulted in an increase of susceptibility to M. oryzae. Fukuoka et al. (2009) suggested that the resistance allele pi21 carries a loss-of-function mutation. The susceptible allele Pi2l probably regulates the resistance negatively and is confirmed through silencing the expression of Pi2l which increases the resistance of transformants.

Rphq2 and Rphq11 differ from the cloned genes explaining resistance QTLs

The candidate genes explaining Rphq2 (Chapter 5) and Rphq11 (Chapter 4) differ from those cloned minor genes for partial resistance described above. For both QTLs, R-genes or weak forms of R-genes are unlikely candidates. The candidate gene for Rphq2 can either be a peroxidase or kinase or even a group of peroxidases or kinases as in the case of GLP genes in rice (Manosalva et al. 2009). Rphq2 may also be a Seven in absentia protein (SINA). For Rphq11 in Chapter 4, the strongest candidate gene is a phospholipid
hydroperoxide glutathione peroxidase. Other possible candidate genes include an actindepolymerizing factor and glucosyltransferases. Each of the candidate genes for Rphq2 and Rphqll were previously reported to be involved in disease resistance in one way or another (see Chapter 5 and Chapter 11). Based on the types of candidate gene suggested for Rphq2 and Rphq11, the gene explaining the two partial resistance QTLs are probably involved in basal defense and defense signal transduction. When isolating the candidate genes for Rphq2 and Rphq11, we should isolate the resistance allele as well as the susceptible allele. This is because a gene that explains a QTL can be either a resistance factor or a susceptibility factor (negative regulator) as in the case of Pi2l (Fukuoka et al. 2009). For Rphq2, this may not be possible for some candidate genes which only are present in Vada but not in SusPtrit and vice versa.

Other cloned genes explaining resistance QTLs

For QTLs with a small effect, i.e. explaining less than 10% of the phenotypic variation, a candidate gene approach is proposed by Hu et al. (2008) to isolate the genes. First, differential expression analysis is performed to identify the candidate defense response genes. Candidate defense response genes should have differential expression either between infected resistant and susceptible plants, or between non-infected and infected plants. Then, the identified genes are mapped onto a linkage map to find genes that colocalize with a resistance QTL. Those genes found to co-localize with QTLs are examined for their expression patterns against different plant-pathogen interactions to identify genes with expression influenced by a wide range of pathogens. Finally, complementary functional analysis is performed to confirm the involvement of the genes in disease resistance. Using this procedure, genes have been cloned that may explain small effect QTLs for disease resistance in rice (Table 2).
Table 2: Genes cloned for small effect QTLs for partial resistance in rice based on candidate gene approach.

Gene name	Gene type	QTL*	Chromosome	Pathogen!	References
WRKY13	Transcription factor	3-5\%	Chromosome 1	Mg, Xoo	Hu et al. 2008
DR8	Enzyme-like protein involved in thiamine biosynthesis	2-3\%	Chromosome 7	Mg, Xoo	Hu et al. 2008
GH3-8	Indole-3-acetic acid-amido synthetase	2\%	Chromosome 7	Mg, Xoo	Hu et al. 2008
MPK6	Mitogen-activated protein kinase	4\%	Chromosome 10	$\mathrm{Mg}, \mathrm{Xoo}^{a}$	Hu et al. 2008
NRR	Unknown protein	6\%	Chromosome 1	Xoo ${ }^{\text {a }}$	Kou et al. 2010
GH3-1	Indole-3-acetic acid-amido synthetase	4-7\%	Chromosome 1	Mg, Xoo	Kou et al. 2010
LSD1	Lesion-simulating disease resistance 1 (LSD-1)-like protein	5\%	Chromosome 8	$M g^{a}$	Kou et al. 2010
WRKY53	Transcription factor	6\%	Chromosome 5	Mg, Xoo	Kou et al. 2010
MPK5	Mitogen-activated protein kinase	2\%	Chromosome 3	$\mathrm{Bg}^{a}, \mathrm{Mg}^{a}, \mathrm{Xoo}^{a}$	Kou et al. 2010
GH3-2	Indole-3-acetic acid-amido synthetase	4-10\%	Chromosome 1	Mg, Хоo, Хос	Fu et al. 2011

[^12]
Specificity and durability of resistance QTLs

We have mapped a great number of QTLs for partial and near-nonhost resistance using the barley-rust pathosystem, using at least six (SusPtrit/Golden Promise, Vada/SusPtrit, Cebada Capa/SusPtrit, Oregon Wolfe Barley, Steptoe/Morex, L94/Vada) mapping populations. The resistance conferred by the QTLs affect resistance either in an isolate specific manner, can be species specific or have a broad resistance spectrum, at least towards the pathogens that were tested [Chapter 3; (González et al. 2012; Jafary et al. 2006; Marcel et al. 2008)].

The isolate specificity of partial resistance deviates from the concept of horizontal resistance (van der Plank 1963, 1968). The specificity of partial resistance has been assumed to be due to a minor-gene-for-minor-gene interaction which is similar to the vertical resistance (Parlevliet and Zadoks 1977). The molecular basis of minor-gene-for-minor-gene interaction would probably be the interaction between the pathogen effectors with their specific operative targets in plant. The operative targets are probably the genes (at the mapped QTLs) or the gene products which are involved in defense response. The more effectors fitting their operative targets, the higher the level of susceptibility is observed on plant.

All the minor genes for partial resistance which have been cloned to date (see above) are reported to have a broad resistance spectrum. The specificity of a QTL against different isolates or even to different related species of a pathogen may depend on the genetic background [Chapter 3; (Lagudah 2011; St.Clair 2010)]. A minor gene at a QTL might interact with another factor in the plant, elsewhere on the genome, to confer resistance. If the QTL is transferred to a genetic background lacking the factor, or possessing a suppressor, a more susceptible phenotype will be observed [Chapter 3; (Lagudah 2011)].

Resistance based on minor-gene-for-minor-genes is believed to be more durable compared to R genes mediated resistance which tends to be broken down easily by the pathogen (Pretorius et al. 2012; Rouse et al. 2013; Singh et al. 2011; Wan and Chen 2011). The possible explanations for the durability of partial resistance as proposed by Niks and Marcel (2009) are:

- Developing an effector to silence/neutralize a defense factor requires a particular gain of function mutation by the pathogen, which is rare
- If a pathogen successfully overcomes one minor gene for resistance, the pathogen only gains a marginal advantage due to presence of other resistance genes especially for nonhost resistance.
- A great diversity of QTLs for partial resistance are available, at least in barley for resistance to Puccinia hordei. Each gene for partial resistance which is overcome by a mutant pathogen may occur in only a small proportion of the plant population or crop acreage. Therefore, a microbial mutant has limited selective advantage.

Lr34 (Krattinger et al. 2009) and Sr2 (Ayliffe et al. 2008) in wheat are good examples of durable resistance QTLs where virulence towards these QTLs is not observed after more than 50 years of culture.

Concluding remarks

This thesis has developed tools that are important towards identification of genes for partial and nonhost resistance. First of all, Golden SusPtrit is a valuable experimental line to validate candidate genes for partial and nonhost resistance. Golden SusPtrit also serves as a platform to study the possible association between partial and nonhost resistance. The near isogenic lines of QTLs in SusPtrit background are a good starting material to stack different combinations of minor genes for resistance and to test their effect on partial and nonhost resistance. They are also very useful starting points for fine mapping of the minor genes conferring the QTL effects. The Vada and SusPtrit BAC libraries have been developed as tools to isolate the resistance and susceptible alleles of gene(s) for Rphq2, Rphq3, Rphq4 and Rnhq. They may also serve for isolation of other genes for which SusPrit and Vada contrast. Some QTLs studied in this thesis have specific resistance effects but others, such as Rphq11, have a broader resistance spectrum. However, the specificity seems to depend on the genetic background. Map-based cloning of Rphq2, Rphq3, Rphq4, Rphq11, Rphq16 and Rnhq will provide more insight into the diversity of genes and their function in partial and nonhost resistance.

References

Aghnoum R, Marcel TC, Johrde A, Pecchioni N, Schweizer P, Niks RE (2010) Basal host resistance of barley to powdery mildew: Connecting quantitative trait loci and candidate genes. Molecular PlantMicrobe Interactions 23:91-102
Aghnoum R, Niks RE (2010) Specificity and levels of nonhost resistance to nonadapted Blumeria graminis forms in barley. New Phytologist 185:275-284
Akula UV, Poluru PG, Jangam AK, Jagannath PV (2012) Influence of types of sterile cytoplasm on the resistance to sorghum shoot fly (Atherigona soccata). Plant Breeding 131:94-99
Amano N, Tanaka T, Numa H, Sakai H, Itoh T (2010) Efficient plant gene identification based on interspecies mapping of full-length cDNAs. DNA Research 17:271-279
Ariyadasa R, Stein N (2012) Advances in BAC-based physical mapping and map integration strategies in plants. BioMed Research International 2012
Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741-745
Atienza S, Jafary H, Niks RE (2004) Accumulation of genes for susceptibility to rust fungi for which barley is nearly a nonhost results in two barley lines with extreme multiple susceptibility. Planta 220:71-79
Ayliffe M, Singh R, Lagudah E (2008) Durable resistance to wheat stem rust needed. Current Opinion in Plant Biology 11:187-192
Bai J, Pennill LA, Ning J, Lee SW, Ramalingam J, Webb CA, Zhao B, Sun Q, Nelson JC, Leach JE (2002) Diversity in nucleotide binding site-leucine-rich repeat genes in cereals. Genome Research 12:1871-1884
Bruun-Rasmussen M, Madsen CT, Jessing S, Albrechtsen M (2007) Stability of Barley stripe mosaic virusinduced gene silencing in barley. Molecular Plant-Microbe Interactions 20:1323-1331
Burch-Smith TM, Anderson JC, Martin GB, Dinesh-Kumar SP (2004) Applications and advantages of virusinduced gene silencing for gene function studies in plants. The Plant Journal 39:734-746
Burke DT, Carle GF, Olson MV (1987) Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 236:806-812
Caldwell DG, McCallum N, Shaw P, Muehlbauer GJ, Marshall DF, Waugh R (2004) A structured mutant population for forward and reverse genetics in barley (Hordeum vulgare L.). The Plant Journal 40:143-150
Cantarel BL, Korf I, Robb SMC, Parra G, Ross E, Moore B, Holt C, Alvarado AS, Yandell M (2008) MAKER: An easy-to-use annotation pipeline designed for emerging model organism genomes. Genome research 18:188-196
Castro AJ, Chen X, Corey A, Filichkina T, Hayes PM, Mundt C, Richardson K, Sandoval-Islas S, Vivar H (2003a) Pyramiding and validation of quantitative trait locus (QTL) alleles determining resistance to barley stripe rust: Effects on adult plant resistance. Crop Science 43:2234-2239
Castro AJ, Chen X, Hayes PM, Johnston M (2003b) Pyramiding quantitative trait locus (QTL) alleles determining resistance to barley stripe rust: Effects on resistance at the seedling stage. Crop science 43:651-659
Chapman S, Faulkner C, Kaiserli E, Garcia-Mata C, Savenkov EI, Roberts AG, Oparka KJ, Christie JM (2008) The photoreversible fluorescent protein iLOV outperforms GFP as a reporter of plant virus infection. Proceedings of the National Academy of Sciences 105:20038-20043
Christie JM, Hitomi K, Arvai AS, Hartfield KA, Mettlen M, Pratt AJ, Tainer JA, Getzoff ED (2012) Structural tuning of the fluorescent protein iLOV for improved photostability. Journal of Biological Chemistry 287:22295-22304
Copeland NG, Jenkins NA (2001) Recombineering: A powerful new tool for mouse functional genomics. Nature Reviews Genetics 2:769-779
Darvishzadeh R, Kiani SP, Dechamp-Guillaume G, Gentzbittel L, Sarrafi A (2007) Quantitative trait loci associated with isolate specific and isolate nonspecific partial resistance to Phoma macdonaldii in sunflower. Plant Pathology 56:855-861
Delventhal R, Zellerhoff N, Schaffrath U (2011) Barley stripe mosaic virus-induced gene silencing (BSMVIGS) as a tool for functional analysis of barley genes potentially involved in nonhost resistance. Plant Signaling \& Behavior 6:867-869
den Boer E, Zhang NW, Pelgrom K, Visser RGF, Niks RE, Jeuken MJW (2013) Fine mapping quantitative resistances to downy mildew in lettuce revealed multiple sub-QTLs with plant stage dependent effects reducing or even promoting the infection. Theoretical and Applied Genetics 126:2995-3007
DeYoung BJ, Innes RW (2006) Plant NBS-LRR proteins in pathogen sensing and host defense. Nature Immunology 7:1243-1249
Douchkov D, Nowara D, Zierold U, Schweizer P (2005) A high-throughput gene-silencing system for the functional assessment of defense-related genes in barley epidermal cells. Molecular Plant-Microbe Interactions 18:755-761
Duan Y, Guo J, Shi X, Guan X, Liu F, Bai P, Huang L, Kang Z (2013) Wheat hypersensitive-induced reaction genes TaHIR1 and TaHIR3 are involved in response to stripe rust fungus infection and abiotic stresses. Plant Cell Reports 32:273-283
Dyck PL (1977) Genetics of leaf rust reaction in three introductions of common wheat. Canadian Journal of Genetics and Cytology 19:711-716
Dyck PL (1987) The association of a gene for leaf rust resistance with the chromosome 7D suppressor of stem rust resistance in common wheat. Genome 29:467-469
Dyck PL, Samborski DJ, Anderson RG (1966) Inheritance of adult-plant leaf rust resistance derived from the common wheat varieties Exchange and Frontana. Canadian Journal of Genetics and Cytology 8:665-671
Fridman E, Pleban T, Zamir D (2000) A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proceedings of the National Academy of Sciences 97:4718-4723
Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J (2009) A kinaseSTART gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357-1360
Fu J, Liu H, Li Y, Yu H, Li X, Xiao J, Wang S (2011) Manipulating broad-spectrum disease resistance by suppressing pathogen-induced auxin accumulation in rice. Plant physiology 155:589-602
Fujii K, Hayano-Saito Y, Sugiura N, Hayashi N, Saka N, Tooyama T, Izawa T, Shumiya A (1999) Gene analysis of panicle blast resistance in rice cultivars with rice stripe resistance. Breeding Research 1:203-210
Fukuoka S, Okuno K (2001) QTL analysis and mapping of pi21, a recessive gene for field resistance to rice blast in Japanese upland rice. Theoretical and Applied Genetics 103:185-190
Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M (2009) Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 325:998-1001
Gibson G, Muse SV (2004) A primer of genome science, $2^{\text {nd }}$ Ed. Sinauer Associates, Inc Publishers:pp 8385
Giraldo P, Montoliu L (2001) Size matters: Use of YACs, BACs and PACs in transgenic animals. Transgenic Research 10:83-103
González AM, Marcel TC, Niks RE (2012) Evidence for a minor gene-for-minor gene interaction explaining nonhypersensitive polygenic partial disease resistance. Phytopathology 102:1086-1093
Gottwald S, Bauer P, Komatsuda T, Lundqvist U, Stein N (2009) TILLING in the two-rowed barley cultivar'Barke'reveals preferred sites of functional diversity in the gene HvHox1. BMC Research Notes 2:258
Graner A, Kilian A, Kleinhofs A (2010) Barley Genome Organization, Mapping, and Synteny. Barley. Wiley-Blackwell, pp 63-84
Hayashi N, Inoue H, Kato T, Funao T, Shirota M, Shimizu T, Kanamori H, Yamane H, Hayano-Saito Y, Matsumoto T, Yano M, Takatsuji H (2010) Durable panicle blast-resistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication. The Plant Journal 64:498-510
Holland JB (2007) Genetic architecture of complex traits in plants. Current Opinion in Plant Biology 10:156-161
Holzberg S, Brosio P, Gross C, Pogue GP (2002) Barley stripe mosaic virus-induced gene silencing in a monocot plant. The Plant Journal 30:315-327
Hu K, Qiu D, Shen X, Li X, Wang S (2008) Isolation and manipulation of quantitative trait loci for disease resistance in rice using a candidate gene approach. Molecular Plant 1:786-793

Ioannou PA, Amemiya CT, Garnes J, Kroisel PM, Shizuya H, Chen C, Batzer MA, de Jong PJ (1994) A new bacteriophage P1-derived vector for the propagation of large human DNA fragments. Nature Genetics 6:84-89
Isidore E, Scherrer B, Bellec A, Budin K, Faivre P, Waugh R, Keller B, Caboche M, Feuillet C, Chalhoub B (2005) Direct targeting and rapid isolation of BAC clones spanning a defined chromosome region. Functional \& Integrative Genomics V5:97-103
Jafary H, Albertazzi G, Marcel TC, Niks RE (2008) High diversity of genes for nonhost resistance of barley to heterologous rust fungi. Genetics 178:2327-2339
Jafary H, Szabo LJ, Niks RE (2006) Innate nonhost immunity in barley to different heterologous rust fungi is controlled by sets of resistance genes with different and overlapping specificities. Molecular PlantMicrobe Interactions 19:1270-1279
Johnston PA, Niks RE, Meiyalaghan V, Blanchet E, Pickering R (2013) Rph22: Mapping of a novel leaf rust resistance gene introgressed from the non-host Hordeum bulbosum L. into cultivated barley (Hordeum vulgare L.). Theoretical and Applied Genetics 126:1613-1625
Kleine M, Jung C, Michalek W, Diefenthal T, Dargatz H (1997) Construction of a Mlu I-YAC library from barley (Hordeum vulgare L.) and analysis of YAC insert terminal regions. Genome 40:896-902
Kleine M, Michalek W, Graner A, Herrmann RG, Jung C (1993) Construction of a barley (Hordeum vulgare L.) YAC library and isolation of a Hor1-specific clone. Molecular and General Genetics MGG 240:265-272
Kou Y, Li X, Xiao J, Wang S (2010) Identification of genes contributing to quantitative disease resistance in rice. Science China Life Sciences 53:1263-1273
Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360-1363
Kurowska M, Daszkowska-Golec A, Gruszka D, Marzec M, Szurman M, Szarejko I, Maluszynski M (2011) TILLING-a shortcut in functional genomics. Journal of Applied Genetics 52:371-390
Lababidi S, Mejlhede N, Rasmussen SK, Backes G, Al-Said W, Baum M, Jahoor A (2009) Identification of barley mutants in the cultivar 'Lux'at the Dhn loci through TILLING. Plant Breeding 128:332-336
Lagudah ES (2011) Molecular genetics of race non-specific rust resistance in wheat. Euphytica 179:81-91
Lahaye T, Shirasu K, Schulze-Lefert P (1998) Chromosome landing at the barley Rar1 locus. Molecular and General Genetics MGG 260:92-101
Lee WS, Hammond-Kosack KE, Kanyuka K (2012) Barley Stripe Mosaic Virus-mediated tools for investigating gene function in cereal plants and their pathogens: Virus-Induced Gene Silencing, Host-Mediated Gene Silencing, and Virus-Mediated Overexpression of Heterologous Protein. Plant Physiology 160:582-590
Leroy P, Guilhot N, Sakai H, Bernard A, Choulet F, Theil S, Reboux S, Amano N, Flutre T, Pelegrin C, Ohyanagi H, Seidel M, Giacomoni F, Reichstadt M, Alaux M, Gicquello E, Legeai F, Cerutti L, Numa H, Tanaka T, Mayer K, Itoh T, Quesneville H, Feuillet C (2012) TriAnnot: a versatile and high performance pipeline for the automated annotation of plant genomes. Frontiers in Plant Science 3:1-14
Levings CS, III, Siedow JN (1992) Molecular basis of disease susceptibility in the Texas cytoplasm of maize. Plant Molecular Biology 19:135-147
Liang J, Deng G, Long H, Pan Z, Wang C, Cai P, Xu D, Nima Z, Yu M (2012) Virus-induced silencing of genes encoding LEA protein in Tibetan hulless barley (Hordeum vulgare ssp. vulgare) and their relationship to drought tolerance. Molecular Breeding 30:441-451
Lipka U, Fuchs R, Kuhns C, Petutschnig E, Lipka V (2010) Live and let die - Arabidopsis nonhost resistance to powdery mildews. European Journal of Cell Biology 89:194-199
Lipka U, Fuchs R, Lipka V (2008) Arabidopsis non-host resistance to powdery mildews. Current Opinion in Plant Biology 11:404-411
Lowe I, Jankuloski L, Chao S, Chen X, See D, Dubcovsky J (2011) Mapping and validation of QTL which confer partial resistance to broadly virulent post-2000 North American races of stripe rust in hexaploid wheat. Theoretical and Applied Genetics 123:143-157
Ma Z, Weining S, Sharp PJ, Liu C (2000) Non-gridded library: A new approach for BAC (bacterial artificial chromosome) exploitation in hexaploid wheat (Triticum aestivum). Nucleic Acids Research 28:e106

Manosalva PM, Davidson RM, Liu B, Zhu X, Hulbert SH, Leung H, Leach JE (2009) A germin-like protein gene family functions as a complex quantitative trait locus conferring broad-spectrum disease resistance in rice. Plant Physiology 149:286-296
Marcel TC, Aghnoum R, Durand J, Varshney RK, Niks RE (2007a) Dissection of the barley 2L1. 0 region carrying the 'Laevigatum' quantitative resistance gene to leaf rust using near-isogenic lines (NIL) and subNIL. Molecular Plant-Microbe Interactions 20:1604-1615
Marcel TC, Gorguet B, Ta MT, Kohutova Z, Vels A, Niks RE (2008) Isolate specificity of quantitative trait loci for partial resistance of barley to Puccinia hordei confirmed in mapping populations and nearisogenic lines. New Phytologist 177:743-755
Marcel TC, Varshney RK, Barbieri M, Jafary H, de Kock MJD, Graner A, Niks RE (2007b) A high-density consensus map of barley to compare the distribution of QTLs for partial resistance to Puccinia hordei and of defence gene homologues. Theoretical and Applied Genetics 114:487-500
Mayer KFX, Martis M, Hedley PE, Šimková H, Liu H, Morris JA, Steuernagel B, Taudien S, Roessner S, Gundlach H, Kubaláková M, Suchánková P, Murat F, Felder M, Nussbaumer T, Graner A, Salse J, Endo T, Sakai H, Tanaka T, Itoh T, Sato K, Platzer M, Matsumoto T, Scholz U, Doležel J, Waugh R, Stein N (2011) Unlocking the barley genome by chromosomal and comparative genomics. The Plant Cell Online 23:1249-1263
Mazouz H, Saadaoui EM, Jlibene M, El Bouami F (2002) Evidence of cytoplasm contributing resistance to specific groups of virulence of Mycosphaerella graminicola (Fuckel) Shroeter in two bread wheat genotypes (Triticum aestivum L.). Field Crops Research 79:197-206
McIntosh RA (1992) Close genetic linkage of genes conferring adult-plant resistance to leaf rust and stripe rust in wheat. Plant Pathology 41:523-527
Miklis M, Consonni C, Bhat RA, Lipka V, Schulze-Lefert P, Panstruga R (2007) Barley MLO modulates actin-dependent and actin-independent antifungal defense pathways at the cell periphery. Plant Physiology 144:1132-1143
Monaco AP, Larin Z (1994) YACs, BACs, PACs and MACs: Artificial chromosomes as research tools. Trends in Biotechnology 12:280-286
Niks RE (1983a) Comparative histology of partial resistance and the nonhost reaction to leaf rust pathogens in barley and wheat seedlings. Phytopathology 73:60-64
Niks RE (1983b) Haustorium formation by Puccinia hordei in leaves of hypersensitive, partially resistant, and nonhost plant genotypes. Phytopathology 73:64-66
Niks RE, Fernandez E, Haperen Bv, Bekele Aleye B, Martinez F (2000) Specificity of QTLs for partial and non-host resistance of barley to leaf rust fungi. Acta Phytopathologica et Entomologica Hungarica 35:13-21
Niks RE, Marcel TC (2009) Nonhost and basal resistance: How to explain specificity? New Phytologist 182:817-828
Niks RE, Parlevliet JE, Lindhout P, Bai Y (2011) Breeding crops with resistance to diseases and pests. Wageningen Academic Publishers:198pp
Parlevliet JE, Zadoks JC (1977) The integrated concept of disease resistance: A new view including horizontal and vertical resistance in plants. Euphytica 26:5-21
Poland JA, Balint-Kurti PJ, Wisser RJ, Pratt RC, Nelson RJ (2009) Shades of gray: The world of quantitative disease resistance. Trends in Plant Science 14:21-29
Pretorius ZA, Szabo LJ, Boshoff WHP, Herselman L, Visser B (2012) First report of a new TTKSF race of wheat stem rust (Puccinia graminis f. sp. tritici) in South Africa and Zimbabwe. Plant Disease 96:590-590
Qamar M, Niks RE (2007) Evidence of isolate-specificity in non-hypersensitive resistance in spring wheat (Triticum aestivum) to wheat leaf rust. Pakistan Journal of Botany 39:953-959
Qi X, Jiang G, Chen W, Niks RE, Stam P, Lindhout P (1999) Isolate-specific QTLs for partial resistance to Puccinia hordei in barley. Theoretical and Applied Genetics 99:877-884
Qi X, Niks RE, Stam P, Lindhout P (1998) Identification of QTLs for partial resistance to leaf rust (Puccinia hordei) in barley. Theoretical and Applied Genetics 96:1205-1215
Richardson KL, Vales MI, Kling JG, Mundt CC, Hayes PM (2006) Pyramiding and dissecting disease resistance QTL to barley stripe rust. Theoretical and Applied Genetics 113:485-495

Rouse MN, Griffey CA, Brooks WS (2013) First detection of Puccinia hordei virulence to barley leaf rust resistance gene Rph3 and combination with virulence to Rph7 in North America. Plant Disease 97:838-838
Saisho D, Myoraku E, Kawasaki S, Sato K, Takeda K (2007) Construction and characterization of a bacterial artificial chromosome (BAC) library from the Japanese malting barley variety 'Haruna Nijo'. Breeding Science 57:29-38
Sakata K, Nagamura Y, Numa H, Antonio BA, Nagasaki H, Idonuma A, Watanabe W, Shimizu Y, Horiuchi I, Matsumoto T (2002) RiceGAAS: An automated annotation system and database for rice genome sequence. Nucleic Acids Research 30:98-102
Shafiei R, Hang CUI, Kang JG, Loake GJ (2007) Identification of loci controlling non-host disease resistance in Arabidopsis against the leaf rust pathogen Puccinia triticina. Molecular Plant Pathology 8:773-784
Schmidt D, Röder MS, Dargatz H, Wolf N, Schweizer GF, Tekauz A, Ganal MW (2001) Construction of a YAC library from barley cultivar Franka and identification of YAC-derived markers linked to the Rh2 gene conferring resistance to scald (Rhynchosporium secalis). Genome 44:1031-1040
Schmidt R (2000) Synteny: Recent advances and future prospects. Current Opinion in Plant Biology 3:97102
Schulte D, Ariyadasa R, Shi B, Fleury D, Saski C, Atkins M, Wu C, Graner A, Langridge P, Stein N (2011) BAC library resources for map-based cloning and physical map construction in barley (Hordeum vulgare L.). BMC Genomics 12:247
Shi BJ, Sutton T, Collins NC, Pallotta M, Langridge P (2010) Construction of a barley bacterial artificial chromosome library suitable for cloning genes for boron tolerance, sodium exclusion and high grain zinc content. Plant Breeding 129:291-296
Shizuya H, Birren B, Kim U, Mancino V, Slepak T, Tachiiri Y, Simon M (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factorbased vector. Proceedings of the National Academy of Sciences 89:8794-8797
Singh RP (1992) Genetic association of leaf rust resistance gene Lr34 with adult plant resistance to stripe rust in bread wheat. Phytopathology 82:835-838
Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Bhavani S, Njau P, Herrera-Foessel S, Singh PK, Singh S, Govindan V (2011) The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annual Review of Phytopathology 49:465-481
Singh RP, Huerta-Espino J, Rajaram S (2000) Achieving near-immunity to leaf and stripe rusts in wheat by combining slow rusting resistance genes. Acta Phytopathologica et Entomologica Hungarica 35:133-139
Singh RP, Huerta-Espino J, William HM (2005) Genetics and breeding for durable resistance to leaf and stripe rusts in wheat. Turkish Journal of Agriculture \& Forestry 29:121-127
Spielmeyer W, McIntosh RA, Kolmer J, Lagudah ES (2005) Powdery mildew resistance and Lr34/Yr18 genes for durable resistance to leaf and stripe rust cosegregate at a locus on the short arm of chromosome 7D of wheat. Theoretical and Applied Genetics 111:731-735
Springer NM, Stupar RM (2007) Allelic variation and heterosis in maize: How do two halves make more than a whole? Genome Research 17:264-275
St.Clair DA (2010) Quantitative disease resistance and quantitative resistance loci in breeding. Annual Review of Phytopathology 48:247-268
Talamè V, Bovina R, Sanguineti MC, Tuberosa R, Lundqvist U, Salvi S (2008) TILLMore, a resource for the discovery of chemically induced mutants in barley. Plant Biotechnology Journal 6:477-485
Uauy C, Brevis JC, Chen X, Khan I, Jackson L, Chicaiza O, Distelfeld A, Fahima T, Dubcovsky J (2005) High-temperature adult-plant (HTAP) stripe rust resistance gene Yr36 from Triticum turgidum ssp. dicoccoides is closely linked to the grain protein content locus Gpc-B1. Theoretical and Applied Genetics 112:97-105
van Berloo R, Aalbers H, Werkman A, Niks R (2001) Resistance QTL confirmed through development of QTL-NILs for barley leaf rust resistance. Molecular Breeding 8:187-195
van der Plank JE (1963) Plant disease: Epidemics and control. Academic Press, New York, London
van der Plank JE (1968) Disease resistance in plants. Academic Press, New York, London
Várallyay É, Giczey G, Burgyán J (2012) Virus-induced gene silencing of Mlo genes induces powdery mildew resistance in Triticum aestivum. Archives of Virology 157:1345-1350

Wan A, Chen X (2011) Virulence, frequency, and distribution of races of Puccinia striiformis f. sp. tritici and P. striiformis f. sp. hordei identified in the United States in 2008 and 2009. Plant Disease 96:67-74
Wang L, Wang Y, Wang Z, Marcel TC, Niks RE, Qi X (2010) The phenotypic expression of QTLs for partial resistance to barley leaf rust during plant development. Theoretical and Applied Genetics 121:857-864
Wang X, Richards J, Gross T, Druka A, Kleinhofs A, Steffenson B, Acevedo M, Brueggeman R (2013) The rpg4-mediated resistance to wheat stem rust (Puccinia graminis) in barley (Hordeum vulgare) requires Rpg5, a second NBS-LRR gene, and an actin depolymerization factor. Molecular PlantMicrobe Interactions 26:407-418
Xia Z, Wu H, Watanabe S, Harada K (2014) Construction and targeted retrieval of specific clone from a non-gridded soybean bacterial artificial chromosome library. Analytical Biochemistry 444:38-40
Yang Q, Zhang D, Xu M (2012) A sequential quantitative trait locus fine-mapping strategy using recombinant-derived progeny ${ }^{\mathrm{F}}$. Journal of Integrative Plant Biology 54:228-237
Yu Y, Tomkins JP, Waugh R, Frisch DA, Kudrna D, Kleinhofs A, Brueggeman RS, Muehlbauer GJ, Wise RP, Wing RA (2000) A bacterial artificial chromosome library for barley (Hordeum vulgare L.) and the identification of clones containing putative resistance genes. Theoretical and Applied Genetics 101:1093-1099
Zhang D, Liu Y, Guo Y, Yang Q, Ye J, Chen S, Xu M (2012) Fine-mapping of qRfg2, a QTL for resistance to Gibberella stalk rot in maize. Theoretical and Applied Genetics 124:585-596
Zhang H, Wu C (2001) BAC as tools for genome sequencing. Plant Physiology and Biochemistry 39:195209
Zhang NW, Pelgrom K, Niks RE, Visser RGF, Jeuken MJW (2009) Three combined quantitative trait loci from nonhost Lactuca saligna are sufficient to provide complete resistance of lettuce against Bremia lactucae. Molecular Plant-Microbe Interactions 22:1160-1168
Zhou X, Ren L, Meng Q, Li Y, Yu Y, Yu J (2010) The next-generation sequencing technology and application. Protein Cell 1:520-536

Summary

Partial resistance of barley to Puccinia hordei and near-nonhost resistance to non-adapted rust fungi inherit polygenically. The two types of resistance seem to share some genes and have a similar prehaustorial mechanism of resistance, but partial resistance is less strong than near-nonhost resistance of barley. Partial resistance to adapted, "host", rust fungi seems, therefore, like a weak form of nonhost resistance to non-adapted rust fungi. If partial resistance and nonhost resistance are indeed based on the same principles, one can understand nonhost resistance by studying partial resistance and vice versa. To study partial and nonhost resistance, as well as their association, the candidate gene(s) for resistance must be cloned and characterized for their action.

Five resistance quantitative trait loci (QTLs) for partial resistance ($R p h q 2, R p h q 3, R p h q 4$, Rphq11 and Rphq16) and one nonhost resistance QTL (Rnhq) were selected to pursue map-based cloning. First, the effect of the QTLs was verified in near-isogenic lines (NILs). The NILs of Rphq2, Rphq3, Rphq4 and Rnhq (QTL-NILs) were available in L94 genetic background. L94 is extremely susceptible to Puccinia hordei, and, at seedling stage, somewhat susceptible to certain non-adapted rust fungi. The experimental barley line SusPtrit is also susceptible to P. hordei but, at seedling stage, also very susceptible to at least nine species of non-adapted rust fungi. In Chapter 3, we developed NILs in SusPtrit background for Rphq2, Rphq3, Rphq11, Rphq16 and two alleles of Rnhq, viz. L94 and Vada alleles. The effect of each QTL in L94 and SusPtrit genetic backgrounds was tested not only against different isolates of P. hordei but also against different species and isolates of non-adapted rust fungi. The QTL-NILs suggested that the effects of the partial resistance genes depended on rust species and rust isolates. Some introgressions conferred resistance to a broader spectrum of rust species and isolates than others, the broadest being the Rphq11-introgression. The NILs may overestimate the spectrum of effectiveness of the partial resistance genes because some NILs contain inadvertent donor genome in the background and the introgressed QTL region may contain several linked resistance genes, each with a narrow resistance spectrum. The introgression would then confer a resistance spectrum that is the combination of the spectra of several linked resistance genes. Allowing for the possibility of linkage of narrow-spectrum resistance genes, our study suggests that some genes may be involved in partial as well as nonhost resistance. Data also suggest that genetic background may play a role in the resistance conferred by the QTL-introgression.

The NILs also allow fine-mapping of the QTL as was done for Rphq2 in a previous study. In Chapter 4, we target to fine-map another two partial resistance QTLs of our interest, viz. Rphq11 and Rphq16. We, however, did not use the NILs for fine-mapping of Rphq11 and Rphq16. Instead, after validating the effect of Rphq11 and Rphq16 using the early breeding materials for developing NILs of Rphq11 and Rphq16, we developed fixed QTLrecombinants (i.e. homozygous recombinants at the Rphq11/Rphq16 QTL alleles, homozygous susceptible at the non-targeted QTL alleles). The genomic background of fixed QTL-recombinants was still segregating, but expected not to be relevant for the resistance level. Rphq11 was fine-mapped into a 0.2 cM genetic interval and a 1.4 cM genetic interval for Rphq16, before the NILs were ready. The strongest candidate gene for Rphq11 is a phospholipid hydroperoxide glutathione peroxidase (PHGPx). This gene corresponds to the new Rphqll peak marker - WBE129, located within the refined 0.2 cM genetic intervals and was one of the candidate genes for Rphq11 identified through e-QTL mapping on Steptoe/Morex challenged with the same rust isolate. There was no clear candidate gene identified for Rphq16.

A QTL has to be fine-mapped into a sufficiently narrow genetic window to make physical mapping feasible. Rphq2 with a genetic window of 0.1 cM is ready for physical mapping. In Chapter 5, we have constructed two non-gridded Bacterial Artificial Chromosome (BAC) libraries of barley from Vada and SusPtrit. Based on the insert sizes of the BAC clones, the estimated genome coverage of the Vada BAC library is 2.6x and of the SusPtrit BAC library $3.7 x$. The genome coverage of Vada is comparable to the BAC library of Morex, HVVMRXALLhB and SusPtrit to HVVMRXALLeA. The estimation of genome coverage based on microsatellite markers indicates, however, Vada and SusPtrit BAC libraries to have 5.0 x and 6.8 x genome coverage, respectively. Based on genome insert size, the BAC library of Vada gives at least 93% probability of identifying a clone corresponding to any sequence of Vada and for the BAC library of SusPtrit a probability of 98% is expected. Together, the two BAC libraries give more than 99% probability of recovering any specific sequence from the barley genome. A tiling path of three BAC clones was constructed for Vada, which cover the Rphq2 genetic window. The physical window of Rphq2 in Vada BAC contig is approximately 195 Kbp . For SusPtrit, the three BAC clones forming the contig did not cover the entire genetic window of Rphq2. The physical length bridged by them is approximately 226 Kbp . The TriAnnot pipeline annotated 12 genes in both the Vada and the SusPtrit contig, but only four of the annotated genes are shared between Vada and SusPtrit. The candidate genes for Rphq2 might be a resistance factor in Vada or a susceptibility factor in SusPtrit. The peroxidases and kinases are good candidates to represent $R p h q 2$. It is possible that one of the peroxidase or kinase gene members in the physical window of Rphq2 explains the resistance phenotype observed. Another possibility is that peroxidase or kinase gene members function as a
complex QTL. A member of the Seven in absentia protein family (SINA) can be a candidate as well. The gene families to which previously cloned genes for partial resistance belong were not found to be represented in the Rphq2 region.

We propose to perform functional analysis of candidate genes through Agrobacteriummediated stable transformation of the resistance allele into a susceptible genotype, such as SusPtrit. Unfortunately, SusPtrit is, as so many barley accessions, not amenable to Agrobacterium-mediated transformation. In Chapter 2, we developed a doubled haploid (DH) mapping population ($\mathrm{n}=122$) by crossing SusPtrit with Golden Promise to develop a 'Golden SusPtrit', i.e., a barley line combining SusPtrit's high susceptibility to nonadapted rust fungi with the high amenability of Golden Promise for transformation. Using the DH population, we identified nine genomic regions occupied by QTLs against four non-adapted rust fungi and P. hordei isolate 1.2.1 (Ph.1.2.1). From 12 DH lines that were most susceptible to the tested non-adapted rust fungi, we selected four DHs for an Agrobacterium-mediated transformation efficiency test. We obtained a DH line (SG062N) with transformation efficiency of 11 to 17 transformants per 100 immature embryos. The level of susceptibility of SG062N to non-adapted rust fungi is either similar to or higher than the level of susceptibility of SusPtrit. Against P. hordei, the latency period conferred by SG062N at seedling stage is as short as that conferred by SusPtrit. SG062N, designated 'Golden SusPtrit', will be a valuable experimental line that could replace SusPtrit in future nonhost and partial resistance studies, especially for stable transformation using candidate genes that may determine the differences in resistance levels against adapted and nonadapted rust fungi.

Samenwatting

Partiële resistentie van gerst tegen Puccinia hordei en bijna-nietwaard resistentie tegen niet-aangepaste roestschimmels, waarvoor gerst geen waardplant is, hebben een polygene overerving. Sommige genen lijken beide typen resistentie te reguleren, en ook lijken beide resistentietypen voornamelijk te berusten op eenzelfde prehaustoriaal resistentiemechanisme. Partiële resistentie is echter minder sterk dan bijna-nietwaard resistentie van gerst. Partiële resistentie tegen aangepaste roestschimmels, waarvoor gerst waardplant is, lijkt op een zwakke vorm van nietwaard resistentie tegen niet-aangepaste roestschimmels. Als partiële resistentie en nietwaard resistentie inderdaad berusten op dezelfde principes, kan men nietwaard resistentie begrijpen door partiële resistentie te bestuderen en omgekeerd. Om partiële en nietwaard resistentie en hun mogelijke associatie te bestuderen, moeten kandidaat genen voor resistentie worden gekloneerd en gekarakteriseerd wat betreft hun effect op en aandeel in beide resistentietypen.

Vijf kwantitatieve loci (QTLs) voor partiële resistentie (Rphq2, Rphq3, Rphq4, Rphq11 en Rphq16) en een QTL voor nietwaard resistentie (Rnhq) werden gekozen om via hun positie op de koppelingskaart gekloneerd te worden. Eerst werd het effect van de QTLs geverifieerd in bijna-isogene lijnen (NILs). De NILs van Rphq2, Rphq3, Rphq4 and Rnhq (QTL-NILs) waren beschikbaar in de genetische achtergrond van lijn L94. L94 is extreem vatbaar voor P. hordei, en in het zaailingstadium ook enigszins vatbaar voor sommige niet-aangepaste roestschimmels. De experimentele gerstlijn SusPtrit is eveneens vatbaar voor P. hordei maar in het zaailingstadium ook zeer vatbaar voor ten minste negen soorten niet-aangepaste roestschimmels. In hoofdstuk 3 ontwikkelden we NILs voor Rphq2, Rphq3, Rphq11, Rphq16 en twee allelen van Rnhq, namelijk die van L94 en van Vada, in de genetische achtergrond van SusPtrit. Het effect van elk QTL in de genetische achtergronden van L94 en SusPtrit werd niet alleen bepaald met verschillende isolaten van P. hordei, maar ook met verschillende soorten en isolaten van niet-aangepaste roestschimmels. De QTL-NILs suggereerden dat de effecten van de genen voor partiële resistentie afhingen van roestschimmelsoort en -isolaat. Sommige introgressies veroorzaakten resistentie tegen een breder spectrum van roestschimmels dan andere. Het breedste spectrum werd gevonden voor de introgressie van QTL Rphq11. Mogelijk overschatten de NILs het spectrum van effectiviteit van de genen voor partiële resistentie, want sommige NILs bevatten elders op het genoom ook nog enkele ongewenste fragmenten van het donorgenoom, en de introgressie met het resistentie QTL bevat mogelijk verscheidene gekoppelde genen voor resistentie, elk met een nauwer spectrum van effectiviteit. De introgressie zou in dat geval een resistentie geven tegen een spectrum
van roestschimmels dat de combinatie is van de spectra van verscheidene gekoppelde resistentiegenen. Onder voorbehoud van de mogelijkheid van koppeling tussen diverse nauw-spectrum resistentiegenen wijzen onze resultaten erop dat sommige genen zowel een rol spelen in partiële als in nietwaard resistentie. De gegevens suggereren ook dat genetische achtergrond een rol kan spelen in de resistentie die door de QTL-introgressies wordt veroorzaakt.

De NILs zijn een goede stap naar fijnkartering van de QTLs, zoals in een vorige studie gedaan is voor Rphq2. In Hoofdstuk 4 stelden we ons tot doel twee andere interessante QTLs voor partiële resistentie fijn te karteren, namelijk Rphqll en Rphq16. Daarvoor gebruikten we echter niet de NILs voor deze twee QTLs. Na bevestiging van de effecten van Rphqll en Rphq16 in vroege terugkruisings nakomelingen ontwikkelden we recombinanten die homozygoot waren voor de Rphq11/Rphq16 QTL allelen en homozygoot vatbaar voor het resistentie-QTL elders op het genoom. De genetische achtergrond van deze "gefixeerde QTL-recombinanten" splitste nog uit, maar was naar verwachting niet relevant voor het resistentieniveau. Nog voor de NILs gereed waren konden we op deze manier Rphq11 fijnkarteren in een interval van 0.2 cM en Rphq16 in een interval van 1.4 cM . Het meest waarschijnlijke kandidaat gen voor Rphqll is een phospholipid hydroperoxide glutathione peroxidase (PHGPx). Dit gen komt overeen met de nieuwe Rphq11 piekmerker - WBE129, welke ligt binnen het fijnkarterings interval van 0.2 cM en welke ook uit een e-QTL studie in Steptoe/Morex naar voren kwam als een van de kandidaat genen voor Rphq11. Er werd geen duidelijk kandidaat gen gevonden voor Rphq16.

Een QTL moet fijngekarteerd worden in een voldoende klein genetisch interval om fysieke kartering mogelijk te maken. Rphq2 ligt in een genetisch interval van 0.1 cM , wat voldoende moet zijn voor fysieke kartering.

In Hoofdstuk 5 beschrijven we de ontwikkeling van twee "non-gridded" Bacterial Artificial Chromosome (BAC) bibliotheken (BAC-libraries) van de gerstaccessies Vada en SusPtrit. Op basis van de groottes van de BAC-klooninserties schatten we dat het genoom van Vada ongeveer 2,6x en dat van SusPtrit ongeveer 3,7x vertegenwoordigd is in de respectievelijke BAC-libraries. De dekking van het Vada genoom is van zelfde orde van grootte als die van de BAC-library van Morex HVVMRXALLhB en die van het SusPtrit genoom als die van HVVMRXALLeA. De dekking van het genoom werd ook geschat door bepaling van het voorkomen van microsatellietmerkers. Die methode suggereerde dat de libraries een 5,0x (Vada) en 6,9x (SusPtrit) dekking hebben. Op basis van de insertiegroottes schatten we dat de BAC-library van Vada een kans geeft van 93% om een bepaalde sequentie vertegenwoordigd te zien, en de BAC-library van SusPtrit een kans
van 98%. In combinatie zouden de BAC-libraries een 99% kans geven om een bepaalde sequentie te vinden.

We vonden drie overlappende BAC-klonen voor Vada die samen het gehele genetische interval voor Rphq2 dekken. De fysieke grootte van deze Vada BAC-contig is ongeveer 195 Kbp. Voor SusPtrit konden we geen sluitende contig vinden voor Rphq2. De fysieke lengte die door de drie BAC-klonen daar wordt overbrugd schatten we op ongeveer 226 Kbp. Met de TriAnnot procedure annoteerden we 12 genen in zowel de Vada- als de SusPtrit-contig, maar slechts vier van deze genen kwamen zowel in de Vada- als in de SusPtrit-contig voor. De kandidaat genen voor Rphq2 zouden een resistentiefactor in Vada kunnen zijn of een vatbaarheidsfactor in SusPtrit. De peroxidasen en kinasen zijn goede kandidaten voor Rphq2. Het is mogelijk dat een van de peroxidase- of kinasegenen in het fysieke interval van Rphq2 het effect op het resistentie fenotype verklaart. Een andere mogelijkheid is dat peroxidase- of kinasegenen functioneren als complex QTL. Een aantal genen voor Seven in absentia eiwitten (SINA) komen ook in aanmerking als kandidaat gen. De genfamilies die in eerdere studies door klonering geïdentificeerd werden als verantwoordelijk voor partiële resistentie waren niet vertegenwoordigd in de Rphq2 regio.

Om de kandidaat genen functioneel te testen, stellen we voor stabiele transformatie van een vatbare accessie uit te voeren door middel van Agrobacterium, bij voorkeur de lijn SusPtrit. Deze lijn is echter, zoals zovele gerstgenotypen, niet efficiënt te transformeren via deze methode. In hoofdstuk twee beschrijven we de ontwikkeling van een verdubbelde haploiden (DH) populatie ($\mathrm{n}=122$) uit een kruising van SusPtrit met Golden Promise met als doel een "Golden SusPtrit" lijn te ontwikkelen die de hoge vatbaarheid van SusPtrit tegen zekere niet-aangepaste roestschimmels zou combineren met de efficiëntie van Golden Promise voor genetische transformatie. De DH populatie werd getest op resistentieniveau tegen vier niet-aangepaste roestschimmels en een isolaat (Ph.1.2.1) van de dwergroestschimmel P. hordei. Uit twaalf DH lijnen met de hoogste vatbaarheid voor de geteste niet-aangepaste roestschimmels selecteerden we er vier om hun transformeerbaarheid te bepalen. We verkregen een DH lijn (SG062N) die een transformeerbaarheidsefficiëntie had van 11 tot 17 transformanten per 100 onrijpe embryo's. Het niveau van vatbaarheid van SG062N tegen niet-aangepaste roestschimmels was vergelijkbaar met of zelfs hoger dan die van SusPtrit. De vatbaarheid voor P. hordei, gemeten als latentie periode in het zaailingstadium, is even hoog als die van SusPtrit. SG062N werd omgedoopt tot 'Golden SusPtrit', en zal fungeren als waardevolle experimentele lijn die SusPtrit kan vervangen in toekomstige nietwaard en partiële resistentie studies, met name waar gebruik gemaakt gaat worden van stabiele transformatie met kandidaat genen die verantwoordelijk kunnen zijn voor verschillen in resistentieniveaus tegen aangepaste en niet-aangepast roestschimmels.

Acknouledgements

Studying in Wageningen University (WUR) is tough and challenging. I am very grateful to everyone who has accompanied and helped me to achieve this milestone of my life journey.

My golden opportunity to study abroad does not come easy. I must thank University Malaysia Sarawak for the scholarship to study abroad. I wish to thank Professor Dr Cheksum Tawan and Associate Professor Dr Sim Soon Liang for their guidance.

My six years in Wageningen started with my MSc study. In an MSc thesis market, I met my supervisor, Dr Thierry C. Marcel. I would like to express my greatest appreciation to Thierry who gave me the opportunity and patiently supervised my MSc thesis project. You were a great motivator. Later, you became my PhD daily supervisor and helped me to kick start my PhD study. After about one year, you were offered a position in INRA and became my external supervisor. I really admire your supervising skills and hopefully I can be as good one day.

To pursue a PhD study has always been my aim ever since I stepped into WUR. I would like to express my deep gratitude to Dr Rients Niks for offering the opportunity. Dear Rients, the first thing you taught me was, the "student-teacher interaction" should be nonhierarchical. I really appreciate this type of relationship which I never had before back in my home country. I admire your attentiveness to detail and scientific enthusiasm which are crucial to be successful as a scientist. Thank you for giving tons of support, idea, and encouragement, without which, I may not have come this far. I would like to offer my special thanks to Professor Dr Richard Visser for hosting me at the Laboratory of Plant Breeding. You have kindly helped me in various ways to make sure my PhD study run smoothly.

I wish to thank my students for their inputs to this thesis. Allo Dido, Rene Kuijken, Romain Bouchon, Wang Chun and Zhang Yun Meng, I wish you all a great future ahead. My thanks also go to the secretaries, Annie, Letty, Mariame, Nicole and Janneke, also to the technicians Anton, Brian, Wendy, Koen, Fien, Irma, Doret and Danny for all the supports and kindness.

All work and no play make Jack a dull boy. I am glad to have a bunch of friends who constantly keeps my life interesting in the lab as well as in Wageningen. Thank you to Dr. Antoine Gady, Dr. Bjorn Kloosterman and Dr. Efstathios Roumeliotis for keeping the atmosphere in the office lively. Dr. Gao Wei and Dr. Nasim Mansoori, you two were wonderful "new" office mates. I cherish the moment we had together in the small office. We have supported and encouraged each other to achieve our goals, but the best part is the never ending laughter in our office and the constantly available sweeties, crisps and fruits. The laughters and all the sweeties/crisps are the major sources of energy to keep us going. Also, I wish to thank Dr. Nicholas Champouret, Krissana Kowitwawnich, and Dr. Zhang Ning Wen for the constructive advices that help me to move one step after another to achieve my goals. I would like to express my appreciation to Dr Hossein Jafary and Dr Reza Aghnoum who taught me a lot in the lab as well as sharing their research experience with me. My gratitude also goes to Dr Arwa Shahin, Dr Anitha Kumari, Mirjana Vukosavljev, Natalia Carreno, Thomas Liebrand and many more in the Laboratory of Plant Breeding for the friendship we established.

A lab can be a dull place if you were only accompanied by bacteria colonies, solution bottles, various tubes and a radio which plays the same playlist over and over again. Fortunately, there were amazing and interesting people in the lab; Krissana Kowitwawnich, Huang Ping Ping, Dr. Gao Wei, Shairul Izan Ramlee and Tereza Vozábová. The time we spent together in the lab with brilliant jokes is one of the most unforgettable memories.

Living abroad with minimum cooking skill is a bad idea, especially for a food loving person like me. I am thankful to "chef" Chen Xu who taught me his legendary cooking skills, without whom I might still shoving sandwiches, salads and frozen pizzas down my throat until I graduate. Then came Fan Ling Ling, Huang Ping Ping, Zhang Yun Meng, Song Yan Ru, Qi Wei Cong, Dr. Chen Xi, Cheng Ji Hua, Wang Yan and many more Chinese friends who introduced me to more different Chinese cuisines. Having the chance to eat and learn how to cook different Chinese cuisines of my ancestors were great experiences.

When I arrived in Wageningen, I was the only Malaysian student. Few days later, Nurulhuda Ramli came and then there were two of us. Nurulhuda, you are a great friend. Both of us were struggling to get used to the new study culture and environment. We managed to overcome our fears and performed well. Now, you also started your PhD in WUR, and I wish you all the best. A year later, many more Malaysian came to study in WUT. I would like to thank Shairul Izan Ramlee, Nurulhuda Khairudin, Hisfazilah Saari and many more Malay friends for the friendship we established. My special thanks are
extended to my Chinese Malaysian friends, Er Hong Ling, Edmund Teoh, Wong Shi Pei, Jack Chong, Chia Loo Wee, Cheon Meng Foong and, Dr Jimmy Ting with his wife Dr Lin Ya Fen. We shared a lot of fun and laughter together, especially during birthdays and festivals. I wish you all tons of happiness and success in your future. I cannot wait for the next adventure together with you all.

One cannot claim to have studied or lived abroad without integrating with the locals to learn and experience their culture. I wish to thank Arjan Wieringa, Bart Slager, Susan Laurier, Andries Middag, Maartje Middag, Bart van Tuijl, Marian Oortwijn and Gert Aarkel. You all gave me the chance to experience and understand the Dutch culture first hand. I really appreciate the efforts to bring me around the Netherlands and Europe. Travelling by car and bicycle are definitely far more breathtaking and in style than flying over layers of dull clouds. You all are welcome to Sarawak, Malaysia and having me as your personal tour guide.

Last but not least, I would like to thank my family. To my parents, thank you for your support and love. To my brother, without whom I may not be completing this thesis, I remembered your words "you never try, you never know". Thank you for your moral support.

Thank You
"Let us be grateful to the people who make us happy; they are the charming gardeners who make our souls blossom" - Marcel Proust

about The Cuthor

Freddy Yeo Kuok San was born on $2^{\text {nd }}$ April, 1981 in Kuching, Sarawak, Malaysia and grew up in a small town called Serian. He obtained his Diploma in Agriculture from University Putra Malaysia in 2002.

Subsequently, Freddy continued his study in University Malaysia Sarawak (UNIMAS) and graduated in 2005 with a BSc. (Hons) in Plant Resource Science and Management. He was presented the Royal Education Award of UNIMAS. After graduated in 2005, he worked as a research assistant position in Institute of Health and Community Medicine. End of 2005, UNIMAS offered Freddy a Tutor position in the Faculty of Resource Science and Technology.

In August 2006, he was offered a scholarship by UNIMAS to further his study abroad. In September 2006, he started his MSc degree in Wageningen University and graduated in 2008 with an MSc, in Plant Sciences specialized in Plant Breeding and Genetic Resources. Then, in September 2008, he started his PhD research at the Department of Plant Breeding, Wageningen University. This thesis is the outcome of his PhD research. Freddy will join Faculty of Resource Science and Technology, UNIMAS after finishing his studies in Wageningen University.

List of Pulications

Yeo FKS, Wang C, Marcel TC, Lorriaux A \& Niks RE Barley partial (host) and nonhost resistance QTL-near-isogenic lines against barley homologous and heterologous rusts. Proceedings of the $13^{\text {th }}$ International Cereal Rusts and Powdery Mildews Conference 2012. Beijing, China

Yeo FKS, Hensel G, Vozábová T, Martin-Sanz A, Marcel TC, Kumlehn J, Niks RE (2014) Golden SusPtrit: a genetically well transformable barley line for studies on the resistance to rust fungi. Theoretical Applied Genetics 127:325-337

Yeo FKS, Bouchon R, Kuiken R, Loriaux A, Boyd C, Niks RE and Marcel TC. High resolution mapping of genes involved in plant stage specific, partial resistance of barley to leaf rust. To be submited

Yeo FKS, Martin-Sanz A, Wang C, Loriaux A, Marcel TC, and Niks RE. Specificity of barley near-nonhost and partial resistance QTLs towards adapted and non-adapted rust fungi. To be submited

Yeo FKS, Kohutova Z, Huneau C, Niks RE, Chalhoub B, Leroy P, Marcel TC. NonGridded BAC libraries of the barley cultivars Vada and line SusPtrit for physical mapping of Rphq2, a partial resistance QTL to Puccinia hordei. To be submited

Education Statement of the Graduate School Experimental Plant Sciences

$\begin{array}{ll}\text { Issued to: } & \text { Freddy Yeo Kuok San } \\ \text { Date: } & 18 \text { September } 2014 \\ \text { Group: } & \text { Plant Breeding, Wageningen University \& Research Centre }\end{array}$

1) Start-up phase
First presentation of your project (higly recommended)
"Cloning and confirmation of barley sequences that determine basal resistance of barley to specialized Puccinia rust fungi"
Sep 16, 2008

- Writing or rewriting a project proposal
"Cloning and confirmation of barley sequences that determine basal resistance of barley to specialized Puccinia rust fungi"
March 2009
- Writing a review or book chapter

MSc courses

- Laboratory use of isotopes
7.5 credits*

2) Scientific Exposure

- EPS PhD student days

EPS PhD students day, Leiden University, Leiden, NL
2nd European Retreat for PhD Students in 'Experimental Plant Sciences', Cologne, Germany
Apr 15 17, 2010 EPS PhD students day, Utrecht University, Utrecht, NL

- EPS theme symposia

EPS theme 2 symposium 'Interactions between Plants and Biotic Agents', Utrecht University
EPS theme 2 symposium 'Interactions between Plants and Biotic Agents', Utrecht University
EPS theme 2 symposium 'Interactions between Plants and Biotic Agents', University of Amsterdam
EPS theme 2 symposium 'Interactions between Plants and Biotic Agents', University of Amsterdam

- NWO Lunteren days and other National Platforms

NWO - ALW meeting 'Experimental Plant Sciences', Lunteren, NL
NWO - ALW meeting 'Experimental Plant Sciences', Lunteren, NL
NWO - ALW meeting 'Experimental Plant Sciences', Lunteren, NL
NWO - ALW meeting 'Experimental Plant Sciences', Lunteren, NL
Bioexploit meeting
Bioexploit final meeting

- Seminars (series), workshops and symposia

Invited seminars (T. Nurnberger, 'Patterns and recetors in plant immunity'; Cyril Zipfel, 'Receptor kinase signalling in plant innate immunity')
13th QTL-MAS Workshop
International Triticeae Mapping Initiative (ITMI) Summer Workshop, Clermont-Ferrand, FR
Invited seminar Kirsten Bomblies, 'Genetic incompatibility and the plant immune system'.
International Triticeae Mapping Initiative (ITMI) Summer Workshop, Mexico City
SPICY symposium and workshops

- Seminar plus
- International symposia and congresses

12th International Cereal Rust and Powdery Mildew Conference (ICRPMC), Antalya, Turke)
13th International Cereal Rust and Powdery Mildew Conference (ICRPMC), Beijing, China)

- Presentations

Oral: International Cereal Rust and Powdery Mildew Conference (ICRPMC)
Oral: EPS theme 2 symposium
Poster: 2nd European Retreat for PhD Students
Poster: NWO - ALW meeting. Lunteren
Oral: 12th International Triticeae Mapping Initiative (ITMI) Summer Workshop
Poster: NWO - ALW meeting. Lunteren
Oral: 13th International Cereal Rust and Powdery Mildew Conference (ICRPMC)

- IAB interview

Meeting with a member of the International Advisory Board
Excursions \quad Subtotal Scientific Exposure
20-21, 2009
Aug 31-Sep 04, 2009
2010
Sep 05-09, 2011
Mar 07-09, 2012

Oct 13-16, 2009
Aug 28-Sep 01, 2012

3) In-Depth Studies

- EPS courses or other PhD courses

PhD course 'Gateway to Gateway technology', Wageningen University, NL)
Postgraduate course 'Bioinformatics - A User's Approach'

- Journal club

Member of literature discussion group "Plant Breeding"
Individual research training
Oct 13-16, 2009
Jan 15,2010
Apr 15-17, 2010
Apr 19-20, 2010
Sep 05-09, 2011
Apr 02-03, 2012
Aug 28-Sep 01, 2012
Jan 14, 2011
20.0 credits

date

Nov 17-21, 2008 Aug 30-Sep 03 , 2010

Individual

4) Personal development
 4) Personal development

2008-2012
Subtotal In-Depth Studies
5.7 credits ${ }^{*}$
date
Skill training courses
Mobilising your Sceintific Network
Interpersonal communication for PhD Students
Techniques for writing and Presenting a Scientific Paper
Caeer Assessment
Jun 03 \& 10, 2010
Oct 26-27, 2010

Organisation of PhD students day, course or conference

- Membership of Board, Committee or PhD council
Subtotal Personal Development
3.1 credits*

	TOTAL NUMBER OF CREDIT POINTS*	
Herewith the Graduate School declares that the PhD candidate has complied with the educational requirements set by the		
A credit represents a normative study load of 28 hours of study.		

The work described in this thesis was performed with the Graduate School of Experimental Plant Sciences at the Laboratory of Plant Breeding of Wagenigen University and financially was supported by University Malaysia Sarawak (UNIMAS), Malaysia.

Thesis layout: Freddy Yeo Kuok San
Cover design: Koon-Ling Tan
Front cover: Barley field
Printed by Uitgeverij BOXPress || Proefschriftmaken.nl ||

[^0]: ! The LOD-2 interval of these QTLs overlapped, but they were still considered two QTLs.
 \#Results extracted from Jafary et al. (2006; 2008). Rphq3 results extracted from Qi et al. (1998).
 *In (), the QTL LOD score, percentage of explained phenotypic variation and the donor are given. The LOD score and the percentage of explained phenotypic variation for each QTL from this study were extracted from the mapping results for the averaged data. The QTL donor: $\mathrm{C}=$ Cebada Capa, $\mathrm{G}=\mathrm{GP}, \mathrm{S}$ $=$ SusPtrit, V = Vada
 $P h m^{A}$ is a P. hordei-murini isolate from Aragón, Spain. $P p^{R N}$ is a P. persistens isolate from Netherlands collection number RN-8. These isolates were used in Jafary et al. (2008) and were different from those used in this study.

[^1]: * The number of regenerants positive for root GFP fluorescence and for PCR detection of $g f p$ and HPT genes
 ${ }^{\text {a }} 210$ IEs were pre-cultured one day before co-culture
 ${ }^{\mathrm{b}}$ The IEs were pre-cultured one day before co-culture
 ${ }^{\text {c }}$ The number of regenerants positive for root GFP fluorescence detection. Ten randomly selected regenerants were positive for PCR detection of $g f p$ and $H P T$ genes

[^2]: *SusPtrit has one resistant QTL

[^3]: Supplemental Figure 1: Linkage map generated for S/G population containing 686 SNP marker loci identified in ILLUMINA iSelect 9k barley infinium chip. The reference ruler on the left side shows the distance in centiMorgans based on Kosambi.

[^4]: ${ }^{\text {b }}$ The position is based on the integrated map, Marcel 2009 (Aghnoum et al. 2010)
 ${ }^{c}$ Flanking marker

 * In Chapter 4, this thesis and ${ }^{+}$in van Dijk (2007) the marker is flanking the QTL.
 ${ }^{\beta}$ QTL selected against
 ! Primer sequences and annealing temperature of the different markers are available in Supplemental Table 1

[^5]: ${ }^{\alpha}$ Kindly provided by Dr D. Rubiales. Collected at Còrdoba, Spain.
 ${ }^{\beta}$ Kindly provided by Dr F. Martínez. Collected at Uppsala, Sweden.
 ${ }^{\gamma}$ Kindly provided by Dr H. Jafary. Collected from Kalaybar, Iran.
 ${ }^{\delta}$ Kindly provided by Prof Dr Y. Anikster. Collected at Ariel, Israel.
 ${ }^{\varepsilon}$ Kindly provided by Dr G. Schachermayer, Zürich-Reckenholz, Switzerland.
 ${ }^{\eta}$ Kindly provided by Dr H. Goyeau, INRA, France
 For ${ }^{\varepsilon}$ and ${ }^{\eta}$, the places of collection are unknown.

[^6]: Supplemental Figure 1: Frequency distribution of RLP50A in three series of disease test for S/M and OWB populations. Values of the parental lines are indicated by an arrow. (a) S/M first series (b) S/M second series (c) S/M third series (d) OWB first series (e) OWB second series (f) OWB third series.

[^7]: * The markers which were mapped near but outside the flanked QTL interval
 ${ }^{!}$The references for CAPS and SCAR markers give the origin of the sequences obtained for marker development.

[^8]: ${ }^{\mathrm{M}}$ A molecular marker
 ${ }^{G}$ An annotated gene
 ${ }^{\text {MG }}$ An annotated gene converted into a marker

 * A short DNA fragment at the edge of a gap in assembled BAC sequences.
 ${ }^{s}$ Primer pair used to screen only the BAC library of SusPtrit
 ${ }^{V}$ Primer pair used to screen only the BAC library of Vada
 ${ }^{v s}$ Primer pair used to screen the BAC library of Vada as well as SusPtrit
 Ta is the annealing temperature

[^9]: ${ }^{1}$ Estimation of the average number of colonies per pool
 ${ }^{2}$ Average insert size estimated with 24 randomly selected BAC clones per fraction

 * because of their low number, the clones from fractions H 0 and H 4 have been neglected
 ${ }^{3}$ Calculated with the estimated number of white colonies and their average insert size.

[^10]: ${ }^{1}$ Position of the corresponding microsatellite marker on the barley integrated map, Marcel 2009 available at http://wheat.pw.usda.gov/GG2/index.shtml (Aghnoum et al. 2010)
 ${ }^{2}$ Approximate size of the allele amplified on Vada or SusPtrit genomic DNA
 ${ }^{3}$ Number of positive pools per library

[^11]: *WBE114 is 301 bp distal from Mor_cont 43090
 ${ }^{\$}$ Yes means that the Morex sequence aligned to the subject with a minimum sequence match of 80%
 ! The WBE115 sequence of Vada aligned to Mor_cont 2546833 with one single nucleotide polymorphism and two for the WBE115 sequence of SusPtrit.

[^12]: * The explained phenotypic variation of the minor effect QTL corresponding to the gene
 ! The pathogens to which the genes are effective are: $B g=$ Burkholderia glumae, $M g=$ Magnaporthe grisea, Xoo = Xanthomonas oryzae pv. oryzae,
 Xoc $=X$. oryzae pv. oryzicola
 ${ }^{\text {a }}$ The gene is a negative regulator of disease resistance

