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On the Goodness of Global Optimisation

Algorithms, an introduction into investigating

algorithms

Eligius M.T. Hendrix

November 9, 2005

Abstract

An early introductory text on Global Optimisation (GO), Törn and
Zilinskas (1989), goes further than mathematical correctness in giving the
reader an intuitive idea about concepts in GO. This paper extends this
spirit by introducing students and researchers to the concepts of Global
Optimisation (GO) algorithms. The goal is to learn to read and inter-
pret optimisation algorithms and to analyse their goodness. Before going
deeper into mathematical analysis, it is good for students to get a flavour
of the difficulty by letting them experiment with simple algorithms that
can be followed by hand or spreadsheet calculations. Two simple one-
dimensional examples are introduced and several simple NLP and GO
algorithms are elaborated. This is followed by some lessons that can be
learned from investigating the algorithms systematically.

1 Effectiveness and efficiency of algorithms

In this paper, several criteria are discussed to measure effectiveness and effi-
ciency of algorithms. Moreover, examples are given of basic algorithms that
are analysed. This gives an opportunity to introduce in an illustrative way
GO concepts such as region of attraction, level set, probability of success and
Performance Graph. To investigate optimisation algorithms, we start with a
definition. An algorithm is a description of steps, preferably implemented into
a computer program, which finds an approximation of an optimum point. The
aims can be several: reach a local optimum point, reach a global optimum point,
find all global optimum points, reach all global and local optimum points. In
general, an algorithm generates a series of points xk that approximate an (or
the or all) optimum point. According to the generic description of Törn and
Zilinskas (1989):

xk+1 = Alg(xk, xk−1, ..., x0, ξ) (1)

where ξ is a random variable and index k is the iteration counter. This represents
the idea that a next point xk+1 is generated based on the information in all
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former points xk, xk−1, ..., x0 (x0 usually being the starting point) and possibly
some random effect. This leads to three types of algorithms discussed here:

• Nonlinear optimisation algorithms, that from a starting point try to cap-
ture the ”nearest” local minimum point.

• Deterministic GO methods which guarantee to approach the global opti-
mum and require a certain mathematical structure.

• Stochastic GO methods based on the random generation of feasible trial
points and nonlinear local optimization procedures.

We will consider several examples illustrativing two questions to address to
investigate the quality of algorithms (see Baritompa and Hendrix (2005)).

• Effectiveness: does the algorithm find what we want?

• Efficiency: what are the computational costs?

Several measurable performance indicators can be defined for these criteria.

1.1 Effectiveness

Consider minimisation algorithms. Focusing on effectiveness, there are several
targets a user may have:

1. To discover all global minimum points. This of course can only be realised
when the number of global minimum points is finite.

2. To detect at least one global optimal point.

3. To find a solution with a function value as low as possible.

The first and second targets are typical satisfaction targets; was the search
successful or not? What are good measures of success? In the literature,
convergence is often used i.e. xk → x∗, where x∗ is one of the minimum points.
Alternatively one observes f(xk) → f(x∗). In tests and analyses, to make results
comparable, one should be explicit in the definitions of success. We need not
only specify ε and/or δ such that

‖xk − x∗‖ < ε and/or f(xk) < f(x∗) + δ (2)

but also specify whether success means that there is an index K such that (3)
is true for all k > K. Alternatively, success may mean that a record minkf(xk)
has reached level f(x∗) + δ. Whether the algorithm is effective also depends
on the its stochastic nature. When we are dealing with stochastic algorithms,
effectiveness can be expressed as the probability that a success has been reached.
In analysis, this probability can be derived from sufficient assumptions on the
behaviour of the algorithm. In numerical experiments, it can be estimated by
counting repeated runs how many times the algorithm converges. We will give
some examples of such analysis. In Section 2.4 we return to the topic of efficiency
and effectiveness considered simultaneously.
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1.2 Efficiency

Globally efficiency is defined as the effort the algorithm needs to be successful.
A usual indicator for algorithms is the (expected) number of function evalua-
tions necessary to reach the optimum. This indicator depends on many factors
such as the shape of the test function and the termination criteria used. The
indicator more or less suggests that the calculation of function evaluations dom-
inates the other computations of the algorithm. Several other indicators appear
in literature.

In nonlinear programming (e.g. Scales (1985) and Gill et al. (1981)) the
concept of convergence speed is common. It deals with the convergence limit
of the series xk. Let x0, x1, . . . , xk, . . . converge to point x∗. The largest number
α for which

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖α

= β < ∞ (3)

gives the order of convergence, whereas β is called the convergence factor. In
this terminology, the special instances are

• linear convergence with α = 1 and β < 1

• quadratic convergence with α = 2 and 0 < β < 1

• superlinear convergence: 1 < α < 2 and β < 1, i.e. β = 0 when using
α = 1 in (3).

Mainly in deterministic GO algorithms, information on the past evaluations
is stored in the computer memory. This requires efficient data handling for
looking up necessary information during the iterations. As well memory re-
quirements become a part of the computational burden as retrieving actions
cannot be neglected compared to the computational effort due to function eval-
uations.

In stochastic GO algorithms, an efficiency indicator is the success rate de-
fined as the probability that the next iterate is an improvement on the record
value found thus far, i.e. P (f(xk) < minl=1,...,k−1f(xl)). Its theoretical rele-
vance to convergence speed was analysed by Zabinsky and Smith (1992) and
Baritompa et al. (1995), who showed that a fixed success rate of an effective
algorithm (in the sense of so-called uniform covering, see e.g. Hendrix and Klep-
per (2000)) gives an algorithm with the expected number of function evaluations
growing polynomially with the dimension of the problem. However, empirical
measurements can only be established in the limit when such an algorithm sta-
bilises, and only for specifically designed test cases Hendrix et al. (2001).

We do not go deeper into theoretical aspects here of performance indica-
tors. Instead some basic algorithms are introduced and analysed. In Section 3,
systematic investigation of algorithms is expanded upon.
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2 Some basic algorithms and their goodness

2.1 Introduction

In this section several cases of algorithms are analysed for effectiveness and effi-
ciency. Two testcases are introduced first for which the algorithms are inspected.
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Figure 1: Test case g(x) with two optima

We consider the minimisation of the following functions.

g(x) = sin(x) + sin(3x) + ln(x), x ∈ [3, 7] (4)

Function g is depicted in Figure 1 and has three minimum points on the interval.
The global minimum is attained at about x∗ = 3.73, where f(x∗) = −0.220.
The derivative function is

g′(x) = cos(x) + 3 cos(3x) +
1
x

(5)

on the interval [3, 7]. Alternatively to function g, we introduce a function h with
more local minimum points by adding to function g a bubble function based on
frac(x) = x − round(x) where round(x) rounds x to the nearest integer. Now
the second case is defined as

h(x) = g(x) + 1.5frac2(4x) (6)

In Figure 2, the graph of function h is shown. It has 17 local minimum points
on the interval [3, 7]. Although g nor h are convex on the interval, at least
function h is piecewise convex on the intervals in between the points of S =
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Figure 2: Test case h(x) with 17 optima

{x = 1
4k + 1

8 , k ∈ Z}. At these points, h is not differentiable. For the rest of the
interval one can define the derivative

h′(x) = g′(x) + 12× frac(4x) for x /∈ S (7)

The global minimum point of h on [3, 7] is shifted slightly compared to g towards
x∗ = 3.75, where f(x∗) = −0.217.

In the following Sections, we will test algorithms on their ability to find
minima of these two functions. One should set a target on what is considered
an acceptable or successful result. For instance one can aim at detecting a local
minimum or detecting the global minimum. For the neighbourhood we will
take an acceptance of ε = 0.01. For determining an acceptable low value of the
objective function we take δ = 0.01. Notice that δ represents about 0.25% of
the function values range.

2.2 NLP: Bisection and Newton

Two nonlinear programming algorithms are sketched and their performance
measured for the two test cases. First the bisection algorithm is considered.

The algorithm departs from a starting interval [l, r] that is halved itera-
tively based on the sign of the derivative in the midpoint. This means that
the method is only applicable when the derivative is available at the generated
midpoints. The point xk converges to a minimum point within the interval [l, r].
If the interval contains only one minimum point, it converges to that. In our
test cases, several minima exist and one can observe the convergence to one of
them. The algorithm is effective in the sense of converging to a local (nonglobal)
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Algorithm 1 Bisect([l, r], f, ε)

Set k = 0, l0 = l and r0 = r
while (rk − lk > ε)

xk = lk+rk

2
if f ′(xk) < 0

lk+1 = xk and rk+1 = rk

else
lk+1 = lk and rk+1 = xk

k = k + 1
End while

Table 1: Bisection for functions h and g, ε = 0.015
function h function g

k lk rk xk h′(xk) h(xk) lk rk xk g′(xk) g(xk)
0 3.00 7.00 5.00 -1.80 1.30 3.00 7.00 5.00 -1.80 1.30
1 5.00 7.00 6.00 3.11 0.76 5.00 7.00 6.00 3.11 0.76
2 5.00 6.00 5.50 -1.22 0.29 5.00 6.00 5.50 -1.22 0.29
3 5.50 6.00 5.75 0.95 0.24 5.50 6.00 5.75 0.95 0.24
4 5.50 5.75 5.63 -6.21 0.57 5.50 5.75 5.63 -0.21 0.20
5 5.63 5.75 5.69 -2.64 0.29 5.63 5.75 5.69 0.36 0.20
6 5.69 5.75 5.72 -0.85 0.24 5.63 5.69 5.66 0.07 0.19
7 5.72 5.75 5.73 0.05 0.23 5.63 5.66 5.64 -0.07 0.19
8 5.72 5.73 5.73 -0.40 0.23 5.64 5.66 5.65 0.00 0.19

minimum point for both cases. Another starting interval could have lead to an-
other minimum point. In the end, we are certain that the current iterate xk is
not further away than ε from a minimum point. Many other stopping criteria
like convergence of function values or derivatives going to zero could be used.
The current stopping criterion is easy for analysis of efficiency. One question
could be: How many iterations (i.e. corresponding (derivative) function evalu-
ations) are necessary to come closer than ε to a minimum point. The bisection
algorithm is a typical case of linear convergence with a convergence factor of
1
2 , |rk+1−lk+1|

|rk−lk| = 1
2 . This means one can determine the number of iterations

necessary for reaching ε-convergence:

| rk − lk |= ( 1
2 )k× | r0 − l0 |< ε

( 1
2 )k < ε

|r0−l0|
k > ln ε−ln|r0−l0|

ln 1
2

The example case requires at least 12 iterations to reach an accuracy of ε = 0.01.
An alternative for finding the zero point of an equation, in our case the

derivative, is the so-called method of Newton. The idea is that its efficiency

6



is known to be superlinear (e.g. Scales (1985)), so it should be faster than
bisection. We analyse its efficiency and effectiveness for the two test cases. In

Algorithm 2 Newt([l, r], x0, f, α)

Set k = 0,
while (| f ′(xk) |> α)

xk+1 = xk − f ′(xk)
f ′′(xk)

! safeguard for staying in interval
if xk+1 < l, xk+1 = l
if xk+1 > r, xk+1 = r
if xk+1 = xk, STOP

k = k + 1
End while

general, the aim of the Newton algorithm is to converge to a point where the
derivative is zero. Depending on the starting point x0, the method may converge
to a minimum or maximum. Also, it may not converge at all, for instance when
a minimum point does not exist. Specifically in the version of Algorithm 2, a
safeguard is built in to ensure the iterates remain in the interval; it can converge
to a boundary point. If x0 is in the neighbourhood of a minimum point where
f is convex, then convergence is guaranteed and the algorithm is effective in the
sense of reaching a minimum point. Let us consider what happens for the two
test cases. When choosing the starting point x0 in the middle of the interval

Table 2: Newton for functions h and g, α = 0.001
function h function g

k xk h′(xk) h′′(xk) h(xk) xk g′(xk) g′′(xk) g(xk)
0 5.000 -1.795 43.066 1.301 5.000 -1.795 -4.934 1.301
1 5.042 0.018 43.953 1.264 4.636 0.820 -7.815 1.511
2 5.041 0.000 43.944 1.264 4.741 -0.018 -8.012 1.553
3 5.041 0.000 43.944 1.264 4.739 0.000 -8.017 1.553

[3, 7], the algorithm converges to the closest minimum point for function h and
to a maximum point for the function g, i.e. it fails for this starting point. This
gives rise to introducing the concept of a region of attraction of a minimum
point x∗. A region of attraction of point x∗, is the region of starting points
x0 where the local search procedure converges to point x∗. We elaborate this
concept further in Section 2.4.

One can observe here when experimenting further, that when x0 is close to
a minimum point of g, the algorithm converges to one of the minimum points.
Morever, notice now the effect of the safeguard to keep the iterates in the interval
[3, 7]. If for instance xk+1 < 3, it is forced to a value of 3. In this way, also the
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left point l = 3 is an attraction point of the algorithm. Function h is piecewise
convex, such that the algorithm always converges to the closest minimum point.

2.3 Deterministic GO: Grid search, Piyavskii-Shubert

The aim of deterministic GO algorithms is to approach the optimum
with a given cer-
tainty. We sketch
two algorithms for
the analysis of ef-
fectiveness and ef-
ficiency. The idea
of reaching the op-
timum with an ac-
curacy of ε can be
done by so-called ”ev-
erywhere dense sam-
pling”, as introduced

x

x

1

2

l

r

Figure 3: Equidistant grid over rectangular feasible set

in literature on Global Optimisation (see e.g.Törn and Zilinskas (1989)). In a
rectangular domain this can be done by constructing a grid with a mesh of ε. By
evaluating all points on the grid, the best point found is a nice approximation
of the global minimum point. The difficulty of GO is, that even this best point
found may be far away from the global minimum point, as the function may
have a needle shape in another region in between the grid points. As shown
in literature, one can always construct a polynomial of sufficiently high degree,
that fits all the evaluated points and has a minimum point more than ε away
from the best point found. Actually, grid search is theoretically not effective if
no further assumptions are posed on the optimisation problem to be solved.

Let us have a look at the behaviour of the algorithm for our two cases. For the
ease of the formulation we write down the grid algorithm for one dimensional
functions. The algorithm starts with the domain [l, r] written as an interval and
generates M = d(r− l)/εe+1 grid points, where dxe is the lowest integer greater
than or equal to x. Experimenting with test functions g and h gives reasonable

Algorithm 3 Grid([l, r], f, ε)

M = d(r − l)/εe+ 1, fU = ∞
for (k = 1 to M) do

xk = l + (k−1)×(r−l)
M−1

if f(xk) < fU

fU = f(xk) and xU = xk

End for
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results for ε = 0.01, (M = 401) and ε = 0.1, (M = 41). In both cases one
finds an approximation xU less than ε from the global minimum point. One
knows exactly how many function evaluations are required to reach this result
in advance.

The efficiency of the algorithm in higher dimensions is also easy to establish.
Given the lower left vector l and upper right vector r of a rectangular domain,
one can determine easily how many grid co-ordinates Mj , j = 1, . . . , n in each
direction should be taken and the total number of grid points is

∏
j Mj . This

number is growing exponentially in the dimension n. As mentioned before, the
effectiveness is not guaranteed in the sense of being closer than ε from a global
minimum point, unless we make an assumption on the behaviour of the function.
A usual assumption in the literature is Lipschitz continuity.

Definition 2.1 L is called a Lipschitz constant of f on X if:

| f(x)− f(y) | ≤ L‖x− y‖, ∀x, y ∈ X

In a practical sense it means that big jumps do not appear in the function value;
slopes are bounded. With such an assumption, the δ-accuracy in the function
space translates into an ε-accuracy in the x-space. Choosing ε = δ/L gives that
the best point xU is in function value finally close to minimum point x∗:

| fU − f∗ |≤ L‖xU − x∗‖ ≤ Lε = δ (8)

In higher dimension, one should be more exact in the choice of the distance
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Figure 4: Piyavskii-Shubert algorithm

norm ‖ · ‖. Here, for the one-dimensional examples we can focus on deriving

9



the accuracy for our cases in a simple way. For a one-dimensional differentiable
function f , L can be taken as

L = max
x∈X

| f ′(x) | (9)

Using equation (9), one can now derive valid estimates for the example functions
h and g. One can derive an over estimate Lg for the Lipschitz constant of g on
[3, 7] as

maxx∈[3,7] | g′(x) |= maxx∈[3,7] | cos(x) + 3 cos(3x) + 1
x | ≤

maxx∈[3,7]{| cos(x) | + | 3 cos(3x) | + | 1
x |} ≤

maxx∈[3,7] | cos(x) | +maxx∈[3,7] | 3 cos(3x) | +maxx∈[3,7] | 1
x |=

1 + 3 + 1
3 = Lg

(10)

The estimate of Lh based on (7) is done by adding the maximum derivative
of the bubble function 12 × 1

2 to Lg for illustrative purposes rounded down to
Lh = 10. We can now use (8) to derive a guarantee for the accuracy. One arrives
certainly closer than δ = 0.01 to the minimum in function value by taking for
function g a mesh size of ε = 0.01

4.33 = 0.0023 and for function h taking ε = 0.001.
For the efficiency of grid search this means that reaching the δ-guarantee re-
quires the evaluation of M = 1733 points for function g and M = 4001 points
for function h. Note, that due to the one dimensional nature of the cases, ε can
be taken twice as big, as the optimum point x∗ is closer than half the mesh size
to an evaluated point.

The main idea of deterministic algorithms is not to generate and evaluate
points everywhere dense, but to throw out those regions, where the optimum
cannot be situated. Giving a Lipschitz constant, independently Piyavskii and
Shubert constructed a similar algorithm, see Shubert (1972) and Danilin and
Piyavskii (1967). From the point of view of the graph of the function f to be
minimised and an evaluated point (xk, fk), one can say that the region described
by x, f < fk − L | x − xk | cannot contain the optimum; the graph is above
the function fk − L | x − xk |. Given a set of evaluated points {xk}, one can
construct a lower bounding function, a so-called saw-tooth underestimator that
is given by ϕ(x) = maxk(fk−L | x−xk |) as illustrated by figure 4. Given that
we have also an upper bound fU on the minimum of f being the best function
value found thus far, one can say that the minimum point has to be in one
of the shaded areas. We will describe here the algorithm from a Branch-and-
Bound point of view, where the subsets are defined by intervals [lp, rp] and the
end points are given by evaluated points. The index p is used to represent the
intervals in Λ. For each interval, a lower bound is given by

zp =
f(lp) + f(rp)

2
− L(rp − lp)

2
(11)

The gain with respect to grid search is that an interval can be thrown out as
soon as zp > fU . Moreover, δ works as a stopping criterion as the algorithm
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Algorithm 4 PiyavShub([l, r], f, L, δ)

Set p = 1, l1 = l and r1 = r,Λ = {[l1, r1]}
z1 = f(l1)+f(r1)

2 − L(r1−l1)
2 , fU = min{f(l), f(r)}, xU = argmin{f(l), f(r)}

while (Λ 6= ∅)
remove an interval [lk, rk] from Λ with zk = minp zp

evaluate f(mk) = f( f(lk)−f(rk)
2L + rk+lk

2 )
if f(mk) < fU

fU = f(mk), xU = mk and remove all Cp from Λ with zp > fU − δ
split [lk, rk] into 2 new intervals Cp+1 = [lk,mk] andCp+2 = [mk, rk]

with corresponding lower bounds zp+1 and zp+2

if zp+1 < fU − δ store Cp+1 in Λ
if zp+2 < fU − δ store Cp+2 in Λ
p = p + 2

End while

implicitly (by not storing) compares the gap between fU and minp zp; stop if
(fU − minp zp) < δ. The algorithm proceeds by selecting the interval corre-
sponding to minp zp (most promising) and splitting it over the minimum point
of the saw tooth cover ϕ(x) defined by:

mp =
f(lp)− f(rp)

2L
+

rp + lp
2

(12)

being the next point to be evaluated. By continuing evaluating, splitting and
throwing out intervals where the optimum cannot be, finally the stopping cri-
terion is reached and we are certain to be closer than δ from f∗ and therefore
closer than ε = δ/L from one of the global minimum points. The consequence
of using such an algorithm, in contrast to the other algorithms, is that we now
have to store information in a computer consisting of a list Λ of intervals. This
computational effort is now added to that of evaluating sample points and doing
intermediate calculations. This concept becomes more clear when running the
algorithm on the test function g using an accuracy of δ = 0.01. The Lipschitz
constant Lg = 4.2 is used for illustrative purposes. As can be read from Table
3, the algorithm is slowly converging. After some iterations, 15 intervals have
been generated of which 6 are stored and 2 can be discarded due to the bound-
ing; it has been proven that the minimum cannot be in the interval [5.67, 7].
The current estimate of the optimum is xU = 3.66, fU = −0.19 and the current
lower bound is given by minp zp = −0.68. Figure 5 illustrates the appearing
binary structure of the search tree.

The maximum computational effort with respect to storing intervals is reached
when the branching proceeds and no parts can be thrown out; 2K intervals ap-
pear at the bottom of the tree, where K is the depth of the tree. This mainly
happens when the used Lipschitz parameter L is overestimating the maximum

11



[3, 7]

fU =1.65

z1 =-6.05

fU =-0.2

>

z15 =-0.19

fU =-0.2

>

z14 =-0.19

[3, 3.66]

fU =-0.2

z8 =-0.66

[3.66, 3.9]

fU =-0.2

z9=-0.66

[3.9, 4.16]

fU =-0.2

z10 =-0.32

[4.16, 4.8]

fU =-0.2

z11 =-0.32

[4.8, 5.4]

fU =-0.2

z12 =-0.26

[5.4, 5.7]

fU =-0.2

z13 =-0.26

[3, 3.9]

fU =-0.08

z4 =-1.12

[4.8, 5.7]

fU =-0.08

z6 =-0.98

[5.7, 7]

fU =-0.08

z7 =-0.98

[3.9, 4.8]

fU =-0.08

z5 =-1.12

[3, 4.8]

fU =1.54

z2 =-2.16

[4.8, 7]

fU =1.54

z3 =-2.16

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

Figure 5: Branch-and-Bound tree of Piyavskii-Shubert for function g

slope drastically, or seen in the other way, the function is very flat compared to
the used constant L. In that case, more than the M points of the regular grid
are evaluated. With a correct constant L, the number of evaluated points is less
as part of the domain can be discarded as illustrated here.

2.4 Stochastic GO: PRS, Multistart, Simulated Annealing

Stochastic methods are understood to contain some stochastic elements. Either
the outcome of the method is a random variable or the objective function itself
is considered a realisation of a stochastic process. For an overview on stochas-
tic methods we refer to Törn and Zilinskas (1989) and Boender and Romeijn
(1995). Two classical approaches from Global Optimization, Pure Random
Search (PRS) and Multistart are analysed for the test cases. This is followed
by a classical variant of Simulated Annealing, a so-called heuristic.

Pure Random Search (PRS) generates points uniformly over the domain
and stores the point corresponding to the best value as the approximation of
the global minimum point. The algorithm is popular as a reference algorithm
as it can easily be analysed. The question can now be how it behaves for our
test cases g and h. The domain is clearly the interval [3, 7], but what can be
defined as the success region now? If the success is defined as the idea that one
of the generated points is closer than ε = 0.01 to the global minimum point, the
probablity we did NOT hit this region after N = 50 trials is (3.98/4)50 ≈ 0.78.
In the specific case, the size of the success region is namely 2 × ε and the size
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Table 3: Piyavskii-Shubert for function g, δ = 0.01
p lp rp f(lp) f(rp) mp zp fU xU

1 3.00 7.00 1.65 3.44 4.79 -5.85 1.65 3.00 split
2 3.00 4.79 1.65 1.54 3.91 -2.16 1.54 4.79 split
3 4.79 7.00 1.54 3.44 5.67 -2.16 1.54 4.79 split
4 3.00 3.91 1.65 -0.08 3.66 -1.12 -0.08 3.91 split
5 3.91 4.79 -0.08 1.54 4.15 -1.12 -0.08 3.91 split
6 4.79 5.67 1.54 0.20 5.39 -0.98 -0.08 3.91 split
7 5.67 7.00 0.20 3.44 5.95 -0.98 -0.08 3.91 split
8 3.00 3.66 1.65 -0.20 3.55 -0.66 -0.20 3.66
9 3.66 3.91 -0.20 -0.08 3.77 -0.66 -0.20 3.66
10 3.91 4.15 -0.08 0.47 3.96 -0.32 -0.20 3.66
11 4.15 4.79 0.47 1.54 4.34 -0.32 -0.20 3.66
12 4.79 5.39 1.54 0.46 5.22 -0.26 -0.20 3.66
13 5.39 5.67 0.46 0.20 5.56 -0.26 -0.20 3.66
14 5.67 5.95 0.20 0.61 5.76 -0.19 -0.20 3.66 discarded
15 5.95 7.00 0.61 3.44 6.14 -0.19 -0.20 3.66 discarded

Algorithm 5 PRS(X, f, N)

fU = ∞
for (k = 1 to N) do

Generate xk uniformly over X
if f(xk) < fU

fU = f(xk) and xU = xk

End for

of the feasible area is 4. The probability of NOT hitting (1− 0.02
4 ) and of NOT

hitting 50 times is (1 − 0.02
4 )50. This means that the probability of success as

efficiency indicator has a value of about 0.22 for both cases h and g.
A similar analysis can be done for determining the probability that the

function value of PRS after N = 50 iterations is less than f∗ + δ for δ = 0.01.
The usual tool in the analysis on the function space is to introduce y=f(x) as a
random variate representing the function value, where x is uniformly distributed
over X. Value y has distribution function F (y) = P (f(x) ≤ y). Keeping this
in mind, analysis with so-called extreme order statistics has shown that the
outcome of PRS as record value of N points can be easily derived from F (y).
For a complete introduction into extreme order statistics in optimisation, we
refer to Zhigljavsky (1991). Under mild assumptions it can be shown that
y(1) = min{f(x1), . . . , f(xN )} has the distribution function F(1)(y) = 1− (1−
F (y))N . This means that for the question about the probability that y(1) ≤
f∗+δ, we dont have to know the complete distribution function F , but only the
probability mass F (f∗+ δ) of the success level set where f(x) ≤ f∗+ δ, i.e. the
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probability that one sample point hits this low level set. Here the 2 test cases
differ considerably. One can can verify that the level set of the more smooth
test function g is about 0.09 wide, whereas that of function h is only 0.04 wide
for a δ of 0.01. This means that the probability of PRS to reach a level below
f∗ + δ after 50 evaluations for function g is 1− (1− 0.09

4 )50 = 0.68, whereas the
same probability for function h is 1− (1− 0.04

4 )50 = 0.40.
An early obvservation based on the extreme order statistic analysis is due

to Karnopp (1963). Surprisingly enough, Karnopp showed that the probability
of finding a better function value with one draw more after N points have been
generated, is 1

N+1 , independent of the problem to be solved. Generating K

more points increases the probability to K
N+K . The derivation which also can

be found in Törn and Zilinskas (1989) is based on extreme order statistics and
only requires F not to behave too strange, e.g. F is continuous such that f
should not have plateaus on the domain X.

In conclusion, stochastic algorithms show something which in the literature
is called the infinite effort property. This means that if one proceeds long
enough (read N → ∞) in the end the global optimum is found. The problem
with such a concept is that infinity can be pretty far away. Moreover, we have
seen in the earlier analyses that the probability of reaching what one wants,
depends considerably on the size of the success region. One classical way of
increasing the probability of reaching an optimum is to use (nonlinear optimi-
sation) local searches. This method is called multistart.

Define a local optimisation routine LS(x) : X → X as a procedure which
given a starting point returns a point in the domain that approximates a local
minimum point. As an example, one can consider the Newton method of Section
2.2. Multistart generates convergence points of a local optimisation routine from
randomly generated starting points.

Algorithm 6 Multistart(X, f, LS, N)

fU = ∞
for (k = 1 to N) do

Generate x uniformly over X
xk = LS(x)
if f(xk) < fU

fU = f(xk) and xU = xk

End for

Notice that the number of iterations N is not comparable with that in PRS,
as every local search requires several function evaluations. Let us for the example
cases assume that the Newton algorithm requires 5 function evaluations to detect
an attraction point, as is also implied by table 2. As we were using N = 50
function evaluations to assess the success of PRS on the test cases, we will use
N = 10 iterations for Multistart. In order to determine a similar probability of
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success, one should find the relative size of the region of attraction of the global
minimum point.

For function g, the region of attraction is not easy to determine. It consists
of a range of about 0.8 on the feasible area of size 4, such that the probability one
random starting point leads to success is 0.8/4 = 0.2. For function h, the good
region of attraction is simply the bubble of size 0.25 around the global minimum
point, such that the probability of finding the global minimum in one iteration
is about 0.06. Reaching the optimum after N = 10 restarts is 1 − 0.810 ≈ 0.89
for g and 1 − 0.9410 ≈ 0.48 for h. In both examples, the probability of success
is larger than that of PRS.

As sketched sofar, the algorithms of Pure Random Search and Multistart
have been analysed widely in the literature of GO. Algorithms that are far less
easy to analyse, but very popular in applications are the collection of so-called
metaheuristics. This term was introduced by Fred Glover in Glover (1986) and
includes Simulated Annealing, Evolutionary algorithms, Genetic algorithms,
tabu search and all fantasy names derived from crossovers of the other names.
Originally such algorithms were not only aimed at continuous optimisation prob-
lems, see Aarts and Lenstra (1997). An interesting research question is whether
they are really better than combining classical ideas of random search and non-
linear optimisation local searches. We discuss here a variant of Simulated
annealing, a concept that also got attention in the GO literature, see Romeijn
(1992). Simulated annealing describes a sampling process in the decision space
where new sample points are generated from a so-called neighbourhood of the
current iterate. The new sample point is always accepted when it is better and
with a certain probability when it is worse. The probability depends on the
so-called temperature that is decreasing (cooling) during the iterations. The

Algorithm 7 SA(X, f, CR, N)

fU = ∞, T1 = 1000
Generate x1 uniformly over X
for (k = 1 to N) do

Generate x from a neighbourhood of xk

if f(x) < f(xk)
xk+1 = x
if f(x) < fU

fU = f(x) and xU = x

else with probability e
f(xk)−f(x)

Tk let xk+1 = x
Tk+1 = CR× Tk

End for

algorithm contains the parameter CR representing the Cooling rate with which
the temperature variable decreases. A fixed value of 1000 was taken for the ini-
tial temperature to avoid creating another algorithm parameter. The algorithm
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accepts a worse point depending on how much it is worse and the development
of the algorithm. This is a generic concept in Simulated Annealing. There are
several ways to implement the concept of ”sample from neighbourhood”. In one
dimension one would perceive intuitively a neighbourhood of xk in real space
[xk − ε, xk + ε], which can be found in many algorithms e.g. see Baritompa
et al. (2005). As originally such heuristics were not aiming at continuous opti-
misation problems, but at integer problems, one of the first approaches was the
coding of continuous variables in bit strings. For the illustrations, we elaborate
this idea for the test case. Each point x ∈ [3, 7] is represented by a bitstring
(B1, . . . , B9) ∈ {0, 1}9 where,

x = 3 + 4
∑9

i=1 Bi2i−1

511
(13)

Formula (13) describes a regular grid over the interval, where each of the M=512
bitstrings is one of the grid points, such that the mesh size is 4

511 . The sampling
from a neighbourhood of a point x is done by flipping at random one of its
bit variables Bi from a value of 0 to 1, or the other way around. Notice that
by doing so, the generated point is not necessarily in what one would perceive
as a neighbourhood in continuous space. The question is therefore, whether
the described SA variant will perform better than an algorithm where the new
sample point does not depend on the current iterate, PRS. To test this, a figure
is introduced that is quite common in experimenting with meta-heuristics. It
is a graph with on the x-axis the effort and on the y-axis the reached success.
The GO literature often looks at the two criteria effectiveness and efficiency
separately. Figure 6 being a special case of what in Baritompa and Hendrix
(2005) was called the performance graph, gives a trade-off between the two
main criteria. One can also consider the x-axis to give a budget with which one
has to reach a level as low as possible, see Hendrix and Roosma (1996). In this
way one can change the search strategy depending on the amount of available
running time. The figure suggests for instance that a high cooling rate (the
process looks like PRS) is doing better for a lower number of function values and
doing worse for a higher number of function values. Figure 6 gives an estimation
of the expected level one can reach by running SA on function g. Implicitly it
says the user wants to reach a low function value; not necessarily a global
minimum point. Theoretically, one can derive the expected level analytically
by considering the process from a Markov chain perspective, see e.g. Bulger
and Wood (1998). However, usually the estimation is done empirically and the
figure is therefore very common in metaheuristic approaches. The reader will
not be surprised that the figure looks similar for function h, as the number of
local optima is not relevant for the bitstring perspective and the function value
distribution is similar. Theoretically, one can also derive the expected value
of the minimum function value reached by PRS. It is easier to consider the
theoretical behaviour from the perspective where success is defined boolean, as
has been done so far.

Let us consider again the situation that the algorithm reaches the global op-
timum as success. For stochastic algorithms we are interested in the probability
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Figure 6: Average record value over 10 runs of SA, 3 different values of CR for
a given amount of function evaluations, test case g

of success. Define reaching the optimum again as finding a point with function
value closer than δ = 0.1 to the minimum. For function g this is about 2.2%
(11 out of the 512 bitstrings) of the domain. For PRS, one can determine the
probability of success as PPRS(N) = 1 − 0.978N . For SA this is much harder
to determine, but one can estimate the probability of success empirically. The
result is the performance graph in Figure 7. Let us have a look at the figure
critically. In fact it suggests that PRS is doing as good as the SA algorithms.
As this is verifying a hypothesis (not falsifying), this is a reason to be suspicious.
The following critical remarks can be made.

• the 10 runs are enough to illustrate how the performance can be estimated,
but is too low to discriminate between methods. Perhaps the author has
even selected a set of runs which fits the hypothesis nicely.

• one can choose the scale of the axes to focus on an effect. In this case,
one can observe that up to 40 iterations, PRS does not look better than
the SA variants. By choosing the x-axis to run to 100 iterations, it looks
much better.

• the graph has been depicted for function g, but not for function h, where
the size of the success region is twice as small. One can verify, that in the
given range, the SA variants are nearly always doing better.
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Figure 7: Estimate of probability of reaching the minimum for PRS and SA
(average over 10 runs) on function g given a number of function evaluations

This brings us to the general scientific remark, that all results should be de-
scribed in such a way that they can be reproduced i.e. repeating the exercise
will yield similar results. For the exercises reported in this section, this is rela-
tively easy. Spreadsheet calculations and for instance matlab implementations
can easily be made.

3 Investigating algorithms

In Section 2, we have seen how several algorithms behave on some test cases.
What did we learn from that? How to do the investigation systematically? Fig-
ure 8 depicts some relevant aspects. All aspects should be considered together.
Baritompa and Hendrix (2005) distinguish the following steps.

1. Formulation of performance criteria.

2. Description of the algorithm(s) under investigation.

3. Selection of appropriate algorithm parameters.

4. Production of test functions (instances, special cases) corresponding to
certain landscape structures or characteristics.

5. Analysis of its theoretical performance, or empirical testing.
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Figure 8: Aspects of investigating Global Optimization Algorithms

Several criteria and performance indicators have been sketched: to get a low
value, to reach a local minimum point, a high probability to hit an ε neigh-
borhood of a global minimum point, obtain a guarantee to be less than δ from
the minimum function value, etc. Several types of algorithms have been out-
lined. The number of parameters has been kept low, a Lipschitz constant L, the
number of iterations N , cooling rate CR, stopping accuracy α. Mainly modern
heuristics contain so many tuning parameters, that it is hard to determine the
effect of their value on the performance of the algorithm.

Only two test functions were introduced to experiment with. The main
difference between them is the number of optima, which in literature is seen as
an important characteristic. However, in the illustrations, the number of optima
was only important for the performance of multistart. The piecewise convexity
appeared important for the local search Newton algorithm and further mainly
the difference in size of the δ-level set was of importance for the probability of
success of stochastic algorithms. It teaches us, that in a research setting, one
should think carefully, make hypotheses and design corresponding experiments,
to determine which characteristics of test functions are relevant for the algorithm
under investigation.

3.1 Characteristics

In Baritompa et al. (2005), an attempt is made to analyse the interrelation
between the landscape describing the characteristics of the test cases and the
behaviour of the algorithms. What we see experimentally, is that often an
algorithm is run over several test functions and its performance compared to
other algorithms and/or other parameter settings. To understand behaviour, we
need to study the relationships to characteristics of landscapes of test functions.
The main question is how to define appropriate characteristics. We will discuss
some ideas which appear in literature. The main idea, as illustrated before,
is that relevant characteristics depend on the type of algorithm as well as on
the performance measure. Extending previous stochastic examples to more
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dimensions, it is only the relative size of the sought for region that matters,
characteristics such as the number of optima, the shape of regions of attraction,
the form of the level sets, barriers in the landscape do not matter.

It is also important to vary the test cases systematically between the extreme
cases, in order to understand how algorithms behave. In an experimental setting,
depending on what one measures, one tries to design experiments which yield as
much information as possible. To derive analytical results, it is not uncommon
to make highly specific assumptions which make the analysis tractable.

When studying cases, we should keep in mind that in the GO literature the
following types of problems have been investigated.

• Black box (or oracle) case: in this case it is assumed that nothing is known
about the function to be optimized. Often the feasible set is defined as a
box, but information about the objective function can only be obtained
by evaluating the function at feasible points.

• Grey box case: something is known about the function, but the explicit
form is not necessarily given. We may have a lower bound on the function
value or on the number of global and/or local optima. As has proven
useful for deterministic methods, we may have structural information such
as: a concave function, a known Lipschitz constant, a known so-called
d.c-decomposition. Stochastic methods often don’t require this type of
information, but this information may be used to derive analytical or
experimental results.

• White box case: explicit analytical expressions of the problem to be solved
are assumed to be available. Specifically so-called interval arithmetic al-
gorithms require this point of view on the problem to be solved.

When looking at the structure of the instances for which one studies the be-
haviour of the algorithm, we should keep two things in mind.

• In experiments, the researcher can try to influence the characteristics of
the test cases such that the effect on what is measured is as big as possible.
Note that the experimentalist knows the structure in advance, but the
algorithm doesn’t.

• The algorithm can try to generate information which tells it about the
landscape of the problems. We will enumerate some information which
can be measured in the black box case.

When we have a look at the lists of test functions in literature (a.o. Törn and
Zilinskas (1989)), we observe as characteristics the number of Global minimum
points, the number of local minimum points and the dimension of the problem.

A difficulty in the analysis of a GO algorithm in the multiextremal case is,
that everything seems to influence behaviour: The orientation of components of
lower level sets with respect to each other determine how iterates can jump from
one place to the other. The number of local optima up in the “hills” determine
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how algorithms may get stuck in local optima. The difference between the
global minimum and the next lowest minimum affects the ability of detecting
the global minimum point. The steepness around minimum points, valleys,
creeks etc. which determine the landscape influences the success. However,
we stress, as shown by the examples, the characteristics which are important
for the behaviour depend on the type of algorithm and the performance
criteria that describe the behaviour.

In general, stochastic algorithms require no structural information about
the problem. However, one can adapt algorithms to make use of structure
information. Moreover, one should notice, that even if structural information
is not available, other so-called value information, becomes available when
running algorithms: the number of local optima found thus far, the average
number of function evaluations necessary for one local search, best function
value found, and the behavior of the local search etc. Such indicators can be
measured empirically and can be used to get insight into what factors determine
the behaviour of a particular algorithm and perhaps can be used to improve the
performance of an algorithm. From the perspective of designing algorithms,
running them empirically may generate information about the landscape
of the problem to be solved. A list of information one could measure during
running a stochastic GO algorithm on a black box case from Hendrix (1998) is
useful:

• Graphical information on the decision space.
• Current function value.
• Best function value found so far (record).
• Number of evaluations in the current local phase.
• Number of optima found.
• Number of times each detected minimum point is found.
• Estimates of the time of one function evaluation.
• Estimates of the number of function evaluations for one local search.
• Indicators on the likelihood to have found an optimal solution

For the latter indicator, a probability model is needed. Measuring and using the
information in the algorithm, usually leads to more extended algorithms, called
“adaptive”. Often, they have additional parameters complicating the analysis
of what are good parameter settings.

3.2 Comparison of Algorithms

When comparing algorithms, a specific algorithm is dominated, if there is
another algorithm which performs better (e.g. has a higher probability perfor-
mance graph) in all possible cases under consideration. Usually however, one
algorithm runs better on some cases and another on other cases.

So basically, the performance of algorithms can be compared on the same
test function, or preferably for many test functions with the same characteristic,
where that characteristic is the only parameter that matters for the performance
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of the compared algorithms. As we have seen, it may be very hard to find out
such characteristics. The following principles can be useful:

• Comparability: When comparing several algorithms, they should all make
use of the same type of (structural) information (same stopping criteria,
accuracies etc).

• Simple references: It is wise to include in the comparison simple bench-
mark algorithms such as Pure Random Search, Multistart and Grid Search
in order not to let analysis of the outcomes get lost in parameter tuning
and complicated schemes.

• Reproducibility: In principle, the description of the method that is used to
generate the results, has to be so complete, that someone else gets similar
results (not necessarily the same) when repeating the exercise.

Often in applied literature, we see algorithms used for solving “practical” prob-
lems. If we are comparing algorithms for a practical problem, we should keep
in mind this is only one problem and up to now, nobody has defined what is a
representative practical problem.

4 Summary and discussion points

• Results of investigation of GO algorithms consist of a description of the
performance appropriate to the algorithms (parameter settings) and char-
acteristics of test functions or function classes.

• To obtain good performance criteria, one needs to identify the target of
an assumed user and to define what is considered as success.

• The performance graph is a useful instrument to compare performance.

• The relevant characteristics depend on the type of algorithm and perfor-
mance criterion under consideration.

• Algorithms to be comparable must make use of same information, accu-
racies, principles etc.

• It is wise to include simple benchmark algorithms like Grid Search, PRS
and Multistart as references.

• One should be able to repeat reported methods and to obtain similar
results.

Acknowledgement
Special thanks are due to Joke van Lemmen and Bill Baritompa for reading and
commenting on earlier versions of the manuscript.

22



References

Aarts, E. H. L. and Lenstra, J. K.: 1997, Local Search Algorithms, Wiley, New
York.

Baritompa, W. P., Dür, M., Hendrix, E. M. T., Noakes, L., Pullan, W. and
Wood, G. R.: 2005, Matching stochastic algorithms to objective function
landscapes, Journal of Global Optimization 31, 579–598.

Baritompa, W. P. and Hendrix, E. M. T.: 2005, On the investigation of stochas-
tic global optimization algorithms, Journal of Global Optimization 31, 567–
578.

Baritompa, W. P., Mladineo, R., Wood, G. R., Zabinsky, Z. B. and Baoping,
Z.: 1995, Towards pure adaptive search, Journal of Global Optimization
7, 73–110.

Boender, C. G. E. and Romeijn, H. E.: 1995, Stochastic methods, in R. Horst
and P. M. Pardalos (eds), Handbook of Global Optimization, Kluwer, Dor-
drecht, pp. 829–871.

Bulger, D. W. and Wood, G. R.: 1998, Hesitant adaptive search for global
optimisation, Mathematical Programming 81, 89–102.

Danilin, Y. and Piyavskii, S. A.: 1967, An algorithm for finding the absolute
minimum, Theory of Optimal Decisions 2, 25–37. (in Russian).

Gill, P. E., Murray, W. and Wright, M. H.: 1981, Practical Optimization, Aca-
demic Press, New York.

Glover, F. W.: 1986, Future paths for integer programming and link to artificial
intelligence, Computers and Operations Research 13, 533–554.

Hendrix, E. M. T.: 1998, Global Optimization at Work, PhD thesis, Wageningen
University, Wageningen.

Hendrix, E. M. T. and Klepper, O.: 2000, On uniform covering, adaptive ran-
dom search and raspberries, Journal of Global Optimization 18, 143–163.

Hendrix, E. M. T., Ortigosa, P. M. and Garćıa, I.: 2001, On success rates for
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