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1. Introduction 

Microspore embryogenesis is a process in which immature male gametophytes are 

induced to switch from gametophyte to embryo development during in vitro culture. These 

haploid embryos can be converted into homozygous doubled-haploid (DH) plants, either 

spontaneously or after treatment with chromosome doubling agents. DH technology allows 

plant breeders to produce homozygous plants in a single generation and is used to 

accelerate plant breeding programs. Microspore embryogenesis also offers an alternative 

system to study embryo development and plant cell totipotency without the interference of 

maternal tissue. In this introduction, I discuss both applied and fundamental aspects of 

microspore embryogenesis, and where it is relevant and possible, put this knowledge in the 

context of zygotic embryogenesis and other in vitro embryo systems. A review of the early 

cellular and molecular events involved in the establishment of microspore embryo 

development is presented in Chapter 2 (Soriano et al., 2013).  

 

2. Basic requirements for microspore embryo induction 

The first in vitro haploid embryo culture system was developed around 50 years ago in 

Datura innoxia using anther culture (Guha and Maheshwari, 1964). Later, Nitsch (1974) 

cultured Nicotiana microspores released from anther tissue (‘shed microspore’ culture). In 

1982, Lichter (1982) established the isolated microspore culture system from Brassica flower 

buds. In anther/shed microspore culture, whole immature anthers are cultured, while in 

microspore culture, the immature male gametophytes (microspores and pollen) are isolated 

and somatic anther tissue is removed prior to culture. Compared to anther culture, 

microspore culture has some advantages: (1) isolated microspore develop without 

interference from the anther tissue, the anther wall may have negative impact on embryo 

formation, or may produce diploid somatic embryos (Heberle-Bors, 1985); (2) the isolated 

microspores/pollen take up nutrients directly from the culture medium; (3) microspore 

culture is generally more efficient than anther culture, as it does not require anther 

dissection, but rather relies on bulk mechanical procedures to release the 

microspores/pollen from the flower buds; (4) homogeneous material that is free of anther 

tissue can be observed and collected for cellular and molecular studies (Touraev et al., 1996a; 

Hosp et al., 2007). Reliable protocols for the production of haploid embryos through isolated 

microspore culture have been set up in rapeseed, tobacco, and barley (Maluszynski et al., 
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2003), which have contributed to their development as model systems. However, as in other 

species, the efficiency of microspore embryogenesis depends on endogenous and exogenous 

factors, such as genotype, donor plant conditions, developmental stage of the pollen, and 

culture conditions. Here I focus on the important parameters of microspore culture in 

Brassica species. 

 

2.1 Donor plants: pretreatments and genotype 

The temperature at which the donor plants are grown influences the embryogenic 

response of the cultured microspores/pollen in different species (Lazar et al., 1984; Dunwell 

et al., 1985). In Brassica species, the donor plants are usually grown at higher temperatures 

(up to 20 oC) and then moved to lower temperatures (10/5 oC day/night; preconditioned) 

just before or immediately after. Cold temperature pretreatment of the donor plants results 

in a higher frequency of microspore embryogenesis (Ferrie et al., 1995). Microspores from 

cold treated donor plants are more translucent compare to those without cold treatment (Lo 

and Pauls, 1992), suggesting that a different physiology is associated with the increased 

competence for microspore embryogenesis. 

Genotypic variation for the ability to produce microspore embryos has been reported in 

many crops (Powell, 1990). In Brassica species, embryogenic response varies among 

genotypes. To identify genes or loci that are related to microspore embryogenic responsive 

ability, molecular-genetic analyses, such as restriction fragment length polymorphism (RFLP) 

and random amplified polymorphic DNA (RAPD) marker analysis, have been performed on 

different genotypes (Cloutier et al., 1995; Zhang and Takahata, 2001; Zhang et al., 2003). 

Two loci with multiple genes are associated with embryogenic capacity in B. napus (Zhang 

and Takahata, 2001). However, quantitative trait loci (QTL) studies and fine mapping are 

needed to find the underlying genes.  

 

2.2 Developmental stage 

The developmental stage of pollen is one of key factors for microspore embryogenesis. 

The developmental stage with embryogenic competence is very narrow (Kyo and Harada, 

1986; Pechan and Keller, 1988; Telmer et al., 1992; Binarova et al., 1993). During pollen 

development in Brassica species the uninucleate microspore divides to form a large 

vegetative cell and a smaller generative cell (Pollen Mitosis I (PMI)). The vegetative cell 
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arrests in G1 (Žárský et al., 1992), while the generative cell divides once more (PMII) to form 

two sperm cells. In most species, including Brassica spp. microspore embryos are derived 

from the microspore or vegetative cell of the bicellular pollen grain (Custers et al., 1994; 

Kasha et al., 2001). Generally only vacuolated microspores prior to PMI or early bicellular 

pollen just after PMI are responsive for embryo induction. This suggests that a specific stage 

of the cell cycle is important for efficient embryogenesis from the vegetative cell. However, 

this developmental window can be widened under specific stress treatments (Touraev et al., 

1996a,b). For example, in Brassica, higher temperature treatment (41 oC) can also induce 

embryogenesis from older stages of bicellular pollen (Binarova et al., 1997). This suggests 

that a stronger stress treatment is required to bring the vegetative cell back into the cell 

cycle once it has passed the early binucleate stage. 

 

2.3 Stress treatment 

One or more stress treatments are required to induce microspore embryogenesis. These 

stress treatments include abiotic and/or chemical treatments (Touraev et al., 1997). The 

widely used abiotic stresses include cold, heat, and carbon starvation. Chemical stresses 

include colchicine, agents that raise the osmotic pressure and alcohols (Shariatpanahi et al., 

2006).  

In B. napus, the initial culture temperature directs the developmental fate of cultured 

microspores. Heat treatment at 32 oC for as little as 8 h is enough to induce sporophytic 

division, while microspores cultured at 25 oC or lower temperature follow the gametophytic 

pathway and develop into trinucleate pollen (Custers et al., 1994). However, as discussed 

below, long-term culture at 18 oC can also induce the formation of suspensor-bearing 

microspore embryos (Prem et al., 2012, see section 5.1). 

The initiation of sporophytic division after stress treatment is characterized by the 

derepression of cell cycle arrest of the vegetative cell and entry into the S phase. At the 

onset of B. napus microspore culture, the microspore nucleus is at G1 to G2 phase of the cell 

cycle, while the vegetative nucleus of bicellular pollen is arrested at the G1 stage (Binarova 

et al., 1993). Flow cytometry and bromodeoxyuridine (BrdU) labelling during the heat stress 

treatment showed that the nucleus of the microspore and the vegetative cell of bicellular 

pollen rapidly enter S-phase within four hours (Binarova et al., 1993, 1997).  
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Heat-stress induces the reorganization of the cytoskeleton during microspore 

embryogenesis. Upon heat treatment, the microtubules reorient and in general, the 

microspore/ vegetative cell divides symmetrically, rather than asymmetrically, as in pollen 

development (Hause et al., 1993). The appearance of a pre-prophase band (PPB) of 

microtubules, which is not found in pollen, can be a marker for embryogenic division. A PPB 

is observed in B. napus microspores after 4-8 h of heat treatment, but not in microspores 

cultured under non-embryonic conditions or cultured to develop as pollen (Simmonds, 1994; 

Simmonds and Keller, 1999; Dubas et al., 2011). These results suggest that heat-stress 

results in the rearrangement of cytoskeleton, and that this rearrangement is associated with 

sporophytic division. Drugs that influence microtubule and actin polymerization, such as 

colchicine and cytochalasin D have also been used to induce a low frequency of microspore 

embryogenesis in B. napus (Zaki and Dickinson, 1991; Zhao et al., 1996; Gervais et al., 2000), 

suggesting that rearrangement of the cytoskeleton is associated with embryo fate switch. 

Heat-shock proteins (Hsps) are important components in various stress responses. Hsps 

are synthesized in B. napus microspores after heat stress induction (Pechan et al., 1991; 

Cordewener et al., 1995; Binarova et al., 1997; Seguí-Simarro et al., 2003). Increased Hsp70 

synthesis is detected 8 h after the heat stress treatment, but only at the developmental 

stage that is competent for embryogenic growth, and not under non-inductive condition (18 

oC) (Cordewener et al., 1995; Binarova et al., 1997). Both Hsp70 and Hsp90 move to the 

nucleus during microspore embryogenesis induction (Seguí-Simarro et al., 2003). These 

results suggest that Hsp70 can be used as a marker for stress induced embryogenic switch. 

However, Hsp70 did not increase in colchicine-induced microspores in the absence of heat 

stress, suggesting that Hsp activation in microspore culture protects competent 

microspores/pollen from the harmful effect of heat stress rather than inducing 

embryogenesis (Zhao et al., 2003). 

Different stresses can induce microspore embryogenesis, suggesting that the responses 

induced by these different stresses converge on a common pathway to activate 

embryogenesis. Microspores undergo molecular and cellular changes after embryogenic 

induction, including cytoskeleton rearrangement, cell cycle progression and protein 

expression (Maraschin et al., 2005; Soriano et al., 2013). Whether or when these events 

represent convergent points on a common pathway still needs to be determined.  
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2.5 Conversion to seedlings 

Regeneration of microspore embryos into normal plants is an important process for 

applied DH production and for the generation of homozygous transgenic lines. Unlike zygotic 

embryos, microspore embryos can germinate into plantlets without having gone through the 

typical maturation processes that prepare the zygotic embryo for dormancy. Nonetheless, 

the frequency of plantlet conversion is low in some species. In B. napus, the conversion 

efficiency is around 30% (Belmonte et al., 2006). The conversion efficiency depends on the 

developmental stage of embryo, the germination medium and other culture conditions.  

In B. napus, shoot apical meristem (SAM) degeneration has been proposed as the reason 

for low plant conversion (Yeung et al., 1996).  Methods for optimizing culture conditions 

have involved the inclusion of several compounds in the medium, such as brassinosteroids 

(Belmonte et al., 2011), abscisic acid (ABA) (Hays et al., 1996), polyethylene glycol (PEG) (Ilid-

Grubor et al., 1998b), and buthionine sulfoximine (BSO), which alters the cellular redox 

status (Stasolla et al., 2008). Transcriptome analysis reveals that BSO stimulates meristem-

related and ABA-related genes expression, which related to improved embryo quality 

(Stasolla et al., 2008). Microspore embryos cultured in the presence of ABA accumulate 

storage products, as during zygotic embryogenesis, develop well-organized shoot apical 

meristems (SAMs), and are able to regenerate viable plants at a higher frequency (Wilen et 

al., 1990; Ramesar-Fortner and Yeung, 2006).  

 

2.6 Chromosome doubling 

Plants regenerated from microspore embryos can be haploid, diploid, polyploidy or 

aneuploid. It is reported that 70–90% of regenerated plants from B. napus microspore 

culture are haploid (Charne and Beversdorf, 1988; Chen and Beversdorf, 1992). Haploid 

plants are sterile, therefore chromosome doubling is required to regenerate fertile DH plants. 

Inefficient chromosome doubling is one bottleneck in the production of some DH plants 

(Germanà, 2011).  

Three mechanisms are involved in chromosome duplication, including endoreduplication, 

nuclear fusion and c-mitosis (Seguí-Simarro and Nuez, 2008). In cereals such as wheat, barley 

and maize, the efficiency of spontaneous chromosome doubling fusion is quite high (up to 

80%) and involves nuclear fusion (Hu and Kasha, 1999; Kasha et al., 2001; Testillano et al., 

2004). The efficiency of spontaneous chromosome doubling is quite low in Brassica spp. The 
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antimicrotubule agents colchicine and trifluralin have been used to improve chromosome 

doubling frequencies in Brassica (Zhao and Simmonds, 1995). Colchicine induces 

microtubule depolymerization, which disrupt chromosome separation during mitosis, 

resulting in chromosome doubling. Colchicine treatment can be applied at different stages in 

the DH production process, including isolated microspores/pollen, during the induction stage, 

microspore embryos (Chen et al., 1994; Möllers et al., 1994; Zhou et al., 2002a; Zhou et al., 

2002b), or plantlets (Mathias and Robbelen, 1991). Colchicine treatment at the freshly 

isolated microspore/pollen stage is more favorable, because it also increases embryo 

production frequency and reduces the frequency of chimeric plants (Zhou et al., 2002a,b). 

Understanding of the mechanism of chromosome doubling would help to establish effective 

methods to produce true homozygous DH plants.  

 

3. Applications of MDE 

In vitro microspores culture is the most exploited DH technique and has been broadly 

applied in breeding programmes and genetic studies, because of its simplicity and higher 

efficiency for producing homozygous lines in a short period compared to other conventional 

DH production systems, such as in vitro anther culture and gynogenesis (embryo production 

from the female gametophyte) (Forster et al., 2007).  

Homozygous DH plants derived from microspore embryos provide good material for 

hybrid cultivar production. F1 hybrids can exhibit hybrid vigour (heterosis) and increased 

yield compared to their parents. F1 hybrids are produced by crossing two homozygous 

parental lines. In traditional breeding programmes, it takes many generations of selfings to 

obtain homozygous plants. However, homozygous DHs can be obtained in one generation, 

and therefore greatly speed up the breeding process. Most of the currently grown B. napus 

varieties are derived from DH technology from microspore culture (Dunwell, 2010; Ferrie 

and Möllers, 2011). Homozygous DH plants derived from microspore embryos are also used 

to simplify genome sequencing. 

Microspores and microspore embryos are ideal targets for mutagenesis, because 

microspores are single-celled and because large scale mutagenesis can be performed on 

thousands of potential plants (donor microspores) at one time. Combine with chromosome 

duplication, it is possible to produce mutated homozygous plants without chimeras. In 

Brassica, modification of the fatty acid composition is an important objective of breeding 
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(Friedt and Lühs, 1998). Microspore mutagenesis protocols using ethylmethane sulfonate 

(EMS) were developed for B. napus, B. juncea, B. rapa, B. nigra and B. carinata. The fatty 

acid profiles were evaluated among the DH lines (Barro et al., 2001; Ferrie et al., 2008). Lines 

exhibiting changes in the level of glucosinolate and erucic acids in B. carinata in B. napus 

have been selected from microspores exposed to ultraviolet light (UV) (Barro et al., 2002; 

McClinchey and Kott, 2008). 

Microspore and microspore embryos are ideal targets for genetic modification by 

transformation. For transformation, it is possible to produce homozygous lines from the 

primary transformants with the gene of interest. Many transformation techniques have been 

used to introduce interesting genes into microspores such as microinjection, electroporation, 

particle bombardment and Agrobacterium tumefaciens-mediated transformation (Touraev 

et al., 2001). The Luciferase gene was introduced into microspores by particle bombardment 

technique that resulted in fertile and stable transgenic DH plants in B. napus (Fukuoka et al., 

1998). 

Microspore embryogenesis is a good way to produce DH plants from gametes in reverse 

breeding. The aim of reverse breeding is to genetically fix heterozygous lines with desired 

traits. Reverse breeding comprises two steps: suppression of crossover recombination 

during meiosis and production of DH plants from the resulting gametophytes (Dirks et al., 

2009). The resulting lines can then be screened for the trait of interest and propagated 

immortally i.e. without genetic segregation. 

Microspore embryogenesis is widely applied in plant breeding. Although reliable 

microspore embryogenesis protocols have been set up for many species, many important 

agricultural and commercial plants are still recalcitrant. The low efficiency of embryo 

induction, plantlet conversion and chromosome doubling are major bottlenecks in DH 

production. Detailed knowledge on the cellular, biochemical and molecular mechanisms that 

control the microspore embryogenesis is required to improve existing protocols and to 

develop species/genotype-independent DH production methods. 

 

4. MDE as a model system to answer fundamental questions in plant biology 

Besides its utility for plant breeding and genetics, the microspore embryogenesis system 

also provides a novel system for understanding plant cell totipotency (Reynolds, 1997; 

Soriano et al., 2013) and for fundamental studies on other aspects of plant embryogenesis. 
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Unlike zygotic embryos, microspore embryos are not surrounded by the maternal seed coat 

or endosperm. This makes it possible to efficiently collect large amounts of staged embryos 

for subsequent molecular and biochemical analyses, and to directly chemically interrogate 

different processes. In B. napus, this system has been used to identify genes expressed 

during early embryo development (Joosen et al., 2007; Malik et al., 2007), and to determine 

the role of the suspensor in embryo development (Supena et al., 2008), the role of regular 

cell division and polar auxin transport in embryo patterning (Soriano et al., 2014/Chapter 5), 

the role of histone acetylation in cell fate specification and embryo patterning (Li et al., 

2014/Chapter 3), and the regulation of storage product accumulation and hormonal changes 

during the maturation phase of embryo development (Taylor et al., 1990; Pomeroy et al., 

1991; Hays et al., 2001). In barley, anther-derived embryos have been used for studies on 

storage protein synthesis (Aalen et al., 1994). In tobacco and B. napus, genes initially 

identified in microspore embryo cultures were shown to play important roles during plant 

development (Boutilier et al., 2002; Hosp et al., 2014). These studies show that despite the 

morphological and developmental differences between microspore and zygotic embryos, 

microspore embryos can serve as surrogates for understanding zygotic embryo development. 

In this thesis, we used the B. napus microspore embryo system to study the role of two 

processes that are known to have key roles in zygotic embryo development, auxin signaling 

and chromatin modification. The initial goal of these studies was to understand the specific 

role of these processes in the establishment and growth of embryogenic microspores/pollen, 

however, these studies also generated new knowledge and concepts that serve as a 

framework for studying these processes in zygotic embryo development. Below, I provide an 

overview on the regulation of zygotic embryo development in relation to auxin signaling and 

chromatin-level changes in gene expression, and place this information in the context of 

other studies on in vitro embryogenesis. 

 

5. Pattern formation and auxin signaling during zygotic and in vitro embryo development 

Embryo development has been extensively studied in the model plant Arabidopsis, in part 

due to the general characteristics that have made this plant a good model system, but also 

due to the highly regular and predictable division planes of Arabidopsis embryos. B. napus 

zygotic embryos undergo the same regular divisions as Arabidopsis embryos (Tykarska, 1976; 
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Yeung et al., 1996). Studies on Arabidopsis zygotic embryogenesis therefore provide a solid 

framework for understanding B. napus microspore embryo development.  

 

5.1 Pattern formation during zygotic embryo development 

Arabidopsis embryogenesis starts with the one-celled zygote, which results from the 

fusion of the egg and sperm nuclei after fertilization. The zygote divides asymmetrically to 

form a small apical cell and a large basal cell, each with distinct developmental fates. The 

apical cell undergoes two longitudinally divisions and one transverse division to form the 

eight-cell embryo proper. Periclinal division of these cells results in the formation of the 

protoderm. The protoderm divides anticlinally to give rise to the epidermis, while the inner 

cells give rise to the procambium and the ground tissue. The basal cell divides transversely to 

form the suspensor. The uppermost cell of the suspensor, the hypophysis, forms the root 

meristem, while the other cells of the suspensor degenerate later in embryo development 

(Marsden and Meinke, 1985). An initial globular stage of embryo development is followed by 

the transition to bilateral symmetry and establishment of the apical and basal axis, 

characterized by establishment of the cotyledon primordia, the provasculature and the 

shoot and root meristems. The suspensor is a transitory structure that plays an important 

role in embryo development, as it supports the embryo proper by providing nutrients and 

growth regulators (Kawashima and Goldberg, 2010).  

Arabidopsis is now the most popular model for studies on plant embryogenesis. However, 

not all flowering plants show the same regular pattern of cell division during zygotic embryo 

development as Arabidopsis. The first division of the apical cell can be transversal or 

longitudinal, depending on the species (Mordhorst et al., 1997). For example, in carrot the 

apical cell divides transversally two times rather than longitudinally (Lackie and Yeung, 1996). 

Likewise, many variations in suspensor structure can be observed in different species. For 

example, the suspensor of legumes varies in cell number and arrangement (Yeung and 

Meinke, 1993; Kawashima and Goldberg, 2010). Phaseolus coccineus (scarlet runner bean) 

has a massive suspensor with a hundred cells arranged in multiple columns (Yeung and 

Sussex, 1979; Weterings et al., 2001), while Glycine max (soybean) has a small suspensor 

with only a few randomly arranged cells (Chamberlin et al., 1994). These observations 

indicate that plant embryogenesis is characterized by a high level of plasticity. 
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Mutant analysis in Arabidopsis suggests that the asymmetric division that generates the 

initial apical-basal pattern of the embryo is important for subsequent cell fate establishment 

and morphogenesis. Mutants that fail to establish the correct division plane show 

subsequent defects in embryo organization or even developmental arrest (Wendrich and 

Weijers, 2013). For example, mutations in GNOM/EMB30, an ARF-GTPase guanine 

nucleotide exchange factor (GEF), result in two approximately equally-sized cells after zygote 

division. Subsequent aberrant division planes in the apical cell lead to a variety of 

phenotypes, from seedlings that lack a root and have a short hypocotyl and short, fused 

cotyledons, to amorphous globular structures (Mayer et al., 1993; Shevell et al., 1994; Busch 

et al., 1996). The WUSCHEL-RELATED HOMEOBOX (WOX) transcription factors WOX2, WOX8 

and WOX9 are expressed in the zygote but become restricted to the apical (WOX2) and basal 

(WOX8, 9) cells after the zygote divides. Mutations in WOX8 and WOX9 produce embryos 

with defects in both basal and apical cell lineages that may arrest later in their development 

(Breuninger et al., 2008). WOX8 and WOX9 regulate expression of WOX2, a master regulator 

of apical cell fate specification and division pattern. WOX2 expression in the embryo proper 

rescues apical defects in wox8 wox9 mutants. The zinc-finger transcription factor WRKY2 

ensures the re-establishment of polarity after fertilization through the activation of WOX8 

and WOX9 expression in the zygote (Ueda et al., 2011). In wrky2 mutants the zygote fails to 

polarize and divides symmetrically. Later, wrky2 embryos fail to develop a distinguishable 

root pole and the uppermost suspensor cells shows apical characteristics. However, wrky2 

embryos begin to morphologically recover at the heart stage and eventually regain 

WOX8/WOX9 expression and develop a functional root pole, suggesting that additional 

routes converge with the WKRY pathway to direct the organization of the basal embryo 

domain (Ueda et al., 2011). 

The defects in the first zygotic division produced by mutations in the WRKY2, WOX or 

GNOM genes do not interfere with the initial formation of the extra embryonic suspensor. 

Rather, the development of the basal cell and the formation of the suspensor is regulated by 

SHORT SUSPENSOR (SSP), YODA (YDA), MITOGEN ACTIVATED KINASE3 (MPK3), MPK 6 and 

GROUNDED (GRD) (Lukowitz et al., 2004; Bayer et al., 2009). In loss-of-function mutants of 

these genes, the elongation and first division of the zygote is disrupted and a suspensor is 

often completely absent. The yda loss-of-function mutant has a short suspensor with 

longitudinal division in the basal cell lineage, a shorter hypocotyl and root meristem defects, 
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while a gain-of-function YDA mutant causes exaggerated suspensor growth, but inhibits the 

development of the proembryo (Lukowitz et al., 2004). 

Signaling between the embryo proper and the suspensor is also important for maintaining 

suspensor identity, as Arabidopsis mutants in which growth of the embryo proper is 

compromised often show embryo development from the suspensor (Yeung and Meinke, 

1993). For example, mutants in the SUSPENSOR (SUS), TWIN, and RASPBERRY loci cause 

irregular divisions in the embryo proper, which are followed by ectopic development of an 

embryo proper in the suspensor (Schwartz et al., 1994; Vernon and Meinke, 1994; Yadegari 

et al., 1994; Zhang and Somerville, 1997). These data suggest that the suspensor is a 

totipotent structure and that signaling from the embryo proper is required to suppress this 

totipotency during zygotic embryo development. 

 

5.2. Pattern formation in in vitro cultured embryos 

Unlike zygotic embryos, in vitro-cultured embryos show a less regular pattern of cell 

division, even in species such as Arabidopsis and Brassica napus, where zygotic embryos 

show highly regular divisions. In B. napus microspore embryogenesis, the first division is 

usually symmetric and can be distinguished from the asymmetric pollen division (Zaki and 

Dickinson, 1991). Two major pathways leading to microspore embryo development have 

been observed, with and without a suspensor, which are controlled by the degree and 

duration of the heat stress treatment and the genotype. With milder heat stress in B. Topas 

DH4079, large amount of embryos with suspensor-like structures are observed, which mimic 

zygotic embryos in terms of a regularly patterned embryo proper and suspensor (Joosen et 

al., 2007; Supena et al., 2008). The cell division pattern in suspensorless embryos is initially 

highly irregular compared to zygotic embryos (Tykarska, 1976; Yeung et al., 1996). Division 

patterns are only evident in suspensorless embryos once the surrounding pollen wall (exine) 

bursts (Hause et al., 1994; Ilid-Grubor et al., 1998a; Prem et al., 2012; Soriano et al., 

2014/Chapter 5). These observations indicate that regular division patterns and the presence 

of a suspensor are not prerequisites for functional embryo formation in microspore culture. 

Similar observations have been made during somatic embryo culture, where embryos are 

derived from vegetative cells rather than gametophytic cells. Generally, exogenous plant 

growth regulators such as auxin and cytokinin are essential for somatic embryo induction, 

especially the synthetic auxin 2,4-D. Somatic embryos either directly develop from one cell 
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or two cells of the explant or indirectly from a group of less organized (callus-like) cells. 

These embryos often lack a suspensor (Mordhorst et al., 1997; Bassuner et al., 2007) and the 

initial embryogenic cell division can be irregular and depends on the species, the explant and 

tissue culture conditions (Mordhorst et al., 1997; Suhasini et al., 1997). In Arabidopsis, 

somatic embryos can be directly induced from immature zygotic embryos on solid medium 

in the presence of 2,4-D (Gaj, 2001; Bassuner et al., 2007; Kurczyoska et al., 2007). In this 

system, somatic embryos origin from single or multiple protodermal cells and 

subprotodermal cells in the cotyledon followed by both periclinal and anticlinal divisions, 

then develop through similar embryo developmental stages as zygotic embryos, from 

globular, heart-shaped, torpedo to cotyledonary, but no suspensor formation is observed 

(Bassuner et al., 2007; Kurczyoska et al., 2007).  

In conclusion, regardless of the origin of the embryo, either from a vegetative cell or 

gametophytic cell, a highly regular cell division pattern and the presence of a suspensor are 

not essential for the establishment of embryo fate and embryo patterning in vitro. The 

flexibility in the initial morphogenic program of embryogenesis, either in vitro or in planta 

raises the question as to the role of these highly regulated divisions in early embryo growth 

in species such as Arabidopsis and Brassica.  

 

5.3 Role of auxin in zygotic embryo development 

Auxin plays a critical role in regulating plant development and growth at different stages 

of the plant life cycle, including embryogenesis. The cell-specific effects of auxin are 

achieved by the combined processes of auxin perception, auxin response, auxin distribution 

and auxin homeostasis.  

Auxin regulates developmental processes through directly binding to an auxin receptor. 

Three types of auxin receptors have been identified in Arabidopsis comprising: six 

TRANSPORT INHIBITOR RESISTANT1/AUXIN F-BOX (TIR1/AFB) proteins, an S-PHASE KINASE-

ASSOCIATED PROTEIN 2a (SKP2a), and AUXIN BINDING PROTEIN 1 (ABP1) (Teale et al., 2006; 

Peer, 2013). TIR1/AFB and SKP2a are the F-box subunits of the SKP1-CULLIN1-F-BOX (SCF) 

ubiquitin ligase complex (SCFTIR1/AFB and SCFSKP2). Auxin directly binds to TIR1 and stabilizes 

the interaction between TIR1 and Aux/IAA transcriptional repressors, promoting Aux/IAA 

degradation via the ubiquitin pathway. Consequently, Aux/IAA repressors are removed from 

the promoters of target genes of auxin response factors (ARFs), allowing ARF transcription 
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factors to regulate target gene transcription (Tan et al., 2007). It had been shown that tir1 

afb2 afb3 and tir1 afb1 afb2 afb3 mutant embryos lack a root and hypocotyl and only have a 

single cotyledon, phenotypes that resemble those of the bdl/iaa12 or mp/arf5 mutants 

(Dharmasiri et al., 2005). Auxin directly binds to SKP2a and induces the degradation of the 

DPb transcriptional repressor via the ubiquitin pathway, releasing the E2Fc transcription 

factor to allow cell cycle progression (Jurado et al., 2008; Jurado et al., 2010). ABP1 directly 

binds to auxin and localizes at the cell periphery (Woo et al., 2002), and is also involved in 

auxin signaling through a Rho-like GTPase (ROP) pathway to regulate PIN endocytosis (Chen 

et al., 2012). Embryos from abp1 mutants arrest at an early stage due to cell elongation and 

division problems (Chen et al., 2001).  

Auxin regulates developmental processes through control of gene transcription. Genes 

that rapidly respond to auxin contain a short conserved DNA sequence, TGTCTC, referred to 

as the auxin response element (AuxREs) in their promoters (Ulmasov et al., 1997b). ARFs 

directly bind to AuxREs to regulate auxin responsive gene transcription (Ulmasov et al., 

1997a). ARFs either act as transcriptional activators or repressors (Ulmasov et al., 1999). 

Aux/IAAs act as transcriptional repressors by binding to ARF transcription factors to repress 

auxin responsive gene transcription (Ulmasov et al., 1997b; Remington et al., 2004). At low 

auxin concentrations, Aux/IAAs bind to ARFs and repress auxin responsive gene expression. 

At high concentrations, auxin stimulates Aux/IAA protein degradation through 

SCFTIR1ubiquitin ligase complexes and releases the repressive effect of Aux/IAAs on ARF-

mediated transcription (Gray et al., 2001; Tiwari et al., 2001). There are 23 ARFs and 29 

Aux/IAAs in Arabidopsis that can interact with each other to form heterodimers or 

homodimers (Kim et al., 1997; Ulmasov et al., 1997a; Weijers et al., 2006). The different 

combinations of ARFs and Aux/IAAs create a large number of potential protein-protein 

interactions to temporally and spatially regulate the auxin response.  

ARF and Aux/IAA proteins play major roles in regulating auxin response during plant 

embryogenesis. A temporal and spatial cellular expression map of the complete ARF gene 

family and part of the Aux/IAA gene family during Arabidopsis embryogenesis was 

developed (Rademacher et al., 2011, 2012). Mutant phenotypes are observed in either gain-

of-function Aux/IAA mutants or loss-of-function ARF mutants. For example, the mp/arf5 

loss-of-function mutant lacks a root meristem and has cup-shaped cotyledons (Berleth and 

Jurgens, 1993; Hardtke and Berleth, 1998), similar to the phenotype of the gain-of-function 
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(stabilized/auxin insensitive) bdl/iaa12 mutant (Hamann et al., 1999; Hamann et al., 2002). 

BDL/IAA12 and MP/ARF5 can form heterodimers and the rootless defects in stabilized bdl 

mutants can be rescued by overexpression of MP/ARF5, which indicates an antagonistic 

relationship between BDL/IAA12 and MP/ARF5 in regulating embryo development (Hardtke 

et al., 2004).  

Auxin distribution plays an important role in the initiation of embryogenesis and the 

establishment of apical-basal axis and pattern formation. The gradient of auxin distribution 

is achieved by auxin polar transport, which is mediated by a group of efflux and influx 

facilitators PIN proteins and AUX1 proteins, respectively (Gälweiler et al., 1998; Kleine-Vehn 

et al., 2006; Wiśniewska et al., 2006). An auxin maximum can be observed by expression of 

the artificial auxin responsive element DR5 (Ulmasov et al., 1997b; Sabatini et al., 1999). The 

zygote divides asymmetrically to produce an apical cell that develops into the embryo 

proper and a basal cell that divides to form the hypohysis and suspensor. DR5 is already 

expressed in this apical cell after division of the zygote. DR5 remains expressed in the 

embryo proper until the 32-cell embryo stage. PIN1 is expressed in all cells of the embryo 

proper and does not initially display any polarity, whereas PIN7 localizes to the apical 

membrane of the suspensor. The correlation between PIN7 localization and auxin maximum 

indicates that PIN7 transports auxin upward through the suspensor to the proembryo. From 

the 32-cells embryo stage onwards PIN1 directs auxin apically to the tips of the cotyledon 

primordia via the epidermis and basally toward the root via the provascular cells (Friml et al., 

2003). At the same time PIN7 localization reverses in the suspensor and PIN4 accumulates in 

the uppermost suspensor cell, the hypophysis (Friml et al., 2003). The net result is that auxin 

accumulates in the hypophysis and tips of the cotyledon primordia, and can be indirectly 

visualized by DR5 expression in these regions. 

The pattern of auxin distribution directed by PIN1 and PIN7 mediates embryo patterning 

formation and PINs act redundantly in this process. Only mild basal defects are observed in 

pin single mutants at the early embryo stage. Notably, the pin7 mutant fails to establish an 

auxin maximum in the embryo proper and shows cell division defects in the basal region of 

the embryo proper (Friml et al., 2003). More penetrant and severe embryo phenotypes are 

observed in triple or quadruple pin mutants. For example, pin1 pin3 pin4 pin7 and pin2 pin3 

pin4 pin7 shows disturbed cell division patterns in the basal region of the embryo proper at 

early embryo stage and displays apical-basal embryo defects including lack of a root 
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meristem and fused cotyledon or pin-like apical stem at a late embryo stage (Friml et al., 

2003). Blilou and coworkers also show misexpression of apical and basal domain markers 

(Blilou et al., 2005). This data suggests that PIN-mediated auxin distribution is essential for 

the establishment of apical-basal cell fates during zygotic embryogenesis. 

The gradient of auxin distribution not only affects apical-basal axis patterning formation 

but also affects bilateral symmetry and meristem establishment. In dicotyledonous plants 

such as Arabidopsis, the two cotyledon primordia are initiated at the late globular stage, and 

these develop into two separate cotyledons. A local auxin gradient directed by PIN1 

redistribution of auxin from the basal to the apical pole promotes cotyledon initiation, and is 

marked by DR5 maxima at the tips of the primordia and cotyledons (Benková et al., 2003). 

A Knotted-like homeodomain transcription factor SHOOT MERISTEMLESS (STM) and a 

group of NAC domain transcription factors, CUP-SHAPED COTYLEDON1 (CUC1), CUC2 and 

CUC3, are essential for shoot apical meristem formation and also involved in repressing the 

outgrowth of cotyledon boundary. Both single stm mutants and double cuc1 cuc2 mutants 

lack a shoot apical meristem and display fused cotyledons (Barton and Poethig, 1993; Aida et 

al., 1997; Long and Barton, 1998; Aida et al., 1999; Vroemen et al., 2003; Hibara et al., 2006).  

PIN1 and the protein kinase PINOID (PID), which is a serine-threonine kinase that controls 

PIN proteins localization by phosphorylating PINs (Friml et al., 2004; Michniewicz et al., 

2007), are involved in cotyledon development (Aida et al., 2002; Furutani et al., 2004). pid 

and pin1 single mutants and pin1 pid double mutants have a functional SAM, indicating that 

PIN1 and PID are not essential for SAM formation (Aida et al., 2002; Furutani et al., 2004). 

However, both pid and pin1 mutants display cotyledon defects with decreased or increased 

cotyledon number, size and position. pid mutants mostly have three separated cotyledons 

(Bennett et al., 1995; Treml et al., 2005), while pin1 mutants have fused cotyledons at the 

basal region (Bennett et al., 1995; Furutani et al., 2004). pin1 pid double mutants completely 

lack cotyledons and show ectopic expression of CUC boundary genes in the cotyledon 

primordia, which can be rescued by eliminating CUC gene expression (Furutani et al., 2004). 

These results suggest that PIN1 and PID promote cotyledon development through repression 

of CUC gene expression (Aida et al., 2002; Furutani et al., 2004). 

The cuc mutant phenotype is also observed in Arabidopsis and Brassica zygotic embryos 

and microspore embryos treated with Polar Auxin Transport (PAT) inhibitors (Liu et al., 1993; 

Hadfi et al., 1998; Ramesar-Fortner and Yeung, 2001; Friml et al., 2003), which confirms that 
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the graded distribution of auxin is essential for the establishment of bilateral symmetry 

during embryogenesis. 

Auxin homeostasis is determined by the combination of cell-specific auxin biosynthesis, 

degradation and conjugation. Genes involved in auxin biosynthesis play an important role in 

embryo development. The YUCCA (YUC) family of flavin monooxygenases are key enzymes in 

tryptophan-dependent auxin biosynthesis (Zhao, 2010). Due to redundancy among YUCCA 

family members, single yuc mutant do not show developmental defects (Cheng et al., 2006). 

The yuc1 yuc4 yuc10 yuc11 quadruple mutant displays embryo defects including lack of a 

hypocotyl and root meristem, similar to the mp mutants. Combination of yuc mutants with 

auxin efflux mutants (yuc1 yuc4 pin1) or auxin influx mutants in (yuc1 yuc4 yuc6 aux1) or 

yuc1 yuc4 mutants treated with auxin polar transport inhibitors display stronger apical 

defects (with pin-like inflorescences) than yuc1 yuc4 and pin1 mutants alone, indicating that 

auxin biosynthesis genes and polar transport genes synergistically control plant development 

(Cheng et al., 2007).  

 

5.4 Role of auxin in in vitro embryo development 

Microspore embryogenesis in model systems such as Brassica, tobacco, barley and wheat, 

does not require addition of plant growth regulators, such as auxins or cytokinins, to induce 

embryogenic cell divisions, and as a result most embryos develop directly from the 

microspore or pollen without an intervening callus phase. The absence of exogenous growth 

regulators in the medium also makes it easier to study the role of endogenous hormone 

biosynthesis and signaling in embryo cell fate establishment and morphogenesis.  

Application of the anti-auxin PCIB enhances embryo induction and haploid plantlet 

regeneration in B. rapa, B. napus and B. juncea microspore culture (Agarwal et al., 2006; 

Zhang et al., 2011; Ahmadi et al., 2012). However, PCIB also disturbs embryo patterning, 

resulting in embryos that lack cotyledons or have fused cotyledons, similar to the effects of 

the auxin polar transport inhibitor NPA (Liu et al., 1993; Ramesar-Fortner and Yeung, 2001; 

Agarwal et al., 2006). Recently, Dubas et al (2013, 2014) showed that endogenous auxin and 

abscisic acid increased during B. napus microspore embryo induction. Using the DR5, PIN7 

and GRP markers, we showed that apical-basal polarity is established at the globular stage in 

suspensorless embryos, and after a few cell divisions in suspensor-bearing embryos (Soriano 

et al., 2014/Chapter 5). Both events coincide with a release of the embryo from the 
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surrounding exine. We also showed that embryo initiation and polarization in suspensorless 

embryos does not depend on PAT. PAT was required, however, for bilateral patterning and 

the formation of the meristems.  In contrast to suspensorless embryos, PAT is required for 

the formation of the embryo proper, as in zygotic embryos. 

Auxin also plays an important role in somatic embryogenesis. The majority of mechanistic 

data on somatic embryogenesis has been obtained using Arabidopsis and several conifer 

model systems. Arabidopsis somatic embryogenesis can be induced from different tissues 

using the synthetic auxin 2,4-D. Su et al. (2009) examined secondary somatic embryo 

formation from embryogenic callus derived from 2,4-D-treated immature embryos. Somatic 

embryos are induced from the callus after removal of 2,4-D from the culture medium. In this 

system, alternating areas of high and low auxin, as visualized by DR5 expression, are set up 

in the edge regions of the callus. The areas of low auxin, characterized by expression of the 

shoot apical meristem regulator WUSCHEL (WUS), begin to accumulate auxin, possibly 

through PIN1-mediated transport, which is followed by somatic embryo growth. 

Downregulation of WUS or PIN1 expression decreases somatic embryo production (Su et al., 

2009). These results suggest that PIN-mediated auxin gradients and shoot-like stem cells are 

required for somatic embryogenesis.  

Gaj et al. (2006) observed that a number of auxin response mutants showed either 

decreased number of embryos per explant (axr4-2 and axr1-3 axr4-2) or both a reduced 

number of embryos and responding explants (axr4-1, and aux1-7 axr4-2). The Arabidopsis 

auxin response gene AUXIN RESISTANT4 (AXR4) regulates the localization of auxin influx 

facilitator AUX1 and is involved in PAT (Dharmasiri et al., 2006), while AXR1 encodes a 

protein related to ubiquitin-activating enzyme E1 (Leyser et al., 1993). This data suggests 

that both auxin response and polar auxin transport are required for somatic embryogenesis. 

The role of auxin in somatic embryo induction in conifers is not known. At later stages, 

PAT is important for radial patterning in conifer embryos. Blocking polar auxin transport with 

NPA increases the endogenous IAA content and disturbs embryo patterning formation in 

Norway spruce somatic embryo culture, leading to apical and basal aberrations, including 

fused or aborted cotyledons and abnormal SAM development and a split basal region 

(Larsson et al., 2008). 

Exogenous 2,4-D induces somatic embryogenesis via expression of auxin biosynthesis and 

response genes. Both LEAFY COTYLEDON2 (LEC2) and YUC genes are required for somatic 
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embryogenesis induction in Arabidopsis (Gaj et al., 2005; Bai et al., 2013). Overexpression of 

the LEC2 transcription factor induces somatic embryogenesis from Arabidopsis seedlings in 

the absence of exogenous auxin. LEC2 rapidly induces DR5:GUS accumulation and increases 

endogenous IAA content by increasing YUC gene expression (Wójcikowska et al., 2013). LEC2 

directly binds YUC4 (Stone et al., 2008) and IAA30 (Braybrook et al., 2006). These results also 

suggest that LEC2 regulate somatic embryogenesis via the auxin pathway.  

Auxin plays an important role in embryo induction and embryo patterning both during 

zygotic embryogenesis and in vitro embryogenesis, and both processes are mediated by 

auxin signaling components, PAT and auxin homeostasis.  

 

6. Role of epigenetic processes in zygotic and in vitro embryo development 

Differential gene transcription by complexes of transcription factors is another 

mechanism to produce diverse, cell-specific developmental outcomes. Differential gene 

expression depends in part on the presence of specific combinations of transcription factors, 

but also on how accessible the DNA is to this transcriptional machinery. The accessibility of 

the transcriptional machinery to DNA is regulated by the chromatin configuration. The basic 

unit of chromatin is the nucleosome, which contains 147 base pairs of DNA wrapped around 

a core histone octamer comprising the histones H2A, H2B, H3 and H4. Histone H1 is not 

incorporated in the nucleosome, but is bound to the linker DNA between nucleosomes. 

Histone variants such as H2A.Z and H3.3 can also replace the canonical histones in 

nucleosomes, and there are also additional histone forms of H2A and H3 (Henikoff and 

Ahmad, 2005). The N-terminal tails of the core histones can be covalently modified by 

methylation, acetylation, phosphorylation, ubiquitination, ADP ribosylation and sumoylation 

(Strahl and Allis, 2000), thereby affecting the compactness of the chromatin. Chromatin 

remodeling factors also affect chromatin packaging by removing or sliding nucleosomes to 

expose DNA sequences (Narlikar et al., 2002). In general, it is thought that when chromatin 

becomes less compact, gene transcription is activated; and when chromatin becomes more 

compact, gene transcription is repressed (Jenuwein and Allis, 2001). Below we discuss the 

major chromatin modifications that have been shown to play a role in plant embryogenesis, 

specifically embryo initiation and embryogenic fate repression from seedlings (Millar and 

Grunstein, 2006; Deal and Henikoff, 2011). 
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6.1 Zygotic embryogenesis 

Histone acetylation status is maintained by reversible enzymatic reactions involving 

histone deacetylases (HDACs) and histone acetyl transferases (HAT). HAT and HDAC also 

regulate non-histone protein modifications (Glozak et al., 2005). HDACs catalyze the removal 

of acetyl groups from lysine residues in the N-terminal tails of the core histones, while HATs 

add acetyl groups to these lysine residues (Strahl and Allis, 2000). Addition of acetyl-groups 

on the lysine residues by HATs neutralizes the positive charge of the lysine and decreases the 

affinity of the histone for DNA, leading to a more open conformation, making the DNA more 

accessible to the transcriptional machinery. There are three families of HATs: the GCN5-

related N-acetyltransferase (GNAT)/NOZ-YBF2/SAS3-SAS2-TIP60 (GNAT/MYST) family, the 

CREB-binding protein (CBP) family and the TAFII250 family (Pandey et al., 2002). Proteins in 

the GNAT/MYST family have a HAT domain, which is different from the HAT domains from 

the CBP family and the TAFII250 family. All three subfamilies are found in both eukaryotes 

and prokaryotes.  

HAT complexes play an important role at different stages of plant development, including 

embryo development (Long, 2006), meristem development (Cohen et al., 2009; Kornet and 

Scheres, 2009), organogenesis (Bertrand et al., 2003), cell differentiation (Sieberer et al., 

2003; Anzola et al., 2010) and gametophyte development (Latrasse et al., 2008). The GCN5 

HAT, HAG1 acts as suppressor of TOPLESS, which represses root identity genes in the apical 

domain of embryo (Long et al., 2006). This suggests that HAG1 is needed to de-repress root 

gene transcription in the apical domain of the embryo. GCN5, which in yeast is found in the 

SAGA and ADA complexes, works together with ADA2 to control histone acylation in 

Arabidopsis (Mao et al., 2006). GCN5 regulates root stem cell maintenance, while ADA2b 

mediates root cell proliferation, both via the PLETHORA pathway (Kornet and Scheres, 2009). 

ADA2b/PROPORZ1 (PRZ1) is required for histone acetylation and is involved in Arabidopsis 

morphogenesis in response to auxin. The prz1 mutant displays reduced histone H3 and H4 

acetylation levels and increased callus formation in the presence of auxin (Sieberer et al., 

2003; Anzola et al., 2010). Auxin regulates histone acetylation levels through PRZ1 to control 

cell proliferation by directly repressing expression of the KRP CDK cell-cycle inhibitors 

(Anzola et al., 2010). These results suggest that histone acetylation and auxin work together 

to control cell proliferation and cell differentiation.  
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In plants, there are three families of HDACs: the RPD3/HDA1 family, named after their 

yeast counterpart reduced potassium deficiency 3 (Rpd3), the NAD-dependent enzymes of 

the sirtuin family named after the yeast Silent Information Regulator 2 (Sir2) family (Frye, 

2000) and the plant-specific HD2 family (Wu et al., 2000). The RPD3/HDA1 and sirtuin 

subfamilies are found in both prokaryotes and eukaryotes, while the HD2 family is only 

present in plants. The plant-specific HD2 family may have gained new functions during 

evolution (Pandey et al., 2002; Hollender and Liu, 2008).    

HDACs can be inhibited chemically by HDAC inhibitors (HDACi), which comprise a group of 

structurally different chemicals that compete with HDAC substrates (e.g. histone tails) for 

HDACs binding. Rpd3/Hda1 and plant HD2 HDACs have Zn-dependent deactylase activity. 

The crystal structure of the Rpd3/Hda1 HDACi trichostatin A (TSA) and suberoylanilide 

hydroxamic acid (SAHA) showed that these HDACi directly interact with the active zinc site at 

the catalytic pocket of Rpd3/Hda1 HDACs to inhibit their activity (Finnin et al., 1999). Sirtinol 

is an inhibitor of the NAD-dependent deacetylases of the Sirtuin family, and structure-

activity analysis revealed that a hydroxy-napthaldehyde moiety in this HDACi is essential for 

its inhibitory activity (Grozinger et al., 2001). A chemical genetics approach using HDACi is 

widely used to study the function of HDACs in biological processes, both in animals and 

plants (Hollender and Liu, 2008; Marks, 2010).  

 HDACs play an important role in plant development (Wu et al., 2000; Tian and Chen, 

2001; Xu et al., 2005; Tanaka et al., 2008; Cigliano et al., 2013; Kim et al., 2013). Arabidopsis 

has 18 HDAC genes including HDA2-19, HDT1-4 and SRT1-2. Loss-of-function of HDT1, HDA19 

or HDA7 resulted in seed abortion (Wu et al., 2000; Tian and Chen, 2001; Cigliano et al., 

2013). Application of the HDACi TSA represses seed germination and postgermination 

growth, while maintaining embryo-specific gene expression. Somatic embryos are eventually 

formed after 4 weeks of culture from these arrested seedlings. Genetic analysis has shown 

that inhibition of HDA6 or HDA6/HDA19 contributes to this phenotype. TSA treatment of 

hda6 hda19 double mutant is still required to completely arrest postgermination growth, 

suggesting that additional redundant HDACs repress embryo identity in seedlings (Tanaka et 

al., 2008). Derepression of transcription in the hda19 mutant is associated with increased 

site-specific histone acetylation (Tian et al., 2005). HDA19 directly targets embryo specific 

genes such as LEC1 and LEC2 and represses them in seedlings. In the hda19 mutant, the 

ectopic expression of these genes is associated with the increased level of transcriptional 
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activation marks such as histone H3 acetylation (H3ac), histone H4 acetylation (H4ac), and 

histone H3 Lys 4 tri-methylation (H3K4me3) and decreased levels of the transcriptional 

repression mark H3K27me3. This suggests that HDA19 represses embryo identity by directly 

regulating these embryo specific genes (Zhou et al., 2013). 

HDAC proteins form repressive complexes with other corepressors or with chromatin 

associated proteins, such as DNA methyltransferase and chromatin remodeling factors, to 

control developmental process by regulating gene transcription. In Arabidopsis, the 

Groucho/Tup1 corepressor protein TOPLESS directly interact with AP2 and recruits HDA19 

to repress floral organ identity genes such as APETALA3, PISTILLATA and SEPALLATA3 

(Causier et al., 2012; Krogan et al., 2012). During embryo development, TPL represses genes 

such as STM, UNUSUAL FLORAL ORGANS (UFO), WUSCHEL (WUS) and KNAT1, which are 

required for apical embryo development (Long et al., 2002, 2006). tpl and hda19 mutant 

embryos show similar defects, including a pin-like cotyledon or lack of cotyledons, and the 

double tpl hda19 mutant increases the penetrance of apical defects observed in the tpl 

single mutant. This suggests that TPL and HDAC19 repress the same genes during 

embryogenesis (Long et al., 2006).  

It has also been shown that HDACs can also interact with DNA methyltransferase to 

regulate transposable element (TE) silencing. In the hda6 mutant, a group of TE are activated 

due to increased levels of H3 and H4 acetylation and H3K4 methylation. Protein-protein 

interaction analysis confirms that HDA6 physically interacts with the DNA methyltransferase 

MET1 to regulate the methylation level of target genes and maintain their silencing status 

(Liu et al., 2012). In mammalian cells, HDACs can also be recruited by Retinoblastoma (Rb), a 

master regulator of cell cycle progression, to the promoters of the E2F/DP family of 

transcription factors (Magnaghi-Jaulin et al., 1998). In mammalian cells, the Rb-E2F 

repressive complex also interacts with ATP-dependent chromatin remodelers to repress cell 

proliferation (Zhang et al., 2000). In plants, the maize RBR directly interacts with the 

ZmRpd3I HDAC protein to repress transcription (Rossi et al., 2003).  

Polycomb (PcG) protein complexes also regulate DNA accessibility and transcription 

through histone modifications. In plants, PcG complexes are associated with transcriptional 

repression during developmental fate transitions, such as the transition from embryo to 

vegetative growth or from vegetative to reproductive growth (Hennig and Derkacheva, 

2009). The PcG proteins form two main complexes, Polycomb Repressive Complex 1 and 2 



Application of microspore embryogenesis 

29 
 

(PRC1 and PRC2). PRC1 catalyses monoubiquitination of histone 2A at Lysine 119 

(H2AK119u), contributing to transcriptional repression. H2AK119u increases chromatin 

compaction and blocks the accessibility of chromatin remodeling factors or the 

transcriptional machinery (Zhou et al., 2008). PRC2 methylates lysine 27 on the N-tail of 

histone H3 (H3K27), a chromatin mark related to transcriptional repression 

(Schuettengruber et al., 2011). The core PRC2 complex is conserved between animals and 

plants. Four core subunits of PRC2 were first identified in Drosophila: ENHANCER OF ZESTE 

(E(Z)), EXTRA SEX COMBS (ESC), SUPRESSOR OF ZESTE 12 (Su(z)12) and p55. In Arabidopsis, 

CURLY LEAF (CLF), SWINGER (SWN) and MEDEA (MEA) are homologues of (E(Z)), EMBRYONIC 

FLOWER2 (EMF2), VERNALIZATION2 (VRN2) and FERTILIZATION-INDEPENDENT SEED2 (FIS2) 

are homologues of (SU(Z)12), FERTILIZATION-INDEPENDENTENDOSPERM (FIE) is the 

homologues of (ESC) and MULTICOPY SUPPRESSOR OF IRA1-5 (MSI1-5) is the homologues of 

p55 (Hennig and Derkacheva, 2009).  

There are at least three PRC2-like complexes in Arabidopsis (EMF, FIS, VRN) that have 

distinct functions during plant development (Guitton and Berger, 2005). PRC2 plays an 

important role in gametophyte endosperm and seed development. Mutation of any subunit 

of the FIS2 complex (MEA/SWN, FIS2, FIE and MSI1) leads to endosperm development in the 

absence of fertilization and eventual seed abortion (Ohad et al., 1996; Chaudhury et al., 

1997; Grossniklaus et al., 1998; Kiyosue et al., 1999; Ohad et al., 1999; Köhler et al., 2003a). 

Both MEA and FIE directly target the same gene, PHERES1 (PHE1). Up-regulated PHE1 

expression is responsible for the seed abortion phenotype in mea and fie mutants (Köhler et 

al., 2003b). A reciprocal RBR-PRC2 regulatory circuit exists in reproductive development. It 

has been shown that RBR regulates PRC2 and MET1 genes. RBR directly binds to MET1 on 

the E2F sites. Maternal PRC2 represses the paternal RBR allele during pollen and seed 

development (Johnston et al., 2008). 

PRC2 also plays an important role in repressing embryo identity during the transition from 

embryo to vegetative (seedling) growth, as single or multiple mutants of vrn2 emf2 

(Schubert et al., 2005), clf swn (Chanvivattana et al., 2004) and fie (Bouyer et al., 2011) 

develop ectopic embryos on seedlings after germination. In the fie mutant, H3K27me3 

deposition seed regulatory genes (e.g. LEC2, ABI3, FUS3) is abolished genome-wide, leading 

to ectopic activation of their expression  (Makarevich et al., 2006; Bouyer et al., 2011). These 
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results suggest that these PRC2 work as a complex and target the same genes to repress 

embryogenic identity in vegetative tissue.  

PRC1 is also involved in repressing embryo identity in Arabidopsis during the transition to 

post-germination growth. The core component of PRC1A is a RING-finger protein that 

functions as an E3 ubiquitin ligases that catalyses H2AK119 ubiquitination (H2AK119u). 

There are five PRC1 RING-finger genes in Arabidopsis including two RING1 and three BMI1 

proteins. Double or triple RING finger mutants (bmi1a bmi1b, bmi1a bmi1b bmi1c and ring1a 

ring1b) form somatic embryos and show ectopic expression of embryo-specific genes in 

seedlings (Bratzel et al., 2010; Chen et al., 2010). The level of H2A monoubiquitination of 

these embryo-specific target genes is reduced in atbmi1a atbmi1b atbmi1c mutants, which 

suggest that PRC1 represses embryo identity in seedlings by catalysing H2AK119u (Bratzel et 

al., 2010; Yang et al., 2013). The clf mutant enhances the penetrance of somatic 

embryogenesis and enhances embryo-specific gene expression in the atring1a atring1b 

double mutant seedlings (Chen et al., 2010). BMI1 and RING1 can bind to each other and 

also bind to CLF, EMF1, which deposits the H3K27me3 mark (Turck et al., 2007; Zhang et al., 

2007; Xu and Shen, 2008; Bratzel et al., 2010; Chen et al., 2010). This suggests that PRC1 and 

PRC2 work as complex and play a crucial role in repression embryo traits in seedlings.  

A group of ATP-dependent chromatin-remodeling complexes also functions to repress 

embryo identity during vegetative growth. ATP-dependent chromatin-remodeling complexes 

alter the chromatin structure by using the energy of ATP hydrolysis to slide or track 

nucleosomes along DNA (Whitehouse et al., 1999), thereby change the accessibility of DNA 

to the transcriptional machinery. The ATP-dependent chromatin-remodeling complexes can 

be divided into three subfamilies: the SWI/SNF family, the Mi-2/CHD family and the ISWI 

family (Gentry and Hennig, 2014). PICKLE (PKL) encodes an ATP-dependent chromatin-

remodeling factor in the Mi-2/CHD subfamily. There are three homologs in Arabidopsis, 

PICKLE RELATED 1 (PKR1), PKR2 and PKR3, which all contain three domains: a chromo 

domain, a SNF2-related helicase/ATPase domain and a DNA-binding domain (Ogas et al., 

1999). The pkl mutant displays embryogenic traits in roots. These roots show up-regulated 

expression of embryo specific genes such as LEC1 and LEC2 (Ogas et al., 1999; Dean Rider et 

al., 2003) and can form somatic embryos (Ogas et al., 1997). PKL repression of embryo 

identity in vegetative tissues is associated with the repressive mark H3k27me3 on embryo-

specific genes (Zhang et al., 2008). pkl clf mutants display increased embryo-specific gene 
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expression and increased penetrance of the pkl root phenotype (Aichinger et al., 2009), 

which suggests that both PKL and CLF are required to repress embryo genes expression. 

Aichinger et al. (2009) suggested that PKL indirectly regulates H3k27me3 on embryo-

expressed genes by regulating EMF2, CLF, SWN expression. In contrast, Zhang et al. (2012) 

have shown that pkl does not exhibit decreased transcript levels of PRC2 components and 

that PKL is present in the promoter region of LEC1, LEC2 and FUS3. The differences between 

these two studies may be due to the use of the pkl mutant (Aichinger et al., 2009) compared 

to a PKL-complemented pkl mutant (Zhang et al., 2012). However, both studies found that 

PKL both up and down regulates H3K27me3-enriched genes, including seed genes, which 

suggests that PKL can act both as an activator and a repressor (Aichinger et al., 2009; Zhang 

et al., 2012).  

Other ATP dependent chromatin remodeling factors also play an important role in 

repressing seed storage genes and embryo-related genes in leaf tissue. Loss-of-function 

mutants of a SNF2 chromatin-remodeling ATPase BRAHMA (BRM), and a homolog of the 

yeast SWI3 subunit of in SWI/SNF complex (AtSWI3C), as well as an SNF5 homolog BSH 

display ectopic expression of embryo-related genes in leaf tissue. Chromatin 

Immunoprecipitation (ChIP) data indicates that BRM represses these embryo related genes 

by directly binding to them (Tang et al., 2008). These results suggest that chromatin 

remodeling plays a crucial role in repressing embryo identity in vegetative tissues. 

 
6.2 In vitro embryogenesis 

As outlined above, a large number of chromatin associated proteins regulate the 

transition from embryo to post-germination growth by repressing expression of key 

regulators of embryo development. Loss-of-function mutants of these regulators show 

spontaneous somatic embryogenesis, analogous to hormone or stress-induced somatic 

embryogenesis of cultured explants. In contrast, very little is known about the role of 

chromatin regulatory proteins during classical in vitro embryo culture. Changes in chromatin 

organization and modification are often associated with off phenotypes (somaclonal 

variation) in in vitro plant regeneration (Miguel and Marum, 2011), but there are few 

examples where chromatin level changes have been shown to play a direct role in vitro 

embryo induction or growth process. 
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The mechanism of epigenetic regulation in in vitro embryogenesis has been revealed by 

applying for chemicals that change epigenetic marks. In barley microspore embryogenesis, 

the DNA methylation inhibitors 5-azacytidine and ethionine enhance callus and embryo 

induction (Li et al., 2001). In contrast, in Coffea canephora, 5-azacytidine inhibits somatic 

embryo production by decreasing both DNA methylation and expression of LEC1 and BBM1. 

ChIP assays show that the H3K27me3 repressive mark is associated with reduced LEC1 and 

BBM1 expression (Nic-Can et al., 2013). These results suggest that DNA methylation regulate 

somatic embryogenesis. In Picea abies, TSA treatment enhances embryogenic competence 

for somatic embryogenesis by increasing the expression of embryo-related genes such as 

LEC1 and VIVIPAROUS1 (VP1) (Uddenberg et al., 2011). In Chapters 3 and 4, we show that 

HDACi treatment enhances embryogenic cell division and embryo yield in B. napus 

microspore culture (Li et al., 2014).  

Chromatin-associated proteins work alone or in a complex, to regulate chromatin 

dynamics and control gene transcription. Most of these factors appear to restrict totipotency 

in planta and during in vitro culture.  

 

7. Scope of the thesis 

The objective of this thesis was to improve our understanding of haploid embryogenesis. 

We focused on two aspects of haploid embryogenesis in B. napus, the role of chromatin 

modification and auxin-related processes in haploid embryo induction and embryo 

development. We have used several different techniques, e.g.marker analysis, chemical 

perturbation, genetic analysis and transcriptome analysis, to explore the roles of these 

processes in embryogenesis. The results of this thesis have provided insight into embryo 

identity and patterning in tissue culture, with implications for the normal establishment and 

growth of zygotic embryos. In addition, these fundamental studies have generated new tools 

in the form of chemical inhibitors that can be used to enhance haploid embryo development 

in other species (Haploid Embryogenesis, PCT/EP2013/069851). 

In Chapter 2, we summarize the major concepts that have arisen from many years of cell 

and molecular studies on microspore embryogenesis and put these in the context of more 

recent experiments and results obtained from the study of pollen and zygotic embryo 

development. 
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In Chapter 3, we describe the role of HDAC proteins in repressing totipotency during 

pollen development, using Brassica napus and Arabidopsis as model systems. Using a set of 

embryo-expressed GFP reporters and chemical perturbation of HDACs by TSA, we showed 

that TSA and heat-stress induced similar cellular changes in development, and likely impinge 

on the same developmental pathways. Genetic analysis in Arabidopsis showed that HDA17 is 

one of HDACs involved in repressing pollen totipotency, and likely acts redundantly with 

additional redundant HDACs. Immunoblot analysis showed that TSA induces increased 

acetylation of histone of H3 and H4 in microspore culture, suggesting that cell proliferation is 

induced by changes in chromatin marks, rather than by acetylation of non-histone proteins.  

In Chapter 4, we evaluate the effect of a group of HDACi with a similar mode of action as 

TSA on embryo induction and yield in B. napus microspore culture. We show that a subset of 

these HDACis are potent enhancers of microspore embryogenesis. The differential specificity 

of these various HDACi suggests that they target specific HDA proteins. Although HDACi 

treatment enhances microspore embryo yield, most of the embryogenic multicellular 

structures induced by HDACi treatment failed to form differentiated embryos. Therefore we 

performed a transcriptome analysis to identify developmental differences between well-

formed embryos and HDACi-induced embryogenic callus. We show that major regulators of 

embryo domain specification and patterning are down-regulated in embryogenic callus 

compared to control embryos. We also show that cytokinin and auxin signaling pathways are 

miss-expressed in these multicellular structures. In contrast, we also show that treatment 

with HDACi can have a positive effect on embryo patterning, by improving the quality of 

embryos obtained from older stages of donor pollen. This positive effect on embryo 

morphology was associated with improved apical basal patterning and an enhanced auxin 

response. Our results suggest that inhibition of HDAC activity for as short as 20 hours has an 

impact on later patterning events, perhaps by securing a better commitment to embryonic 

fate than heat-stress alone. 

In Chapter 5, we asked the question how microspores and pollen form patterned 

embryos in the absence of two key events that influence zygotic embryo patterning, an 

initial symmetric division and the formation of a suspensor. We describe the spatio-temporal 

expression of an embryo marker (GRP) and auxin markers (DR5, PIN1, PIN7) during 

microspore embryogenesis. We show that in suspensorless embryos, embryo identity was 

characterized by a (DR5) auxin response and is established before the first sporophytic 
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division. Embryo polarity in this system is established later than in zygotic embryos, at the 

globular stage, when the embryo is released from the surrounding exine. PAT was not 

required for embryo induction or apical-basal polarity establishment, but was required for 

cotyledon outgrowth and meristem functionality. Using the same markers, we show that 

suspensor-bearing embryo development proceeds in the same fashion as zygotic embryo 

development, even when cell divisions are irregular. PAT was required in this system, for the 

establishment of the embryo proper from the suspensor.  

In Chapter 6, the main findings of this thesis are summarized and placed in the broader 

context of the plant development field. We also discuss topics for future research, as well as 

the possible applications of our research results with respect to microspore embryogenesis 

in recalcitrant crops. 
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Abstract 

The developmental plasticity of plants is beautifully illustrated by the competence of the 

immature male gametophyte to change its developmental fate from pollen to embryo 

development when exposed to stress treatments in culture. This process, referred to as 

microspore embryogenesis, is widely exploited in plant breeding, but also provides a unique 

system to understand totipotency and early cell fate decisions. We summarize the major 

concepts that have arisen from decades of cell and molecular studies on microspore 

embryogenesis, and put these in the context of recent experiments, as well as literature 

obtained from the study of pollen and zygotic embryo development.  

 

Introduction 

In by far the majority of plants, embryogenesis takes place in the ovule after fusion of the 

female and male gametes (fertilization), and starts with the formation of the unicellular 

zygote. The zygote goes through species-specific cell division and histodifferentiation 

programs to form a morphologically complete embryo, that in its simplest form comprises a 

shoot and a root meristem, which will produce new plant organs after germination, a 

hypocotyl (embryonic stem), and one or more cotyledons.  

The plant kingdom is characterized by a high level of developmental plasticity, including 

the ability of plants to form embryos from cells other than the zygote. This phenomenon is 

referred to as totipotency, and may be expressed as part of the normal development of 

some plants, as in apomixis (reviewed by Barcaccia and Albertini, 2013), or may be induced 

in tissue culture. Two major types of in vitro totipotency are observed in plants, and are 

distinguished by the origin of the explant. Somatic embryogenesis is induced from vegetative 

tissues, and generates plants of the same ploidy and genetic composition as the donor plant 

(Zimmerman, 1993; Gaj, 2001; 2004; George et al., 2008). Another form of totipotency is 

gametophytic embryogenesis, in which either male or female gametes or their associated 

accessory cells are induced to form embryos (Reynolds, 1997; Bohanec, 2009; Seguí-Simarro, 

2010). These cells are derived post-meiotically, therefore the embryos that are produced in 

culture represent the haploid segregant progeny of the parent plant. In general, haploid 

embryo induction from the developing male gametophyte is more commonly applied and 

studied than from the female gametophyte. This is in part due to the large number of male 

gametophytes contained in a single anther compared to the single female gametophyte per 
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ovule, and in part due to the ease with which anthers and pure populations of developing 

male gametophytes can be isolated. In this review, we focus on haploid embryogenesis from 

the immature male gametophyte as one form of plant totipotency. Many different terms 

have been used to describe this form of gametophytic embryogenesis, including 

androgenesis, microspore embryogenesis and pollen embryogenesis. Here we use the more 

commonly used term ‘microspore embryogenesis’ to refer to the in vitro culture of the 

immature male gametophyte, regardless of the developmental stage of the cells that form 

embryos. 

The haploid embryos produced through microspore embryogenesis can be germinated 

and grown into mature plants, but these plants are sterile due to their inability to produce 

gametes with a balanced chromosome number after meiosis. Chromosome doubling, which 

occurs either spontaneously in culture or after the application of chromosome doubling 

agents such as colchicine, restores the ploidy level and fertility of the derived plant 

(reviewed by Castillo et al., 2009).  

Chromosome doubling of haploid embryos produces a plant that is homozygous at each 

locus in a single generation. These so-called doubled-haploid (DH) plants have been 

extensively exploited in plant breeding programs to increase the speed and efficiency with 

which homozygous lines can be obtained (reviewed in Germanà, 2006; Forster et al., 2007). 

DH technology is traditionally used to genetically fix parental lines for F1 hybrid production, 

for rapid introgression of new traits through backcross conversion and to develop 

immortalized molecular mapping populations. DH technology is also being used to fix traits 

obtained through transformation and mutagenesis, to simplify genome sequencing by 

eliminating heterozygosity, and for reverse breeding (Dirks et al., 2009; Ferrie and Möllers, 

2011). 

The utilization of microspore embryogenesis as a biotechnology tool has been extended 

to a relatively diverse range of plants (Maluszynski et al., 2003; Ferrie and Caswell, 2011). 

The ability to form haploid embryos is highly species and genotype dependent, therefore 

protocols need to be developed or fine-tuned on a case-by-case basis. The decisive tissue 

culture parameter required to induce embryogenic growth is the application of a stress 

treatment, usually temperature, nutrient or osmotic stress, either alone or in combination 

(reviewed by Shariatpanahi et al., 2006a; Islam and Tuteja, 2012). Although DH production is 

widely exploited, there are often one or more bottlenecks that need to be overcome before 
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an efficient system can be established for a specific crop or genotype. The major bottlenecks 

in DH production are the lack or low efficiency of haploid embryo induction and the poor 

conversion of embryos to seedlings (Germanà, 2006), and in cereals, the high frequency of 

albino plants (reviewed by Kumari et al., 2009; Torp and Andersen, 2009). Even though the 

use of microspore embryogenesis has been extended to many plant families (Ferrie et al., 

2011; Seguí-Simarro et al., 2011; Ferrie, 2013) there are still species of agronomic (tomato, 

cotton) or scientific relevance (arabidopsis) that remain recalcitrant to this process.  

The regenerative competence of plant cells is widely exploited at a practical level, but a 

deeper mechanistic understanding of the molecular basis for plant totipotency is lacking. 

Many studies have focused on understanding the cellular and molecular basis of microspore 

embryogenesis, however the mechanism underlying this cell fate change is still largely 

unknown. Historically, two dicot plants (Brassica napus and tobacco) and two monocot 

plants (barley and wheat) have served as models for these studies. This review will focus on 

the recent advances that have been made in understanding the developmental and 

molecular changes that take place during microspore embryogenesis in these model systems, 

and will use the knowledge gained from studies on other stages of plant development as a 

framework to better understand this process. First, we will address the commonly reported 

cellular changes associated with the establishment of embryo cell fate and evaluate their 

validity across species and culture conditions. Next, we will discuss how haploid embryos 

histodifferentiate; specifically what is known about the establishment of polarity, with 

emphasis on the importance of exine rupture as a positional clue, and the processes that 

influence meristem maintenance during culture. Finally, the studies on the molecular 

changes during microspore embryo induction will be put in context of male gametophytic 

development. Overall, the current perspective on microspore embryo initiation presents a 

landscape in which several routes can lead to the same final destination. This intrinsic 

variability needs to be taken into consideration when trying to understand the basis of this 

developmental switch.  

 

Embryo fate determination in vitro 

The male gametophyte or pollen grain is a two to three-celled structure. Male 

gametophyte development is initiated after meiotic division of the pollen mother cell. The 

four products of meiosis, the microspores, each undergo two mitotic divisions to form the 
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mature trinucleate male gametophyte. The first mitotic division is pollen mitosis I (PMI), 

where the unicellular microspore (Fig. 1a) divides asymmetrically to form a large vegetative 

cell and a small generative cell (Fig. 1b). The vegetative cell arrests in the G1 phase (Bino et 

al., 1990), while the generative cell divides at pollen mitosis II (PMII) to produce a pollen 

grain with two sperm cells and a vegetative cell (Borg et al., 2009). Depending on the species 

PMII can take place inside of the anther, or during pollen germination (Reynolds, 1997). 

The pollen grain is a terminally differentiated structure, but can be induced to continue 

dividing and form haploid embryos in culture. Sunderland and Evans (1980) and Raghavan 

(Raghavan, 1986) identified five major pathways that are considered to support embryo 

development. Multinucleate structures can be generated by division of the uninucleate 

microspore (B pathway), or in young pollen grains by division of the vegetative cell and/or 

generative cell (A and E pathways). In some plants nuclear fusion between the vegetative 

cell and the generative cell prior to division (C pathway), as well as the initial formation of a 

syncytium (D pathway) has also been described. Sporophytic structures formed by division of 

the microspore are commonly found in B. napus (Zaki and Dickinson, 1991), wheat (Indrianto 

et al., 2001), barley (Pulido et al., 2005) and tobacco (Sunderland and Wicks, 1971). 

Sporophytic development through division of the vegetative cell accompanied by generative 

cell degeneration is also common (Sunderland and Wicks, 1971; Sunderland, 1974; Fan et al., 

1988; Reynolds, 1993). Reports of multicellular structures comprised of only generative-like 

cells are scarce, although multinucleate structures comprised of both generative-like and 

vegetative-like nuclei can be observed in various species including B.napus (Fan et al., 1988), 

soybean (Kaltchuk-Santos et al., 1997), wheat (Szakács and Barnabás, 1988; Reynolds, 1993), 

barley (González and Jouve, 2005) and pepper (González-Melendi et al., 1996; Kim et al., 

2004). These different pathways often coexist in the same cultures at varying frequencies 

depending on the species, the stage of male gametophyte development and the stress 

treatment (Custers et al., 1994; Kasha et al., 2001). It is not clear whether all of these 

pathways lead to the formation of viable embryos. For example in wheat it was suggested 

that symmetric divisions (equally sized nuclei) of the immature gametophyte (Fig. 1e) would 

preferentially lead to embryo formation while sporophytic structures containing both 

generative and vegetative like-nuclei would preferentially form callus (Szakács and Barnabás, 

1988). However, strong evidence to support this conclusion in this and other species is   
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Fig. 1. Developmental pathways observed in B. napus and Triticum aestivum microspore culture. 

 (a-c) Male gametophyte development in B. napus. (a) Microspore; (b) binucleate pollen with a large vegetative 

nucleus (vg) and a smaller generative nucleus (g); and (c) trinucleate pollen with a vegetative nucleus and two 

smaller sperm nuclei (s). 

(d-l) Sporophytic structures in B. napus (d-h, and l) and wheat (T. aestivum) (i-k). (d) Callus-like structure; (e) 

symmetrically divided microspore with two equally-sized nuclei; (f) multinucleate structure lacking clear 

organization that is still enclosed within the exine; (g) globular-stage embryo with a well-defined protoderm; (h) 

suspensor-bearing embryo; (i) star-like morphology after stress treatment; (j) multicellular structure with two 

distinct domains; (k) multicellular structure breaking out of the exine and (l) microspore-derived embryo at the 

cotyledon stage. The nuclei in a-h are stained with the nuclear dye 4’, 6-diamidino-2-phenylindole (DAPI). 

White arrows indicate the localization of the exine remnants. Black arrows indicate the small generative-like 

domain in wheat.  

 

lacking, and the contribution of the different division pathways to the formation of embryos 

or other types of developmental is not known. 

In most species, the stages of pollen that is most responsive for embryo induction are just 

before or just after PMI, although the exact window of competence is species and even 

genotype specific (Raghavan, 1986; Bhowmik et al., 2011). After PMII the pollen grain enters 

a highly specialized transcriptional program that is different from that of both the 
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microspore/binucleate pollen grain and other sporophytic tissues (see below) (Honys and 

Twell 2003). These differentiated pollen grains undergo less cell death in culture, most likely 

because they are more stress resistant than microspores (Thakur et al., 2010), but at the 

same time they are more resistant to embryogenic induction. A compromise between a low 

degree of differentiation and stress resistance might be necessary to induce embryogenesis. 

Alternatively, the competence for embryo induction around PMI could be explained by the 

ability of the microspore or immature pollen grain cell to divide; microspores near PMI can 

proceed with division under stress, while younger and older stages cannot, respectively,  

enter or re-enter the division phase (Reichheld et al., 1999; Giménez-Abián et al., 2004). It is 

interesting to note that culture conditions also affect the optimal stage that is responsive to 

induction. For example, anther culture has recurrently been shown to require earlier stages 

of microspore development than isolated microspore culture (Duijs et al., 1992; Hoekstra et 

al., 1992). Anther tissues could provide a better environment in which microspores at early 

stages can develop, by providing nutrients and protection against stress. The anther wall has 

been proposed to isolate the microspores from the culture medium and delay the timing of 

induction, necessitating the use of earlier stages as starting material (Hoekstra et al., 1992; 

Salas et al., 2012). Lastly, microspore isolation represents an added physical stress compared 

to anther culture (Shariatpanahi et al., 2006b) and therefore might be more effective for late 

stages of pollen development that require a more intense stress treatment (Binarova et al., 

1997). 

Microspore embryos are formed in most species by a series of randomly oriented 

divisions within the surrounding exine wall. The exact point of commitment to embryo 

development remains unclear, therefore the initial stages are often referred to as 

sporophytic growth (Fig. 1e), while multicellular, compact structures enclosed in the exine 

are referred to as both sporophytic structures or embryos (Fig. 1f). Upon rupture of the 

surrounding exine, a globular embryo is released that comprises a multicellular cluster of 

cells, with no evident organization and little similarity to its zygotic counterpart, with the 

exception of a well-defined protoderm (Fig. 1g). The formation of the protoderm is 

considered a marker for embryo formation (Telmer et al., 1995), and at this point compact 

structures with a protoderm are normally referred to as embryos, embryoids or embryo-like 

structures (ELS). Eventually these structures develop into histodifferentiated embryos that 

contain all the tissues and organs found in zygotic embryos produced in planta (Yeung et al., 
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1996; Ilid-Grubor et al., 1998). Most embryos are globular in shape without clear apical-basal 

poles and lack a suspensor structure, or have a rudimentary suspensor formed by few cells. 

In B. napus it is possible to obtain microspore embryos that show a similar, highly organized 

pattern of cell division as zygotic embryos. In this pathway, a suspensor-like filament is 

formed by repeated transversal divisions of the microspore, followed by the formation of 

the embryo proper at the distal end of the suspensor (Fig. 1h). The production of this type of 

embryo has been optimized in B. napus (Joosen et al., 2007; Supena et al., 2008; Prem et al., 

2012).  

Not all the cultured microspores undergo sporophytic development, and of the 

microspores that initially switch to sporophytic growth, only a small percentage is able to 

form embryos. For example, in the model B. napus line Topas DH4079, around 40% of the 

initial population divides sporophytically, while the remaining 60% has a gametophytic 

identity. The final embryo yield is much lower than the initial 40% sporophytically-divided 

structures (usually around 5 to 10%). The majority of sporophytic structures stop growing 

after a few divisions and die, or form callus-like structures that also eventually die (Fan et al., 

1988; Telmer et al., 1995; Fig. 1d). In cereals, a high percentage of the microspores divide 

sporophytically, but form callus rather than embryos (Olsen, 1987; Fadel and Wenzel, 1990; 

Castillo et al., 2000; Massonneau et al., 2005).  

 

Changes in cellular organization 

The main problem associated with defining cellular and morphological traits related to 

microspore embryogenesis is the heterogeneity of responses observed in culture. As 

mentioned above, after the stress treatment used to induce embryogenesis, many 

microspores arrest, divide sporophytically or continue gametophytic development. The 

microspores that divide sporophytically have different fates; some stop development after a 

few divisions, some form callus-like structures, and only a small percentage form embryos. 

Classical cell biology studies have helped to define some of the cellular characteristics of 

embryogenic cells, although a direct link between cellular changes and cell fate is difficult to 

establish as these studies are invariably performed on fixed material (Zaki and Dickinson, 

1991; Simmonds and Keller, 1999). A few studies have followed the development of 

microspore cultures using time-lapse imaging and have provided a clearer, although often 

contradictory picture of the traits that characterize embryogenic microspores and the early 
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events during embryo induction, as described below (Indrianto et al., 2001; Maraschin et al., 

2005b; Daghma et al., 2012; Tang et al., 2013). 

The microspores of most species are competent to form an embryo around PMI. At this 

stage microspores are vacuolated and have a peripherally-located nucleus. It has been 

proposed that one of the first effects of stress treatments on cultured microspores is the 

rearrangement of the cytoskeleton, with the displacement of the nucleus to the centre of 

the cell and the formation of a preprophase band of microtubules (which is absent during 

normal pollen development) that marks the plane of division (Telmer et al., 1993; Simmonds 

and Keller, 1999). The application of chemical agents, such as colchicine, cytochalasin D or n-

butanol has shown that the rearrangement of the microtubule and actin networks plays a 

major role in cell fate decisions, since disruption of these networks enhances or is sufficient 

to trigger embryo formation in the absence of a stress treatment (Zaki and Dickinson, 1991; 

Szakács and Barnabás, 1995; Zhao et al., 1996; Gervais et al., 2000; Soriano et al., 2008). 

These cytoskeletal rearrangements drive the displacement of the nucleus to the centre of 

the cell, resulting in a star-like morphology in which the central nucleus is surrounded by 

cytoplasmic strands radiating away from the nucleus (Gervais et al., 2000). This star-like 

morphology has been described in several model systems, and is considered the first sign of 

embryogenic induction (reviewed by Maraschin et al., 2005a). Live cell imaging of 

immobilized microspores in wheat and barley showed that a star-like morphology is 

associated with cell division (Indrianto et al., 2001; Maraschin et al., 2005b), but is not 

always a reliable marker of embryogenesis, since it can also be observed in cultured 

microspores that do not form embryos (Maraschin et al., 2005b; Daghma et al., 2012; Żur et 

al., 2013). Maraschin et al. (2005b) related embryo formation with a subpopulation of 

microspores in which a star-like morphology appeared later than the majority of the 

microspores in culture, while Daghma et al. (2012) showed that the star-like morphology can 

be followed by PMI and starch grain filling, which are both characteristics of pollen 

development.  

Another cellular marker that is often associated with embryo induction is an initial 

symmetric division of the microspore (Fig. 1e) or the vegetative nucleus of the binucleate 

pollen grain. The occurrence of this type of division has been reported in a wide range of 

monocots and dicot species including B. napus (Zaki and Dickinson, 1990; Telmer et al., 

1993), tobacco (Sunderland and Wicks, 1971), wheat (Indrianto et al., 2001) and barley 
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(Pulido et al., 2005), and has been correlated with the positive effect of some inducing 

treatments on embryogenesis, including the application of antimicrotubule agents or heat 

stress (Zaki and Dickinson, 1991; Szakács and Barnabás, 1995). An initial symmetric division 

is a recurrent observation in embryogenic microspore cultures, unfortunately, there is no 

reliable data that correlates the occurrence of a symmetric division with the embryonic 

potential or embryo development, especially in cereal species (Barnabás et al., 1999; 

González and Jouve, 2005). Recently, time-lapse imaging studies in B. napus showed that 

both symmetric and asymmetric divisions can support embryo growth, indicating that cell 

fate and division symmetry are not tightly coupled (Tang et al., 2013). In agreement with this, 

pollen that undergoes a symmetric division shows defects in the specification of the 

generative cell, but not a change in pollen cell fate per se (Tanaka and Ito, 1981; Eady et al., 

1995; Touraev et al., 1995; Twell et al., 1998). 

Recently it was shown that embryogenic structures in B. napus undergo autophagy and 

cytoplasmic remodeling (Corral-Martínez and Seguí-Simarro, 2012). This massive excretion 

of cell material in embryogenic microspores in B. napus, together with the specific up-

regulation of the 26S proteasome system found in barley embryogenic microspores 

(Maraschin et al., 2006), highlights the importance of the remodeling of cellular content as 

an essential first step toward elimination of gametophytic organization and progression to a 

new cell fate.  

In general, the classical markers associated with embryogenic microspores, such as a star-

like morphology or an initial symmetric division cannot be considered reliable enough for 

early identification of the microspores that will form embryos. Moreover, the use of these 

morphological markers in low responding genotypes is challenging because it requires the 

initial screening of an enormous amount of cells (Daghma et al., 2012). Other morphological 

differences that have been correlated with embryogenic growth, including a thin inner layer 

of the pollen wall (intine) and lack of amyloplasts are difficult to confirm using light 

microscopy and time-lapse imaging (Zaki and Dickinson, 1991; Telmer et al., 1995; Maraschin 

et al., 2005b). The combination of cell tracking with the use of vital stains to visualize cell 

viability, nuclear morphology or other cellular processes would be a valuable tool to identify 

early events of embryo induction. Likewise, the information generated on the molecular 

changes that take place in various microspore culture systems can be used as a starting point 

to generate reporter lines in which fluorescent reporter proteins can be tracked in real time. 
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Developmental fates 

In B. napus, haploid embryo formation is characterized by repeated randomly-oriented 

divisions inside the exine. The multicellular cluster that develops continues dividing until the 

pollen wall stretches and breaks, releasing a globular structure (Fig. 1f, g). In addition to 

these randomly divided embryo clusters with no distinct apical and basal domains, the 

appearance of embryos with clear apical-basal polarity, in the form of an apical embryo 

proper and a distal suspensor-like structure, was occasionally reported (Hause et al., 1994; 

Ilid-Grubor et al., 1998; Yeung, 2002). These suspensor-like structures comprise clusters of 

larger cells, short rudimentary filaments, or uniseriate filaments attached to the root pole of 

the embryo. Recently a microspore culture system was developed in B. napus cv. Topas 

DH4079 in which a high frequency of embryos bearing a suspensor structure could be 

obtained (Joosen et al., 2007; Supena et al., 2008). This system uses a milder and shorter 

stress treatment and produces a higher frequency of embryos with long uniseriate 

suspensor, as in zygotic embryos of B. napus. These embryos are initiated by multiple 

transverse divisions that protrude out of the exine through an aperture or furrow, and that 

continue dividing outside of the exine wall to form a file of cells. The distal cell divides 

longitudinally and produces the embryo proper (Fig. 1h).  

The formation of a suspensor is important in the development of zygotic embryos to 

position the embryo inside of the seed, transport nutrients from the endosperm, and 

provide hormones to support embryo growth (Yeung and Meinke, 1993). Moreover, it was 

shown that early patterning in microspore-derived embryos that contain a suspensor is more 

similar to that of zygotic embryos, pointing to a novel function of the suspensor in 

supporting early cellular patterning in the embryo proper. The occurrence of suspensor-

bearing embryos has also been reported in microspore embryos of wheat (Rybczynski et al., 

1991), but in monocots the morphology of the suspensor in zygotic embryos is generally 

more unorganized than in arabidopsis and B. napus (Bommert and Werr, 2001; Guillon et al., 

2012), which could make it difficult to identify them in vitro.  

The occurrence of callus-like growth often takes place side-by-side with embryo 

formation (Fan et al., 1988; Telmer et al., 1995; Custers et al., 1999; Massonneau et al., 

2005). In tobacco, multicellular structures were described that emerge prematurely from the 

exine and stop growing or develop into callus (Sunderland and Wicks, 1971). At least two 

types of disorganized sporophytic structures have been described in B. napus. One type of 
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disorganized structure has a high lipid and starch content and a thick intine, and stops 

dividing inside of the exine or just after it protrudes from the exine. The other type is 

comprised of loosely connected masses of large, multinucleate cells that eventually stop 

dividing (Fan et al., 1988; Telmer et al., 1995). In maize and barley some microspores divide 

to produce embryogenic calli with varying degrees of regenerability (Stirn et al., 1995; 

Massonneau et al., 2005). The cellular fate of these callus-like structures, whether they are 

initially embryogenic, gametophytic or have mixed identity is not known. In general, it 

remains unclear whether callus and other cell types observed in microspore culture are 

formed because the initial divisions lose their embryogenic capacity, as in eggplant (Corral-

Martínez and Seguí-Simarro, 2012), or if these types of divisions were never embryogenic. 

The two distinct forms of sporophytic development corresponding to embryo and callus 

formation can be differentiated in tobacco and B. napus microspore culture using a 

35SCaMV::GUS reporter (Custers et al., 1999). The 35S promoter is expressed during the 

vegetative phase of development, but it is not active during male gametophyte development 

or during early embryo growth before the heart stage. Therefore the expression of this 

reporter provides a means to differentiate sporophytic microspore divisions that are not 

committed to the embryogenic pathway. Accordingly, GUS activity driven by the 35S 

promoter marked callus structures that did not develop into embryos in a low responding 

cultivar of B. napus, while it was absent in embryogenic structures. In tobacco, 

35SCaMV::GUS reporter marked an early stage of sporophytic development prior to embryo 

development. This suggests that the establishment of embryogenesis could take place by 

different developmental pathways, with a more direct switch in B. napus and an 

intermediate callus stage in tobacco.  

 

Polarity establishment and histodifferentiation 

Embryogenic microspores show variability in their ability to undergo further growth and 

differentiation. The development of high quality, histodifferentiated embryos with 

functional meristems is of major importance for the regeneration of DH plantlets, and can be 

a limiting step in embryo production in some species and genotypes. The most important 

steps in embryo formation are 1) the establishment of apical-basal polarity, 2) the 

acquisition of radial polarity and formation of three main tissue layers (epidermis, cortex and 

endodermis) by periclinal divisions, and 3) the transition to bilateral growth (with one plane 
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of bilateral symmetry in monocots and two in dicots), characterized by outgrowth of the 

cotyledons (dicots) or scutelum (monocots) and the establishment of the shoot apical 

meristem (Bommert and Werr, 2001; Sabelli, 2012).  

Cell division and pattern formation during zygotic embryogenesis in plants has been 

extensively described and studied, particularly in arabidopsis. The organization of the 

embryo is initially influenced by positional clues that are present prior to fertilization in the 

female gametophyte. In arabidopsis, the egg cell is already polarized, but briefly loses its 

polarization upon fertilization (Ueda et al., 2011). Subsequent changes in the organization of 

the cytoplasm and cell wall after fertilization (Mansfield and Briarty, 1991; Mansfield et al., 

1991) give rise to the zygote, which has a vacuolated polar structure (reviewed by Dodeman 

et al., 1997; Zhang and Laux, 2011). Initially, the zygote elongates and then divides 

asymmetrically to form a large basal cell that will become the suspensor and the hypophysis, 

and a smaller apical cell that will form the embryo proper. While cell division and pattern 

formation in many species is a highly ordered and tightly regulated process, other species 

undergo less ordered division patterns with more variation in cell division planes, although a 

suspensor structure is always formed (Maheshwari, 1950). The existence of variable division 

patterns suggests that cell specification is determined not only by cellular ontogeny but also 

by cell position, raising the question as to the importance of these controlled divisions for 

embryo development per se (Kaplan and Cooke, 1997).  

The importance of the division pattern for zygotic embryo growth is illustrated by the 

large number of arabidopsis mutants that show altered cell division during early 

embryogenesis leading to defects in embryo formation. For example, knolle mutants, which 

lack an epidermal cell layer, cannot grow into a normal embryo and are defective in the 

establishment of the apical-basal axis (Mayer et al., 1991). Both fass and fackel mutants are 

unable to orient their division planes. However, while the fackel mutant shows 

mislocalization of the meristems and is seriously compromised in embryo development 

(Schrick et al., 2000), in the fass mutant, the distinct cell identities are correctly established, 

although they cannot be identified morphologically. These observations suggest that in some 

cases, an ordered series of cell division is not required for differentiation (Torres-Ruiz and 

Jurgens, 1994). In maize, seven out of ten mutants defective in the first asymmetric division 

of the zygote failed to develop an embryo proper (Sheridan and Clark, 1993). Therefore, 

even in monocots species, where embryo divisions are not as tightly ordered as in 
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arabidopsis, early embryo patterning during seed development can be decisive for later 

embryo development.  

The initial morphology of in vitro cultured embryos, whether derived from somatic or 

gametophytic tissue, is generally much less organized than their zygotic counterparts (Yeung 

et al., 1996; Mordhorst et al., 1997). The initial embryonic divisions of microspore embryos 

are random and produce a cluster of cells in which different cell types cannot be readily 

distinguished (Fan et al., 1988; Telmer et al., 1995; Yeung et al., 1996). A suspensor is 

generally not formed. The development of the globular structure begins to mimic that of 

zygotic embryos once the embryos break out of the exine, and is marked by the 

establishment of a protoderm layer (Telmer et al., 1995). In maize, the epidermal marker 

LTP2 was specifically expressed in embryo forming structures and not in callus (Massonneau 

et al., 2005). The formation of a protodermal layer is followed by the enlargement of the 

apical region, and by a transition stage in which the cotyledons (or the scutellum) start to 

form (Yeung et al., 1996; Ilid-Grubor et al., 1998; Maraschin et al., 2003). It is not clear how 

apical-basal polarity is established in microspore embryos, i.e. whether it is established in 

the microspore, during the first sporophytic divisions inside of the exine, or later in 

development. In somatic embryos, the surrounding tissues (when present) can provide 

positional clues, but polarity can also be established in the absence of such tissue. Also, 

gradients of exogenously applied plant hormones can be established and direct embryo 

growth and division (Friml et al., 2003). Microspore embryos can develop in the absence of 

external hormones and sporophytic tissues. The question then arises as to how these 

unorganized structures form a complete embryo in the absence of an initial formative 

division and without a supporting suspensor or external positional clues.  

 

Pre-existing polarity cues 

In contrast to zygotic embryos, the first embryogenic division in microspore culture is 

often symmetric (Simmonds and Keller, 1999; Zhang and Laux, 2011). It was proposed by 

Hause et al. (1993) that an initial asymmetric cell division was not required in microspore 

embryogenesis because of the high degree of polarization that is already present in the 

microspore. In cereals, microspores are polarized due to the presence of a single round 

aperture in the pollen wall. In agreement with this observation, in cereals, early 

embryogenic multicellular structures contained within the exine are often characterized by 
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two heterogeneous cell domains; a smaller domain comprised of small, dense cells, and a 

larger domain comprised of larger cells (Bonet and Olmedilla, 2000; Magnard et al., 2000; 

Testillano et al., 2002; Maraschin et al., 2005c; Dubas et al., 2010). In maize, the large 

domain shows similarity to endosperm, including a coenocytic organization with incomplete 

cell walls, synchronous cell division, vacuolated cytoplasm and starch granules (Testillano et 

al., 2002). Endosperm-specific gene expression was detected in these structures, but was not 

restricted to the endosperm-like domains (Massonneau et al., 2005). The microspores of 

dicots like B. napus also show polarized development, with a central vacuole and the nucleus 

localized to the periphery. However, unlike cereals, embryogenic structures in B. napus are 

usually uniform clusters of cells in which no distinct domains can be distinguished (Fan et al., 

1988; Joosen et al., 2007).  

The formation of suspensors in B. napus could arise due to pre-existing polarity factors in 

the microspore that remain after exposure to a mild stress (Supena et al., 2008). In 

microspores subjected to a longer and stronger heat stress, polarity clues from the 

microspore would be erased and result in symmetric division of the microspore and the 

formation of randomly divided structures. It was also suggested by Straatman et al. (2001) 

that suspensor- like structures result from aberrant growth induced by the early rupture of 

the microspore exine wall. Interestingly, recent work by Tang et al. (2013) suggests that the 

partial breakage of the exine increases the formation of suspensor-bearing embryos. 

Therefore it would be reasonable to think that polarity clues derived from specific 

characteristics of the microspores (i.e. cell wall properties, remnants of cellular organization), 

and/or by the early rupture of the pollen wall, could trigger the formation of polarized 

suspensor structures. 

 

Exine rupture 

Exine rupture is an important step in microspore embryo growth. Most of the sporophytic 

divisions that fail to form an embryo stop dividing before the exine ruptures (Maraschin et 

al., 2005c) or when it breaks prematurely (Sunderland and Wicks, 1971; Telmer et al., 1993). 

Several reports have shown that the site of rupture plays an important role in polarity 

establishment. Regardless of the species, exine remnants often remain attached to the root 

pole, suggesting that the apical domain of the embryo coincides with the site of exine 

rupture (Hause et al., 1993; Ilid-Grubor et al., 1998; Indrianto et al., 2001; Tang et al., 2013). 
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In B. napus, the male gametophyte contains three pollen apertures and two types of exine 

rupture during microspore culture have been described; type I in which the cells grow and 

increase volume, protruding out of the apertures and type II in which the structure grows in 

a uniform way producing the even stretch of the exine (Nitta et al., 1997). It is not known 

whether preexisting polar growth drives the site of exine rupture or if polarity is established 

as a consequence of the differential rupture. The first morphological sign of polarity 

establishment in B. napus is the disappearance of starch granules at the site of exine rupture, 

which will become the future apical pole (Hause et al., 1994). Studies in brown algae (Fucus) 

embryos show that the cell wall provides positional information to establish a polar axis and 

orient the first cell division plane of the zygote, and that differences in cell wall composition 

are important for cell fate determination (Belanger and Quatrano, 2000). Localized vesicular 

secretion is essential for remodeling of the cell wall and for the establishment of polarization 

in Fucus, and has also been shown to be important in vascular plants for polar transport of 

the morphogen hormone auxin (Belanger and Quatrano, 2000; Geldner et al., 2003). The cell 

wall changes that characterize the switch to microspore embryogenesis, include the 

moderate growth of the innermost pecto-cellulosic wall and intine (Telmer et al., 1995; 

Bonet and Olmedilla, 2000; Schulze and Pauls, 2002; Solís et al., 2008), an increase in pectin 

esterification (Bárány et al., 2010), and the differential localization of arabinogalactan 

epitopes (El-Tantawy et al., 2013). These or other changes in the cell wall properties could be 

important for the ability of induced microspores to develop into embryos and require 

further study. The role of the cell wall and other structural cell components in the regulation 

of plant growth is receiving increasing attention, especially in light of their importance as 

mediators of mechano-stress signaling and the regulation of organ growth (Braybrook and 

Peaucelle, 2013) and references therein).  

Premature exine rupture seems to be detrimental to further embryo growth. However, in 

B. napus suspensor-bearing embryos, the exine ruptures after only a few cell divisions, but 

the suspensor filament develops and is thought to emerge through one of the pollen 

apertures. Microspores with a partially broken pollen wall, so-called exine-dehisced 

microspores (EDM) can be obtained by breaking the exine by physical stress. The EDM 

elongates and protrudes of out of the ruptured site and often gives rise to the formation of 

well-developed suspensor embryos (Tang et al., 2013). The orientation of the first division 

plane in these EDM is predominantly transversal to the axis marked by exine rupture (which 
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is defined by the remnants of the exine in one extreme of the cell), and therefore it has been 

proposed that the location of exine rupture determines the division plane via mechanical 

stress. This work, together with the observations of Hause et al. (1994) show that in B. napus 

the site of exine rupture can direct the polarity axis of the embryo, and points to a role for 

the pollen wall in microspore embryo organization. 

In barley microspores, which have only one aperture, the embryo consistently breaks out 

of the exine at the side opposite to the aperature. This process has been proposed to be 

regulated by cell death of the small cell domain, which is localized at the site of rupture 

(Maraschin et al., 2005c). In barley, the small cell domain has been associated with repeated 

division of the generative cell and its presence is important to promote exine rupture: 

homogeneous multicellular structures that lack this domain fail to break the exine and do 

not develop further (Maraschin et al., 2005c). The question that remains is how this cell 

death process is regulated, i.e. whether it is the cause or consequence of exine rupture. It 

would be interesting to determine if PCD is regulated in systems were morphological distinct 

domains might be absent prior to pollen wall rupture, such as B. napus. It is clear that in 

some cases the establishment of polarity precedes rupture of the microspore wall and 

determines both the site of the rupture and the orientation of the body axis of the embryo. 

However there is increasing evidence for the role of the pollen wall in defining the apical-

basal axis. The variability that seems to operate in different species should be explored to 

gain insight into the pathways that lead to plant and embryo polarity and self-organization.  

 

Maintenance of meristem integrity  

Once the exine breaks, the main tissue layers of the embryo are formed, which include 

the protoderm, the procambium and the ground tissue layers that will form, respectively, 

the epidermis, the vascular tissue and the parenchyma. The apical-basal axis of the embryo 

is established by the formation of the meristems. Although embryos produced in vitro 

initially develop well-formed meristems, these meristems may degenerate later in culture 

(Stasolla et al., 2008). Embryos that contain degenerated meristems cannot be converted 

directly into plants. This degeneration primarily affects the shoot apical meristem (SAM) and 

is characterized by acquisition of parenchymous features such as the formation of 

intercellular spaces and vacuolation, as well as loss of meristem identity (Belmonte et al., 

2005). (2005; Belmonte et al., 2006) proposed that the degeneration of the meristems 
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during in vitro culture was due to the requirement for a more oxidized environment during 

late embryo development. In agreement with this hypothesis, abnormalities in SAM 

organization that are observed in the late phases of microspore embryo development can be 

rescued by a lower cellular redox state, obtained by chemical inhibition of de novo 

glutathione synthesis (by application of buthionine sulfoximine, BSO), or by treatment with 

the oxidized form of glutathione (2006; Belmonte et al., 2011). Glutathione and ascorbate 

are molecules with both oxidized and reduced forms that play a role in the detoxification 

and scavenging of reactive oxygen species, and in the regulation of the redox cellular state. 

BSO treatment affects ascorbate metabolism, producing lower ascorbate levels in treated 

embryos, and activated expression of meristem-specific genes including ZWILLE, 

SHOOTMERISTEMLESS, and ARGONAUTE 1 (Stasolla et al., 2008). The more oxidized 

environment produced by BSO also reduces the level of ethylene and induces gene 

expression associated with the embryo maturation phase of zygotic embryo development, 

including ABA response proteins and late-embryogenic abundant (LEA) proteins. Overall, the 

change in redox status during embryo development produces a metabolic switch needed for 

the embryos to reach maturity. This change is proposed to be mediated by an ABA response, 

since ABA treatment produces similar effects on embryo maturation and conversion 

frequencies (Belmonte et al., 2006; Ramesar-Fortner and Yeung, 2006).  

Enhancement of proper SAM functionality in microspore embryos was also attained by 

the overexpression of SHOOT MERISTEMLESS (STM), a Class I knotted-like homeodomain 

transcription factor that functions in SAM initiation and maintenance (Barton and Poethig, 

1993). STM overexpression maintains expression of cell cycle machinery genes and 

characteristics of meristematic cells, while repressing the cell wall modifications typical of 

cell differentiation (Elhiti et al., 2013). Overexpression of STM induced expression of known 

embryogenesis regulatory genes and also reduced reactive oxygen species (ROS) by the 

increase in scavenging enzyme activity, and by increased ascorbic acid (Elhiti et al., 2013). 

Elhiti et al. proposed that STM delays cellular differentiation through a decrease in ROS 

levels and by reducing cell wall rigidity.  

It has been proposed that the maintenance of cellular brassinosteroid levels is required 

for the formation of functional apical meristems. This view is supported by the increase in 

the number and quality of microspore-derived embryos upon treatment with externally 

applied brassinolide, whereas treatment with brassinazole, a brassinosteroid biosynthetic 
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inhibitor, has the opposite effect (Belmonte et al., 2011). Interestingly, upon brassinazole 

treatment the ascorbate and glutathione pools in microspore embryos switch toward an 

oxidized state, supporting a role of brassinosteroids in the regulation of the redox state 

during embryo development. A role for brassinosteroids in control of the cellular redox state 

of the SAM during the transition to the maturation phase of development in zygotic embryos 

has not been described. 

 

Molecular control of haploid embryo induction 

The developmental starting point for microspore embryogenesis is the male 

gametophyte. Therefore, to understand the molecular basis for haploid embryo induction, 

this change in development must be placed in the context of the normal pathway of pollen 

development.  This comparison is especially important, when one considers that the vast 

majority of cultured microspores and pollen do not form embryos, but rather continue 

gametophyte development or arrest and die.  

The developmental stage of the immature male gametophyte is a critical factor that 

influences the embryogenic potential. Transcriptome analyses in arabidopsis (Honys and 

Twell, 2004) and wheat (Tran et al., 2013) have shown that the transcriptomes of 

microspores and bicellular pollen are highly similar. Their transcriptomes show little overlap 

with that of mature pollen, but rather are more similar to those of other sporophytic stages 

of plant development (Honys and Twell, 2004; Joosen et al., 2007; Whittle et al., 2010; Tran 

et al., 2013). The microspore transcriptome is characterized by a higher proportion of 

transcripts encoding structural proteins, as well as proteins involved in translation and 

metabolism (Whittle et al., 2010). As pollen matures, there is a shift toward expression of 

fewer, but more highly abundant, pollen-specific transcripts that mainly encode proteins 

involved in pollen germination and tube growth  (Becker et al., 2003; Loraine et al., 2013). 

The course of male gametophyte development is therefore characterized by a shift toward a 

higher degree of specialization. The initial similarity between the microspore/bicellular 

pollen and sporophytic stages of plant development may provide the developmental 

competence that is needed to switch from gametophytic to sporophytic growth during 

microspore embryogenesis (Whittle et al., 2010). 

Gene expression studies aimed at understanding the molecular basis of microspore 

embryogenesis have relied on comparison between cultures induced to undergo 
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embryogenesis and non-induced cultures containing developing pollen. Although these 

studies have a common goal, it is difficult to develop a common picture of the molecular 

changes that accompany the switch from pollen development to haploid embryogenesis. 

Firstly, the available studies are focused on different model species, each induced with one 

or more treatments, including high temperature stress, nutrient starvation and/or osmotic 

stress, and each with different starting material e.g. isolated microspores or anthers. 

Secondly, each of these studies has been performed using different, mainly low-throughput, 

approaches to identify transcripts of interest, including screening of cDNA libraries (Hosp et 

al., 2007), sequencing of expressed sequence tags (ESTs, Malik et al., 2007; Tsuwamoto et al., 

2007), targeted expression analysis of candidate genes (Sánchez-Díaz et al., 2013), and 

custom (Maraschin et al., 2006; Joosen et al., 2007) and commercial (Muñoz-Amatriaín et al. 

2006) DNA arrays. A third problem is the low embryogenic response of the cultures, 

although approaches to enrich for embryogenic microspores (Maraschin et al., 2006) or 

specific sequences (Malik et al., 2007) have been carried out. Given the limitations outlined 

above, we discuss the major concepts that have emerged from these studies.  

 

Deregulation of pollen development 

It is generally assumed that microspore re-programming to embryogenesis is achieved, in 

part, by repressing gametophytic development. In barley, microspore embryogenesis is 

induced by exposing cultured anthers to starvation and osmotic stress using mannitol. A 

highly embryogenic fraction of microspores can be purified by density centrifugation after 

four days of culture in the anther (Maraschin et al., 2005b). Comparison of the gene 

expression profiles of this enriched fraction with pollen showed that while pollen 

development was characterized by the expression of starch biosynthesis genes, the 

embryogenic microspore fraction showed the opposite trend: a decrease in the expression 

of starch biosynthesis genes, and an increase in expression of genes involved in sugar and 

starch hydrolysis (Maraschin et al., 2006). This observation is in agreement with many 

studies showing that starch accumulates during late pollen development and that its 

accumulation in microspore culture is detrimental to embryo progression (McCormick, 1993). 

This data, although limited, also implies that at least some genes involved in pollen 

development are down-regulated during embryo induction (Maraschin et al., 2006). 
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In B. napus, isolated microspores develop into embryos after exposure to heat stress. The 

first sporophytic divisions are observed after one to two days of culture, and by five days of 

culture, globular-shaped multicellular structures are formed that begin to emerge from the 

surrounding exine. Initially, the vast majority of cells in culture follow the gametophytic 

pathway, but around five to six days of culture, the pollen grains burst open and die. 

Microarray analysis has shown that two-day old heat-stressed microspore cultures are highly 

similar to pollen cultures (Joosen et al., 2007). Only at five days of culture, when the pollen is 

dead, can genes that are differentially-expressed between pollen and embryogenic 

microspore cultures be identified by microarray analysis. It was not clear from this analyses 

whether the gene expression profiles associated with embryogenic microspores at two days 

of culture were swamped by the highly abundant, stable, late pollen transcripts, or whether 

both pollen and embryo development coincided in the same cell types. It is possible to 

identify proteins that are differentially expressed in two day-old induced cultures compared 

to pollen. Although co-existence of pollen and embryo identities in the same structure 

cannot be excluded, differential protein expression as early as two days of culture does 

support the observation that the abundance of late pollen transcripts in the RNA samples is 

due to the presence of non-translated pollen mRNAs (Mascarenhas, 1990, 1993; Ylstra and 

McCormick, 1999), and that proteomics may provide a more sensitive approach to 

identifying totipotency-related pathways. Suspensor-bearing embryos develop much slower 

than suspensor-less embryos. After eight days of culture, embryos with a long suspensor and 

a one-to-two celled-embryo proper have developed, while the gametophytic cells are no 

longer viable. Microarray analysis of these samples show clearly different expression profiles 

from those of developing pollen, indicating that, at least in this pathway, embryogenic and 

gametophytic gene expression do not co-exist in the same structures. Malik et al. (2007) 

showed using hand isolated five-day old embryos that lack suspensors, that both pollen and 

embryo markers are expressed in the same samples. In support of this, Pulido et al. (2009) 

have shown that the late pollen gene PG1 is expressed in few-celled sporophytic structures 

found in barley cultures, but disappears as sporophytic growth progresses. The question of 

whether and to what extent active pollen and embryo gene expression occur in parallel in 

microspore embryos is intriguing, but cannot be answered at this time. Live imaging using 

rapidly turned-over pollen reporters together with embryo identity reporters will be needed 
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to determine whether pollen genes are actively expressed in embryogenic microspores or 

whether these mRNAs are simply remnants of highly stable transcripts. 

 

Establishment of embryo identity 

As mentioned above, studies aimed at identifying the early molecular events that 

accompany haploid embryo induction have been hampered by the presence of highly 

abundant pollen transcripts. A few studies have identified differentially-expressed sequences 

using methods to subtract pollen-expressed genes (Joosen et al., 2007; Malik et al., 2007; 

Tsuwamoto et al., 2007), but these analyses were performed late in the development of the 

culture, when sporophytic clusters are already present. The study by Maraschin et al. (2006) 

is to our knowledge the only study that examined gene expression in microspores that were 

induced to undergo embryogenesis, but had not yet divided. When the expression profile of 

these cells was compared to microspores and developing pollen, they found evidence for a 

role for proteolysis, stress response, inhibition of programmed cell death, and signaling 

pathways in embryo induction, that could be separated from effects of the stress treatment 

used to induce embryogenesis. Unfortunately, the number of genes examined in this study is 

small, precluding a more global analysis of these pathways activated during haploid embryo 

induction. 

Two other studies in B.napus examined gene expression profiles in embryos at a slightly 

later stage of development, starting from two to three days of culture, when induced 

microspores had already gone through a few sporophytic cell divisions (Joosen et al., 2007; 

Malik et al., 2007). Malik et al. (2007) noted a sharp decrease in the expression of protein 

synthesis machinery genes at day 3 of microspore culture and associated this drop in 

expression with a switch to the embryogenic pathway. The observation may be explained by 

the dominance of late pollen-expressed genes at this stage and the normal decrease in 

expression of protein machinery genes during late pollen development (Honys and Twell, 

2004; Joosen et al., 2007; Whittle et al., 2010). In support of this, expression of protein 

synthesis machinery genes increased in five and seven-day old cultures (Joosen et al., 2007; 

Malik et al., 2007), coinciding with the loss of pollen and increase in sporophytic growth. This 

point highlights the difficulty of analyzing gene expression profiles in highly heterogeneous 

cultures in which many different developmental pathways co-exist. 
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While detailed studies on the events prior to embryogenic division are lacking, there is 

much more known about the expression of early embryo genes in microspore culture, 

specifically in B. napus (Joosen et al., 2007; Malik et al., 2007; Tsuwamoto et al., 2007). Malik 

et al. (2007) identified a large number B. napus ESTs that show strong sequence similarity to 

known arabidopsis embryo-expressed genes, in particular transcription factor genes. The 

expression of 24 of these genes was rigorously examined using quantitative RT-PCR in 

induced and non-induced microspore cultures, during seed development, and during other 

stages of sporophytic development. Based on these results, they were able to identify a set 

of genes that are expressed in haploid and zygotic embryo development, but not during 

pollen development. These genes include FUSCA3, LEAFY COTYLEDON1 (LEC1), LEC2, BABY 

BOOM (BBM), two WUSCHEL- related homeobox (WOX) genes, WOX2 and WOX9, and 

ABSCISIC ACID INSENSITIVE3. Although ESTs for these genes were only detected after seven 

days of culture their expression could be detected by RT-PCR much earlier, at one to two 

days of culture, suggesting that embryo cell identity is established as early as the first few 

sporophytic cell divisions. The utility of a subset of these genes as early markers for 

embryogenic growth in genotypes differing in their ability to form haploid embryos was also 

examined. Only the expression of one of the markers, LEC2, could distinguish between 

embryogenic and non-embryogenic cultures at three days, but all of them distinguish the 

same cultures at seven days. The low correlation with embryo formation is not surprising, as 

the expression of the marker depends on many factors, including its own expression level, 

the proportion of embryogenic cells in the culture, and whether the genotype is negatively 

affected in a pathway in which the marker gene normally functions. Unpublished work from 

our lab suggests that a LEC1:GFP fusion is specifically expressed in embryos during seed 

development (Fig. 2a) and marks embryogenic microspores in culture in a poorly-responding 

genotype as early as three days after the start of culture (Fig. 2b). 

The B. napus suspensor-embryo system also proved to be a valuable tool to identify early 

embryo-expressed genes (Joosen et al., 2007). Suspensor-bearing embryos develop more 

slowly than conventional cultures, so that by the time the embryo proper has reached the 

two-cell stage the pollen that co-develops in the culture has already died. Comparison of 

conventional embryos without a suspensor and embryos with a suspensor (few-celled to 

globular stage embryo proper) identified a set of 43 genes whose expression is significantly 

upregulated in embryogenic microspore cultures compared to the male gametophyte. The  
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Fig. 2 Expression of suspensor and embryo 

markers identified in B. napus microspore 

culture 

Expression of an arabidopsis LEC1::LEC1:GFP 

reporter in (a) the two-celled embryo proper 

and suspensor of a B. napus zygotic embryo 

and (b) a sporophytically divided microspore. 

GFP expression in (a) and (b) is shown in green 

and autofluorescence in (b) is shown in red. 

The two smaller microspores in (b) do not show 

GFP expression. Expression of arabidopsis 

orthologs of B. napus suspensor-expressed 

genes in arabidopsis zygotic embryos (c, e, f) 

and a B. napus microspore embryo (d). The 

lines shown in c, e and f are promoter:GUS 

reporters and the line shown in (e) is a 

promoter: GFP reporter. The corresponding 

arabidopsis gene identifier for each reporter is 

indicated. 

 

 

 

 

 

 

suspensor-expression of a number of these genes has been confirmed in arabidopsis and B. 

napus (Fig. 2c-f). This model system for in vitro susspensor production offers a novel tool for 

the isolation and molecular characterization of this poorly accessible tissue.  

Based on the above, we can conclude that the molecular activation of the embryo 

pathway is an early event in haploid embryo induction, at least in B. napus. Other studies in 

barley and tobacco did not specifically describe expression of early embryo-expressed genes 

in microspore culture (Maraschin et al., 2006; Muñoz-Amatriaín et al., 2006; Hosp et al., 

2007). Nonetheless, it is still not clear which gene expression events, if any, precede the 

activation of embryo gene expression in microspore embryo induction. Ectopic expression of 
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the LEC1, LEC2 and BBM transcription factors in seedlings is sufficient to induce activation of 

embryo-expression programs, as well as the de novo induction of somatic embryo formation 

(Lotan et al., 1998; Stone et al., 2001; Boutilier et al., 2002). Given the sporophyte-like 

identity of the microspore and bicellular pollen grain, de novo expression of these 

transcription factors in response to stress could be sufficient to induce a switch to totipotent 

growth. On the other hand, the expression of embryo markers may simply represent an early, 

but secondary event that is set in motion by the stress treatment.  

 

Conclusion and perspective 

Microspore embryogenesis has been extensively studied, but still the mechanism that 

drives this process, from the initial embryogenic cell divisions to the formation of 

histodifferentiated embryos, is not understood. Many of the early cell biological 

observations on microspore embryo induction are now being revised or even discarded in 

light of live imaging studies. The picture is even less clear at the molecular level, where 

different starting materials, type and duration of induction treatment, and gene expression 

platforms have been used to probe the embryogenic microspore. To proceed further 

requires a collaborative approach in which live imaging is combined with cell and molecular 

analyses. The different culture systems need to be stripped down to their simplest elements 

to facilitate a direct comparison, and high throughput DNA and protein sequencing 

techniques are needed to identify and compare transcripts in microspores and pollen, as 

well as in embryogenic- and stressed, non-embryogenic microspores. The identified genes 

need to be definitively linked to microspore embryogenesis pathway, rather than stress 

response, using genetic and genomics approaches, such as mutant analysis and time-lapse 

imaging of candidate and other pathway markers in live cells.  
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Abstract 

The haploid male gametophyte, the pollen grain, is a terminally differentiated structure 

whose function ends at fertilization. Plant breeding and propagation widely use haploid 

embryo production from in vitro cultured male gametophytes, but this technique remains 

poorly understood at the mechanistic level. Here, we show that histone deacetylases (HDACs) 

regulate the switch to haploid embryogenesis. Blocking HDAC activity with trichostatin A 

(TSA) in cultured male gametophytes of Brassica napus leads to a large increase in the 

proportion of cells that switch from pollen to embryogenic growth. Embryogenic growth is 

enhanced by, but not dependent on the high temperature stress that is normally used to 

induce haploid embryogenesis in B. napus. The male gametophyte of Arabidopsis thaliana, 

which is recalcitrant to haploid embryo development in culture, also forms embryogenic cell 

clusters after TSA treatment. Genetic analysis suggests that the HDAC protein HDA17 plays a 

role in this process. TSA treatment of male gametophytes is associated with the 

hyperacetylation of histones H3 and H4. We propose that the totipotency of the male 

gametophyte is kept in check by an HDAC-dependent mechanism, and that the stress 

treatments used to induce haploid embryo development in culture impinge on this HDAC-

dependent pathway. 

 

Introduction 

Many plant cells have the inherent ability to regenerate a complete organism from single 

cells or tissues, a process referred to as totipotency. During sexual reproduction, cellular 

totipotency is restricted to the zygote, which is formed in the seed from fusion of the egg 

and sperm cell upon fertilisation. Sustained division of the zygote generates the embryo, 

which contains the basic body plan of the adult plant. Establishment of groups of pluripotent 

stem cells in the stem cell niche of the embryonic shoot and root apical meristems ensures 

the continuous post-embryonic growth and development of new lateral organs that is 

characteristic of plant development (Bennett and Scheres, 2010; Besnard et al., 2011). 

Embryo development also occurs in the absence of egg cell fertilisation during apomixis, a 

type of asexual seed development. Totipotency in apomictic plants is restricted to the 

gametophytic and sporophytic cells that normally contribute to the development of the seed 

and its precursors, including the unfertilised egg cell and surrounding sporophytic tissues 

(Bicknell and Koltunow, 2004).  
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The totipotency of plant cells reaches its highest expression in tissue culture. The ability 

of a cell to undergo embryogenesis in vitro is both an inherent and an acquired characteristic 

that requires the right combination of explant and culture environment. A wide variety of 

cells have the potential to develop into embryos, including haploid gametophytic cells, such 

as the cells of pollen and embryo sacs (Forster et al., 2007; Seguí-Simarro, 2010), as well as 

somatic cells derived from all three tissue layers of the plant (Gaj, 2004; Rose et al., 2010). 

The treatments used to induce embryogenesis are diverse and range from application of 

exogenous growth regulators to abiotic stress. Under the appropriate conditions, the explant 

resumes cell division and produces histodifferentiated embryos, either directly from the 

explant or indirectly from a callus. The morphological and cellular changes that occur during 

in vitro embryogenesis have been described in some species (Raghavan, 2004; Seguí-Simarro 

and Nuez, 2008), but there is still very little known about the initial steps involved in the 

acquisition and expression of totipotency in individual cells, and many of the assumed 

diagnostic features of cultured embryogenic cells are being revised in the light of live 

imaging studies (Daghma et al., 2012; Tang et al., 2013). Molecular screens have been 

performed to identify the changes that occur during in vitro embryogenesis; however, the 

range of species, explants and culture conditions that have been used, combined with low 

percentage of cells that form embryos, has made it difficult to develop a unified concept of 

the totipotent plant cell.  

In Arabidopsis thaliana, dynamic regulation of gene expression at the chromatin level 

plays a major role in translating the developmental and environmental signals that regulate 

cell totipotency in planta (Zhang and Ogas, 2009). The basic structural and functional unit of 

chromatin is the nucleosome, which comprises DNA wrapped around a histone octamer, and 

associated linker histones (Andrews and Luger, 2011). Nucleosomes can present a physical 

barrier restricting the access of non-histone proteins to DNA due to the strong interaction 

between the positively charged histones and negatively charged DNA. Transcription requires 

physical binding of transcription factors to open DNA; thus, controlling the compaction and 

accessibility of loci through nucleosomes offers a dynamic means to control gene expression. 

Dynamic changes in chromatin structure and gene transcription are mediated primarily by 

the interwoven processes of chromatin remodelling and histone modification (Jiang and 

Pugh, 2009; Henikoff and Shilatifard, 2011). Chromatin remodelling proteins use the energy 

from ATP hydrolysis to remove or reposition nucleosomes (Flaus and Owen-Hughes, 2011), 
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while histone modifying enzymes chemically modify lysines and other amino acids on the 

exposed N-terminal tails of histones to change their charge and interaction with DNA and 

other proteins (Bannister and Kouzarides, 2011).  

A number of conserved chromatin modifying proteins ensure the successful transition 

from embryo development to post-embryonic growth by repressing pathways controlling 

embryo cell proliferation and identity during germination (Zhang and Ogas, 2009). Loss-of-

function mutants of these proteins express embryo identity genes ectopically and develop 

somatic embryos on seedlings. These chromatin modifying proteins include members of the 

Arabidopsis SWI/SNF and CHD classes of chromatin-remodelling ATPases (Ogas et al., 1999), 

members of the Polycomb Group (PcG) Repressive Complex 1 (PRC1) and 2 (PRC2), which 

deposit repressive marks on histones, respectively, histone 2A lysine 119 (H2AK119) 

ubiquitination and histone 3 lysine 27 (H3K27) trimethylation (Chanvivattana et al., 2004; 

Schubert et al., 2005; Makarevich et al., 2006; Chen et al., 2009; Bratzel et al., 2010; Bouyer 

et al., 2011; Tang et al., 2012), and histone deacetylases, which create a repressive 

transcriptional state by removing acetyl groups from the lysines of histone tails (Tanaka et al., 

2008). The large number of proteins that play a role in this process, combined with the 

potential crosstalk between different chromatin modifying proteins (Zhang et al., 2012) 

ensures a multi-level dynamic control over cell totipotency.  

Changes in chromatin organisation and modification are often associated with in vitro 

plant regeneration (Miguel and Marum, 2011), but there are few examples where chromatin 

level changes are known to play a direct role in this process (He et al., 2012). In this report, 

we examined the role of chromatin modification in defining the totipotency of haploid 

embryo cultures derived from Brassica napus male gametophytes. The male gametophyte is 

a highly differentiated structure whose function ends at fertilisation. During male 

gametophyte development, the single-celled haploid microspore divides to form a 

multicellular pollen grain, containing a vegetative cell, and two generative (sperm) cells that 

participate in double fertilisation. This developmental pathway can be disrupted when 

microspores and pollen are cultured in vitro and induced to form haploid embryos. This form 

of haploid embryogenesis, referred to as microspore embryogenesis, pollen embryogenesis 

or androgenesis, is induced by exposing anthers or isolated microspores/pollen to abiotic or 

chemical stress during in vitro culture (Touraev et al., 1997). These stress treatments induce 

sustained, sporophytic division of the microspores/pollen leading to the formation of a 
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histodifferentiated haploid embryo. The ability of haploid embryos to convert spontaneously, 

or after treatment with chromosome doubling agents, to doubled-haploid plants is widely 

exploited as a means to generate homozygous plants in a single generation, and has 

numerous breeding and trait discovery applications (Touraev et al., 1997; Forster et al., 

2007).  

Haploid embryogenesis was described almost 50 years ago in Datura stromonium (Guha 

and Maheshwari, 1964). Since then, many cell biological studies in model species such as 

tobacco, barley and Brassica, have laid a solid foundation for understanding the cellular 

events that accompany haploid embryogenesis, yet the mechanism underlying this change in 

developmental pathways is still not known. Here we show that chemical inhibition of histone 

deacetylase (HDAC) activity using trichostatin A (TSA; Finnin et al., 1999) induces massive 

embryogenic cell proliferation in the male gametophyte of B. napus, even in the absence of 

the heat stress treatment that is normally used to induce haploid embryogenesis. Our results 

suggest that inhibition of HDAC activity or downstream HDAC-mediated pathways plays a 

major role in the initiation of stress-induced haploid embryogenesis.  

 

Results 

TSA induces hyperproliferation 

We determined whether altering the histone acetylation status of cultured microspores 

and pollen by treating them with the HDAC inhibitor, TSA, would relieve any of the 

developmental blocks in haploid embryo formation in the poorly-responsive B. napus 

genotype DH12075. B napus is one of the most well-studied models for microspore 

embryogenesis (Custers et al., 2001). Heat-stress treatment is used to induce microspore 

embryogenesis in this and other Brassica species. 

We examined the development of B. napus microspore cultures by staining heat-stressed 

(hereafter referred to as control) and heat-stressed plus TSA-treated male gametophytes at 

different developmental stages with the nuclear dye, DAPI. Initial dosage experiments were 

used to establish the minimal exposure time (20 h) in relation to the specific phenotypes 

discussed below (Supplemental Figure 1, Supplemental Dataset 1).  

After two days of heat stress, microspores/pollen in control cultures either arrested, 

continued gametophyte development, or divided sporophytically. Male gametophyte 

development in culture followed the same course of development as in the anther (Figure 
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1A-C). The single-celled microspore divided asymmetrically (pollen mitosis I, PM I) to 

generate a pollen grain with a large vegetative cell containing a diffusely-stained nucleus and 

a smaller generative cell with a more compact nucleus. The vegetative cell did not divide 

again, while the generative cell divided once (pollen mitosis II, PM II) to produce the two 

gametes, the sperm cells. In Brassica napus, sporophytic growth initiates in the late 

uninucleate microspore, and to a lesser extent from the cell-cycle arrested vegetative cell of 

the early bicellular pollen grain (Sunderland, 1974; Fan et al., 1988). As previously described, 

microspores that divided sporophytically contained two large, diffusely-stained nuclei, rather 

than the large vegetative nucleus and small generative nucleus produced after PM I (Figure 

1D). Male gametophytes that divided sporophytically after PM I, which was rarely observed 

(<1%) in control cultures from this genotype, contained a small generative-like cell in 

addition to the larger sporophytic cells (Figure 1E). After heat stress treatment, the majority 

of the cells in the control culture were gametophytic-like or had died (Figure 1G; 

Supplemental Dataset 1), as evidenced by the lack of DAPI staining. Up to 6% of the 

population divided sporophytically within the first two days of culture, producing cell 

clusters with two to six nuclei (Figure 1G; Supplemental Dataset 1). Sporophytically-dividing 

cells were observed in cultures containing pure populations of microspores and in cultures 

containing a mixture of microspores and binucleate pollen.  

The combined effect of heat stress and 0.5 µM TSA on sporophytic cell division after two 

days of culture was dramatic, with up to 80% of the population dividing sporophytically 

(Figure 1H; Supplemental Dataset 1). Unlike the control cultures, the largest increase in the 

proportion of sporophytically-divided structures was observed in cultures that initially 

contained a mixture of microspores and binucleate pollen. The majority of sporophytically-

divided cells in these cultures contained two to six diffusely-stained nuclei, as in control 

cultures. Unlike control cultures, approximately 10% of the sporophytically-divided cells also 

contained one or more generative-like nuclei (Figure 1F). The low frequency of cells with 

generative-like nuclei is surprising considering the 40 to 60% binucleate pollen that was 

present at the start of culture in some samples. The generative nucleus may degrade, or its 

chromatin may adopt a less condensed status, similar to that of the vegetative nucleus. 

Our observations indicate that TSA-mediated loss of HDAC activity in cultured 

microspores/pollen induces a high frequency of sporophytic cell division, and suggests that 

HDAC proteins play a major role in controlling cell cycle progression during male  
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Figure 1. Effect of TSA on early cell division 

patterns in B. napus microspore culture. 

DAPI-stained gametophytic (A-C) and 

sporophytic structures (D-F) present in the 

first two days of microspore culture. (A) 

Microspore. (B) Binucleate pollen. (C) 

Trinucleate pollen. (D) Sporophytically-

divided cell with two large vegetative-like 

nuclei. (E) Sporophytic structure with three 

vegetative-like nuclei and one small 

generative-like nucleus. (F) Multinucleate 

sporophytic structure with four vegetative-

like nuclei and two generative-like nuclei. 

(G-H) The percentage of different cell types 

observed in control (G) and TSA-treated 

cultures (H). The developmental stages of 

the starting cultures (1-8) are ranked from 

youngest to oldest. The percentages of each 

structure in control and TSA-treated 

cultures are shown in Supplemental Dataset 

1. v, vegetative(-like) nucleus; g, 

generative(-like) nucleus; s, sperm nucleus. 

Scale bar, 10 µm. 

 

 

 

 

 

 

 

gametophyte development. The combined effect of heat-stress and TSA treatment was 

more potent than that of heat-stress alone, both in terms of the range of developmental 

stages and the proportion of male gametophytes that were induced to divide sporophytically. 

 

TSA and heat-stress induce similar developmental changes  

The developmental fate of heat-stressed control cultures and cultures exposed to both 

heat-stress and TSA was followed by examining older cultures in more detail. Our initial 
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experiments showed that the proportion of dividing cells, as well as their developmental fate 

was influenced by the concentration of TSA that was applied to the culture. We therefore 

treated heat-stressed microspores and pollen with a range of TSA concentrations and 

examined the cultures after five and 15 days using DAPI staining to characterize the different 

multicellular structures that developed.  

Four types of sporophytic structures could be distinguished in five-day old control 

cultures (Figure 2A-E; Supplemental Figure 2; Supplemental Dataset 1), some of which have 

been previously described in microspore cultures of other Brassica genotypes (Fan et al., 

1988; Telmer et al., 1995; Ilid-Grubor et al., 1998). Type I structures corresponded to the 

classical embryo-forming structures that are routinely observed in microspore culture (Fan 

et al., 1988; Telmer et al., 1995). After five days of culture these multicellular structures 

contained up to 40 nuclei that were still enclosed in the pollen wall (exine; Figure 2B). Cell 

walls formed in Type I structures, but were not clearly visible, as described previously (Fan et 

al., 1988). These embryogenic multicellular structures were only observed in control cultures 

that initially contained a mixture of late uninucleate microspores and early binucleate pollen, 

and only comprised a small proportion of the population of dividing cells (0.5%). Type II 

structures were the most abundant structures present in five-day control cultures. They 

were callus-like, less compact than Type I structures, and contained up to five cells that had 

already started to emerge from the exine (Figure 2C; Fan et al., 1988). Type III structures 

contained two to three large, diffusely DAPI-stained nuclei that were no longer enclosed by 

the exine. The exine remained attached to these cell clusters and was often associated with 

a generative-like nucleus (Figure 2D). Type IV structures, which were rarely observed in 

control cultures, comprised loose callus-like clusters with well-defined cell walls (Figure 2E; 

Fan et al., 1988; Ilid-Grubor et al., 1998). 

The same sporophytic structures were observed in five-day-old cultures that received a 

combined heat-stress and TSA-treatment, but were found in different proportions 

depending on the concentration of TSA that was applied (Figure 2A; Supplemental Figure 2; 

Supplemental Dataset 1). Treatment with heat-stress and TSA mainly induced the formation 

of Type II structures (up to 77% versus 7% in the control cultures) and Type IV structures (up 

to 32% versus 0.5% in the control cultures). Type I classical embryogenic structures were 

observed at a low frequency when 0.5 M TSA was added to the culture medium (up to 1% 

versus 0.5% in the control cultures), but were more abundant (up to 3%) when a ten-fold 
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Figure 2. Effect of TSA on sporophytic 

growth in B. napus microspore culture.  

(A) The percentage of cells that formed 

pollen or divided sporophytically (Type I-

IV) after five days of microspore culture. 

The corresponding structures (Type I-IV) 

are shown in (B-E). The developmental 

stages of the starting cultures (1-8) are 

ranked from youngest to oldest. The 

percentages of each structure in control 

and TSA-treated cultures are shown in 

Supplemental Dataset 1 and 

Supplemental Figure 2A. (B-G) 

Sporophytic structures after five (B-E) 

and 15 (F-G) days of culture. (B) Type I, 

classical embryo-forming structure. (C) 

Type II, compact callus-like structure. (D) 

Type III, extruded sporophytic structure. 

(E) Type IV, loose callus-like structure. (F) 

Type II, structure. (G) Type IV, structure. 

Nuclei in (B-G) are stained with DAPI. Arrow, intact (B) or broken (C, D, E, F) exine. g, generative(-like) nucleus. 

Scale bar, 20 µm. 

 

lower concentration of TSA was applied. 

With the exception of Type III structures, all of the sporophytic multicellular structures 

observed in control and heat-stress plus TSA-treated cultures were still present and had 

increased in size after 15 days of culture (Figure 2F, G), and were still more abundant in TSA-

treated cultures. Types II and IV cell clusters eventually stopped growing and died in both 

control and TSA-treated cultures.  

Only a small percentage of the heat-stressed microspores/pollen normally develop into 

differentiated embryos (Supplemental Figure 2C; Supplemental Dataset 1). Compared to 

control cultures, treatment of heat-stressed cultures with 0.05 M TSA increased the total 

embryo yield by increasing the range of developmental stages that produced 

histodifferentiated embryos, as well as the embryo production per stage. Treatment with 

higher concentrations of TSA had a negative effect on embryo yield. These data indicate that 
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TSA not only has a positive effect on the formation of embryogenic cells, but that it also 

enhances the formation of histodifferentiated embryos. 

We determined whether the heat-stress treatment used to induce haploid embryogenesis 

is required for the TSA cell proliferation phenotype. Microspore cultures incubated at 

temperatures lower than 33 oC divide sporophytically, with the proportion of dividing cells 

depending on the culture temperature and stage of male gametophyte development, but 

produce fewer or no embryos compared to 33oC cultures. We observed an increase in the 

percentage of sporophytic divisions when TSA was applied to microspore cultures growing at 

either 18 or 25 oC, as well as a corresponding increase in embryo production at 25 oC 

(Supplemental Figures 3 and 4; Supplemental Dataset 1). Up to 0.2% embryo production was 

observed in TSA-treated cultures compared to practically no embryo production in the non 

TSA-treated controls (Supplemental Figure 3C). Higher TSA concentrations were needed to 

induce cell proliferation and embryo production at these lower temperatures compared to 

cultures grown at 33 oC.  

Together, our data indicate that treatment with TSA and heat-stress mediate similar 

developmental changes in microspore culture, and suggest that the heat stress treatment 

used to induce haploid embryogenesis impinges on pathways that are controlled by HDAC 

proteins. 

 

Sporophytic cell clusters are embryogenic 

The cell clusters that formed in heat-stressed, TSA-treated cultures resembled those 

found in control cultures that are only exposed to a heat-stress treatment. They included 

classical embryogenic structures, as well as structures that have been classified as non-

embryogenic based on their unorganized structure, early release from the exine, and the 

lack of a protoderm, which is considered a hallmark for commitment to embryo 

development in culture (Fan et al., 1988; Telmer et al., 1995; Ilid-Grubor et al., 1998). We 

used RT-PCR and GFP reporter lines to determine whether the different types of sporophytic 

structures that develop in control- and TSA-treated cultures are embryogenic.  

The expression of four embryo-expressed transcription factors genes, BABY BOOM (BBM; 

Boutilier et al., 2002), LEAFY COTYLEDON1 (LEC1; Lotan et al., 1998), LEC2 Stone et al., 2001) 

and FUSCA3 (To et al., 2006) is positively correlated with the embryogenic potential of B. 

napus microspore cultures (Malik et al., 2007). Our RT-PCR analysis showed that expression 
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of these four genes was enhanced when microspore cultures were treated with TSA, 

regardless of the culture temperature (Supplemental Figure 5), suggesting that TSA 

treatment is sufficient to activate embryo gene expression in microspore culture.  

We developed B. napus GFP reporter lines for two Arabidopsis embryo-expressed genes, 

LEC1 (LEC1:LEC1-GFP) and GLYCINE-RICH PROTEIN (GRP, GRP:GFP-GUS), to identify the 

specific structures that contribute to the enhanced embryo gene expression observed in 

TSA-treated cultures. The early embryo expression of both GFP reporters was confirmed in B. 

napus zygotic embryos, where LEC1 expression was detected as early as the 2-cell stage and 

GRP expression from the zygote stage onward (Supplemental Figure 6). Neither gene was 

expressed during the uni-, bi- or trinucleate stages of male gametophyte development in the 

anther (Supplemental Figure 7). 

We used the predominately nuclear localisation of the LEC1-GFP fusion to more precisely 

follow the developmental identity of the different cell types found in microspore cultures 

within the first three days of culture (Figure 3; Supplemental Table 1). In control (heat-

stressed) microspore cultures, LEC1-GFP was expressed in microspore-like structures, and in 

cells that contained two large, diffusely stained nuclei, but not in bi- or trinucleate pollen-like 

structures (Figure 3A, C, E, G). After TSA treatment of heat-stressed microspores, LEC1-GFP 

was also observed in the same structures as in the control cultures, but also in bi- and 

trinucleate pollen-like structures (Figure 3B, D, F, H). In pollen-like structures or 

sporophytically-divided cells with a generative-like nucleus, LEC1-GFP was expressed in both 

the vegetative- and generative-like nuclei, but never in generative-like nuclei alone (Figure 

3D, F, I).  

Later, in both control and TSA-treated cultures, LEC1 and GRP expression was observed in 

the classical embryo (Type I) structures, in the same spatial pattern as in zygotic embryos 

(Figure 4A, B; Supplemental Figure 6; Supplemental Table 1), as well as throughout the Type 

II and IV sporophytic structures (Figure 4C, D, G, H). However, only LEC1 expression was 

detected in Type III structures (Figure 4E, F). An overview of the LEC1 and GRP expression 

patterns in control and TSA-treated cultures is shown in Supplemental Table 1. The data 

suggest that TSA-treated and control microspore cultures show similar developmental 

changes. Surprisingly, microspores/pollen can be reprogrammed to embryo development 

following heat-stress/TSA treatment in the absence of cell division. Simultaneous exposure 

to TSA and exposure to TSA and heat-stress appears to have a stronger effect than 
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Figure 3. TSA enhances embryo marker 

expression in B. napus microspore 

culture.  

Expression of LEC1:LEC1-GFP in two 

day-old control (A, C, E, G) and TSA-

treated (B, D, F, H, I) cultures. (A, B) 

Microspore-like structure. (C, D) 

Binucleate pollen-like structure. (E, F) 

Trinucleate pollen-like structure. (G, H, 

I) Sporophytically-divided structures 

derived from division of a microspore 

(G, H) and a binucleate pollen (I). For 

each panel, the image on the left side 

of each panel shows the combined 

fluorescence from PI (magenta) and 

DAPI staining (blue) and the image on 

the right side, the GFP fluorescence 

(green). The green exine in (A), (B) and 

(G) is due to autofluorescence.g, 

generative-like nucleus; v, vegetative-

like nucleus. Scale bar, 10 µm. 

 

heat-stress alone, in that the embryo gene expression is activated in both vegetative- and 

generative-like cells. 

 

 TSA induces totipotency in Arabidopsis male gametophytes 

The production of haploid callus and embryos from cultured anthers has been described 

for a number of Arabidopsis ecotypes and species (Gresshoff and Doy, 1972; Scholl and 

Amos, 1980), but we and others have not been able to reproduce these protocols, nor have 

we been able to develop an isolated microspore culture system for Arabidopsis. Nonetheless, 

we were able to induce multicellular structures that resemble the Type II and IV structures 

seen in Brassica microspore culture when stage 11 Arabidopsis anthers were cultured at 25 

oC with 0.5 M TSA (Figure 5A, B). Growth of donor plants at a low temperature and in vitro 

culture at a higher temperature, as in B. napus (Custers, 2003), was not necessary, nor did it 

improve the production of sporophytic structures. The percentage of male gametophytes 



HDACi promotes gametophytic totipotency 

97 
 

Figure 4. Embryo marker expression in sporophytic structures.  

(A, C, E, G) LEC1:LEC1-GFP and (B, D, F, H) GRP:GFP-GUS expression in five to eight day-old TSA-treated 

microspore cultures. The same patterns of expression were observed in control cultures. (A, B) Type I 

structures. (C, D) Type II compact callus-like structures. (E, F) Type III extruded sporophytic structures. g, 

generative-like nucleus. (G, H) Type IV loose callus-like structure. For each panel, the image on the left side of 

each panel shows the combined fluorescence from PI- (magenta) and DAPI staining (blue) and the image on the 

right side, the GFP fluorescence (green). Scale bar, 25 µm. 

 

Figure 5. TSA induces embryogenic cell divisions in Arabidopsis male gametophytes.  

(A, B) Expression of LEC1:LEC1-GFP and (C) ENODL4:GFP in a Type II compact callus-like structure in a TSA-

treated anther. The exine (arrow) still surrounds the sporophytic structures. GFP, green; PI, magenta. All 

images are from five day-old anther cultures. Scale bar, 25 µm (A) and 10 µm (B, C). 
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that divided sporophytically in TSA-treated Col-0 anthers was consistent across experiments 

(ca. 4%; Supplemental Dataset 1), provided the anthers were carefully staged, whereas 

sporophytic divisions were never observed in anthers cultured without TSA (Figure 5C). We 

examined expression of the LEC1 and GRP marker lines in TSA treated cultures, but could 

only detect LEC1 expression (Figure 5D). However, a third embryo reporter, EARLY NODULIN-

LIKE PROTEIN 4:GFP (ENODL4:GFP; Supplemental Figure 4), was expressed in the TSA-

induced multicellular structures (Figure 5E). Together, these data demonstrate that TSA also 

induces embryogenic growth in Arabidopsis male gametophytes but is not sufficient to 

induce the formation of histodifferentiated embryos. 

 

Behaviour of hda and rbr mutants in Arabidopsis anther culture 

We determined whether T-DNA insertions in Arabidopsis HDAC genes phenocopy TSA-

treated anthers. Arabidopsis contains 18 HDAC genes (referred to as HDA1-18) grouped into 

the Rpd3/Hda1, HD-tuin and sirtuin families (Hollender and Liu, 2008). TSA targets Zn2+-

dependent HDACs (Grozinger and Schreiber, 2002; Gregoretti et al., 2004), which correspond 

to the Rpd3/HDA1 and HD-tuin type HDACs (Hollender and Liu, 2008). We examined lines 

with T-DNA insertions in the genes encoding Rpd3/HDA1 and HD-tuin- type HDAs 

(Supplemental Table 2) for ectopic divisions of the male gametophyte during normal anther 

development in situ, but did not observe any changes in the pollen cell division pattern in 

these lines. Likewise, none of the hda insertion lines showed sporophytic divisions in 

cultured pollen in the absence of TSA. It was difficult to evaluate TSA hypersensitive 

responses for some of the hda T-DNA insertion mutants; for example hda6 and hda8, due to 

their variable response in culture, however, among the mutants that showed more 

consistent responses, one mutant hda17 showed a small, but significant increase in the 

percentage of sporophytic cell divisions relative to the control (Figure 6A; Supplemental 

Dataset 1). This data suggest that the activity of at least one HDAC, HDA17, is required to 

suppress ectopic cell divisions in Arabidopsis pollen. 

The mammalian Retinoblastoma protein (pRB) recruits HDAC1 to repress cell cycle gene 

transcription (Brehm et al., 1998; Magnaghi-Jaulin et al., 1998). In maize, the Rb protein 

RETINOBLASTOMA-RELATED1 (RBR1) interacts with an Rpd3-type histone deacetylase, Rpd3I, 

and together these proteins repress gene transcription (Rossi et al., 2003). In Arabidopsis, 

loss of RBR function leads to hyperproliferation of the male and female gametophyte (Ebel 
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et al., 2004; Chen et al., 2009). Given the similarities between the rbr phenotype and TSA 

treatment, and the interaction of retinoblastoma proteins with HDACs, we examined 

whether RBR plays a role in TSA-mediated cell totipotency. Homozygous rbr mutants are 

gametophytic lethal; therefore the experiments were performed on heterozygous rbr-3 

anthers (rbr-3/+), a reported null allele (Ebel et al., 2004), which contain 50% rbr pollen. We 

scored the developing structures as dead, gametophytic, rbr-like or Type II, TSA-like. The rbr 

phenotype is most penetrant during the bicellular stage of pollen development and is 

characterized by structures with multiple vegetative cells, and to a lesser extent, extra 

generative-like cells (Figure 6B; Chen et al., 2009). The TSA phenotype differed from the rbr 

phenotype in that the TSA-like cells were larger and contained more vegetative-like cells 

than rbr cells, and were surrounded by a stretched or broken exine (Figure 6C). If an RBR-

HDAC interaction is required to prevent sporophytic cell divisions in culture, then culturing 

rbr mutant pollen without TSA could induce TSA-like divisions. Culture of rbr-3 anthers with 

TSA should not have an additive effect on the percentage of sporophytic divisions, except 

when TSA inhibition of HDAC activity is incomplete. We observed ectopic cell proliferation of 

male gametophytes when rbr-3/+ anthers were cultured in the absence of TSA. The typical 

compact rbr-like structures with up to 6 nuclei that develop in planta were observed, but at 

a lower frequency than was reported (Figure 6D; Supplemental Dataset 1; Chen et al., 2009). 

Strikingly, rbr-3/+ anthers cultured in the absence of TSA also produced a low percentage 

(0.5%) of enlarged and loosely-connected Type II multicellular structures (Figure 6D), which 

we have never observed in cultured control anthers from wild-type plants. We did not 

observe any differences between TSA-treated wild-type and TSA-treated rbr-3/+ anthers, 

other than the typical rbr-like divisions that are observed in the rbr-3 line; however, 

compared to untreated rbr-3/+ anthers, TSA-treated rbr-3/+ anthers showed a decrease in 

the frequency of rbr-like divisions. Together, our experiments with cultured rbr-3/+ anthers 

suggest that loss of RBR function is sufficient to induce the formation of embryogenic cell 

clusters in Arabidopsis anther culture in the absence of TSA. The decrease in the frequency 

of rbr-like divisions after TSA treatment may reflect a requirement for HDAC activity in 

promoting the typical rbr-type cell-cycle progression. 
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Figure 6. Behaviour of hda and rbr mutants in 

Arabidopsis anther culture. (A) Sporophytic 

cell division in male gametophytes from hda 

T-DNA insertion lines treated with 0.5 µM TSA. 

Statistical comparison (Student’s t-test) was 

made between the TSA-treated Col-0 anthers 

and the TSA-treated hda mutant anthers. *p 

<0.05; **p<0.01. (B, C) Multicellular 

sporophytic structures observed in cultured 

rbr-3/+ anthers. (B) rbr-like multicellular 

structure with three vegetative-like cells and 

one generative-like cell. Scale bar, 10 µm. (C) 

Type II multicellular structure with eight 

nuclei. (D) Relative proportion of the different 

cell types observed in rbr-3/+ anther cultures 

treated with 0.5 µM TSA or DMSO (control 

cultures). Statistically significant differences 

were observed between the response of TSA 

treated and untreated rbr-3 anthers (*, 

p<0.05; Student’s t-test) and TSA treated rbr-

3 and Col-0 anthers (+, p<0.05; Student’s t-

test). Samples were observed five days after 

the start of culture. The percentages of each 

structure from Col-0 and mutants in control 

and TSA-treated cultures are shown in 

Supplemental Dataset 1.  

 

TSA promotes histone acetylation 

HDACs deacetylate the lysine residues of both histone and non-histone proteins (Xu et al., 

2007). We used an acetylated lysine antibody in combination with protein gel blotting to 

identify proteins whose acetylation status changes in 8 hour heat-stressed, TSA-treated B. 

napus microspore cultures compared to heat-stressed control cultures. We observed 

increased protein acetylation in low molecular mass proteins in the range of 10 to 25 kDa in 

the TSA treated cultures compared to control cultures (Figure 7A). As these proteins are in 

the size range of histones (Moehs et al., 1988), we examined the acetylation status of the 



HDACi promotes gametophytic totipotency 

101 
 

 

Figure 7. TSA enhances histone acetylation.  

(A) Immunoblot analysis of total acetylated 

proteins in microspore cultures treated for 

eight hours with DMSO (control) or TSA. 

Proteins in the range of 10-25 kDa are 

differentially acetylated after TSA treatment 

compared to the control. (B) Immunoblot of 

total and acetylated (Ac) histone H3 and H4 in 

microspore cultures treated for eight hours 

with DMSO (control) or TSA. The percentages 

of sporophytic divisions in the different 

cultures at day 5 are shown under each sample. 

 

most commonly acetylated histones, histones H3 and H4 (Loidl, 2004), during microspore 

culture using acetylated histone H3 (Ac-H3) and H4 (Ac-H4) antibodies. Microspore cultures 

were started from buds containing mostly binucleate pollen and placed for eight hours at 

either 18 oC or 33 oC with or without 0.5 µM TSA. As expected, TSA greatly enhanced 

sporophytic divisions at 18 oC and 33 oC compared to the untreated controls (Figure 7B). 

Although this increase in cell division had no clear effect on the total amount of histone H3 

and H4 detected in the control and TSA-treated cultures, the level of histone H3 and H4 

acetylation increased dramatically in the TSA-treated cultures relative to control cultures, 

both at 18 oC and at 33 oC (Figure 7B). Our data suggest that the main effect of decreased 

HDAC activity following TSA treatment in microspore culture is the increased acetylation of 

histones. 

 

TSA induces changes in cell wall, auxin, and cell division pathways 

The acetylation status of histones generally correlates with the transcriptional 

competence of the associated locus, with highly acetylated and deacetylated histones 

associated with permissive and repressive gene expression states, respectively. We used 

microarray analysis to identify the early gene expression changes in B. napus microspore 

cultures that are associated with TSA treatment. Freshly isolated microspore cultures were 

heat-stressed to induce embryogenesis and at the same time treated for eight hours with 

TSA, either alone, or together with the protein translation inhibitor cycloheximide to identify 
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primary transcriptional changes. Only a small number of statistically significantly up or 

down-regulated genes were identified (407; Supplemental Figure 8A), and at most a four-

fold change in gene expression was observed between the two treatments and their 

respective controls (Supplemental Dataset 2). Nonetheless, the differential regulation of a 

selection of these probes could be confirmed independently by quantitative real-time RT-

PCR, although the observed fold changes were much larger than in the microarray analysis 

(Supplemental Figure 8B). 

We observed down-regulation of a small number of genes (51; Supplemental Figure 6A; 

Supplemental Dataset 2), more than half of which are pollen- or pollen-tube expressed 

genes (Supplemental Figure 9). Despite these changes, the expression of the majority of the 

highly abundant, late pollen transcripts was not affected (Supplemental Dataset 2). In 

contrast to the down-regulated gene set, the set of genes that were significantly 

upregulated after TSA treatment are associated with a wide range of developmental stages 

and functions (Supplemental Dataset 2). We observed an increase of LEC1 expression after 

TSA treatment, but this was not accompanied by major changes in expression of other early 

embryo genes or embryo identity regulators (Supplemental Dataset 2). Thus, a large up-

regulation of embryo gene expression appears to occur later, after one to two days of 

culture, when expression of the GFP-based embryo reporters is first observed.  

Although short inhibition of HDAC activity is not associated with major transcriptional 

changes of embryo or pollen-identity genes, we were able to identify a number of specific 

pathways that were altered after microspores were treated for eight hours with TSA 

(Supplemental Dataset 2). One notable category of upregulated genes includes genes 

involved in cell wall loosening and degradation (xyloglucan endotransglucosylase/hydrolases, 

XTH), as well as pectin depolymerisation and solubilisation (polygalacturonases, pectin 

polygalacturonase beta-subunit protein, pectin methylesterase, pectin esterases and pectate 

lyases), and cellulose hydrolysis (CELLULASE 1 (CEL1) and CEL2). A number of auxin-related 

genes are also upregulated after TSA treatment (Supplemental Dataset 2). These include two 

GH3 genes (GH3.1 and DFL1/GH3.6) that in Arabidopsis are known to increase the pool of 

inactive amino-acid conjugated IAA (Staswick et al., 2005) and that are induced by auxin and 

stress, as well as ILR1, which is involved in increasing free auxin levels through cleavage of 

indole-3-acetic acid (IAA)-amino acid conjugates (Rampey et al., 2004). Genes involved in 

auxin transport through efflux (PIN1, PIN3, PIN7; Friml et al., 2002) and influx (AUX1; Yang et 
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al., 2006), and in auxin signalling (AFB3; Dharmasiri et al., 2005), as well as auxin upregulated 

genes of unknown function (AIR12; Preger et al., 2009) were also upregulated after TSA 

treatment. A small number of cell-cycle-related genes are also upregulated after TSA 

treatment. One of the early genes that is upregulated by TSA encodes an E2Fd/DEL2 

transcription factor, and the more downstream gene targets include two positive regulators 

of the (G1-to-S phase) of the cell cycle, CYCLIN D3;3 (CYCD3;3) and a CYCLIN D1-like gene.  

Together these results indicate that TSA treatment within the first few hours of 

microspore culture alters the expression of a diverse, but limited set of genes. These data 

are consistent with studies in mammalian cells where only a small proportion of genes 

responded to HDAC inhibition (Halsall et al., 2012). 

 

Discussion 

Here we show that inhibition of histone deacetylase activity is sufficient to induce 

embryogenic growth in cultured pollen of B. napus and Arabidopsis. Many different stressors 

are used to induce haploid embryogenesis in plants (Islam and Tuteja, 2012); thus, in this 

respect, the deregulation of HDACs or HDAC-mediated pathways by stress and the 

accompanying changes in histone acetylation status, could provide a single, common 

regulation point for the induction of haploid embryogenesis. 

 

Competence for haploid embryogenesis 

The developmental stage of the vegetative cell plays a major role in its responsiveness to 

heat stress and TSA. In the majority of species, the stress treatment is most effective in 

triggering sustained cell division in microspore culture shortly before or after PM I (Touraev 

et al., 1997). Unlike heat stress, TSA, alone or in combination with heat-stress, is highly 

effective at later stages of pollen development, and has a much stronger effect than heat-

stress with respect to the proportion of cells that divide sporophytically. TSA may be a more 

potent inducer of sporophytic growth due to its ability to more completely inhibit individual 

HDACs or to inhibit a wider range of HDAC-mediated processes than heat-stress alone. In 

line with this, a relatively high concentration of TSA in combination with heat stress 

enhances divisions that mainly result in disorganized embryogenic structures, but a relatively 

low concentration of TSA in combination with heat-stress more closely mimics the effect of 

heat-stress alone, enhancing the formation of both histodifferentiated embryos and non-
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viable disorganized embryogenic structures. Culture at lower temperatures dampens the 

effect of TSA, such that fewer cells divide, and a higher concentration of TSA is needed to 

induce embryo and embryogenic cell formation at 18 oC than at 33 oC. In a similar fashion, a 

more severe, 41 oC heat-stress is required to induce sporophytic divisions and 

embryogenesis in B. napus pollen at the late bicellular stage (Binarova et al., 1997). Together 

these data suggest that HDACs (directly or indirectly) mediate the inhibition of cell cycle 

progression that is gradually imposed on the vegetative cell, and that release of this 

inhibition is required for embryogenic growth in culture.  

 

Role of cell cycle progression in haploid embryo induction 

The CYCD/RB pathway is an evolutionarily conserved control point in the progression 

through the G1 phase of the cell cycle (Gutzat et al., 2012). One group of major players are 

the E2F transcription factors, which dimerize with DP proteins to activate transcription of 

genes that facilitate the G1/S transition and S-phase. E2F proteins are inhibited through 

binding to Rb (Harbour and Dean, 2000), and Rb negatively affects transcription through its 

interaction with HDACs and other chromatin modification proteins (Zhang et al., 2000). 

Phosphorylation of Rb by a complex of CYCD proteins and associated kinases releases Rb 

from E2F, allowing expression of genes for DNA replication and passage through G1/S 

(Dewitte and Murray, 2003). In plants, altered expression of different components of the 

G1/S phase of the cell-cycle leads to changes in cell proliferation, in the length of the cell 

cycle, and in the amount of endoreduplication (reviewed in Gutierrez, 2009). 

Our microarray analysis showed that TSA treatment induced the expression of genes 

associated with G1/S cell cycle progression. One of these genes, E2Fd/DEL2 encodes one of 

three atypical Arabidopsis E2Fs that do not bind to the DP or Rb proteins due to the lack of a 

DP-dimerisation domain and an Rb binding pocket (Lammens et al., 2009). Sozzani et al. 

(2010) have shown that DEL2 promotes cell proliferation in Arabidopsis roots. The 

expression of two CYCD-encoding genes, CYCD3;3 and CYCLIN D1-like, were also upregulated 

after TSA treatment. CYCD proteins play important roles in integrating nutritional and 

hormone signals with the cell cycle response in tissue culture (Riou-Khamlichi et al., 1999, 

2000). In Arabidopsis, CYCD1;1 is expressed early during seed germination, where it is rate-

limiting for cell-cycle progression in the root meristem (Masubelele et al., 2005), while 

CYCD3;3 together with CYCD3;1 and CYCD3;2 maintains the mitotic cycle in roots, preventing 
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endoreduplication (Dewitte et al., 2007). These results suggest that HDAC inhibition induces 

cell proliferation through activation of components of the G1-to-S phase transition, and that 

this involves both retinoblastoma-dependent and independent pathways. 

We also examined whether the Arabidopsis rbr mutant, the only plant cell cycle-related 

mutant that shows ectopic cell proliferation during male gametophyte development 

(Johnston et al., 2008; Chen et al., 2009), also plays a role in TSA-mediated haploid 

embryogenesis. During anther development, rbr pollen shows limited ectopic division of the 

vegetative cell, and to a lesser extent, the generative cell of bicellular pollen. Analysis of 

microspore and pollen cell fate markers indicates that the cell fate change from the 

microspore-to vegetative cell identity is delayed in rbr pollen, and that changes in cell fate 

are a secondary consequence of the change in cell division pattern (Chen et al., 2009). The 

rbr phenotype is therefore different from that observed after application of heat-stress or 

heat-stress plus TSA, where changes in cell fate and cell division appear to be uncoupled. 

This observation, combined with the low frequency of Type II embryogenic cell clusters 

found in cultured rbr-3/+ anthers, as well as the activation genes involved in both RBR-

dependent and independent pathways by TSA suggest that RBR plays a role in repressing 

totipotent growth in anther culture, but is not a major regulator of this pathway. 

 

Acquisition of embryo identity 

The progression of haploid development requires re-activation of cell division in the 

vegetative cell; however, our examination of embryo reporter lines and microarray analysis 

showed that embryo gene expression activated prior to cell division. The observation is 

striking, as establishment of new cell fates in both plants and animals usually requires an 

asymmetric cell division (reviewed in De Smet and Beeckman, 2011) or formation of transit 

amplifying (meristem) cells (reviewed in Sablowski, 2011). 

The expression of embryo identity genes prior to sporophytic division raises the question 

whether their expression is sufficient to drive cell division toward totipotent growth or 

whether additional factors are required to mediate this change in development. Ectopic 

expression of Arabidopsis transcription factors such as BABY BOOM (Boutilier et al., 2002) 

and the LEC1 CCAAT-box binding factor examined in this study, is sufficient to induce de 

novo formation of somatic embryos on seedlings (Lotan et al., 1998; Stone et al., 2001; Yang 

and Zhang, 2010). However, not all tissues form somatic embryos in response to 
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overexpression of these proteins, suggesting that so-called ‘competence factors’ are also 

required to promote this change in cell fate. In microspore culture, this competence might 

be provided by the combination of developmental stage, culture medium and induction 

treatment. 

Our microarray analysis suggested that the massive embryogenic cell proliferation 

induced by TSA is not accompanied by a rapid decrease in pollen gene expression. Pollen 

transcripts have been observed in B. napus microspore culture for up to five days after the 

start of culture, and have also been observed in purified embryogenic structures (Joosen et 

al., 2007; Malik et al., 2007). It is not clear whether the persistence of pollen transcripts in 

microspore culture reflects their inherent abundance or stability, or the active maintenance 

of pollen identity in both gametophytic and embryogenic structures (Joosen et al., 2007; 

Malik et al., 2007). It will be interesting to determine whether the co-expression of pollen 

and embryo gene expression programs affects the subsequent development of haploid 

embryo formation.  

The most common route to sporophytic growth in B. napus and other species is through 

ectopic division of the microspore or vegetative cell of binucleate pollen (Sunderland and 

Wicks, 1971; Fan et al., 1988; Indrianto et al., 2001; Pulido et al., 2005). Sporophytic 

structures composed of generative-like and vegetative-like nuclei can be observed 

occasionally (Fan et al., 1988; Reynolds, 1993; González-Melendi et al., 1996; Kaltchuk-

Santos et al., 1997; González and Jouve, 2005), but it is not known whether sustained 

division of generative-like cells contributes to the formation of viable embryos. Our results 

show that the LEC1 embryo reporters are expressed only in the microspore and vegetative 

cell after heat-stress treatment, while exposure to heat-stress and TSA also induces LEC1 

expression in the generative cell. The fate of these ‘embryogenic’ generative-like nuclei is 

not clear, as we did not observe generative-like nuclei in multinucleate sporophytic 

structures. One highly speculative possibility that needs further investigation is that the 

chromatin of the generative nucleus decondenses, assuming a structure similar to that of the 

vegetative cell, and then undergoes sustained division, either alone or together with the 

vegetative-like nuclei. Alternatively, the generative cell and/or its derivatives could simply 

degenerate and not form part of the embryo (Corral-Martínez et al., 2013).  

Our analysis of cell fate markers showed that both heat-stressed and heat-stress plus 

TSA-treated cultures show a high frequency of cell types that express embryo markers, but 
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that fail to form histodifferentiated embryos. These structures are characterized by clusters 

of loosely connected cells that are released prematurely from the exine. During successful 

microspore embryo development, the increase in pressure from the growing cells causes the 

exine to break after approximately five to six days of culture. Exine rupture is followed by 

protoderm formation and the establishment of the apical embryo pole at the site of exine 

rupture and the basal embryo pole away from the site of rupture (Hause et al., 1994; Telmer 

et al., 1995). In the loosest embryogenic structures (Types III and IV), the cells burst out of 

the exine as early as the two-celled stage, while more compact structures (Type II) show 

signs of exine rupture around the 10-cell stage. The reason for premature rupture in these 

structures is not known. Increased internal pressure from more rapidly expanding cells or 

loss of exine integrity may stimulate rupture. Cells of type II-IV structures are much larger 

than the compact structures that form histodifferentiated embryos, but it is not clear 

whether this increased size causes exine rupture or whether cell expansion occurs after 

rupture, for example in response to osmotic potential of the medium. The plant cell wall 

plays an important role in coordinating cellular differentiation, as mutants with defects in 

cell wall composition or cell adhesion have been shown to undergo unrestricted cell 

proliferation and callus formation (Frank et al., 2002; Iwai et al., 2002; Krupková et al., 2007; 

Krupková and Schmülling, 2009). We observed that TSA treatment is associated with an 

increase in expression of genes encoding cell wall mobilisation enzymes, particularly those 

involved in the mobilisation of cellulose and pectin. One possibility is that the composition of 

the cell wall or the connection between cell walls in Type II-IV structures are altered, 

preventing the proper cell-cell communication required for histodifferentiation. 

We also observed an increase in expression of genes involved in the auxin pathway. The 

role of endogenous auxin and auxin signalling in haploid embryo induction has not been 

examined, but exogenous auxin is not required to induce microspore embryogenesis in B. 

napus. In contrast, auxin treatment is used routinely to induce embryogenesis from somatic 

plant tissues (Thomas and Jiménez, 2006). In Arabidopsis, de novo auxin biosynthesis, 

mediated by YUCCA gene expression is implicated in somatic embryo induction (Stone et al., 

2008; Wójcikowska et al., 2013). We observed increased expression of genes involved in 

removal auxin from the cell through transport (PIN) or conjugation (GH3), but also in auxin 

accumulation through influx (AFB3) and deconjugation (ILR1). Further research is required to 

determine whether altered auxin accumulation, as well as altered cell wall composition, is 
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associated with the induction of callus-like structures or compact, histodifferentiated 

embryos. 

 

HDA17 inhibits cell proliferation in pollen 

Analysis of hda T-DNA insertion lines in Arabidopsis anther culture suggests that HDA17, 

an Rpd3-like HDAC, plays a role in suppressing sporophytic growth in anther culture. hda17 

gametophytes showed enhanced sporophytic cell divisions in anther culture, but only in the 

presence of TSA, suggesting that embryogenic growth requires inhibition of one or more 

HDAC proteins in addition to HDA17. HDA17 has an incomplete C-terminal deacetylase 

domain that lacks the conserved active site. TSA binds to the zinc-containing active site of 

HDACs (Finnin et al., 1999), thus it is unlikely that TSA directly inhibits HDA17 activity, 

although the deacetylase activity of HDA17 still needs to be demonstrated. The MEF2-

interacting transcription repressor (MITR) is a splice variant of HDAC9 that lacks the HDAC 

domain. MITR represses transcription repression in trans by recruiting several different 

HDACs, and/or a transcriptional corepressor (Zhang et al., 2001). In analogy, the TSA 

sensitivity of HDA17 may be supplied in trans through formation of HDAC protein dimers 

(Luo et al., 2012) between HDA17 and one or more Arabidopsis HDAC proteins.  

In Arabidopsis seedlings, TSA treatment induces post-germination growth arrest that is 

accompanied by prolonged expression of embryogenesis-related genes, and the formation 

of somatic embryo tissue (Tanaka et al., 2008). An hda6 T-DNA insertion line showed the 

same growth arrest phenotype when grown in the presence of a much lower concentration 

of TSA (Tanaka et al., 2008). The residual requirement of TSA for the secondary somatic 

embryogenesis phenotype in the hda6 mutant is due to the redundant action of HDA6 and 

HDA19. Based on their mutant phenotypes, HDA6 and HDA19 could be considered good 

candidates for TSA-mediated inactivation in microspore culture, but in our hands, neither 

the single hda6 or hda19 mutants, nor the double hda6/hda19 mutants showed enhanced 

sporophytic division in anther culture, either in the absence or presence of TSA. This 

suggests that different HDACs and developmental pathways repress embryogenic cell 

proliferation in microspores/pollen and zygotic embryos. Functional redundancy among 

Arabidopsis HDA proteins is well-documented, thus identification of the HDAC complex that 

restricts cell proliferation in the developing male gametophyte will require both a systematic 

screen of higher order hda mutant combinations and biochemical analysis. 



HDACi promotes gametophytic totipotency 

109 
 

Methods 

Plant material and culture 

Brassica napus L. cv. Topas DH4079 and DH12075 were used as donor plants for 

microspore embryo culture. The B. napus plant growth and microspore isolation procedures 

were performed as described previously (Custers, 2003). Flower buds for microspore culture 

were grouped by size (measured from the tip of the flower bud to the bottom of the sepal), 

ranging from 3.0 to 3.5 mm for DH4079 and from 2.6 to 4.0 mm for DH12075. The 

microspores were isolated and cultured in NLN-13 medium (Lichter, 1982). For induction of 

embryogenesis, microspores were cultured in the dark at 33 oC for 20 hours, and 

subsequently transferred to 25 oC. Non-induced microspore cultures were cultured 

continuously at 25 oC or 18 oC. Trichostatin A (TSA, Sigma-Aldrich) was prepared in DMSO. 

Freshly isolated microspores were inoculated in medium containing TSA or the same volume 

of DMSO as a control, and cultured for 20 hours at the temperature indicated for each 

experiment. After this period the cultures were centrifuged at 200 g for 3 min, resuspended 

in fresh NLN-13 medium without TSA, and transferred to 25 oC.  

Arabidopsis thaliana flower buds at stage 11 were collected for anther culture. Flower 

buds were surface sterilized in 2% bleach for 10 minutes, then rinsed three times in distilled 

water. The anthers (without filament) were placed in liquid NLN-13 medium containing 0.5 

µM TSA or the same volume of DMSO, and then cut in half transversely in the medium to 

release the microspores. The cultures were placed at 25 oC for 20 hours in the dark. The 

medium was then replaced by fresh NLN-13 medium by pipetting gently, and the cultures 

incubated at 25 oC for an additional four days. Free and loosely attached microspores were 

collected and stained with DAPI. Arabidopsis hda T-DNA insertion lines were obtained from 

Nottingham Arabidopsis Stock Centre. At least 300 microspores per sample were counted.  

 

Reporter lines  

GFP-based reporter lines were generated for the Arabidopsis embryo-expressed genes, 

LEC1 (At1g21970; LEC1:LEC1-GFP) and GRP (At2g30560; GRP:GFP-GUS) and B. napus ENODL4 

(AB836663; ENODL4:GFP). For the LEC1:LEC1-GFP translational fusion, a 3110 bp DNA 

fragment comprising 1292 bp upstream of the translational start site and the entire coding 

region was amplified by PCR and recombined into pGKGWG using the Gateway cloning 

system (Invitrogen) according to the manufacturer’s instructions. Arabidopsis GRP encodes 
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an EGG APPARATUS1-LIKE (EAL) protein (Gray-Mitsumune and Matton, 2006) and is highly 

similar to a B. napus glycine-/proline-rich gene isolated from embryogenic microspore 

cultures (probe 563; Joosen et al., 2007). The Arabidopsis GRP:GFP-GUS transcriptional 

fusion was made by PCR amplifying a fragment comprising 861 bp upstream of the start 

codon and Gateway recombination into pBGWFS7,0. The ENODL4 was identified as an early 

embryogenesis-expressed gene from B. napus microspore culture (Japanese patent No. 

35935650). A 1035 bp fragment of the promoter of ENODL4 (GenBank accession no. 

AB098076) was cloned by inverse PCR, ligated to the 5’-end of an sGFP: nos terminator 

fragment and inserted into pBinKH, which is a modified version of a binary vector pGPTV-

KAN (Becker et al., 1992). The reporter constructs were transformed to Agrobacterium 

tumefaciens strain C58C1 carrying the pMP90 Ti plasmid and then to B. napus DH12075 

(Moloney et al., 1989) and/or Arabidopsis Col-0 (Clough and Bent, 1998). 

 

Microscopy 

The developmental stage and identity of cells in microspore and anther culture were 

visualized with the nuclear stain 4’, 6-diamidino-2-phenylindole (DAPI, 1.25 g/ml) according 

to Custers (2003) using a Zeiss Axioskop epifluorescence microscope with filter set no. 02. 

Approximately two hundred microspores or multicellular clusters were counted for each 

sample. Confocal laser scanning microscopy (CLSM) was carried out on a Leica DM5500 Q 

microscope. The GFP was excited with an argon laser line at 488 nm and detected with a 

505–530 nm emission filter. Samples were counterstained with DAPI and/or propidium 

iodide (10 mg/ml; Sigma-Aldrich). Propidium iodide and red autofluorescence were excited 

at 532 nm and detected with a 620-660 nm emission filter. DAPI was excited at 405 nm and 

detected with a 440-500 nm emission filter. The optical slices were median filtered with 

Leica LAS AF software. Arabidopsis anthers were cleared in HCG solution (water: chloral 

hydrate: glycerol; 3:8:1) for 10min, then observed under DIC microscopy with a Nikon 

OPTIPHOT microscope.  

 

Molecular analyses 

Total RNA isolation and on-column DNase digestion were performed using the InviTrap 

Spin Plant RNA Mini Kit (Invitek) according to the manufacturer’s instructions. For RT-PCR, 

250 ng of total RNA was used for first-strand cDNA synthesis with the Taqman Reverse 
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Transcription Reagents Kit (Applied Biosystems). The cycling parameters were: one cycle at 

98 oC for 30 s, 30 cycles comprising 98 oC for 5 s, 60 oC for 30 s, followed by 72 oC for 1 min. 

The primer sequences are described in Supplemental Table 3. The RT-PCR primers are from 

Malik et al. (2007). The quantitative RT-PCR primers for microarray validation were designed 

based on oligonucleotide probes from Affymetrix GeneChip Brassica Exon 1.0ST Array (Malik 

et al., 2007; Love et al., 2010). The Arabidopsis hda T-DNA insertion lines were genotyped 

using the PCR primers shown in Supplemental Table 2. 

Microspore cultures for microarray analysis were cultured at 33 oC for eight hours with 

either TSA or TSA plus cycloheximide (CHX, Sigma-Aldrich), both dissolved in DMSO. DMSO 

or cycloheximide were used as mock treatments for respectively, the TSA and TSA+CHX 

treatments. The samples were harvested by centrifugation for total RNA was isolation, as 

described above. One microgram of total RNA from each sample was sent to the NASC 

Affymetrix Service (http://affymetrix.arabidopsis.info/) for hybridisation to the Affymetrix 

Brassica Exon 1.0 ST GeneChip. Probe annotations were downloaded from Gene Expression 

Omnibus (http://www.ncbi.nlm.nih.gov/geo/). The identifier for the annotation is GPL10733. 

The expression data was subjected to normalization using the RMA method from the ‘affy’ 

Bioconductor package. Log2-transformed expression values were identified as differentially 

expressed using a Student’s t-test. Multiple hypothesis testing correction was done using the 

Holm’s method (Holm, 1979) implemented in the multtest’s Bioconductor package. Mapman 

(Thimm et al., 2004) was used to identify functional categories of differentially-expressed 

genes. The microarray data has been deposited to the Gene Expression Omnibus (GEO) 

database (GSE49070). 

 

Immunochemistry 

Freshly isolated microspores and microspores cultured for 8 hours under different 

experimental conditions were harvested by centrifugation. Proteins were extracted by 

boiling in SDS-sample buffer (30 µl per ml of culture) and electrophoresed in a Midget 12.5% 

SDS-PAGE gel under reducing conditions. After transfer of the proteins to PVDF membrane 

and blocking with 5% milk powder in PBS, 0.1% Tween 20, the blots were incubated for 2 

hours with primary antibody (1:2000 dilution). The primary antibodies used in this study are 

as follows: anti-acetyl-Lysine (ICP0380; ImmuneChem Pharmaceuticals), anti-Histone H3 

(ab1791; Abcam), anti-Histone H4 (clone 62-141-13; Millipore), and anti-acetyl-Histone H3 

http://affymetrix.arabidopsis.info/
http://www.ncbi.nlm.nih.gov/geo/
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and anti-acetyl-Histone H4 (Millipore). Secondary goat anti-rabbit-HRP antibody (Sigma) was 

used in a 1:2000 dilution and signals were detected by using enhanced chemiluminescence 

(SuperSignal West Femto Chemiluminescent Substrate, Pierce). 
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Supplemental data 

The following materials are available at www.plantcell.org. 

 

Supplemental Figure 1. Effect of the duration of TSA treatment on sporophytic cell division in B. napus 

microspore culture at 33 
o
C. (A) The developmental stage of microspores and pollen at the start of culture. For 

each treatment (1-2), the samples are ranked from left to right along the x-axis according to the developmental 

stage (youngest to oldest) of the microspores and pollen. (B) Sporophytic divisions in control and TSA-treated 

microspores/pollen from (A).  

 

Supplemental Figure 2. Effect of 

TSA on cell fate and embryo 

formation in B. napus microspore 

culture at 33 
o
C.  

(A) The developmental stage of 

microspores and pollen at the start 

of culture. (B) The effect of TSA on 

cell fate in B. napus microspore 

embryo culture. Types I-IV are 

sporophytic. Dead microspores 

and pollen were not counted. (C) 

The effect of TSA on embryo yield. 

For each treatment (1-8), the 

samples are ranked from left to 

right along the x-axis according to 

the developmental stage 

(youngest to oldest) of the 

microspores and pollen. 

http://www.plantcell.org/
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Supplemental Figure 3. Effect of TSA on cell fate and 

embryo formation in B. napus microspore culture at 25 
o
C. 

(A) The developmental stage of microspores and pollen at 

the start of culture. (B) The effect of TSA on cell fate in B. 

napus microspore embryo culture. Types I-IV are 

sporophytic. Dead microspores and pollen were not 

counted. (C) The effect of TSA on embryo yield. For each 

treatment (1-3), the samples are ranked from left to right 

along the x-axis according to the developmental stage 

(youngest to oldest) of the microspores and pollen. 

 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Figure 4. Effect of TSA on cell fate and 

embryo formation in B. napus microspore culture at 18 

o
C. (A) The developmental stage of microspores and 

pollen at the start of culture. (B) The effect of TSA on 

cell fate in B. napus microspore embryo culture. Types 

I-IV are sporophytic. Dead microspores and pollen 

were not counted. Histodifferentiated embryos did not 

develop in control and TSA-treated samples that were 

cultured at 18 
o
C. For each treatment (1-4), the 

samples are ranked from left to right along the x-axis 

according to the developmental stage (youngest to 

oldest) of the microspores and pollen. 
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Supplemental Figure 5. Expression of cell fate markers in B. napus microspore culture. 

RT-PCR analysis of the embryo-expressed genes, FUSCA3 (FUS3), LEAFY COTYLEDON1 (LEC1), LEC2 and BABY 

BOOM (BBM), and a pollen-expressed gene (Brassica napus MICROSPORE1; BNM1) in three day-old control and 

TSA-treated microspore cultures incubated at 33 
o
C and 25 

o
C. PCR amplification of actin was used to calibrate 

the amount of RNA per sample. Ten day-old globular stage microspore-derived embryos were used as a control. 

DNA primers are shown in Supplemental Table 5. 

 

 

Supplemental Figure 6. Expression of the LEC1, GRP and ENODL4 reporter lines in zygotic embryos. 
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(A-D) LEC1:LEC1-GFP expression in B. napus. (A) Two-celled embryo proper stage. (B) Globular embryo. At this 

stage, LEC1 expression is focussed to the outer cell layers and the suspensor. (C) Heart stage embryo. (D) 

Torpedo stage embryo. (E-H) GRP:GFP-GUS expression in B. napus. (E) Zygote stage. (F) Late globular stage 

embryo. GRP expression gradually becomes restricted to the suspensor and its derivatives by the globular stage 

of development.  (G) Transition stage embryo. (H) Torpedo stage embryo. (I-J) ENODL4:GFP expression in 

Arabidopsis. (I) Globular embryo. (J) Heart stage embryo. ENODL4 expressed throughout the embryo proper 

and suspensor. Scale bar, 50 µm. 

 

 

 

 

Supplemental Figure 7. Embryo reporters are not expressed during pollen development in planta. 

(A-C) LEC1:LEC1-GFP expression in Arabidopsis. (D-F) ENODL4:GFP expression in Arabidopsis. (G-I) LEC1:LEC1-

GFP expression in B. napus. (J-L) GRP:GUS-GFP expression in B. napus, visualized by GUS staining. (A-I) Nuclei 

are visualized by DAPI staining. Uninucleate (upper), binucleate (middle) and trinucleate (lower) stages of 

pollen development. Scale bar, 10 µm. 
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Supplemental Figure 8. Microarray analysis and validation.  

(A) The number of probes that are significantly differentially-expressed (FDR<0.05) between TSA-treated or TSA 

and cycloheximide (CHX)-treated versus mock-treated B. napus microspore cultures, and that also showed at 

least a two-fold change in expression. (B) Validation of microarray gene expression data by quantitative real-

time RT-PCR. B. napus microspore cultures were collected under the same conditions used for the microarray 

analysis. The relative expression of each gene after treatment with TSA or TSA plus CHX was calculated 

according to Livak and Schmittgen (2001) using the corresponding mock treatment as the calibrator and the 

SAND gene as the reference. ELF4 expression (*) was down-regulated in the microarray analysis. The remaining 

genes were identified as upregulated genes in the microarray analysis. Relative expression is shown as log2 

values (-Ct). 
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Supplemental Figure 9. TSA-down regulated genes are preferentially-expressed in pollen and pollen tubes.  

The data was compiled using the Bio-Analytic Resource for Plant Biology (BAR) web-based tool 

(http://bar.utoronto.ca/affydb/cgi-bin/affy_db_exprss_browser_in.cgi) (Toufighi et al., 2005). A relatively high 

expression level is indicated by red and a relatively low expression level is by yellow. 
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Abstract 

The male gametophyte of Brassica napus can be reprogrammed to form haploid embryos 

in vitro by exposing microspores and pollen to heat stress. Previously, we showed that 

treatment of microspore cultures with the histone deacetylase inhibitor (HDACi) trichostatin 

A (TSA), alone or in combination with heat stress, greatly enhances both the proportion of 

embryogenic microspores/pollen and the final embryo yield of these cultures. Here we 

extend this observation to a subset of HDACi that includes SAHA, scriptaid and oxamflatin 

and apicidin. In addition, we examined two phenomena that contribute to an efficient 

haploid embryo production system: 1) the differentiation of embryogenic cells into embryos 

and 2) the functionality or quality of these embryos. The majority of cell types in control and 

HDACi-treated cultures comprise embryogenic callus that fails to differentiate the tissues 

and organs normally found in B. napus embryos. We used microarray analysis to better 

understand why this embryogenic callus fails to differentiate. The transcriptomes of 

differentiating embryos and embryogenic callus were highly correlated, but showed 

differences in a small number of key genes; the expression of key regulators of embryo 

polarity and histodifferentiation was downregulated in the callus-like structures, as were 

genes involved in auxin and cytokinin signaling. Our data suggest that a subset of initially 

responsive microspores/pollen is not sufficiently committed by the heat-stress/HDACi 

treatment to complete the transition from initial embryogenic cell division to embryo 

morphogenesis. Finally, we observed that progressively older stages of donor microspores 

produced embryos of reduced quality, characterized by a progressive reduction in apical-

basal patterning. Treatment with HDACi improved the quality of embryos produced from 

older gametophyte stages, by improving apical-basal patterning. The improved patterning 

was accompanied by stronger and broader basal expression of the DR5 auxin response 

reporter. We propose that the auxin response of progressively older stages of 

microspores/pollen is repressed by an HDAC-dependent mechanism, and that this response 

is required to ensure proper embryo patterning. The initial histone acetylation status of 

microspores/pollen therefore plays a major role in both embryo induction and embryo 

morphogenesis in microspore culture.  

 
Introduction 
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The DNA of plants, like most other eukaryotes, is wrapped around histones into 

nucleosomes, allowing it to be compacted into the nucleus. Cell cycle, developmental and 

environmental regulation of chemical modifications on histones provides a dynamic means 

to control the degree of DNA compaction and access of other proteins for replication and 

transcription. Among the various histone modifications, acetylation of lysine residues in the 

tails of the core histones has been extensively studied. Histone acetylation status is 

regulated by two groups of enzymes, histone acetyltransferases (HATs) and histone 

deacetylase (HDACs; Strahl and Allis, 2000). Hyper-acetylation of histones by HATs loosens 

chromatin structure by weakening the interaction between histones and DNA, and is 

associated with transcriptional activation, whereas hypo-acetylation of histones by HDACs 

compacts the chromatin structure and is associated with transcriptional repression (Millar 

and Grunstein, 2006).  

Plant HDACs are classified into three families: the RPD3/HDA1 family, named after the 

yeast reduced potassium dependency 3 (Rpd3) and histone deacetylase 1 (hda1) proteins, 

the plant-specific HD2 or HD-tuin family, and the yeast sirtuin family, which is homologous to 

the yeast silent information regulator 2 (Sir2) proteins (Pandey et al., 2002; Hollender and 

Liu, 2008; Alinsug et al., 2009). The Rpd3/hda1 and HD2 families show zinc-dependent 

deacetylase activity (Finnin et al., 1999), while the sirtuin family shows nicotinamide adenine 

dinucleotide (NAD)-dependent deacetylase activity (Grozinger and Schreiber, 2002; Huang et 

al., 2007). Arabidopsis contains 18 HDAC genes (12 Rpd3/hda1, 4 HD2 and 2 SIRTUINS) and 

these have been shown to play major roles in plant development (Wu et al., 2000; Tian and 

Chen, 2001; Xu et al., 2005; Tanaka et al., 2008; Cigliano et al., 2013; Kim et al., 2013; Liu et 

al., 2013), as well gene silencing (Earley et al., 2006; Earley et al., 2010; Liu et al., 2012), and 

response to biotic/abiotic stress (Zhou et al., 2005; Kim et al., 2008; Wu et al., 2008; Luo et 

al., 2012a; Chen et al., 2013).  

The activity of HDAC proteins can be controlled by chemical inhibitors, so-called HDAC 

inhibitors (HDACi). HDACi show selective sensitivity for the different HDAC families due to 

differences in their enzymatic mechanism. For example, HDACi that target Rpd3/hda1 and 

HD2-type HDACs inhibit HDAC activity by interacting with zinc ion and active site residues in 

the catalytic domain (Miller et al., 2003). This class of HDACi include short chain carboxylic 

acids, hydroxamic acids, benzamides, cyclic tetrapeptides and keto-derivatives (Bertrand, 

2010). These different structural classes of HDACi also selectively inhibit different HDAC 
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proteins within a given class with varying efficiency (Blackwell et al., 2008). In plants, 

treatment with HDACi, mainly trichostatin A (TSA), has been used to determine the role of 

histone modification during seed germination (Tai et al., 2005; Tanaka et al., 2008), root 

development (Murphy et al., 2000; Xu et al., 2005; Nguyen et al., 2013), leaf development 

(Luo et al., 2012b), as well as in in vitro culture (Li et al., 2005; Furuta et al., 2011; Uddenberg 

et al., 2011).  

Recently, we showed that histone acetylation plays a central role in the reprogramming of 

cultured male gametophytes to haploid embryo development (Li et al., 2014). During male 

gametophyte development, the haploid microspore divides to form a bicellular pollen grain 

that contains a vegetative nucleus and a smaller generative nucleus. The generative nucleus 

of the bicellular pollen grain divides once more, either in the anther or in the pollen tube 

during pollen germination, to form the trinucleate pollen grain comprising a vegetative cell 

and two smaller sperm cells (Twell, 2011). The microspores and bicellular pollen grains of 

many species can be induced to change developmental pathways in vitro from pollen 

development to embryo development after exposure to one or more physical or chemical 

stresses (Seguí-Simarro and Nuez, 2008; Soriano et al., 2013). This process is referred to as 

microspore embryogenesis, and is an example of the induced totipotency that characterizes 

many plant cells and tissues. In Brassica napus, microspore embryogenesis is induced by 

heat stress. We showed that treatment of cultured B. napus microspores/pollen with the 

HDACi TSA enhances embryogenic cell production and embryo yield compared to control 

cultures, and can even replace the requirement for heat-stress. Genetic analysis in 

Arabidopsis, which also exhibits TSA-mediated totipotency, showed that inhibition of HDA17 

activity, together with additional uncharacterized HDACs may underlie the stressed-induced 

totipotency observed in cultured microspores and pollen (Li et al., 2014).  

Microspore embryogenesis, besides being a model system for understanding plant cell 

totipotency, is widely used to accelerate the breeding process, as the haploid embryos 

produced in microspore culture can be converted to doubled-haploid (DH) plants, providing 

homozygous plants in a single generation (Forster et al., 2007; Ferrie and Möllers, 2011; 

Germanà, 2011). Microspore-derived embryo induction is an empirical process and the 

efficiency of embryo induction largely depends on the species and genotype. Currently, 

there are still many species and genotypes that remain recalcitrant for the different steps in 

DH production (Germanà, 2011). Many species and genotypes do not show any embryogenic 
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divisions in culture, while in other species, many of the embryogenic divisions lead to callus-

like growth rather than embryo formation (Ferrie et al., 1995; Li et al., 2014). In addition to 

the low efficiency of embryo induction, the poor differentiation of embryos and the low rate 

of conversion of embryos into seedlings are also limiting factors for efficient DH production. 

A better understanding of the molecular and cellular basis of these processes, from embryo 

induction to embryo conversion, will not only contribute to our understanding cell 

totipotency at the fundamental level, but will also help to improve the efficiency of 

microspore embryogenesis systems at the practical level. 

Here we show that, as with TSA treatment, treatment of B. napus microspore cultures 

with a range of HDACi that target Rpd3/hda1 and HD2 HDACs improved B. napus haploid 

embryo yield, not only by increasing the proportion of microspores and pollen that were 

reprogrammed to embryogenesis, but also by improving the quality of embryos obtained 

from suboptimal stages of donor pollen. The application of HDACi in microspore culture is 

therefore a powerful tool for understanding and improving haploid embryo production. 

 

Results 

A range of HDAC inhibitors enhance embryo induction and yield 

Previously we showed that a short 20h TSA treatment enhances both embryogenic cell 

proliferation and embryo yield in B. napus microspore culture (Li et al., 2014). We 

determined whether other HDACi have a similar effect on microspore culture, by testing 

eight inhibitors with specificity for RPD3/HDA1 and HD-tuin/HD2-type HDACs, namely seven 

hydroxymates and one cyclic tetrapeptide (Supplemental Table I). We examined the effect of 

these HDACi on two parameters, embryogenic cell divisions and final embryo yield, using the 

B. napus doubled-haploid line DH12075, which shows a poor response in microspore culture. 

The heat-stressed cultures are hereafter referred to as the control cultures and the heat 

stress plus HDACi-treated culture as HDACi cultures. 

Four types of embryogenic (sporophytic) multicellular structures are normally observed in 

five-day old control and HDACi-treated cultures (Figure 1A, Li et al., 2014): Type I structures, 

which are compact and still enclosed in the pollen exine; Type II compact callus-like 

structures, in which the exine shows partially early rupture; Type III structures, in which the 

sporophytically divided cells have been extruded from the exine and; Type IV loose callus-
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like structures, in which the exine has completely ruptured (Figure 1A). The cells from Type II 

and IV structures are more loosely connected than those of Type I structures, with Type IV 

cells being more loose than Type II cells. All of these cell types express embryo markers (Li et 

al., 2014), and although Types I, II and IV continue to divide in culture, only Type I structures 

are thought to form histodifferentiated embryos. These four cell types were used as 

measure for the effect of HDACi treatment on initial embryogenic growth. 

Most of the HDACi, with the exception of SAHA, SBHA, APHA8 and tubacin, had a positive, 

concentration- and stage-dependent effect on either the proportion or quality (Type I vs 

callus) of embryogenic divisions, as compared to the control (Figure 1B-G; Supplemental 

Data Set 1). Of the HDACi with a positive effect, all, with the exception of oxamflatin, were 

most effective in inducing embryogenic cell divisions from initial gametophyte cell 

populations that contained a mixture of late uninucleate microspores (85%) and early 

binucleate pollen (15%). Most of the HDACi with a positive effect on embryogenic cell 

divisions mainly induced Type II compact callus-like structures. Notably, treatment with 5 

M oxamflatin induced a relatively high proportion of the Type I embryogenic divisions (up 

to 14%; Figure 1G) that are correlated with histodifferentiated embryo formation.  

These data indicate that a wide range of HDACi improved embryogenic cell division in B. 

napus microspore culture. The inability of certain HDACi to improve embryo induction 

suggests that they are either active at different concentrations than were tested here, or 

that they do not target the specific HDACs that repress microspore/pollen totipotency. 

 

Embryogenic callus is characterized by misexpression of hormone and patterning genes 

Treatment of microspore cultures with TSA and other HDACi greatly enhanced embryogenic 

cell proliferation compared to control cultures. As in control cultures, the vast majority of 

embryogenic structures in HDACi-treated cultures are callus-like. These callus-like structures 

express the LEAFY COTYLEDON 1 (LEC1) and GLYCINE-RICH PROTEIN (GRP) embryo reporters 

(Li et al., 2014; Soriano et al., 2014/Chapter 5), indicating that they have entered the embryo 

development pathway, but upon further culture remain as loosely connected cell clusters 

that do not seem to develop into histodifferentiated embryos i.e. embryos with clear root 

and shoot poles and cotyledons. 
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Figure 1. HDAC inhibitors enhance embryogenic cell divisions in B. napus microspore culture. 

(A) Embryogenic structures found in control and HDAC inhibitor-treated DH12075 cultures. The sporophytic cell 

clusters are categorized as follows: Type I, classical embryo-forming structures (red bars); Type II, compact 

callus-like structures (blue bars); Type III, extruded sporophytic structures (purple bars) and Type IV, loose 

callus-like structures (green bars). Dead microspores and pollen were not included. Control, DMSO-treated 

sample. (B-G) The percentage of cells that had divided gametophytically (grey bars) or sporophytically 

(coloured bars) after five days of microspore culture in control and HDAC inhibitor-treated cultures. The cell 

types corresponding to the coloured bars (I-IV) are shown in (A). The developmental stages of the starting 

material are ranked from youngest to oldest (1-7 or 1-3), as described in Supplemental Data Set 1. The rankings 

are not absolute, but rather relative within one data set. Three concentrations of HDAC inhibitors were 

evaluated: 0.05 µM (B and E), 0.5 µM (C and F) and 5 µM (D and G). Scale bars, 50µm. 
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We examined the gene expression profiles of globular stage embryos and embryogenic 

callus to obtain more insight into the molecular pathways underlying the development of 

differentiated embryos and embryogenic callus. Enriched samples containing a high 

proportion of seven day-old Type I globular-stage embryos (at least 93%; Supplemental 

Figure 1A; Supplemental Data Set 1) were obtained by inducing microspore cultures of the 

highly embryogenic B. napus genotype Topas DH4079 with heat-stress. Enriched samples of 

Type II and IV embryogenic callus (at least 97%) were obtained by inducing microspore 

cultures of the same genotype with heat-stress in combination with a 20h treatment with 

0.5 µM TSA (Supplemental Figure 1A; Supplemental Data Set 1). At seven days of culture, 

control globular-stage embryos have burst out of the surrounding exine and have just 

started to show morphological and cellular-molecular signs of histodifferentiation (Soriano 

et al., 2014/Chapter 5). In contrast, callus-like structures had either completely burst out of 

the exine or showed broken patches of exine, and do not show any morphological signs of 

patterning. 

Scatterplot analysis of the gene expression values from globular embryos and 

embryogenic callus showed that the samples were highly similar (R2 =0.938, p-value <2.2*10-

6) (Supplemental Figure 1B). Microarray analysis of these samples identified 1168 probe sets 

(752 genes) that were significantly differentially-expressed more than two fold (log2 ratio ≤-1 

or ≥1, FDR≤0.05). All the genes showing significant differential expression were 

characterized by relatively low expression (close to detection threshold) in one tissue 

(Supplemental Figure 1B, Supplemental Data Set 2). Of these, 703 probe sets (441 genes) 

were down-regulated in embryogenic callus compared to globular stage embryos 

(Supplemental Data Set 2). Gene Ontology (GO) analysis using BiNGO (Maere et al., 2005) 

showed that probe-sets corresponding to genes with functions related to development 

(embryo, meristem, patterning) and response to stimuli (abiotic, organic substances, 

hormones) and signalling (phosphate/phosphorylation) were significantly overrepresented 

among the down-regulated genes (Supplemental Figure 1D, Supplemental Data Set 2). 465 

probe sets (311 genes) were up-regulated in embryogenic callus compared to globular stage 

embryos, and these were enriched in the GO categories peptide transport and secondary 

metabolism (amino acid, lignin, phenylpropanoid and cellulose) (Supplemental Figure 1E, 

Supplemental Data Set 2). The differential expression of a selection of genes was confirmed 

using quantitative real-time RT-PCR (Supplemental Figure 1C). 
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Closer inspection of the genes in each of the functional categories showed that genes 

with roles in embryo patterning and/or meristem development were down regulated in 

embryogenic callus compared to globular stage embryos (Table I). These include the 

WUSCHEL RELATED HOMEOBOX (WOX) genes, WOX2, PRESSED FLOWER (PRS)/WOX3, WOX5, 

and STIMPY (STIP)/WOX9 (Matsumoto and Okada, 2001; Haecker et al., 2004; Sarkar et al., 

2007), TARGET OF MONOPTEROS7 (TMO7, Schlereth et al., 2010), HANABA TARANU 

(HAN)/MONOPOLE (MNP, Nawy et al., 2010), EMBRYO MAKER (EMK)/CHOTTO 

(CHO)/AINTEGMENTA-like 5 (AIL5, Tsuwamoto et al., 2010), PLETHORA2 (PLT2, Galinha et al., 

2007), BABY BOOM (BBM; Boutilier et al., 2002), JACKDAW (JKD, Hassan et al., 2010). Some 

of the down-regulated genes are also involved in apical pole specification, such as 

DORNRӦSCHEN (DRN) and DRNL (Chandler et al., 2007; Chandler et al., 2011), PHABULOSA 

(PHB, McConnell et al., 2001), ALTERED MERISTEM PROGRAM1 (AMP1, Nogué et al., 2000) 

and CLAVATA3 (Clark et al., 1995). Some of the down-regulated genes are also involved in 

epidermal specification. For example, the HOMEODOMAIN GLABROUS (HDG) genes, 

ARABIDOPSIS THALIANA MERISTEM LAYER 1 (ATML1; Abe et al., 2003) and HDG11 

(Nakamura et al., 2006), as well as PROTODERMAL FACTOR 1 (PDF1, Abe et al., 1999), 

ARABIDOPSIS CRINKLY 4 (ACR4, Tanaka et al., 2002), GASSHO 1 (GSO1) and GSO2 

(Tsuwamoto et al., 2008), and SCRAMBLED (SCM, Kwak and Schiefelbein, 2007). However, 

we also observed that expression of two members of this family, HDG2 and HDG3, was up-

regulated. 

In addition to down-regulation of genes involved in embryo patterning and meristem 

development, we also observed down-regulation of genes involved in auxin signalling and 

transport, including the auxin response factors (ARF) ARF5/MONOPTEROS (MP), ARF8, 

ARF18 (Berleth and Jurgens, 1993; Rademacher et al., 2011), repressors of ARF gene 

expression, the Aux/IAA transcriptional repressors INDOLE-3-ACETIC-ACID2 (IAA2), IAA19, 

IAA29, IAA30 (Overvoorde et al., 2005), and the auxin efflux carrier genes PIN-FORMED3 

(PIN3), PIN4 and PIN7 (Friml et al., 2003).  

Genes involved in cytokinin signal transduction were also down regulated. For example, 

ARABIDOPSIS RESPONSE REGULATOR7 (ARR7) and ARR15 (Müller and Sheen, 2008), which 

belong to type-A ARRs and are negative regulators of cytokinin signalling, and CYTOKININ 

RESPONSE FACTOR 1 (CRF1) and CRF3 (Rashotte et al., 2006; Xu et al., 2012), which are 

positive regulators of cytokinin response. Overexpression of CRF3 also induces callus 
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formation (Xu et al., 2012). One cytokinin-regulated cell cycle gene CYCLIN D3;1 (CYCD3;1) 

was also down regulated (Riou-Khamlichi et al., 1999).  

Among the genes that were up-regulated in embryogenic callus-like structures, were 

genes involved in cytokinin signalling, including two type-B cytokinin response regulators 

ARR19 and ARR21, which act as positive regulators of cytokinin signalling, and a type-C 

regulator ARR22, which acts as a negative regulator of cytokinin signalling. Overexpression of 

a dominant-negative form of ARR21 induces callus formation in Arabidopsis (Tajima et al., 

2004). Expression of CYTOKININ OXIDASE 5 (CKX5), which encodes a cytokinin oxidase that 

mediates cytokinin degradation (Bartrina et al., 2011), was also upregulated.  

Embryo patterning, root/shoot meristem and auxin/cytokinin transport and signalling are 

intertwined processes that control the major cell fate and histodifferentiation events in 

zygotic embryos. Our results suggest that embryogenic callus formation is associated with a 

global misregulation of these processes.  

 

Table I. Significantly differentially-expressed genes with known functions 

Down-regulated genes  

Locus AGI References 

Auxin-related 

AUXIN RESPONSE FACTOR5 (ARF5)/MONOPTEROS 
(MP) 

At1g19850 Berleth and Jürgens, 1993; Hardtke and 
Berleth, 1998; Ulmasov et al., 1999; 
Weijers et al., 2006 

AUXIN RESPONSE FACTOR8 (ARF8) At5g37020 Nagpal et al., 2005 

AUXIN RESPONSE FACTOR18 (ARF18) At3g61830 Rademacher et al., 2011 

INDOLE-3-ACETIC-ACID2 (IAA2) At3g23030 Overvoorde et al., 2005 

INDOLE-3-ACETIC-ACID19 (IAA19) At3g15540 

INDOLE-3-ACETIC-ACID29 (IAA29) At4g32280 

INDOLE-3-ACETIC-ACID30 (IAA30) At3g62100 

PIN-FORMED3 (PIN3) At1g70940 Friml et al., 2003; Benková et al., 2003 

PIN-FORMED4 (PIN4) At2g01420 

PIN-FORMED7 (PIN7) At1g23080 

Development 

WUSCHEL RELATED HOMEOBOX2 (WOX2) At5g59340 Haecker et al., 2004; Breuninger et al., 
2008 

PRESSED FLOWER (PRS)/WUSCHEL RELATED 
HOMEOBOX3 (WOX3) 

At2g28610 Matsumoto and Okada, 2001 

WUSCHEL RELATED HOMEOBOX5 (WOX5) At3g11260 Sarkar et al., 2007 

WUSCHEL RELATED HOMEOBOX9 (WOX9)/STIMPY 
(STIP) 

At2g33880 Wu et al., 2007 

TARGET OF MONOPTEROS7 (TMO7) At1g74500 Schlereth et al., 2010 

HANABA TARANU (HAN)/MONOPOLE (MNP) At3g50870 Zhao et al., 2004; Nawy et al., 2010 
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PLETHORA2 (PLT2) At1g51190 Aida et al., 2004; Boutilier et al., 2002; 
Galinha et al., 2007 BABY BOOM (BBM)/PLT4 At5g17430 

PLT5/AINTEGMENTA-like5 (AIL5)/EMBRYOMAKER 
(EMK) 

At5g57390 Tsuwamoto et al., 2010 

ALTERED MERISTEM PROGRAM1 (AMP1) At3g54720 Chaudhury et al., 1993; Nogue et al., 
2000a; Nogue et al., 2000b 

CLAVATA3/ESR-RELATED17 (CLE17) At1g70895 Wang and Fiers, 2010; Clark et al., 1995 

DORNRӦSCHEN (DRN)/ENHANCER OF SHOOT 
REGENERATION1 (ESR1) 

At1g12980 Cole et al., 2009; Chandler et al., 2007, 
2011 

DORNRӦSCHEN-LIKE (DRNL)/ ENHANCER OF 
SHOOT REGENERATION2 (ESR2) 

At1g24590 

PHABULOSA (PHB) At2g34710 McConnell et al., 2001 

JACKDAW (JKD) At5g03150 Hassan et al., 2010 

Epidermis development 

Arabidopsis thaliana MERISTEM LAYER1 (ATML1) At4g21750 Lu et al., 1996; Sessions et al., 1999; Abe 
et al., 2001; Abe et al., 2003; Takada et 
al., 2013 

PROTODERMAL FACTOR1 (PDF1) At2g42840 Abe et al., 1999 

ARABIDOPSIS CRINKLY4 (ACR4) At3g59420 Tanaka et al., 2002 

GASSHO1 (GSO1) At4g20140 Tsuwamoto et al., 2008 

GASSHO2 (GSO2) At5g44700 

HOMEODOMAIN GLABROUS11(HDG11)  At1g73360 Nakamura et al., 2006 

SCRAMBLED (SCM) At1g11130 Kwak and Schiefelbein, 2007 

Cell cycle   

CYCLIN D3;1 (CYCD3;1) At4g34160 Riou-Khamlichi et al., 1999 

Cytokinin-related 

ARABIDOPSIS RESPONSE REGULATOR7 (ARR7) At1g19050 Lee et al., 2007; Müller and Sheen, 2008 

ARABIDOPSIS RESPONSE REGULATOR15 (ARR15) At1g74890 Kiba et al., 2003; Müller and Sheen, 
2008 

CYTOKININ RESPONSE FACTOR 1 (CRF1) At4g11140 Rashotte et al., 2006; Xu et al., 2012 

CYTOKININ RESPONSE FACTOR 3 (CRF3) At5g53290 

Cytoskeleton 

MICROTUBULE-ASSOCIATED PROTEINS65-1 
(MAP65-1) 

At5g55230 Lucas et al., 2011; Lucas and Shaw, 2012 

MICROTUBULE-ASSOCIATED PROTEINS65-2 
(MAP65-2) 

At4g26760 

 

Up-regulated genes 

Auxin-related 

GH3-10/DWARF IN LIGHT 2 (DFL2)  At4g03400 Ulmasov et al., 1995 

PIN2/ETHYLENE INSENSITIVE ROOT 1 (EIR1) At5g57090 Friml et al., 2003; Benková et al., 2003 

Development     

WUSCHEL RELATED HOMEOBOX 14 (WOX14) At1g20700 Etchells et al.,2013 

LATERAL ORGAN BOUNDARY DOMAIN18 (LBD18)  At2g45420 Lee et al., 2009; Berckmans et al., 2011 

GROWTH-REGULATING FACTOR 4 (GRF4) At3g52910 Kim et al., 2003 

AGAMOUS-LIKE 80 (AGL80) At5g48670 Portereiko et al., 2006 

NGATHA4 (NGA4) At4g01500 Trigueros et al., 2009 

TRANSPARENT TESTA16 (TT16)/ABS/AGL32 At5g23260 Nesi et al., 2002 
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MADS AFFECTING FLOWERING 4 (MAF4) At5g65070 Ratcliffe et al., 2003 

MYB DOMAIN PROTEIN 56 (MYB56) At5g17800 Zhang et al., 2013 

MYB DOMAIN PROTEIN 63 (MYB63) At1g79180 Zhou et al., 2009 

Epidermis development 

HOMEODOMAIN GLABROUS 3 (HDG3) At2g32370 Nakamura et al., 2006 

HOMEODOMAIN GLABROUS 2 (HDG2) At1g05230 Peterson et al., 2013 

ENHANCER OF GLABRA 3 (EGL3) At1g63650 Bernhardt et al., 2003, 2005; Zhang et 
al., 2003 

Cytokinin-related 

CYTOKININ OXIDASE 5 (CKX5) At1g75450 Bartrina et al., 2011 

ARABIDOPSIS RESPONSE REGULATOR 22 (ARR22) At3g04280 Horák et al., 2008 

ARABIDOPSIS RESPONSE REGULATOR 21 (ARR21) At5g07210 Tajima et al., 2004 

ARABIDOPSIS RESPONSE REGULATOR 19 (ARR19) At1g49190 Day et al., 2008 

 

Inhibition of HDAC activity improves embryo yield and quality 

Previously, we showed that TSA treatment increases the range of pollen developmental 

stages that form differentiated embryos in microspore culture (Li et al., 2014). We therefore 

examined additional HDACi for their ability to enhance embryo production in B. napus 

DH12075. As with TSA, all HDACi significantly enhanced embryo production compared to 

control cultures, although embryo formation was less efficient after treatment with certain 

HDACi (SBHA, APHA8, tubacin, apicidin) than with TSA (Figure 2). The effect of each HDACi 

on embryo yield was stage and concentration-dependent (Figure 2). For example, as shown 

previously, treatment with high concentrations of TSA had a negative effect on embryo yield 

(Figure 2C, Li et al., 2014). Enhanced embryo formation was observed over a wider range of 

developmental stages, thereby contributing to an even larger improvement in embryo yield. 

We focussed our further experiments on the HDACi TSA, SAHA and scriptaid. 

Treatment of microspore cultures with HDACi also improved the quality of the embryos 

that were formed. Four major types of embryos were observed in control cultures (Figures 2 

and 3; Supplemental Table II; supplemental Data Set 1). These comprised bipolar embryos 

with two cotyledons, a long embryonic axis and a clear root pole (referred to as normal 

embryos) (Figure 3A), along with less well-formed embryos, including embryos with a rough 

hypocotyl surface and reduced cotyledons (Figure 3B; referred to as rough embryos), 

embryos with reduced apical and basal poles (Figure 3C; referred to as reduced embryos), 

and ball-shaped embryos with or without small round cotyledons (Figure 3D). These ball 

shaped embryos differ from embryogenic callus in that they are compact structures, rather 

than clusters of loosely connected cells. Embryo morphology was largely dependent on the 
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developmental stage of the microspores/pollen used to initiate the culture, with older stages 

generating progressively poorer quality embryos (Supplemental Table II). Only one type of 

embryo was found within each developmental range of microspore/pollen development. A 

similar trend of poorer embryo morphology in cultures derived from older gametophytes 

was observed in HDACi-treated cultures, except that (concentration-dependent) treatment 

with HDACi improved embryo morphology at each stage compared to the control (Figure 3E-

H; Supplemental Table II). The major morphological improvements obtained after the HDACi 

treatments were smoothening of the epidermis, elongation of the embryonic axis and 

growth of the apical pole (Figure 3F-H). After HDACi treatment the rough embryos in control 

cultures were replaced by elongated and less rough embryos (referred to as wrinkled; Figure 

3B vs F), while the reduced embryos in control cultures were replaced by elongated embryos 

with fused cotyledons (Figure 3C vs G), and the ball-shaped clusters were replaced by 

reduced embryos (Figure 3D vs H). At higher concentrations, two inhibitors, scriptaid and 

TSA, induced the formation of embryos with fused cotyledons and/or pin-shaped embryos 

with severely reduced cotyledons.  

To determine whether embryos from HDACi-treated cultures could be converted into 

seedlings, we placed embryos from TSA, SAHA and scriptaid-treated cultures on solid 

germination medium and observed the timing and efficiency of root and shoot formation 

compared to control cultures (Supplemental Data Set 1; Figure 4). All embryos except ball-

shaped embryos, developed a single root from the basal tip of the embryo within five days of 

plating (Figure 4A-G), suggesting that these roots were derived directly from a meristem, 

rather than indirectly through the slower process of callus formation and organogenesis. 

Notably, the root of embryos from HDACi-treated cultures (Figure 4D-G) grew faster 

compared to embryos from control cultures (Figure 4A-C). Callus formed at the junction of 

the hypocotyl and root of all embryos, especially pin-shaped embryos from TSA treated 

cultures, which also formed secondary embryos from the enlarged hypocotyl (Figure 4G). 

Shoot formation was evaluated 20 days after germination in embryos from control cultures 

and HDACi-treated cultures (Figure 4H; Supplemental Data Set 1). Insufficient embryos were 

available in the 0.05 M scriptaid and SAHA treatments to examine the effect of these 

HDACi on shoot development. Around 20-30% of the embryos from control and HDACi-

treated cultures formed shoots, with the exception of ball-shaped embryos (control and 

HDACi cultures), pin-shaped embryos (TSA cultures) and reduced embryos from most 
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Figure 2. HDAC inhibitors increase embryo yield in B. napus microspore culture. 

Embryo yield from control or HDAC inhibitor-treated DH12075 microspore cultures after 15 days of culture. 

The developmental stages of the starting material (1-7 or 1-3) are ranked from youngest to oldest, as described 

in Supplemental Data Set 1. The rankings are not absolute, but rather relative within one data set. Three 

concentrations of HDAC inhibitors were evaluated: 0.05 µM (A and D), 0.5 µM (B and E), 5 µM (C and F). *, 

statistically significant difference between the control and HDAC inhibitor treatment for the same 

developmental stage (p < 0.05; Student’s t test). 
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Figure 3. HDAC inhibitors improve embryo morphology in B. napus. 

The morphology of embryos formed from microspore cultures started from progressively older stages of male 

gametophyte development (from left to right). The composition of each culture is shown in Supplemental Data 

Set 1. (A-C) Embryos from control cultures. Normal embryos (A), rough embryos (B), reduced embryos (C), ball-

shaped embryos (D). (E-H) Embryos from 0.05 M TSA-treated cultures. Normal embryos (E), wrinkled embryos 

(F), fused cotyledon embryos (G), reduced embryos (H). Scale bars, A, B, C, E, G, H: 2 mm; D, F: 1 mm. 

 

HDACi-treated cultures, which did not form any shoots (Figure 4H, Supplemental Data Set 1). 

The overall conversion rate between control and HDACi treated embryos was similar, 

although differences were observed between the different embryo types in the different 

HDACi-treatments. For example, reduced embryos formed shoots in one treatment (5 µM 

scriptaid; Supplemental Data Set 1), while all other embryo types showed reduced 

germination in this treatment.  

Our data indicate that HDACi treatment improved the morphology of embryos obtained 

from suboptimal stages of microspores/pollen. HDACi-treated do not show enhanced 

conversion rates compare to control embryos, but the total amount of functional embryos is 

increased by HDACi treatment. 

 

Inhibition of HDAC activity improves embryo patterning  

Next, we made thin sections of the different types of embryos found in control and 

HDACi-treated cultures to determine how inhibition of HDAC activity improves their 

morphology and conversion to plantlets. In control cultures, both the shoot apical meristem 

(SAM) and root apical meristem (RAM) of normal embryos were well developed (Figure 5A-

C). The shoot apical meristem was characterized by a group of small cells with dense 

cytoplasm (Figure 5A and 5B), while the root apical meristem was characterized by a 
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Figure 4. The effect of HDAC inhibitor treatment on embryo conversion in B. napus. 

(A-G) Six-day old of seedlings from different types of embryos grown on germination medium. The embryo 

types are shown schematically in the image. (A-C) Germinated embryos from control cultures. These seedlings 

were derived from normal embryos (A), rough embryos (B), and reduced embryos (C). (D-G) Germinated 

embryos from TSA-treated cultures. These seedlings were derived from normal embryos (D), wrinkled embryos 

(E), fused cotyledon embryos (F), pin-shaped embryos (G). The arrow indicates somatic embryos on the 

hypocotyl. (H) The conversion rate of different embryo types after treatment of different starting 

microspore/pollen populations with different concentrations of HDAC inhibitors. The embryos from different 

stages of donor material were grouped for simplicity. The data is also available in Supplemental Data Set 1. 

Scale bars, 5 mm. 
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relatively well-organized stem cell niche adjacent to the provascular tissue. A few (1-3) 

quiescent centre (QC) cells could be recognized in the stem cell niche, which were 

surrounded by few small stem cells. These stem cells could be distinguished from other cells 

in the root tip by their small size, location (fifth layer from the root tip, at the border with 

the provascular tissue) and round shape (Figure 5D). The single provascular strand in the 

embryonic axis divided into two strands under the shoot meristem (Figure 5B) and extended 

into the two cotyledons. Rough embryos from control cultures had less well-defined 

epidermal and ground cell files, which contributed to their rough appearance, and a poorly 

defined SAM and RAM (Figure 5E-G), characterized by the absence of cytoplasmically-rich 

cells at the position of the SAM (Figure 5F) and lack of distinguishable QC cells in the root 

meristem (Figure 5H), although the provascular tissue was well-developed (Figure 5F). 

Reduced embryos from control cultures had poorly organized epidermal/ground cell files 

and poorly organized SAM, RAM and provascular tissue (as in rough embryos, Figure 5I-K). 

Ball-shaped embryos did not show any recognizable tissue organisation (Figure 5L).  

The improved overall morphology of embryos from HDACi-treated cultures was reflected 

in the development of their cell files, meristems and apical-basal patterning. Unlike rough 

embryos from control cultures, the cell files of wrinkled embryos were well-organized, 

contributing to the reduced roughness of the embryo (Figure 5M, Q, U), although they were 

still less tightly packed compared to normal HDACi-treated embryos. The normal, wrinkled 

and fused cotyledon embryos developed a recognizable SAM (Figure 5N, R, V), RAM (Figure 

5P, T, X) and provascular tissue (Figure 5N, R, V), although the SAM was reduced in size and 

less-well defined compared to the SAM of normal control embryos. Differences were 

observed between control and HDACi-treated embryos in the development of provascular 

tissue; two provascular strands were observed bifurcating the SAM in normal and rough 

control embryos, while only one provascular strand, which ended under the SAM, was 

observed in normal, wrinkled and fused cotyledon HDACi-treated embryos. In pin-shaped 

embryos from TSA-treated cultures, neither cotyledon primordia nor a SAM were observed 

at the apical end of the embryo (Figure 5Y-Z). Instead, the apical region was characterized by 

a dome-shaped structure containing small, uniformly-shaped cells subtended by larger cells 

(Figure 5Z). Pin-shaped embryos displayed normal provascular tissue development, but did 

not contain recognizable QC cells at the root tip (Figure 5Y, 5AA-AB). 
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Figure 5. The effect of TSA on microspore embryo development in B. napus.  
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(A-L) Embryos from control cultures. Normal embryos (A-D), rough embryos (E-H), reduced embryos (I-K), ball-

shaped embryos (L). The embryo types are shown schematically in the image. (M-AB) Embryos from TSA-

treated cultures. Normal embryos (M-P), wrinkled embryos (Q-T), fused cotyledon embryos (U-X), pin-shaped 

embryos (Y-AB). (A, E, M, Q, U, Y) Shoot apex of embryos. (B, F, N, R, V, Z) Enlarged images of the shoot apex. 

(C, G, J, K, O, S, W, AA) Root apex of embryos. (D, H, P, T, X, AB) Enlarged images of the root apex. All the 

embryos were analysed at 20 days of culture. Open arrow, shoot apical meristem. Closed arrows, provascular 

tissue. Arrow head, stem cell niche of root apical meristem or normal position of the root apical meristem. 

Scale bars, A-C, E-G, I- K, M-O, Q-S, U-W, Y-AA, 100 µm. D, H, L, P, T, X, AB, 50 µm.  

 

Our results indicate that HDACi treatment enhances the quality of embryos from 

suboptimal stages of donor gametophytes by improving the regularity of the cell files, axis 

elongation and cotyledon outgrowth.  

 

Improved embryo patterning after HDACi treatment is reflected in embryo auxin response  

A number of the the embryo phenotypes observed in control and HDACi-treated cultures 

(reduced, fused cotyledon, pin-shaped) resemble phenotypes observed in zygotic embryos 

treated with auxin transport inhibitors (Liu et al., 1993; Hadfi et al., 1998; Ramesar-Fortner 

and Yeung, 2006), or in other auxin-related processes (Mayer et al., 1993; Assaad et al., 1996; 

Friml et al., 2003; Furutani et al., 2004). Therefore, we examined whether auxin-related 

processes were altered in the embryos with abnormal morphology from both control and 

HDACi-treated cultures, using the DR5:GFP reporter as an indirect read-out of auxin levels 

and/or signalling (Ulmasov et al., 1997; Friml et al., 2003).  

In B. napus zygotic embryos and normal microspore embryos, DR5 expression is localized 

to the root pole at the late globular stage onwards (Figure 6A; Soriano et al., 2014/Chapter 

5). DR5 expression remains confined to the root pole as the embryo develops, but is not 

always observed at cotyledon tips, as described for Arabidopsis (Figure 6B, C; Soriano et al., 

2014/Chapter 5; Benková et al., 2003). In abnormal embryos from control cultures, the DR5 

reporter was either expressed in fewer cells at the root tip (rough embryos; Figure 6D-F), or 

absent or only weakly expressed in one or two cells of the root tip (reduced embryos; Figure 

6G). DR5 expression was not observed in ball-shaped structures (not shown).  

Normal embryos in HDACi-treated cultures showed a similar pattern of DR5 expression as 

normal embryos from control cultures (Figure 6H-J). DR5 expression was stronger and 

expressed more broadly in wrinkled embryos (Figure 6K-M), and in fused cotyledon 
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Figure 6. HDAC inhibition enhances auxin response in B. napus microspore embryos. 
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(A-G) DR5:GFP expression in embryos from control cultures. Normal embryos (A-C), rough embryos (D-F), 

reduced embryos (G). (H-T) DR5:GFP expression in embryos from TSA-treated cultures. Normal embryos (H-J), 

wrinkled embryos (K-M), fused cotyledon embryos (N-P), pin-shaped embryos (Q-S), reduced embryos (T). The 

embryo types are shown schematically in the image. Green, GFP signal; red, propidium iodide staining. Arrow, 

DR5:GFP expression in cotyledons. Scale bars, 50 µm. 

 

(Figure 6N-P) and pin-shaped embryos (Figure 6Q-S), where DR5 expression could also be 

observed in the provasculature (Figure 6O, R-S). DR5 expression was increased and 

observed more frequently in the cotyledon tips of normal and wrinkled embryos from 

HDACi-treated cultures than those of control cultures. The reduced embryos from HDACi 

cultures did not or only weakly expressed DR5, as in the corresponding structures in 

control cultures (Figure 6G, T).  

In general, inhibition of HDAC activity is associated with broader and stronger DR5 

expression, suggesting a role for enhanced basal auxin response in this process.  

 

Discussion 

Specificity for HDAC inhibitors  

The HDACi TSA has been shown to be a potent enhancer of embryogenic cell division and 

embryo production in B. napus microspore culture (Li et al., 2014). Here we showed that 

additional compounds in the Rpd3/hda1/HD2 class of HDAC inhibitors also had a positive 

effect on embryo induction and/or yield in microspore culture for at least one of the 

concentrations tested. In general, TSA, scriptaid and apicidin were the most effective 

inducers of embryogenic cell division, and TSA, SAHA, scriptaid and oxamflatin were the 

most effective enhancers of embryo yield. 

TSA and SAHA are considered pan-inhibitors of the mammalian Rpd3/hda1 class of HDACs, 

in that they inhibit all HDAC proteins in this family (Bieliauskas and Pflum, 2008). However 

Rpd3/hda1 HDAC isoforms also show differential sensitivity to different HDACi. For example, 

in mammals, HDAC8 is less sensitive to TSA, SAHA and scriptaid compared to other HDAC 

proteins (Blackwell et al., 2008; Khan et al., 2008). The isoform selectivity of HDACi may 

underlie the observed differences in the efficiency of embryo induction and yield of the 

HDACi that were tested in microspore culture. HDACi also show an optimal dosage for HDAC 

inhibition. For example, TSA inhibits the in vitro activity of different mammalian HDAC 

isoforms in the nM range, while SAHA, scriptaid, and oxamflatin are most effective in the µM 
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range (Blackwell et al., 2008). The dosage curve for TSA in microspore culture is in the 

nanomolar range (data not shown), but the dosage curves for the other HDACi has not been 

rigorously examined. Micromolar concentrations of SAHA, scriptaid and oxamflatin were 

needed to obtain similar efficiencies as nanomolar concentrations TSA, suggesting that the 

optimum dose for these compounds is higher than tested here.  

 

Embryogenic callus  

Treatment with HDACi induces massive induction of embryogenic cells in microspore 

culture, and although embryo yield is also increased after HDACi treatment, the vast 

majority of embryogenic cells fail to form embryos. Instead, these cells form clusters of 

loosely connected cells that divide slowly and eventually die. Cell loosening can already be 

observed after one to two cell divisions (Li et al., 2014; Soriano et al., 2014/Chapter 5), 

indicating that this embryogenic callus pathway is induced early in culture. These callus-like 

structures are also observed in control cultures, although in lower numbers, suggesting that 

their formation is a normal response to the induction treatment. Understanding why these 

callus-like structures fail to differentiate can be instrumental in designing strategies to 

improve their differentiation to functional embryos. Callus-like structures do not express the 

auxin response marker DR5, whereas normal embryos do (Soriano et al., 2014/Chapter 5), 

suggesting a link between the failure to mount an early auxin response and 

histodifferentiation. 

The major change in gene expression between globular embryos and embryogenic callus 

was the misregulation of key developmental regulators, especially those involved in 

patterning and in auxin-related processes. Misregulation of these genes might simply be a 

downstream effect that marks the lack of tissue differentiation in these structures. TSA-

induced callus-like structures lack apical and basal polarity, thus genes that might normally 

be apically or basally expressed in normal embryos might be weakly or not expressed or 

spatially mis-expressed in embryogenic callus. In support of this, PIN gene expression is 

misregulated, but polar auxin transport is not required for apical-basal patterning and 

epidermal specification in microspore embryos (Soriano et al., 2014/Chapter 5). Alternatively, 

misexpression of these patterning genes might reflect the deregulation of key upstream 

regulatory factors that determine the identity of the different embryonic tissues.  
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HDACs regulate auxin signalling 

We observed that haploid embryo morphology is negatively influenced by progressively 

older stages of donor gametophytes. In control cultures, a continuum of developmental 

phenotypes was observed, from normal  rough  reduced  ball shaped embryos, which 

correlated with the increasing developmental age of the donor pollen (Figure 7A). Treating 

microspore cultures with HDACi improved the apical-basal pattern of embryos from 

progressively older microspore/pollen populations in a dose and HDACi-specific manner, but 

also had a negative effect on apical pole development, by reducing the quality of the shoot 

meristem and eventually cotyledon outgrowth (Figure 7B). Treatment with higher 

concentrations of TSA and scriptaid had a strong effect on embryo development, either by 

abolishing embryo development completely or by inducing fused cotyledon and/or pin-

shaped embryos. The continuum of developmental phenotypes after HDACi treatment can 

therefore be described as a transition from apical-basal compromised embryos (ball-shaped) 

to basally hyperactivated embryos (pin-shaped) i.e. ball shaped  reduced  

wrinkled/rough  normal  fused cotyledon pin-shaped (Figure 7B). Together the data 

suggest that there is a continuum of embryo morphologies, from ball-shaped to pin-shaped, 

that develop in microspore culture, that results from changes in the histone acetylation 

status of the cell and increased basal auxin response.   

HDACi-treated embryos showed a stronger and broader basal DR5 auxin response than 

control embryos, regardless of their origin and phenotype. In Arabidopsis zygotic embryos, 

auxin maxima are formed in the uppermost cell of the embryonic suspensor, the hypophysis 

(the precursor of the root meristem) and in the tips of the cotyledon primordia. These 

maxima are established in part by directional PIN-mediated auxin efflux. PIN expression is 

first observed after zygote division, when PIN7 becomes expressed at the apical side of the 

basal cell, driving auxin flow from the suspensor to the embryo proper and DR5 expression in 

the embryo proper. PIN1 is expressed in an apolar fashion in the 8-celled embryo proper 

stage, while PIN7 expression remains at the apical side of the suspensor. PIN1 polarity 

changes at the globular stage, where it is expressed apically in the protoderm and basally in 

the provascular tissue. At the same time, PIN7 expression switches from the apical to basal 

side of the suspensor and is replaced in the hypophysis by PIN4 expression. The net effect is 

that auxin accumulates in the hypophysis, and at the tips of the cotyledon promordia. HDACi 

treatment enhanced basal DR5 expression suggesting that basal embryo identity is 
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Figure 7. Model for the role of histone deacetylation in microspore embryo patterning. 

(A) Progressively older stages of microspore/pollen development are characterized by increased HDAC activity 

(solid triangle), which has a negative effect on embryo patterning. Treatment with HDAC inhibitors (dotted 

lines) reduces HDAC activity, allowing better patterning at suboptimal stages. Note that treatment with higher 

concentrations of TSA or scriptaid negatively affects apical embryo patterning (square box), but in a stage 

independent manner. 

(B) HDAC proteins repress auxin response. A relatively low HDAC activity and a relatively high auxin response 

enforces basal embryo identity, while a relatively high HDAC activity and a relatively low auxin response 

enforces apical identity. When the two processes are in balance, then apical and basal patterning is also 

balanced. Embryos from progressively older stages of microspores/pollen show reduced basal identity (A), 

which can be complemented by treatment with HDAC inhibitors; however basal patterning predominates at 

the expense of apical growth (e.g. in pin- and fused cotyledon embryos) when HDAC activity is too strongly 

repressed. The model does not take into account the HDAC specificity or dosage-dependent activities of the 

different HDAC inhibitors. 
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strengthened by HDACi treatment. Initially, this stronger basal identity is balanced in that 

apical growth is also promoted, and the embryo axis elongates and the cotyledons expand. 

Application of TSA and scriptaid at certain concentrations appears to have a much stronger 

effect on basal identity, so that apical development in the most affected embryos (fused 

cotyledon and pin-shaped) is compromised. The basal embryo identity in these embryos 

might be so strong that auxin does not flow back up into cotyledon via epidermal PIN1, 

leading to loss of auxin at the apical pole. A local auxin gradient is required for cotyledon 

formation (Benková et al., 2003), thus a lower amount of auxin in the apical pole might 

reduce expression of the CUC boundary genes (leading to fused cotyledon embryos) and/or 

fall below the threshold required for cotyledon initiation (leading to pin-shaped embryos). 

Alternatively, the apical pole of the embryo may take on a basal identity, as described for the 

topless mutant (Long et al., 2002). 

Auxin has been shown to regulate gene expression during plant development by altering 

the acetylation status of histones (Anzola et al., 2010; Manzano et al., 2012). TOPLESS (TPL), 

a Groucho (Gro)/Tup1 type transcriptional co-repressor controls auxin-mediated embryo 

patterning through interaction with the Rpd3/Class 1 HDAC, HDA19 (Long et al., 2006). TPL is 

required at the globular-to-heart transition stage to repress basal identity in the apical half 

of the embryo, allowing shoot growth (Long et al., 2002). The tpl-1 mutant carries a 

dominant negative, temperature sensitive mutation that interferes with the function of four 

other functionally-redundant TOPLESS-RELATED (TPR) proteins (Long et al., 2006). 

Homozygous tpl-1 mutants show either loss of apical structures (24 oC) or conversion of the 

apical pole into a root (29 oC). Loss-of-function hda19 mutants show only mild changes in 

cotyledon morphology at 24 oC, but at 29 oC, hda19 mutants phenocopy tpl phenotypes, 

indicating that HDA19 and TPL function together to control basal cell fate establishment in 

the Arabidopsis embryo (Long et al., 2006). TPL was shown to interact directly with the EAR-

domain of AUX/IAA transcriptional co-repressor IAA12/BODENLOS (BDL), which inhibits 

transcription of the auxin response factor ARF5/MONOPTEROS (MP) (Szemenyei et al., 2008). 

The single bdl loss-of-function mutant does not show a phenotype, but enhances the tpl 

phenotype in the tpl mutant background. These results demonstrate that TPL controls ARF 

expression in an auxin-dependent manner. Interestingly, DR5 expression did not show 

ectopic apical expression in the tpl mutant, which might reflect a temporal delay associated 
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with reprogramming from shoot to root identity or the fact that DR5 is an artificial reporter 

(Osmont and Hardtke, 2008). 

The changes in microspore embryo morphology observed after HDACi treatment can be 

explained in light of the effect of TPL-BDL-HDAC repression on ARF expression/auxin 

response (Figure 7). In this scenario, HDACi treatment inactivates HDAC activity, leading to 

loss of or reduced ARF repression/auxin response by the TPL-AUX/IAA corepressors. The 

enhanced basal identity induced by enhanced ARF expression/auxin response initially leads 

to outgrowth and patterning of the apical and basal poles, but when ARF expression/auxin 

response is hyperactivated it leads to overdevelopment of the basal pole at the expense of 

the apical pole. Whether the apical pole is converted to a basal pole, as in tpl/hda19 mutants, 

or loses its apical identity due to reduced auxin flow from the over-developed basal pole 

remains to be determined.  

The progressive changes in apical-basal patterning observed in embryos derived from 

progressively older stages of donor male gametophytes raises the possibility that these 

suboptimal microspores/pollen stages are associated with an inherently reduced auxin 

response (Figure 7) that can be rescued by increased histone acetylation.  

The HDACi used in our experiments were only applied to microspore cultures for 20 hours, 

together with the heat stress treatment, and then removed by refreshing the culture 

medium. Histone acetylation and deacetylation are highly dynamic processes (Chen and Tian, 

2007; Wang et al., 2009), and treatment with HDACi can be reversed by removing the 

inhibitor from the medium (Waterborg, 1998). For example, the aberrant root cell patterning 

induced by TSA treatment can be reversed by removing TSA, and conversely, continuous 

TSA-treatment is required for maintaining this aberrant root cell patterning (Xu et al., 2005). 

The dynamic nature of the histone acetylation-deacetylation cycle and the reversible nature 

of HDACi treatment suggest that transient treatment of microspores and pollen with HDACi 

induces developmental changes that have long lasting effects on their development.  

  

Materials and methods 

Plant material and culture 

Brassica napus L. cv. Topas DH4079 and DH12075 were used as donor plants for 

microspore embryo culture. The B. napus plant growth and microspore isolation procedures 
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were performed as described previously (Custers, 2003; Li et al., 2014; Soriano et al; 

2014/Chapter 5).  

 

Chemical treatments 

All HDACis (Sigma-Aldrich) were prepared as 1 mM stock solutions dissolved in dimethyl 

sulfoxide (DMSO) and stored at -20 oC. The list of tested HDACis is shown in Supplemental 

Table I. Freshly isolated microspores were resuspended in NLN-13 medium containing the 

appropriate HDACi or the same volume of DMSO as a control, and cultured for 20 hours at 

33oC. After this period the cultures were centrifuged at 200 g for 3 min, resuspended in fresh 

NLN-13 medium without HDACis, and transferred to 25 oC. Cultures were incubated in the 

dark. A minimum of three independent experiments were conducted with two biological 

replicates and three technical replicates. 

 

Microarray analysis 

Three independent microspore cultures from DH4079 were cultured at 32 oC for 20 hours 

with either TSA (Sigma-Aldrich) or DMSO and then transferred to 25 oC. The samples were 

harvested after seven days days of culture by filtration through 70 µm nylon screens. Cell 

clusters that did not pass through the screen were collected for RNA isolation. Total RNA 

isolation and on-column DNase digestion were performed using the InviTrap Spin Plant RNA 

Mini Kit (Invitek) according to the manufacturer’s instructions. One microgram of total RNA 

from each sample was sent to the NASC Affymetrix Service 

(http://affymetrix.arabidopsis.info/) for hybridisation to the Affymetrix Brassica Exon 1.0 ST 

GeneChip. Probe annotations were downloaded from Gene Expression Omnibus 

(http://www.ncbi.nlm.nih.gov/geo/). The identifier for the annotation is GPL10733.  

The expression data was subjected to normalization using the RMA method from the ‘Affy’ 

Bioconductor package. Log2-transformed expression values were identified as differentially 

expressed using a Student’s t-test. Multiple hypothesis testing correction was done using the 

Holm’s method (Holm, 1979) implemented in the multtest’s Bioconductor package. Mapman 

(Thimm et al., 2004) was used to identify functional categories of differentially-expressed 

genes. Gene Ontology (GO) analysis was performed with BiNGO (Maere et al., 2005). First 

Brassica unigenes were associated to Arabidopsis genes by sequence similarity using the file 

"BrasEx1s.unigene_v_at.1e-5.tophit.txt" downloaded from 
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http://www.brassica.info/resource/transcriptomics. Next, the associated Arabidopsis genes 

were used to calculate GO enrichment for the differentially expressed Brassica unigenes 

compared to all the Brassica unigenes represented on the microarrays. A probe-set was 

considered to be differentially expressed when the FDR was <0.05 (Holm, 1979) and the abs 

(logRatio) >0.7. 

The quantitative RT-PCR primers for microarray validation were designed based on 

oligonucleotide probes from Affymetrix GeneChip® Brassica Exon 1.0ST Array (Supplemental 

Data Set 2, Love et al., 2010). 

 

Cytological and morphological analyses  

Microspore-derived embryos for histological analysis were collect at 20 days of culture 

and fixed in 70% ethanol: acetic acid (3:1) for 24h at 4 oC and then stored in 70% ethanol. 

The embryos were dehydrated gradually (70%, 80% and 100% ethanol, 15 min each), then 

embedded in Technovit 7100 (Fisher Scientific) according to the manufacturer’s instructions. 

Ten micron thick longitudinal serial sections with were cut using a Leica Reichert-Jung 2040 

autocut microtome, stained with 0.05% Toluidine Blue for 3 minutes, then mounted in 

euparol after drying and put on cover glass, followed by observed under a Zeiss Axioskop 

epifluorescence microscope. 

The developmental stage of cells in microspore culture was determined using the nuclear 

stain 4’, 6-diamidino-2-phenylindole (DAPI, 1.25 g/ml) according to Custers (2003), 

visualised using a Zeiss Axioskop epifluorescence microscope (excitation wavelength, 400 nm; 

emission wavelength, 420 nm). Approximately two hundred microspores or multicellular 

clusters were counted for each sample. GFP was imaged using confocal laser scanning 

microscopy (CLSM; Leica DM5500 Q). The GFP was excited with an argon laser line at 488 nm 

and detected with a 505–530 nm emission filter. Samples were stained with propidium 

iodide (10 mg/ml; Sigma-Aldrich). Propidium iodide and red autofluorescence were excited 

at 532 nm and detected with a 620-660 nm emission filter. The optical slices were median 

filtered with Leica LAS AF software. The DR5::GFP (GIIK DR5rev::SV40:3GFP) construct was 

transformed to Agrobacterium tumefaciens strain C58C1 pMP90 and then to B. napus 

DH12075 as described previously (Weijers et al., 2006; Soriano et al., 2014/Chapter 5). 
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Supplemental Figure 1. Gene expression analysis of embryogenic cell types in microspore culture: analysis and 

distribution of functional categories of the differentially expressed probes.  

(A) Samples from seven day-old microspore cultures used for microarray analysis. Globular stage embryos (left) 

and Type III and IV embryogenic callus (right). The insets show DAPI-stained embryos. Scale bar, 100 µm. Inset, 

scale bar, 50 µm. (B) Scatter plot of significantly expressed genes for TSA-treated cultures and control cultures.  

(C) Validation of microarray gene expression data by quantitative real-time RT-PCR. Independent B. napus 

microspore cultures were collected under the same conditions used for the microarray analysis. The relative 
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expression of each gene was calculated according to Livak and Schmittgen (2001) using the corresponding 

mock treatment as the calibrator and the SAND gene as the reference. Relative expression is shown as log2 

values (- ∆∆Ct). (D) Overrepresented Gene Ontology functional categories for TSA down-regulated genes. 

Significantly overrepresented nodes are shaded yellow, with increased shading at more significant p-values. (E) 

Overrepresented Gene Ontology functional categories for TSA up-regulated genes. Significantly 

overrepresented nodes are shaded yellow, with increased shading at more significant p-values. 
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Abstract 

Cell division during Arabidopsis and Brassica zygotic embryogenesis is highly regular, but 

it is unclear whether these conserved divisions are essential for embryo cell fate and 

functionality. We addressed this question using the Brassica microspore embryogenesis 

system, where the male gametophyte is reprogrammed in vitro to form haploid embryos in 

the absence of exogenous growth regulators. Microspore embryos are formed via two 

pathways: a zygotic-like pathway, characterized by initial suspensor formation followed by 

embryo proper formation from the distal cell of the suspensor, and a pathway characterized 

by initially unorganized embryos lacking a suspensor. Using embryo fate and auxin markers 

we show that the zygotic-like pathway requires polar auxin transport for embryo proper 

specification from the suspensor, while the suspensorless pathway is polar auxin transport-

independent and marked by an initial auxin maximum, suggesting early embryo proper 

establishment in the absence of a basal suspensor. Polarity establishment in this 

suspensorless pathway was triggered and guided by rupture of the pollen exine. Irregular 

division patterns did not affect cell fate establishment in either pathway. The cell fate and 

patterning processes that accompany Brassica microspore embryogenesis are therefore 

considerably more flexible than suggested by observations on Arabidopsis zygotic 

embryogenesis, and imply that additional cell fate and patterning mechanisms operate 

during plant embryogenesis. 

 

Introduction 

The basic body plan of a plant is established during embryogenesis by sequential divisions, 

which in most angiosperms start with the asymmetric division of the zygote. In the model 

plant Arabidopsis (Arabidopsis thaliana), the subsequent division planes of the embryo are 

highly regular, making it possible to follow the establishment of the different cell lineages 

from individual cells. The asymmetric first division of the zygote generates two cells with 

very different fates. The small apical cell gives rise to the embryo proper, while the larger 

basal cell divides transversally to produce the suspensor, a mostly extra-embryonic structure, 

that positions the embryo inside of the seed, provides nutrients and hormones to the 

embryo proper (Cionini et al., 1976; Nagl, 1990), and contributes to the root meristem 

(Berleth and Jurgens, 1993; Scheres et al., 1994). Embryos that lack a well-formed suspensor 
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also show aberrant morphologies in the embryo proper (Lukowitz et al., 2004; Bayer et al., 

2009; Ueda et al., 2011), while aberrant development of the embryo proper can trigger 

ectopic division and embryo formation in suspensor cells (Schwartz et al., 1994; Vernon and 

Meinke, 1994; Yadegari et al., 1994; Zhang and Somerville, 1997). These observations 

indicate that there is crosstalk between these two structures, in which the embryo proper 

inhibits embryo formation in suspensor cells and the suspensor supports growth and polarity 

establishment of the embryo proper.  

Mutant analysis in Arabidopsis suggests that the asymmetric division that generates the 

initial apical-basal pattern of the embryo is important for subsequent cell fate establishment 

and morphogenesis, as mutants that fail to establish the correct division plane can show 

subsequent defects in embryo organization or even developmental arrest (Mayer et al., 1993; 

Breuninger et al., 2008; Ueda et al., 2011). Likewise, loss-of-function mutants of key 

suspensor genes in the YODA/GROUNDED pathway disrupt the elongation and first division 

of the zygote. These mutant embryos lack a well-defined suspensor and both the suspensor 

and the embryo proper show irregular cell divisions (Lukowitz et al., 2004; Bayer et al., 2009; 

Jeong et al., 2011).  

The hormone auxin is a central regulator of cell division, differentiation and growth, and 

plays an important role in zygotic embryo patterning, as the majority of embryo pattern 

mutants studied in Arabidopsis are defective in auxin-related pathways (Wendrich and 

Weijers, 2013). Auxin accumulation is regulated in part by the PIN family of auxin efflux 

carrier proteins (Křeček et al., 2009). Differential expression of PIN proteins combined with 

their polar localisation on the cell membrane generates auxin gradients that specify cell- and 

organ fates in a context-dependent manner. During embryo development, the PIN7-directed 

flow of auxin from the basal- to the apical cell of the two-celled embryo establishes the 

embryo proper, while reversal of this flow at the globular stage by the polar localization of 

PIN1 and PIN4 towards the hypophysis establishes the basal embryo domain (Friml et al., 

2003). 

Polar auxin transport plays a major role in the establishment of the apical and basal 

embryo domains and bilateral symmetry in dicot embryos (Liu et al., 1993; Friml et al., 2003). 

Auxin transport also provides robustness to the embryo pattern, as it buffers auxin 

distribution in the embryo to local changes in auxin homeostasis (Weijers et al., 2005). Due 

to functional redundancy among PIN family members single pin mutants only show weakly 
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penetrant embryo patterning phenotypes (Friml et al., 2003), however, quadruple pin 

mutants (pin2pin3pin4pin7 and pin1pin3pin4pin7) show strong and highly penetrant apical-

basal patterning defects that are associated with mislocalization of apical and basal stem cell 

regulators (Blilou et al., 2005). Global changes in PIN polarity, as in the gnom or the 

RPS5A::PID mutant backgrounds, also lead to strong-apical basal patterning defects 

(Steinmann et al., 1999; Friml et al., 2004).  

Many of the Arabidopsis embryo mutants that initially show patterning defects, often 

recover and are able to develop into functional seedlings. This, combined with the large 

amount of variation in the organization of the embryo proper and suspensor in species other 

than Arabidopsis (Rutishauser, 1969; Johri et al., 1992; Yeung and Meinke, 1993; Kaplan and 

Cooke, 1997; Madrid and Friedman, 2009; Guillon et al., 2012), as well as the observation 

that many embryos produced in vitro do not show early morphological signs of patterning 

(Mordhorst et al., 1997; Raghavan, 2004; Bassuner et al., 2007), indicates that ordered cell 

divisions are not required for embryo patterning and functionality. 

Here we used the in vitro Brassica napus microspore embryogenesis system to study how 

non-regular patterns of cell division influence the formation of a functional embryo. In this 

system embryogenesis can be induced from isolated microspores and bicellular pollen grains 

by a short heat stress treatment (Custers et al., 1994). Brassica zygotic embryos, like those of 

Arabidopsis, undergo highly regular cell divisions (Tykarska, 1976, 1979). In contrast, the first 

division during Brassica microspore embryogenesis is usually symmetric, and embryo 

development does not proceed via a regular pattern of cell division. Suspensor development 

is also not a prerequisite for Brassica microspore-derived embryo formation, although 

suspensor-like structures with varying degrees of organization are observed and can be 

induced at a high frequency in some genotypes (Hause et al., 1994; Yeung et al., 1996; Ilid-

Grubor et al., 1998; Supena et al., 2008).  

In this study we show that the two different pathways of haploid in vitro embryo 

development, with and without initial suspensor formation, are marked by differences in 

auxin response and transport. Both pathways are highly flexible in that they are not 

compromised by irregular cell divisions. Our data provide insight into how embryo cell fate 

and patterning are established in the absence of highly regular cell divisions. 
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Results 

Haploid embryo development in the absence of a suspensor 

In B. napus, male gametophyte development starts with the single-celled microspore, and 

after two mitotic divisions (pollen mitosis I (PMI) and PMII) results in the formation of a 

trinucleate pollen grain (Figure 1A). Heat stress induces a sporophytic program in cultured 

microspores and binucleate pollen that leads to the formation of haploid embryos. Many 

correlative cell biology observations have suggested that the first characteristic of 

sporophytic development in microspore culture is the symmetric division of the uninucleate 

microspore or vegetative cell of the pollen grain, which can be distinguished from the first 

asymmetric division that characterizes pollen development (Figure 1B) (Fan et al., 1988; Zaki 

and Dickinson, 1990). In embryos that develop without a suspensor, this initial division is 

followed by a series of randomly-oriented divisions in which the different cell layers, 

normally present in zygotic embryos, cannot be recognized (Figure 1C). Further random 

division of these structures stretches the surrounding exine (pollen coat) until one of the 

exine locules breaks, releasing a globular-shaped structure (Figure 1D). The embryonic 

epidermis, the protoderm, forms at this time (Figure 1E), and is followed by 

histodifferentiation of the major tissue types and organs of the embryo (Figure 1F). 

 

Establishment of embryo identity does not require microspore division 

The irregular cell divisions observed during microspore embryogenesis makes it difficult 

to determine morphologically when a structure first becomes embryogenic. To more 

precisely define when cultured microspores become committed to the embryo development 

pathway, we generated B. napus lines carrying the proGRP:GFP-GUS reporter. This reporter 

is expressed in B. napus at the zygote stage (Li et al., 2014), in both the apical and basal cells 

of the embryo (Supplemental Figure 1A-C). Its expression gradually becomes restricted to 

the suspensor and basal cells of the embryo proper and finally to the cells that form the 

columella root cap of the embryo proper. The GRP reporter is not expressed during in planta 

pollen development (Supplemental Figure 1D-H). The percentage of GRP-positive structures 

at day 2 of culture was highly correlated with the number of embryos formed (Supplemental 

Figure 1I). GRP expression is therefore a suitable marker for following the establishment of 

embryo cell fate in microspore cultures. 
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Figure 1. Developmental pathways in microspore culture.  

(A) Pollen development. (B-F) Histodifferentiated embryo production. (B) Symmetrically-divided microspore. (C) 

Pro-embryo enclosed in the exine. (D) Globular embryo released from the exine. (E) Globular embryo with a 

well-formed protoderm layer. (F) Heart stage embryo. Arrow, exine remnants; c, cell wall; ct, cotyledon; g, 

ground tissue; p, protoderm; pv, provascular tissue, rm, root meristem; sm, shoot meristem; s, spermatid; v, 

vegetative cell. Bar=20m. 
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We examined GRP expression in combination with DAPI staining to define the 

developmental stage at which the embryogenic program is established in microspore culture. 

GRP reporter expression could be observed as early as one day after the start of culture, in 

approximately 0.2% of the microspores, and this percentage rapidly increased by the third 

day of culture to up to 4% of the total population. 

Symmetrically divided microspores and the symmetrically-divided vegetative cell of 

binucleate pollen are reported to form haploid embryos in B. napus (Fan et al., 1988; Zaki 

and Dickinson, 1990). We observed GRP-driven GFP expression in these symmetrically-

divided cell types (Figure 2A, B), which represented almost 60% of the GRP-positive 

structures (Figure 2G). Notably, GRP expression was absent in approximately 40% of the 

symmetrically-divided cells (Supplemental Figure 1J-K) (Li et al., 2014), suggesting that 

symmetric division is not an absolute marker for the change in cell fate from pollen to 

embryo development.  

We also observed strong GFP expression in three other types of structures that were not 

considered in the literature to be embryogenic. These comprised microspores (Figure 2C, G) 

and pollen vegetative cells (Figure 2D), asymmetrically-divided structures with large and 

small GFP-positive cells (Figure 2E, F, G), and loosely connected cells that had burst 

prematurely out of the exine (Figure 2H). In asymmetrically-divided structures the nucleus of 

the smaller GFP-positive cell resembled a pollen generative cell, but did not show the typical 

lens shape and DNA compaction found in the generative nuclei of (GFP-negative) pollen 

(compare Figure 2D with Figure 2E and F). The loosely-connected GFP-positive cells were 

described previously as ‘non embryogenic’ based on their lack of histodifferentiation (Fan et 

al., 1988; Telmer et al., 1995; Ilid-Grubor et al., 1998). These clusters increased in cell 

number during the culture period, forming unorganized masses of round, expanded cells, 

but eventually died. 

Our data suggest that many microspores are initially programmed to develop as embryos, 

and that this initial switch in developmental pathways can occur in the absence of cell 

division and independent of the initial division symmetry. However, only ca. 0.5% of the 

sporophytic structures will eventually form the compact structures that form 

histodifferentiated embryos (Figure 2I, Li et al., 2014), suggesting that additional signalling 

events are required to ensure further embryo growth and differentiation.  
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Figure 2. Embryo identity in microspore culture is not dependent on cell division or division symmetry.  

(A-F) proGRP:GUS-GFP embryo marker expression after three days of culture. DAPI staining (blue), 

autofluorescence (magenta) and GFP expression (green). (A) Symmetrically-divided microspore showing GRP 

expression in both cells. (B) GRP expression in the two symmetrically-divided vegetative-like cells, but not the 

smaller generative/sperm-like cells. (C) GRP -positive microspore. (D) GRP expression in the vegetative-like cell, 

but not in the smaller generative-like cell. (E-F) GRP expression in both the vegetative- and generative-like cells. 

(E) Asymmetrically-divided bicellular structure. (F) Multinucleate structures. Note that the generative-like 

nuclei in (E) and (F) are larger and the DNA is less condensed than in (D). (G) Proportion of microspores, and 

symmetrically- and asymmetrically divided structures that express proGRP:GFP-GUS at day 3 of culture. 

Structures where GRP was only expressed in the vegetative cell of binucleate (D) were not included in the 

graph. (H-I) GRP-positive structures found at 6 days of culture. (H) Sporophytic structure prematurely released 

from the exine. (I) Proembryo enclosed in the exine. Error bars in (G) indicate the standard error of three 

replicates. vl, vegetative-like nucleus; gl, generative-like nucleus. Bar=10m. 
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Auxin signalling marks embryogenic microspores 

In view of the important role of auxin in zygotic embryo development, we examined the 

timing and spatial distribution of the auxin response reporter proDR5:GFP and the 

Arabidopsis proPIN1:PIN1-GFP and proPIN7:PIN7-GFP reporters to gain insight into auxin 

dynamics during the initiation of B. napus microspore embryo development. The expression 

patterns of these reporters are conserved between Arabidopsis and B. napus zygotic 

embryos (Supplemental Figure 2A-C), except that in B. napus proDR5:GFP expression was 

only observed in the embryo proper from the octant stage of development onward, whereas 

in Arabidopsis DR5 expression is first detected in the embryo proper at the one-cell stage 

(Friml et al., 2003). In B. napus, neither the PIN1-GFP protein nor the PIN7-GFP protein was 

observed during male gametophyte development in planta. proDR5:GFP expression was 

observed during male gametophyte development in planta, but at an earlier stage than is 

used for microspore culture (Supplemental Figure 2D). In conclusion, none of the auxin 

reporters were expressed in any of the gametophytic structures that are present in 

microspore cultures. 

During the first three to five days of microspore culture, neither PIN1-GFP nor PIN7-GFP 

was observed in gametophytic structures or randomly divided, suspensorless sporophytic 

structures. These data suggest that suspensorless proembryos growing inside the exine do 

not show the same early apical-basal specification that occurs in zygotic embryos.  

Weak DR5 expression was first observed around the third day of culture in up to 0.2% of 

the microspore population. These GFP-positive structures were either uninucleate or had 

divided symmetrically (Figure 3A, B). Notably, DR5 expression was very weak and could not 

be detected in compact embryo structures after the two-celled stage (Figure 3C). The 

proportion of proDR5:GFP-expressing cells was always lower than the ca. 4% marked by GRP, 

but in line with the final embryo yield (Supplemental Figure 1I). Unlike GRP expression, DR5 

expression did not mark the asymmetric pollen-like structures, nor did it mark the loosely 

connected cell clusters that released prematurely from the exine (Figure 3D). These results 

show that a transient auxin response marks a subset of embryogenic cells. In analogy with 

the DR5 maximum in the embryo proper of zygotic embryos (Friml 2003), DR5 expression in 

embryogenic microspores suggests that these cells are initially programmed as an embryo 

proper. The failure of certain GRP-marked embryogenic structures (i.e. asymmetrically 

divided microspores and callus-like cells) to establish an auxin response suggests that these 
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Figure 3. proDR5:GFP expression marks embryogenic 

cells.  

(A) Microspore-like structure. (B) Symmetrically-

divided microspore. (C) DR5 expression in compact 

multinucleate structures. (D) DR5 is not expressed in 

multinucleate structures that emerged prematurely 

from the exine DAPI staining (blue), autofluorescence 

(magenta) and GFP fluorescence (green). Bar=10m. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

structures are associated with a different pathway of haploid embryo development in which 

the formation of an embryo proper is not initiated or is delayed. 

 

Embryo polarization follows exine rupture 

Early growth in suspensorless embryos causes stretching of the exine, which eventually 

breaks. After exine rupture, the apical and basal poles of the haploid embryo become 

morphologically apparent through the formation of cotyledons and elongation of the 

embryo axis (Yeung et al., 1996). The position of the remaining exine pieces highly correlated 

with the basal region of the embryo (Figure 1E) (Ilid-Grubor et al., 1998; Supena et al., 2008; 

Tang et al., 2013), and is therefore a much earlier marker for polarity establishment than 

apical growth and axis elongation. This polarisation was also marked by the accumulation of 
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large starch granules at the future basal pole of the embryo. Starch grains were abundant 

throughout the haploid embryo prior to exine rupture, but upon exine rupture they 

accumulated predominately in the cells that are located away from the site of exine rupture 

(i.e. the future basal pole of the embryo) (Figure 4A) (Hause et al., 1994). 

Unlike the early stages of suspensorless microspore embryo development, the 

morphological changes that took place after release of the embryo from the exine were 

similar to those that take place during zygotic embryogenesis. First, the protoderm was 

established (Figure 4A), followed by a triangle/transition stage in which the area surrounding 

the apical pole grew, giving rise to a bilaterally polarized embryo (Figure 4A). The 

provasculature in triangle/transition stage embryos was free of starch, while the basal pole 

was marked by the accumulation of large starch grains (Figure 4A). Later, outgrowth of the 

cotyledons marked the establishment of bilateral symmetry (Figure 1E). The root meristem 

was not as well defined in microspore embryos as in zygotic embryos, but could be 

recognized at the early heart stage as a group of isodiametric cells below the provasculature 

that were devoid of starch, and that were often larger than neighbouring cells (Figure 1E) 

(Yeung et al., 1996).  

We followed the GRP, PIN and DR5 reporters in microspore embryos as they emerged 

from the exine and underwent histodifferentiation. GRP was initially expressed throughout 

the embryo clusters while they were still enclosed by the exine (Figure 4B). GRP expression 

at this stage was much weaker than in few-celled embryos. After exine rupture, GRP 

expression disappeared from the cells at the rupture site and from the inner cells of the 

embryo, remaining localized at the site of the presumptive basal pole (Figure 4B). Later at 

the globular and transition stages, GRP expression was very weak and marked the basal cell 

tiers of the embryo and the future columella (Figure 4B). At this stage, GRP expression was 

highly correlated with the presence of pollen wall remnants on the surface of the embryo 

(Supplemental Figure 3A). 

During zygotic embryo development, PIN1 is expressed in the embryo proper from the 

eight-cell stage embryo onward (Friml et al., 2003). PIN1-GFP was not observed prior to 

exine rupture in microspore embryos lacking suspensors. Rather, PIN1-GFP was first 

observed in cells that protruded through the pollen pores at the time that the exine started 

to break (Figure 4C). In embryos that had completely burst free of the exine, PIN1-GFP 

expression was strong on the outer cell layer in the apical region and in the inner cells, with 
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no clear cellular polarization, and gradually marked the formation of provascular strands at 

the late globular/transition stage (Figure 4C). At the heart stage, proPIN1:PIN1-GFP was 

expressed in the same pattern in microspore and zygotic embryos, in the epidermal cell layer, 

where the fusion protein showed clear apical polarization, and in the provascular tissue, 

where the fusion protein showed a rather basally-oriented polarity (Supplemental Figure 2A 

and 3B). In contrast to PIN1, proPIN7:PIN7-GFP expression was not observed in 

suspensorless embryos. 

Together, these data suggest that in suspensorless embryos, PIN1 and GRP expression 

mark the formation of the apical and basal domains of the embryo, respectively, that apical-

basal axis determination takes place late in embryo development, after exine rupture, and 

that PIN7 expression does not mark the basal cell lineage. 

These data were supported by time-lapse imaging of the proDR5:GFP reporter during 

exine rupture (Figure 4D). As noted above, DR5 expression was very weak or could not be 

detected in compact embryo structures after the two-celled stage, but became strongly 

expressed in the inner cells of embryos comprising 15-17 cells that showed stretching of the 

exine (Figure 4D, 0 h). The site of DR5 expression did not change when the exine broke, but 

rather became weaker (Figure 4D, 24 h), then disappeared from the site where the pollen 

wall broke (Figure 4D, 48 h), and eventually became stronger again and restricted to a few 

cells that mark the site of presumptive root meristem (Figure 4D, 72 h). These results show 

that in microspore embryos that lack a suspensor, a basal auxin maximum is established 

after exine rupture, in the same spatial pattern as the GRP reporter. However, polarization 

of DR5 expression to the basal pole occurs slowly, while GRP expression disappears more 

rapidly from the inner and apical cells. 

 

Exine rupture and apical-basal polarity establishment are independent of polar auxin 

transport 

PIN1-GFP was localized to the sites of pollen wall rupture and later marked the apical pole 

of the embryo. This observation, together with the basal auxin maximum established after 

exine rupture, suggests that PIN1 directs auxin away from the apical region of the embryo. 

However, it is not clear whether (PIN-directed) polar auxin transport (PAT) is the driving 

force behind exine rupture. We used the PAT inhibitor, N-1-naphthylphthalamidic acid (NPA)  
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Figure 4. Embryo polarization occurs after exine rupture.  

(A-C) Four successive stages of microspore embryo development are shown from left to right: embryos still 

enclosed in the exine; embryos shortly after the exine has broken at one of the locules; globular stage embryos 

released from the exine; and late globular to transition stage embryos. (A) Starch grain accumulation (white 

globules) and cell walls (white) visualized by Ps-PI staining. (B) proGRP:GUS-GFP expression. Membrane staining 

by FM4-64 (magenta) and GFP fluorescence (green). (C) proPIN1:PIN1-GFP expression. PI counterstain 

(magenta) and GFP fluorescence (green). (D) Time-lapse image of proDR5:GFP expression at the time of exine 

rupture. Exine and chloroplast autofluorescence (magenta) and GFP fluorescence (green). Arrow heads, GFP 

localization; e, exine; p, protoderm; pv, provascular tissue. The asterisk marks cellular debris stained by FM4-64. 

Bar=20m. 
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to understand the relationship between PAT and exine rupture in suspensorless microspore 

embryo development. 

Continuous treatment of cultured DH12075 microspores with NPA consistently reduced 

the proportion of cells that developed into embryos, although this trend was only 

statistically significant in 20 µM NPA treatments (Figure 5A). Application of NPA to 

microspore cultures did not change the proportion of GRP-positive microspores at day 3 of 

culture (Figure 5B), suggesting that the effect of NPA on embryo yield occurs later in 

development. As previously reported, NPA induced the formation of morphologically 

defective cup-shaped embryos or embryos with fused cotyledons (Figure 5C, D) (Hadfi et al., 

1998; Friml et al., 2003; Hakman et al., 2009). Despite these defects, almost all NPA-treated 

embryos had clear root and shoot poles (Figure 5C, D), but the function of the meristems 

was compromised: less than 10% of the embryos that developed in the presence of NPA 

produced roots after 5 days on regeneration medium, while roots were produced in more 

than 80% of the control embryos (Figure 5E, F). After 25 days on regeneration medium, 

some NPA-treated embryos had formed roots indirectly, either from the basal part of the 

hypocotyl, or from callus tissue in the basal region of the embryo. None of the embryos from 

NPA-treated cultures produced a shoot from the apical meristem, compared to 60% in the 

control cultures (Figure 5E, F).  

Exine rupture in NPA-treated cultures was similar to that in control cultures. GRP 

expression and starch accumulation were also properly localized to the basal pole after exine 

rupture in NPA-treated embryos (Figure 6A-F). However, starch also accumulated in the 

inner cells at the basal side of the provascular tissue, adjacent to the root pole, suggesting 

differentiation of vascular stem cells (Figure 6F). In contrast to GRP expression, DR5 

expression was perturbed in embryo cultures treated with NPA. At the time of exine rupture, 

DR5 was expressed throughout the embryo rather than being localized to the inner cells of 

embryos, as in the control cultures (Figure 6G, J). After exine rupture, DR5 expression was 

extremely weak and randomly-localized throughout the embryo, rather than strongly 

expressed at the basal pole, as in control embryos (Figure 6H, K). In NPA-treated tube-

shaped embryos, DR5 expression was localized to a broad region of the basal area and then 

eventually disappeared (Figure 6I, L). This data, together with our morphological 

observations, suggests that PAT does not direct exine rupture, nor does it play a role in the 

initial establishment of apical-basal polarity in suspensor-less embryos. Rather, PAT appears 
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Figure 5. Inhibition of polar auxin transport induces defects in embryo development, but not embryo initiation.  

(A) Effect of continuous treatment with NPA on embryo yield. Cultures were scored at day 25. (B) Percentage 

of proGRP:GUS-GFP expressing  microspores at day 3 of culture. (C) Cotyledon morphologies: left, embryos 

with two, separated cotyledons; centre, embryos with semi-fused cotyledons in which only one cotyledon 

boundary is observed and; right, embryos with completely fused or collar-shaped cotyledons. (D) Relative 

abundance of the different embryo morphologies shown in (C) after treatment with NPA. (E) Control embryos 

gave rise to a high frequency of plantlets containing both a root and a shoot (upper panel), while NPA-treated 

embryos showed reduced root growth and failed to form shoots (lower panel). (F) The relative frequency of 

root (light grey bars) and shoot (dark grey bars) formation in control and NPA-treated embryos in a germination 

assay. mic: microspores. Error bars indicate the standard error three to 11 replicates. *, statistically significant 

difference with control p<0.05 (ANOVA). 
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to be required to focus the initial auxin maximum at the basal pole, and this seems to be 

important for the transition from radial to bilateral symmetry, and for the establishment of 

well-defined poles with functional shoot and root meristems. 

 

Suspensor-derived embryogenesis is PAT-dependent  

The efficiency of suspensor-bearing embryo production in microspore culture is 

genotype-dependent. Suspensor-bearing embryos are efficiently induced in the model B. 

napus line Topas DH4079 (Joosen et al., 2007; Supena et al., 2008) by exposing the 

microspores to a shorter heat-stress treatment. In this genotype, a long uniseriate cell 

filament emerges through a pore in the exine wall. The embryo proper is initiated by a 

transverse division of the suspensor cell that is most distal to the exine remnants, and 

divides in a more ordered pattern, similar to the zygotic embryo. A wide range of abnormal 

suspensor morphologies are also observed, ranging from multiple files of cells to small 

protrusions (Supena et al., 2008). Unlike the model line Topas DH4079, suspensor-bearing 

embryos are only found in low percentage of the population in the DH12075 line used to 

generate the reporter lines (ca. 1.5% of the embryos), and were more often short and 

contained additional cell files or longitudinal divisions (Figure 7A-D). These abnormally-

formed suspensors have been associated with a poorly-organized embryo proper (Supena et 

al., 2008). 

We used the embryo and auxin reporter lines to follow the establishment of the apical 

(PIN1) and basal (PIN7, DR5, GRP) tiers and histodifferentiation events in suspensor-bearing 

microspore-derived embryos. As in the zygotic embryo, GRP was expressed in all cells of the 

suspensor (Figure 7E) and was confined to the basal-most tier of the embryo proper from 

the early globular stage onward (Figure 7F, G). The expression of the DR5 and PIN reporters 

in suspensor-bearing embryos was similar to their expression in zygotic embryos, with 

proPIN7:PIN7-GFP expressed in the suspensor (Figure 7H-J) and DR5 and proPIN1:PIN1-GFP 

expressed in the embryo proper (Figure 7K-M). This data provides further support that 

suspensor-bearing embryos follow a zygotic embryo-like program, even though the embryo 

proper is derived from the apical cell of a multicellular suspensor, rather than from an 

asymmetric division of the zygote. 
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Figure 6. Auxin polar transport is not required for microspore embryo polarization. 

(A-F) Establishment of the embryo basal domain, marked by proGRP:GFP-GUS. (G-L) Localization of auxin 

response maxima by proDR5:GFP expression. Comparison of control and NPA-treated embryos at the stage 

where the exine starts to break (A, D, G, J), at the globular stage after release from the exine (B, E, H, K), and in 

the root pole at the torpedo stage at the torpedo stage (C, F, I, L). DAPI staining of the nuclei (blue) and GFP 

expression (green) are shown separately. FM4-64 (magenta) was used to stain membranes in globular stage 

embryos. GUS staining of proGRP:GFP-GUS lines (light blue) was combined with starch and cell wall localization 

by PsPI staining (white). Bar=20m. 
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 Figure 7. Domain specification in suspensor-bearing microspore embryos is similar to zygotic embryos. 

(A-D) Suspensor morphologies observed in microspore culture. (A) Uniseriate suspensor. (B) Suspensor with 

aberrant longitudinal divisions (asterisk). (C) Microspore embryo with suspensor and embryo proper. (D) 

Microspore embryo with two domains, enclosed in the exine. Arrowheads point to the three exine locules 

enclosing the proembryo. (E-G) proGRP:GFP-GUS expression. GFP is shown in green and FM4-64-stained 

membranes in magenta. (E) Uniseriate suspensor. (F) Supensor-bearing embryo at the early globular-stage. (G) 

Transition-stage suspensor-bearing embryo, with two cell files. (H-J) proPIN7:PIN7-GFP expression (green) in 
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the suspensor. Propidium iodide stain or autofluorescence (magenta). (H) Uniseriate suspensor. (I) Globular 

stage embryo with suspensor. (J) Transition stage embryo with a rudimentary suspensor. (K) proPIN1:PIN1-GFP 

expression (green) in a globular stage suspensor-bearing embryo. (L-M) proDR5:GFP expression (green) in the 

embryo proper. DAPI nuclear stain (blue) and autofluorescence (magenta). (L) DR5 is not expressed in the 

suspensor. (M) Suspensor-bearing embryo at the globular stage showing DR5 expression in the inner cells at 

the basal region of the embryo proper. Arrow head, exine. Bar=20m. 

 

We also detected PIN7-GFP in embryos that contained a small suspensor-like protrusion 

at the basal end of the embryo, rather than a file of cells (Figure 7D, J). These embryos 

comprised approximately 10% of the embryo population, and were characterized by two 

heterogeneous domains, one comprising larger vacuolated cells (Figure 7D), in which PIN7-

GFP was observed (Figure 7J), and one comprising smaller and more compact cells (Figure 7D) 

in which PIN1-GFP was observed (Figure 7K). PIN1-GFP and PIN7-GFP could be observed 

occasionally in a localized region in embryos that were still enclosed in the exine 

(Supplemental Figure 4). These two domains are reminiscent of the smaller embryo proper 

cells and the larger suspensor-like cells. PIN7 expression in the larger and more vacuolated 

basal cells suggests that these cells function as a suspensor, despite being more rudimentary 

in structure, and by extension, that unlike zygotic embryo development, suspensor 

establishment during haploid embryo development does not rely on a highly regular pattern 

of cell divisions. 

The presence of PIN7-GFP in suspensors suggests that PAT plays an important role in 

this developmental pathway. Addition of NPA to microspore cultures of genotype DH4079, 

which shows high percentage of suspensor formation, did not have a significant effect on the 

proportion of initial sporophytic divisions or suspensor development (Figure 8A). However, 

after 20 days of culture, NPA treatment significantly reduced the final embryo yield in 

cultures with a large proportion of suspensors (Figure 8B). Interestingly, NPA did not affect 

the ability of DH4079 microspores to develop suspensors, but rather it specifically affected 

the ability of the distal cell of the suspensor to form the embryo proper, as shown by the 

reduction in the number of embryos with a suspensor (Figure 8C). At later stages, a higher 

proportion of embryos with cup-shaped or fused cotyledons was observed after NPA 

treatment, as in line DH12075, although the effect of NPA on line DH4079 was more 

pronounced, with a higher proportion of completely cup-shaped cotyledons, as well as the 

appearance of pin-shaped embryos (Figure 8D).  
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Figure 8. Polar auxin transport is required for embryo proper formation in suspensor-bearing embryos. 

(A) Percentage of sporophytic divisions at day 5 of culture in control and NPA-treated cultures. (B) Number of 

embryos formed in control and NPA-treated cultures at day 25 of culture. (C) Percentage of structures with 

only a suspensor or with both a suspensor and an embryo proper in control and NPA-treated cultures. The data 

was calculated relative to the total number of sporophytic structures. (D) Relative abundance of cotyledon 

morphologies after treatment with NPA. The morphologies are as in Fig. 5C: embryos with two separated 

cotyledons, with semi-fused cotyledons in which only one boundary is observed, with completely fused or 

collar-shaped cotyledons, and embryos lacking cotyledons (pin-formed). mic: microspores. Error bars indicate 

the standard error of three replicates. 

 

Our data suggest PAT is not required for suspensor formation, but rather, for the 

establishment of the embryo proper from the suspensor. This observation, combined with 

our data on development of embryos lacking a suspensor, suggest that differences in auxin 

response and transport mark the two different pathways of microspore embryo 

development.  

 

Discussion 

Microspore-derived embryos can be obtained via two pathways, one pathway where 

embryo development occurs in the absence of a suspensor, and a second pathway that 

starts with the development of a suspensor that eventually forms an embryo proper. Here 
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we show that in both pathways, the regular pattern of cell division seen in zygotic embryos is 

not required to establish embryo identity, nor is it required later, to establish the apical and 

basal domains of the haploid embryo. More importantly, we show that the two pathways 

are marked by differences in auxin response and transport. Embryogenic microspores that 

develop without a suspensor are marked by an initial auxin response and do not require PAT 

for embryo induction, but do require PAT later, for meristem formation and positioning of 

the cotyledon primordia. In contrast, in the other pathway, suspensor development is not 

preceded by an auxin response, and PAT is required for embryo proper formation at the 

distal end of the suspensor. Our observations suggest that plant embryo developmental 

pathways can be highly flexible and driven by different mechanisms within the same species. 

 

Embryonic cell fate is uncoupled from cell division 

During plant and animal development, new cell fates can be established following an 

initial period of cell proliferation after cells leave the stem cell niche (transit amplifying cells) 

or through an asymmetric (formative) cell division. Formative divisions that generate two 

cells with different identities are important to establish the different tissues and organs, not 

only during plant embryogenesis (epidermis, hypophysis), but also later in development 

(root cells, lateral roots, stomata, pollen) (De Smet and Beeckman, 2011). 

The change in developmental fate from pollen to haploid embryo development was 

previously thought to be marked by a change in the division plane from an asymmetric 

pollen-like division to a symmetric division (Fan et al., 1988; Zaki and Dickinson, 1990). We 

showed, using embryo cell fate markers, that the switch from pollen to embryo identity in B. 

napus microspore culture is uncoupled from cell division, and occurs in both symmetrically- 

and asymmetrically-divided cells. These observations are in agreement with comparative 

studies on zygote embryo development in different plant species, which show that the 

division plane of the zygote is a consequence of its existing polarity and cell shape, 

suggesting that division planes per se do not direct embryo cell fates (Kaplan and Cooke, 

1997). 

In most species, including Brassica, it is the microspore or vegetative cell that contributes 

to haploid embryo development (Fan et al., 1988); there are very few examples in the 

literature where embryos originate from the generative cell of cultured pollen (Sunderland 

and Evans, 1980; Raghavan, 1986). In microspore culture, embryogenic, asymmetrically 
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divided microspores were characterized by a larger vegetative-like nucleus, and a smaller 

generative-like nucleus that showed a lower degree of chromatin condensation than in the 

generative cells of pollen, suggesting that the activation of embryo gene expression in 

generative-like cells is associated with their change to a more vegetative cell-like fate. 

Nonetheless, neither symmetric division nor partial decondensation of the chromatin of 

generative-like nuclei seems to be sufficient for induction of embryo gene expression, since 

a considerable proportion of this type of divided microspores did not show GRP expression. 

In agreement, symmetrically divided microspores in tobacco and Arabidopsis can sustain 

pollen development (Eady et al., 1995; Touraev et al., 1995; Park et al., 1998; Park et al., 

2004). Thus, the variable division symmetry observed in embryogenic microspores seems to 

be determined by existing cell polarity cues in the microspore/pollen and is not by itself 

sufficient to trigger embryo identity.  

 

Auxin response reports embryogenesis competent microspores 

An auxin response is first observed at the single celled stage in the suspensorless embryo 

pathway. This developmental program is different from the Arabidopsis (Friml et al., 2003) 

or B. napus zygotic embryogenesis program, and from the pathway in which haploid 

embryos develop with suspensors, where an auxin response is only observed in the embryo 

proper. This suggests that microspore-derived embryos that develop without a suspensor 

are already programmed as an embryo proper. Auxin is not added to the tissue culture 

medium, implying that these haploid embryos accumulate auxin, either through de novo 

biosynthesis or through deconjugation of existing auxin pools (Rosquete et al., 2012; 

Korasick et al., 2013).  

The auxin response marked by DR5 expression was absent in the asymmetrically-divided 

cells and the loose, callus-like structures that fail to develop into histodifferentiated embryos, 

although these structures expressed the GRP embryo reporter, as well as LEAFY 

COTYLEDON1, a key regulator of embryo growth and maturation (Li et al., 2014). Thus DR5 

expression appears to mark a subset of embryogenic cells that enter a specific 

developmental pathway. The lack of auxin response in asymmetrically-divided and callus-like 

embryogenic structures suggests that, in addition to a switch to embryonic cell fate, an initial 

auxin response is required to instruct the future differentiation of the embryo. 
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Polarity establishment following exine rupture 

The site of exine rupture plays an important role in polarity establishment in microspore-

derived embryos. Cell elongation and apical-basal cell fates in microspore embryos can be 

induced by early, controlled exine rupture, supporting the role of external positional cues in 

cell fate establishment (Tang et al., 2013). We have shown that PIN1 first accumulates on the 

cell membrane at the sites of exine rupture. Recently, it was shown that PIN1 expression and 

membrane localization can be directed by mechanical signals (Heisler et al., 2010; Nakayama 

et al., 2012), which are transduced by changes in microtubule orientation and plasma 

membrane properties. PIN1 membrane localization increases in tomato shoot apex cells 

when cell turgor and membrane tension are raised (Nakayama et al., 2012). In line with this, 

during microspore embryogenesis PIN1-GFP is not observed in the tightly contained and 

growth-constrained multicellular structures enclosed in the exine, but only becomes 

apparent at the time of rupture, when the external pressure from the exine is released and 

the embryo cells expand. 

The polar secretion and localization of different membrane or cell wall components might 

also be involved in early embryo polarization. In the brown algae Fucus, embryo polarization 

starts with labile polarization of calcium channels and is stabilized by polarized secretion, 

producing regions with distinct cell wall properties that are determinant for cell fate 

specification (Berger et al., 1994; Shaw and Quatrano, 1996). Differential membrane and cell 

wall properties induced by exine rupture could also give rise to initial positional and 

polarization cues.  

Research on mechanical, cell wall and auxin signalling processes during microspore 

embryogenesis can shed light on how mechanical stimuli are perceived in plants and their 

relevance in zygotic embryo patterning. The difference in timing between the establishment 

of embryonic fate and histodifferentiation in microspore embryos offers the opportunity to 

characterize these processes independently from each other. 

 

Differential PAT-dependency of the two haploid embryogenesis programs 

PAT is a major regulator of apical-basal axis establishment during zygotic embryogenesis. 

Inhibition of PAT by NPA in Arabidopsis and Brassica juncea zygotic embryos causes defects 

in apical-basal axis establishment, as well as radial patterning and cotyledon formation (Liu 

et al., 1993; Hadfi et al., 1998; Friml et al., 2003; Weijers et al., 2005). NPA treatment of 
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cultured B. napus microspores indicated that PAT was required to produce functional 

meristems in suspensorless embryos, but was not required to establish the embryonic 

apical-basal axis; apical and basal poles were recognizable and basal pole markers (GRP and 

starch accumulation) were not disrupted. By contrast, PINs and PAT are required to specify 

the shoot and root pole in Arabidopsis zygotic embryos (Friml et al., 2003; Blilou et al., 2005; 

Robert Boisivon et al., 2013). Our results point to an alternative mechanism of cell fate 

determination in the embryo that is independent of PAT. 

In contrast to suspensorless embryos, suspensor-bearing microspore embryos develop in 

a similar fashion to zygotic embryos with respect to PIN and DR5 expression. In zygotic 

embryos, an apical, PIN7-directed flow of auxin is required for the formation of the embryo 

proper (Friml et al., 2003). NPA inhibition of PAT has not been applied to preglobular stages 

of zygotic embryos, but when applied at later stages of development (globular or transition) 

NPA induces severe defects in cotyledon outgrowth and mild defects in shoot and root 

regeneration (Liu et al., 1993; Hadfi et al., 1998). However, single and higher order pin 

mutants do show early apical and/or basal embryo division defects (Friml et al., 2003; Blilou 

et al., 2005; Vieten et al., 2005), indicating an important role for PAT in early zygotic embryo 

patterning. Inhibition of PAT in suspensor-bearing microspore embryos did not interfere 

with the initiation and specification of suspensor cell fate, but rather inhibited the ability of 

the distal cell of the suspensor to form the embryo proper. This phenotype is strikingly 

similar to that of early pin7 mutant embryos, which frequently lack an embryo proper and/or 

an apical DR5 maximum, but eventually become rescued by the onset of PIN1 and PIN4 

expression (Friml et al., 2003). Our results support previous observations in Arabidopsis 

zygotic embryos that suggest that the PIN7-directed flow of auxin from the suspensor to the 

apical cell is important for specification of the embryo proper (Friml et al., 2003; Robert et al., 

2013). 

Intriguingly, the early DR5 and PIN1 expression patterns are maintained in microspore 

embryos even when the cellular organization of the suspensor or the embryo proper is 

aberrant. Cell identities are clearly specified in suspensor-bearing embryos regardless of the 

division pattern. Inhibition of auxin response in zygotic embryos causes excessive divisions in 

suspensor cells and ectopic expression of genes that are normally-restricted to the embryo 

proper, suggesting that a specific auxin response maintains suspensor cell identity in zygotic 

embryos (Schlereth et al., 2010; Rademacher et al., 2012).  
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Conclusion 

It is well known that in vitro-formed embryos initially show highly variable cell division 

planes and initially lack clear morphological signs of cell patterning and polar organization 

(Mordhorst et al., 1997). At which point these structures become embryogenic and how they 

differentiate are major questions in plant biology, with implications for the normal 

development of zygotic embryos. We have addressed this question for the first time using 

embryo and auxin cell fate markers in B. napus microspore culture. Our marker data show 

that, unlike zygotic embryos, irregular cell division patterns or the absence of a suspensor 

are not necessarily detrimental to microspore embryo development and differentiation. We 

also show that establishment of the canonical auxin maxima observed in zygotic embryos is 

not required to establish apical-basal polarity, but rather, is required to establish embryo 

proper cell fate from the suspensor and to produce functional meristems. If cell fate and 

patterning during in vitro embryogenesis are flexible processes, then why do many 

Arabidopsis zygotic embryo patterning mutants fail to develop properly? Embryos that 

develop in microspore culture are autonomous units, while the growth and differentiation of 

zygotic embryos needs to be coordinated with that of the surrounding seed tissues, the seed 

coat and the endosperm. Our results raise the possibility that arrest or abortion of many 

Arabidopsis patterning mutants is due to failure to coordinate the temporal development of 

the embryo with that of the maternal and filial tissues. Alternatively, many of the 

Arabidopsis patterning phenotypes might be the result of secondary gene effects on 

development, rather than the result of defects in cell division patterns per se.  

 

Methods 

Plant material and microspore culture  

Plants of Brassica napus L. cv. Topas lines DH4079 and DH12075 were grown and cultured 

as described in Supena et al. (2008) with a few modifications. DH12075 microspores were 

cultured at a higher density (50,000 microspores ml−1), and microspores were incubated for 

1 to 3 days, at 32 °C for line DH4079 and at 33.5 °C for line DH12075. After the heat-stress 

treatment microspore cultures were transferred to 25 °C for further culture. NPA (N-1-

naphthylphthalamidic acid, Sigma PS343) was dissolved in DMSO and added to NLN-13 

medium at the beginning of the culture. The same volume of DMSO was added to control 

cultures. The plates were refilled with an equal volume of media after 15 days. For 
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regeneration of plants from haploid embryos, 4-5 week-old embryos (21 per treatment, 

three replicates) were transferred to solid B5 medium containing 1% sucrose and cultured at 

21 °C under a 16 hour dark: 8 hour light photoperiod.  

 

Reporter lines 

The proGRP:GUS-GFP reporter line has been previously described (Li et al., 2014). The 

proDR5:GFP construct (GIIK DR5rev::SV40:33GFP, (Weijers et al., 2006), and the Arabidopsis 

proPIN1:PIN1-GFP (Benková et al., 2003) and proPIN7:PIN7-GFP (Blilou et al., 2005) 

constructs were transformed to Agrobacterium tumefaciens strain C58C1 pMP90 and then 

to B. napus DH12075 (Moloney et al., 1989). All reporter lines showed wild-type phenotypes 

and embryo yields. 

 

GUS Analysis 

GUS staining was performed in GUS staining solution (50 mM sodium phosphate buffer, 

pH 7.2, containing 10 mM EDTA, 0.1% (v/v) Triton X-100, 2.5 mM potassium ferri- and 

ferrocyanide, and 1 mg/ml 5-bromo-4-chloro-3-indolyl-β-glucuronic acid (Duchefa)) for 2 to 

4 h at 37°C. Samples were cleared in solution containing water (30 ml): chloral hydrate (80 g): 

glycerol (10 ml), and observed using differential interference contrast microscopy (Nikon 

OPTIPHOT). 

 

Pseudo-Schiff-propidium iodide staining (PsPI) 

Modified Pseudo-Schiff-propidium iodide staining (PsPI) was performed as described in 

Truernit et al. (2008) with modifications. Wild-type or GUS-stained samples were fixed as 

described, but the incubation step in 80% ethanol at 80 ºC was omitted. After fixation, 

samples were rinsed in water and embedded in 0.9% Sea Plaque Agarose (Duchefa). The 

samples were then treated overnight with -amylase (0.3 mg/ml) at 37 °C. After three 

washes with water, the samples were incubated in 1% periodic acid for 40 minutes and then 

processed further as described (Truernit et al., 2008). 

 

Confocal microscopy  

When indicated, membranes of live material were stained with 10 µg/ml of FM4-64 that 

was added to the culture medium. Samples were also observed after fixation to allow 
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combined imaging of GFP and DAPI. Samples were fixed in MTSB buffer, 4% PFA (Sigma) and 

0.1% Triton-100 at 4 ºC for at least 24 hours, rinsed several times with MTSB buffer diluted 

1:10 in water, counterstained with DAPI (1 µg/ml) or propidium iodide (10 µg/ml), and then 

mounted in Vectashield (Vector Laboratories).  

Fluorescence was observed using a Leica DM5500 confocal microscope. FM4-64 and 

propidium iodide (PI) were exited with the 532 nm laser line and fluorescence emission 

detected in the 617 nm and 655 nm light band. GFP was excited with the 488 nm laser line 

and light emission detected between 510 and 530 nm. DAPI was excited with the 405 nm 

laser line and detected between 458 and 487 nm. Autofluorescence was detected between 

659-784 nm in samples counterstained with DAPI and between 672-713 nm for samples 

counterstained with PI or FM4-64. 

 

Time lapse imaging 

Microspores were embedded at the start of the culture in SeaPlaque agarose (Duchefa) as 

follows. Freshly isolated microspores were resuspended at a density of 200,000 microspores 

ml−1 in NLN-13 medium. One volume of microspores was mixed with two volumes of a 1:1 

mixture of melted 1.8% (w/v) agarose and two-times concentrated NLN-13 medium that was 

kept at 33 oC, and then plated in a thin layer onto gridded µ-Dishes (Ibidi) on a pre-warmed 

electric plate at 33 oC. The agarose was allowed to solidify for 10 minutes at room 

temperature and then the dishes were filled with 300 µl of semi-solid 0.45% Sea Plaque 

agarose in NLN-13. The plates were inverted for imaging.  
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Supplemental data  

 

 Supplemental Figure 1. proGRP:GFP-GUS expression. 

(A-C) Embryo development. (A) One-cell stage embryo proper. GFP is expressed in the apical cell and suspensor. 

(B) Globular embryo. GFP is expressed in the suspensor and basal domain of the embryo proper. (C) Cotyledon 

stage embryo. The insert shows GUS staining in the basal tier of the columella root cells. (D-H) Pollen 

development. (D) Mid-uninucleate microspores. (E) Late-uninucleate microspores. (F) Early binucleate pollen. 
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(G) Trinucleate pollen. (H) Mature pollen from dehiscent anthers. (A-H) Bar=10µm. (I) Correlation between 

percentage of GRP-positive structures and final embryo yield. (J-K) proGRP:GFP-GUS expression in microspore 

culture. (J) Symmetrically-divided microspore that does not show GRP expression. (K) Pollen-like structure that 

does not show GRP expression. 

 

Supplemental Figure 2. Expression of auxin and embryo reporters in B. napus embryos and pollen. 

(A) PIN1:GFP expression in the embryo proper. (B) PIN7:GFP expression in the suspensor. (C) proDR5:GFP 

expression in the embryo is observed from the 8-celled stage. (D) proDR5:GFP is expressed in meiocites and in 

early uninucleate microspores, but not at later stages of microspore and pollen development. Bar=10µm. 
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Supplemental Figure 3. GRP and PIN1 expression in microspore embryos after exine rupture. 

(A) Expression of proGRP:GFP-GUS is associated with the exine remnants. proGRP-driven GFP (left) and GUS 

(right) expression. Arrow, exine remainings. (B) Expression of proPIN1:PIN1-GFP in heart stage microspore 

embryos. PIN1:GFP in the protodermal cells (left) and in the provasculature (right). Bar=20µm. 

 

 

Supplemental Figure 4. Expression of proPIN1:PIN1-GFP and proPIN7:PIN7-GFP in two-domain, exine-enclosed 

embryos.  

(A) PIN7:GFP expression. (B) PIN1:GFP expression. Autofluorescence (magenta) and GFP (green). Bar=20µm. 
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Epigenetic control of plant developmental transitions in response to environmental cues  

Plant development is accompanied by cell fate transitions in response to environmental 

cues such as temperature, light and nutrient availability. These developmental transitions 

include the transition from seed development to seed dormancy (seed dormancy), from 

seed dormancy to seedling (seed germination), from vegetative growth to reproductive 

growth (flower initiation), from sporophyte development to gametophyte development 

(gametophyte initiation), and gametophyte development to sporophyte development 

(embryogenesis) (Hennig and Derkacheva, 2009). Plant developmental growth or transition 

may arrest or accelerate under different environment cues and plants adopt different 

strategies such as altered physiological states or gene transcription to respond to different 

environment cues (Grativol et al., 2012). Epigenetic regulation also plays a major role in 

response to environmental cues in planta (Kim et al., 2010). For example, the AtCHR12 

chromatin-remodeling gene from the SWI/SNF class of chromatin remodellers plays a role in 

mediating the temporary growth arrest in in response to adverse environmental conditions 

(Mlynárová et al., 2007). DNA methylation regulates flowering time as a response to low 

temperature, while a reduced DNA methylation level, achieved by either knocking down 

DNA metyltransferase MET1 or DDM1 promotes flowering (Finnegan et al., 1998).  

The occurrence of developmental fate transitions can also be altered when cells and 

tissues are cultured in vitro. During in vitro culture, cells can be induced to follow a new 

developmental pathway (e.g. from a gametophyte directly to an embryo instead of through 

fertilization) or be held in the same developmental pathway (e.g. zygotic embryo to somatic 

embryos instead of a seedling). Stress is one of the key treatments that promotes the 

developmental fate change required for in vitro embryo culture (Indrianto et al., 1999; 

Ikeda-Iwai et al., 2003), but very little is known about how this stress is perceived and 

translated to promote embryo development (Touraev et al., 1997; Fehér et al., 2003; 

Zavattieri et al., 2010). In this thesis, we examined the epigenetic regulation of microspore 

embryogenesis, an example of a stress-induced developmental transition from gametophyte 

development directly to sporophyte (embryo) development (Chapters 3 and Chapter 4).  

 

Histone acetylation and stress responses 

We showed that inhibition of HDAC acetylation induced embryogenic division in 

microspore culture. Treatment with HDAC inhibitors alone phenocopies the heat-stress 
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response in microspore culture, but is more efficient when combined with heat stress. Roles 

for HDAC proteins in mediating biotic and abiotic stress responses have been well 

documented in Arabidopsis, and include the regulation of cold, osmotic and drought 

tolerance responses, as well as regulation of pathways associated with the stress hormones, 

abscisic acid (ABA) and jasmonic acid (Luo et al., 2012a). The histone deacetylases HDA6, 

HDA19 and HDT3 are involved in stress response and their corresponding mutants are 

hypersensitive to ABA and salt stress (Chen et al., 2010; Chen and Wu, 2010; Luo et al., 

2012b). These mutants display up-regulated expression of the ABA-related genes ABI1 and 

ABI2, which are associated with increased levels of the activation mark H3K9K14Ac and 

decreased levels of the repressive mark H3K9me2 in the promoter of both genes (Luo et al., 

2012b).  

Besides their role in ABA and salt stress responses, HDA6 and HDA19 also play roles in 

temperature-dependent responses. The hda6 mutant shows reduced tolerance to acute high 

temperature stress (Popova et al., 2013). The hda19 mutant is also sensitive to increased 

ambient temperature; hda19 seedlings display normal seedling growth at 24oC, but form 

pin-like shoots that lack cotyledons when grown at 29oC (Long et al., 2006). This phenotype 

is probably not a response to temperature stress itself, but rather to increased auxin levels 

that accompany higher growth temperatures (Szemenyei et al., 2008). We found that hda6 

displays an enhanced, but highly variable efficiency of embryogenic cell division in 

Arabidopsis microspore culture (Chapter 3), but the link with temperature stress is not clear 

as donor plants are grown under non-heat-stress conditions(25 oC). 

Stress induces embryo formation around pollen mitosis I (PMI) of microspore/pollen 

development, but the optimum stage can be later when a stronger stress treatment is 

applied (Binarova et al., 1997). In Chapter 3, we show that the HDACi TSA can induce 

microspore embryogenesis at suboptimal temperatures, but has a stronger effect in 

combination with temperature stress. Also, progressively higher concentrations of TSA are 

needed to induce embryogenesis from older stages of microspore/pollen. This suggests 

three things: 1) that HDAC activity is sensitive to (temperature) stress; 2) that overall 

endogenous HDAC activity or activity of specific HDACs increases as the gametophyte 

develops; and 3) that a relatively low level of HDAC activity or activity of a specific HDAC at 

the optimum stage for embryo induction (microspore or early bicellular pollen) provides the 

competence for an embryogenic response. 
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Developmental changes in histone acetylation 

The changes in histone acetylation status during pollen development, as well as the roles 

of pollen-expressed HDACs and HATs in this process have not been extensively described. 

Histone acetylation modification displays dynamic change during pollen development or 

germination process, and the acetylation level is difference between the vegetative nucleus 

and generative nucleus (Ribeiro et al., 2009). Studies in Lilium longiflorum have shown 

changes in global patterns of histone acetylation after PMI; the vegetative nucleus of the 

bicellular pollen displays lower level of H4Ac5 and H4Ac8 acetylation than the generative 

nucleus and the microspore nucleus. The acetylation level of the vegetative nucleus 

increases later, during pollen tube growth (Janousek et al., 2000). It has been shown that 

two HAT proteins HAM1 and HAM2 from the MYST subfamily family, which show in vitro 

HAT activity for lysine 5 of histone H4 (H4Ac5), regulate cell division in the male 

gametophyte. Pollen development arrests before PMI in double ham1 ham2 mutants 

(Latrasse et al., 2008), indicating that HATs are essential for pollen development. These 

studies have tracked overall changes in histone acetylation marks, but no information is 

available on the roles of HATs or HDACs in controlling locus-specific acetylation marks during 

pollen development. 

There is insufficient information available at this moment to indicate that general HDAC 

activity or the activity of a specific HDAC changes in the different cells of the male 

gametophyte during pollen development. Screening of available pollen transcriptome data 

sets or generation of new data sets could be used to identify potential HDAC genes that 

control gametophytic competence in microspore culture. In addition, chromatin 

immunoprecipitation with specific acetylated histone antibodies followed by high-

throughput sequencing (ChIP-seq) could be used to chart the locus-specific changes in 

histone acetylation during the course of pollen development and microspore embryo 

induction. One drawback of these approaches is that the contribution of the vegetative and 

generative/sperm cells to these expression and acetylation patterns cannot be distinguished. 

Thus techniques to sort the different gametophytic cells will also be required (Becker et al., 

2003; Mitsumoto et al., 2010; Deal and Henikoff, 2011). 

 

A model for HDAC mediated repression of totipotency 
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Histone acetylation is a dynamic process that involves addition of acetyl groups by HATs 

and their removal by HDACs. In general histone hyperacetylation at a locus is associated with 

transcriptional activation and hypoacetylation with transcriptional repression. The static 

model proposes that HDAC removal of acetyl groups from genes facilitates transcriptional 

repression, while HAT addition of acetyl groups facilitates transcriptional activation 

(Shahbazian and Grunstein, 2007). However, the mode of HDAC action in this process is a 

matter of debate as HDACs have been associated with both transcriptionally active and 

inactive genes (Kurdistani et al., 2002). Wang et al. (2009) performed a genome-wide 

analysis of HAT and HDAC chromatin binding in human cell culture and showed that both 

HATs and HDACs are found at transcriptionally active and inactive genes. They proposed a 

model in which three transcriptional states, silenced, primed and active were defined in 

relation to HDAC and HAT activity. Silenced genes are not expressed, lack histone marks and 

associated HDAC/HAT binding, and are generally associated with the K27me3 repressive 

mark deposited by polycomb group (PcG) proteins. These genes tend to be lineage-specific 

and their expression is not rapidly induced by external cues. Primed genes are poised for 

transcription, but are only activated under the appropriate cellular environment. They 

promoters of primed genes are associated with H3K4 methylation, low levels of transient 

HAT and HDAC binding and a low level of acetylation, which prevents Pol II binding. Priming 

is an epigenetic phenomenon that allows cells to respond quickly to developmental or 

environmental cues. Actively transcribed genes are associated with high levels of stable HAT 

and HDAC binding; elongating Pol II recruits HAT to add acetyl groups on the histones during 

transcription, which are removed by HDAC to reset the chromatin. After treatment with an 

HDACi the acetylation level of both active genes and primed genes increased, while the 

acetylation level of silenced genes did not. This indicates that in these cells histone 

acetylation takes place on both active genes and primed genes (Wang et al., 2009).  

A similar model involving HAT-HDAC on acetylation status of primed and active genes can 

be envisaged for microspore embryo induction (Figure 1A). In this model, during pollen 

development, stage-specific pollen genes are actively transcribed due to dynamic HDAC and 

HAT-mediated removal and addition of acetyl groups, respectively, with the balance in 

favour of acetylation. Upon HDACi treatment, acetylation increases due to the lack of HDAC 

activity, but the genes remain expressed. In contrast, embryo genes are primed for 

expression, but are not expressed due to the low level of acetylated histones. HDACi or 
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stress treatments inhibit HDAC activity of these primed genes, allowing increasing histone 

acetylation and expression. According to this model pollen gene expression would be initially 

maintained, but may revert to primed or silenced state after the switch to embryo 

development. mRNA profiling studies have shown that pollen genes expression is reduced in 

time as microspore embryos develop (Joosen et al., 2007), although it is still under debate 

whether some pollen genes remain co-expressed in embryogenic structures (Malik et al., 

2007; Li et al., 2014). A static model in which active genes are modified only by HATs and 

primed genes only by HDACs is also compatible with our data (Figure 1B).  

 

HDAC represses transcription by recruiting other corepressors 

We observed that the stage of microspore/pollen development had a negative influence 

on apical-basal patterning of microspore embryos. Treatment with HDACi improved embryo 

morphology by promoting apical-basal elongation, but at higher concentrations of specific 

inhibitors, they also had a negative effect on apical development. Based on similar mutants 

in Arabidopsis (gnom, mp, kuele, tpl, bdl) and the known ability of HDACs to interact with the 

TOPLESS corepressor to repress ARF gene transcription, we propose that HDACs are present 

in a TPL corepressor complex during pollen development, and that this complex can repress 

basal embryo patterning in microspore embryos. Identification of the major ARF and IAA 

players in this process, as well as the responsible HDAC protein and its protein-protein 

partners is required. HDA19 has been shown to interact with other corepressors such as RBR 

(Rossi et al., 2003), LEUNIG (Gonzalez et al., 2007), TOPLESS-RELATED 1 (TPR1, (Zhu et al., 

2010), and the AP2/ERF transcription factor AtERF7 (Song et al., 2005) to repress 

transcription, thus many potential co-repressors could be involved. However, until now only 

RBR has been reported to play a role in pollen development (Chen et al., 2009). 

In Chapter 4 we showed that DR5 expression marks a subset of embryogenic microspores. 

In general, two types of few-celled embryogenic structures develop in microspore culture, 

compact structures still contained in the exine and structures with loosely connected cells in 

which the exine has started to break or has completely ruptured. The former is associated 

with embryo formation, the latter not, although we cannot rule out the possibility that the 

‘less loose’ structures form embryos. Interestingly, these compact structures express DR5, 

while the structures that have burst out of the exine do not express DR5. This suggests that 

activation of an auxin response is associated with successful microspore embryo initiation. 



General discussion 

205 
 

 

Figure 1. Two models explaining how different histone acetylation states regulate pollen and embryo cell fate. 

Light blue circles, histone octamers; Green circles: acetyl groups; Black line, DNA strand. The thickness of the 

HDAC/HAT outline and arrows indicates their relative activity/stability. 

 

Whether this is the same auxin response that regulates embryo patterning needs to be 

determined, but certainly similarities in the two potential mechanisms in terms of reduced 

competence for microspore embryogenesis with increasing gametophyte age and increased 

HDAC-mediated ARF repression with gametophyte age, make this an intriguing possibility. It 

would therefore be interesting to determine whether a similar HDAC-mediated ARF 

repression is associated with repression of totipotency in microspore culture. Here again, the 

availability of Arabidopsis transcriptome data sets and mutant populations could be 

exploited to answer this question. 

 

The development of callus-like structures and histodifferentiation  
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A large number of callus-like structures can often be observed in B. napus microspore 

culture, especially in genotypes with a poor embryogenic response. These are characterized 

by premature rupture of the exine, where the exine either shows multiple breaks, but is still 

attached or is completely broken. In both cases, the cells are also loosely attached to each 

other. Classical cell biology studies in B. napus suggest that only compact structures (Type I, 

Chapter 3) form embryos. However, it is not clear whether the less compact, callus-like 

structures (Types II and IV) develop into embryos. In some HDACi treatments e.g. TSA, a 

higher proportion of Type I structures is associated with embryo production, while for other 

inhibitors, e.g. oxamflatin, this type of structure is not correlated with higher embryo yield. 

Time-lapse imaging of individual microspores/pollen could be used to determine whether 

callus-like structures can develop into embryos (Daghma et al., 2012).  

Recently, Prem et al. (2012) showed suspensor-bearing embryos could be obtained by 

extended culture at 18 oC, and that these suspensor-bearing embryos were derived from a 

subset of cells in loosely connected callus-like clusters This suggests that the loosely-

connected structures observed in our culture system are initially programmed to be 

suspensor-bearing embryos. As with callus-like structures, suspensor embryos burst very 

early from the exine and do not initially express the DR5 reporter; DR5 is only activated once 

the embryo proper is established from the most distal cell of the suspensor filament. Unlike 

callus, suspensor growth from the microspore is more controlled, thus callus-like structures 

may simply represent poorly committed suspensors. However, our marker analysis and 

microarray analysis suggest that these callus-like structures display embryo identity, and that 

their transcriptome is highly similar to that of globular-stage embryos. It is not clear if this 

similarity shows that these structures are actually a poorly developed embryo proper, or 

reflect the fact that many genes expressed in the embryo proper are also expressed in the 

suspensor. A detailed comparison of callus-like structures with the transcriptome of 

microspore embryo suspensors, might provide more insight into the nature of these 

structures. 

Our microarray analysis also showed that callus-like structures show misregulated 

expression of embryo patterning and auxin signalling genes. It will be necessary in the future 

to determine how and where these patterning genes are misregulated using of GFP 

reporters or mRNA in situ hybridization. Histodifferentiation begins after the embryo bursts 

out of the surrounding pollen exine, thus comparison of normal embryos and embryogenic 
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callus at earlier time points, when these master regulators are not expressed may provide 

more insight into the different pathways that operate in these two types of structures. 

However, this approach is complicated by the presence of pollen at earlier time points, 

which cannot be easily separated from the embryogenic structures. 

 

Brassica and Arabidopsis as model systems 

Compared to Arabidopsis, B. napus has some limitations for fundamental studies. Firstly, 

B. napus is an amphidiploid of B. rapa and B. oleracea, each of which contains a triplicated 

genome relative to Arabidopsis. Although both genome sequences are now publicly available 

(Wang et al., 2011; Liu et al., 2014), the large number of gene copies makes it difficult to 

identify the right gene for further analysis e.g. construction of marker lines and to knock-

down gene expression. Furthermore, it is difficult and time consuming to transform Brassica 

napus. At least 10 months is required to obtain flowering primary transformations, and not 

all genotypes are transformable (e.g. a transformation system for the highly embryogenic B. 

napus line DH4079, only became available toward the end of this thesis (Maheshwari et al., 

2011).  

I attempted to develop an isolated microspore embryo culture system for Arabidopsis by 

applying hormones and physical stresses, such as cold or heat treatment and osmotic stress, 

however the viability of isolated microspores/pollen was very low after grinding of flower 

buds, and the number of microspores that can be isolated is very low. A cut-anther system 

solved the viability problem, but embryogenic cells were only observed after TSA treatment. 

The anther wall may provide a protective environment, preventing microspore death, and 

may also allow culture at higher density. However, anther culture is time-consuming and 

only the cells that are close to the cut-edge of the anther can be followed. Nonetheless, 

HDAC-mediated embryogenesis in Arabidopsis anthers is a promising system, at least for the 

study of embryo induction, as a large number of mutants are available or can be made to 

study the hypotheses put forward in this thesis. 

 

  



Chapter 6 

208 
 

References 
 

Becker, J.D., Boavida, L.C., Carneiro, J., Haury, M., and Feijó, J.A. (2003). Transcriptional 
profiling of Arabidopsis tissues reveals the unique characteristics of the pollen 
transcriptome. Plant Physiol. 133: 713-725. 

Binarova, P., Hause, G., Cenklová, V., Cordewener, J.H., and Campagne, M.L. (1997). A 
short severe heat shock is required to induce embryogenesis in late bicellular pollen 
of Brassica napus L. Sex. Plant Reprod. 10: 200-208. 

Chen, L.-T., and Wu, K. (2010). Role of histone deacetylases HDA6 and HDA19 in ABA and 
abiotic stress response. Plant Signal Behav 5: 1318-1320. 

Chen, L.-T., Luo, M., Wang, Y.-Y., and Wu, K. (2010). Involvement of Arabidopsis histone 
deacetylase HDA6 in ABA and salt stress response. J. Exp. Bot. 61: 3345-3353. 

Chen, Z., Hafidh, S., Poh, S.H., Twell, D., and Berger, F. (2009). Proliferation and cell fate 
establishment during Arabidopsis male gametogenesis depends on the 
Retinoblastoma protein. Proc. Natl. Acad. Sci. USA 106: 7257-7262. 

Daghma, D., Kumlehn, J., Hensel, G., Rutten, T., and Melzer, M. (2012). Time-lapse imaging 
of the initiation of pollen embryogenesis in barley (Hordeum vulgare L.). J. Exp. Bot. 
63: 6017-6021. 

Deal, R.B., and Henikoff, S. (2011). The INTACT method for cell type-specific gene expression 
and chromatin profiling in Arabidopsis thaliana. Nat. Protoc. 6: 56-68. 

Fehér, A., Pasternak, T.P., and Dudits, D. (2003). Transition of somatic plant cells to an 
embryogenic state. Plant Cell Tiss. Org. 74: 201-228. 

Finnegan, E., Genger, R., Kovac, K., Peacock, W., and Dennis, E. (1998). DNA methylation 
and the promotion of flowering by vernalization. Proc. Natl. Acad. Sci. USA 95: 5824-
5829. 

Gonzalez, D., Bowen, A.J., Carroll, T.S., and Conlan, R.S. (2007). The transcription 
corepressor LEUNIG interacts with the histone deacetylase HDA19 and mediator 
components MED14 (SWP) and CDK8 (HEN3) to repress transcription. Mol. Cell. Biol. 
27: 5306-5315. 

Grativol, C., Hemerly, A.S., and Ferreira, P.C.G. (2012). Genetic and epigenetic regulation of 
stress responses in natural plant populations. Biochim. Biophys. Acta - Gene Regul. 
Mech. 1819: 176-185. 

Hennig, L., and Derkacheva, M. (2009). Diversity of Polycomb group complexes in plants: 
same rules, different players? Trends Genet. 25: 414-423. 

Ikeda‐Iwai, M., Umehara, M., Satoh, S., and Kamada, H. (2003). Stress‐induced somatic 
embryogenesis in vegetative tissues of Arabidopsis thaliana. Plant J. 34: 107-114. 

Indrianto, A., Heberle-Bors, E., and Touraev, A. (1999). Assessment of various stresses and 
carbohydrates for their effect on the induction of embryogenesis in isolated wheat 
microspores. Plant Sci. 143: 71-79. 

Janousek, B., Zluvova, J., and Vyskot, B. (2000). Histone H4 acetylation and DNA 
methylation dynamics during pollen development. Protoplasma 211: 116-122. 

Joosen, R., Cordewener, J., Supena, E.D.J., Vorst, O., Lammers, M., Maliepaard, C., 
Zeilmaker, T., Miki, B., America, T., and Custers, J. (2007). Combined transcriptome 
and proteome analysis identifies pathways and markers associated with the 
establishment of rapeseed microspore-derived embryo development. Plant Physiol. 
144: 155-172. 



General discussion 

209 
 

Kim, J.-M., To, T.K., Nishioka, T., and Seki, M. (2010). Chromatin regulation functions in 
plant abiotic stress responses. Plant, Cell Environ. 33: 604-611. 

Kurdistani, S.K., Robyr, D., Tavazoie, S., and Grunstein, M. (2002). Genome-wide binding 
map of the histone deacetylase Rpd3 in yeast. Nat. Genet. 31: 248-254. 

Latrasse, D., Benhamed, M., Henry, Y., Domenichini, S., Kim, W., Zhou, D.-X., and Delarue, 
M. (2008). The MYST histone acetyltransferases are essential for gametophyte 
development in Arabidopsis. BMC Plant Biol. 8: 121. 

Li, H., Soriano, M., Cordewener, J., Muiño, J.M., Riksen, T., Fukuoka, H., Angenent, G.C., 
and Boutilier, K. (2014). The histone deacetylase inhibitor trichostatin A promotes 
totipotency in the male gametophyte. Plant Cell: tpc. 113.116491. 

Liu, S., Liu, Y., Yang, X., Tong, C., Edwards, D., Parkin, I.A., Zhao, M., Ma, J., Yu, J., and 
Huang, S. (2014). The Brassica oleracea genome reveals the asymmetrical evolution 
of polyploid genomes. Nat. Commun. 5. 

Long, J.A., Ohno, C., Smith, Z.R., and Meyerowitz, E.M. (2006). TOPLESS regulates apical 
embryonic fate in Arabidopsis. Science 312: 1520-1523. 

Luo, M., Liu, X., Singh, P., Cui, Y., Zimmerli, L., and Wu, K. (2012a). Chromatin modifications 
and remodeling in plant abiotic stress responses. Biochim. Biophys. Acta - Gene Regul. 
Mech. 1819: 129-136. 

Luo, M., Wang, Y.-Y., Liu, X., Yang, S., Lu, Q., Cui, Y., and Wu, K. (2012b). HD2C interacts 
with HDA6 and is involved in ABA and salt stress response in Arabidopsis. J. Exp. Bot. 
63: 3297-3306. 

Maheshwari, P., Selvaraj, G., and Kovalchuk, I. (2011). Optimization of Brassica napus 
(canola) explant regeneration for genetic transformation. New Biotechnol. 29: 144-
155. 

Malik, M.R., Wang, F., Dirpaul, J.M., Zhou, N., Polowick, P.L., Ferrie, A.M., and Krochko, J.E. 
(2007). Transcript profiling and identification of molecular markers for early 
microspore embryogenesis in Brassica napus. Plant Physiol. 144: 134-154. 

Mitsumoto, K., Yabusaki, K., Kobayashi, K., and Aoyagi, H. (2010). Development of a novel 
real-time pollen-sorting counter using species-specific pollen autofluorescence. 
Aerobiologia 26: 99-111. 

Mlynárová, L., Nap, J.P., and Bisseling, T. (2007). The SWI/SNF chromatin‐remodeling gene 
AtCHR12 mediates temporary growth arrest in Arabidopsis thaliana upon perceiving 
environmental stress. Plant J. 51: 874-885. 

Popova, O.V., Dinh, H., Aufsatz, W., and Jonak, C. (2013). The RdDM pathway is required for 
basal heat tolerance in Arabidopsis. Mol. Plant. 

Prem, D., Solís, M.-T., Bárány, I., Rodríguez-Sanz, H., Risueño, M.C., and Testillano, P.S. 
(2012). A new microspore embryogenesis system under low temperature which 
mimics zygotic embryogenesis initials, expresses auxin and efficiently regenerates 
doubled-haploid plants in Brassica napus. BMC Plant Biol. 12: 127. 

Ribeiro, T., Viegas, W., and Morais-Cecílio, L. (2009). Epigenetic marks in the mature pollen 
of Quercus suber L.(Fagaceae). Sex. Plant Reprod. 22: 1-7. 

Rossi, V., Locatelli, S., Lanzanova, C., Boniotti, M.B., Varotto, S., Pipal, A., Goralik-Schramel, 
M., Lusser, A., Gatz, C., and Gutierrez, C. (2003). A maize histone deacetylase and 
retinoblastoma-related protein physically interact and cooperate in repressing gene 
transcription. Plant Mol. Biol. 51: 401-413. 

Shahbazian, M.D., and Grunstein, M. (2007). Functions of site-specific histone acetylation 
and deacetylation. Annu. Rev. Biochem. 76: 75-100. 



Chapter 6 

210 
 

Song, C.-P., Agarwal, M., Ohta, M., Guo, Y., Halfter, U., Wang, P., and Zhu, J.-K. (2005). Role 
of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and 
drought stress responses. Plant Cell 17: 2384-2396. 

Szemenyei, H., Hannon, M., and Long, J.A. (2008). TOPLESS mediates auxin-dependent 
transcriptional repression during Arabidopsis embryogenesis. Science 319: 1384-1386. 

Touraev, A., Vicente, O., and Heberle-Bors, E. (1997). Initiation of microspore 
embryogenesis by stress. Trends Plant Sci. 2: 297-302. 

Wang, X., Wang, H., Wang, J., Sun, R., Wu, J., Liu, S., Bai, Y., Mun, J.-H., Bancroft, I., and 
Cheng, F. (2011). The genome of the mesopolyploid crop species Brassica rapa. Nat. 
Genet. 43: 1035-1039. 

Wang, Z., Zang, C., Cui, K., Schones, D.E., Barski, A., Peng, W., and Zhao, K. (2009). 
Genome-wide mapping of HATs and HDACs reveals distinct functions in active and 
inactive genes. Cell 138: 1019-1031. 

Zavattieri, M.A., Frederico, A.M., Lima, M., Sabino, R., and Arnholdt-Schmitt, B. (2010). 
Induction of somatic embryogenesis as an example of stress-related plant reactions. 
Electron. J. Biotechnol. 13: 12-13. 

Zhu, Z., Xu, F., Zhang, Y., Cheng, Y.T., Wiermer, M., Li, X., and Zhang, Y. (2010). Arabidopsis 
resistance protein SNC1 activates immune responses through association with a 
transcriptional corepressor. Proc. Natl. Acad. Sci. USA 107: 13960-13965. 

 

 

 

 

  
  



Summary 

211 
 

Summary 

 

Microspore embryogenesis is an expression of plant cell totipotency that leads to the 

production of haploid embryos. Besides being a widely exploited plant breeding tool, 

microspore embryogenesis is also a fascinating system that can be used to obtain a deeper 

mechanistic understanding of plant totipotency. This thesis aims to provide more insight into 

the process of microspore embryogenesis, from the formation of embryogenic cells to the 

outgrowth of differentiated embryos.  

In Chapter 1 background information is provided on the various aspects of Brassica napus 

microspore culture and plant development that intersect with the topics that are studied in 

this thesis. Emphasis is placed on the basic requirements and limitations for successful 

microspore embryo culture, as well as on the roles of the plant hormone auxin and 

epigenetic regulation in the development of plant embryos, during both zygotic and in vitro 

embryo development. 

Chapter 2 reviews the recent advances that have been made in understanding the 

developmental and molecular changes that take place during microspore embryogenesis in 

model systems. The commonly reported cellular changes associated with the establishment 

of embryo cell fate are summarized and evaluated. The subsequent differentiation of the 

embryo is also discussed, specifically, what is known about the establishment of polarity, 

with emphasis on the importance of exine rupture as a positional clue, and the processes 

that influence meristem maintenance during culture. Finally, the studies on the molecular 

changes during microspore embryo induction are put into context of male gametophytic 

development. Overall, the current perspective on microspore embryo initiation presents a 

landscape in which several routes can lead to the same final destination. 

Stress treatments are widely applied to induce embryogenic growth in microspore culture. 

Chapter 3 explores the role of histone acetylation status in stress-induced microspore 

embryogenesis in Brassica napus. Inhibition of histone deactylases (HDACs) using the HDAC 

inhibitor trichostatin A (TSA), phenocopies the heat stress treatment that is normally used to 

induce embryogenic cell proliferation in B. napus microspore culture. Arabidopsis is 

recalcitrant for haploid embryogenesis, yet treatment with TSA also induced embryogenic 

cell divisions in this model species. Our observations suggest that the totipotency of the 

male gametophyte is kept in check by an HDAC-dependent mechanism and that the stress 
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treatments used to induce haploid embryo development in culture impinge on this HDAC-

dependent pathway. The repression of HDACs or HDAC-mediated pathways by stress and 

the accompanying changes in histone acetylation status could provide a single, common 

regulation point for the induction of haploid embryogenesis.  

Chapter 4 builds on the knowledge developed in Chapter 3 on the role of HDAC proteins 

in plant totipotency. A wide variety of chemically distinct HDAC inhibitors was evaluated and 

additional inhibitors that enhance embryogenic cell induction and/or embryo yield were 

identified. One surprising observation was made during the course of this study: the initial 

donor microspore/pollen stage affects the quality of the embryo that is formed. In control 

cultures, embryos from progressively older stages of donor microspores/pollen became 

progressively compromised in their basal (axis region) region, characterized by a shift from 

normal embryos with apical (cotyledons) and basal (root) polarity to abnormal embryos with 

a reduced basal pole and ball-shaped embryos. These abnormal phenotypes could be 

partially complemented by treatment with HDAC inhibitors, which promoted growth of the 

basal region of the embryo. Progressive enhancement of embryo basal identity was 

accompanied by enhanced and broadened expression of the DR5 auxin response reporter. 

The embryo phenotypes observed in control and HDAC inhibitor treated microspore cultures 

are similar to the phenotypes induced by altered expression of the Arabidopsis TOPLESS 

(TPL)/HDAC19/BODENLOS (BDL) repressor complex, which acts to restrict expression of the 

AUXIN RESPONSE FACTOR ARF5/MONOPTEROS (MP) to the basal region of the embryo 

during zygotic embryo development.  

To understand why most embryogenic callus failed to develop further, we examined the 

transcriptome of globular-shaped embryos that have started to histodifferentiate and 

compared it with embryogenic callus. The transcriptome analysis showed that the 

expression of many genes that regulate (auxin-related) embryo patterning were 

downregulated in embryogenic callus compared to globular stage embryos. This result may 

simply reflect the lack of patterning in these embryos or might indicate a role of auxin-

signalling in embryogenic callus formation.  

Chapter 5 examines how embryo identity and patterning is established in two B. napus 

microspore embryo pathways, a zygotic-like pathway, characterized by suspensor and then 

embryo proper formation, and a pathway characterized by initially unorganized structures 

that lack a suspensor. We specifically asked the question: how can embryo patterning be 
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established in the absence of an initial asymmetric division and in the absence of a 

suspensor, two key events in zygotic embryo development. Analysis of embryo fate (GRP) 

and auxin (PIN1, PIN7 and DR5) markers showed that embryo fate was established prior to 

cell division, and independent of subsequent division pattern. The suspensorless embryo 

program was marked by a transient auxin maximum, followed by establishment of the apical 

and basal poles at the globular stage, coincident with release of the embryo from the pollen 

exine. Unlike zygotic embryo development, polar auxin transport (PAT) was not required for 

embryo initiation or polarity establishment in this system. Suspensor embryos developed in 

a similar fashion as zygotic embryos, PAT was required for specification of the embryo 

proper from the suspensor. Haploid embryogenesis therefore follows at least two programs, 

a PAT-dependent program that requires embryo proper specification from the suspensor, 

and an alternative PAT-independent program marked by an initial auxin maximum.  

In the final chapter, Chapter 6, the work presented in this thesis is put in context of the 

broader plant development field. The epigenetic regulation of developmental transitions 

that respond to stress and during pollen development are highlighted. A model is provided 

that histone acetylation levels mediated by HAT and HDAC regulate pollen fate.  
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Samenvatting 

 

Microspore embryogenese is een vorm van plantencel totipotentie dat leidt tot haploïde 

embryo’s. Behalve dat microspore embryogenese een breed toegepaste veredelingstechniek 

is, is het ook een fascinerend systeem om plant totipotentie beter te begrijpen. Dit 

proefschrift verschaft meer inzicht in het proces van microspore embryogenese, vanaf de 

vorming van embryonale cellen tot de uitgroei van gedifferentieerde embryo’s.  

 In hoofdstuk 1 wordt achtergrond informatie beschreven over verschillende aspecten 

van de microspore weefselkweek van Brassica napus, in relatie tot de onderwerpen van dit 

proefschrift. Nadruk wordt gelegd op de basisvoorwaarden voor een succesvolle microspore 

embryogenese weefselkweek,  de rol van het plantenhormoon auxine en de epigenetische 

regulatie van embryo ontwikkeling in zowel zygotische- als in vitro embryogenese systemen.   

Hoofdstuk 2 behandelt de recente doorbraken in het onderzoek aan de moleculaire 

regulatie  en ontwikkeling van microspore embryovorming in modelsystemen. De literatuur 

over de cellulaire veranderingen die plaats vinden bij het vastleggen van de embryo-

identiteit worden besproken. De daaropvolgende differentiatie van het embryo wordt 

behandeld, met name wat bekend is over de vorming van polariteit en de rol die het open 

breken van de  exine laag daarin heeft.   Verder wordt er een vergelijk gemaakt tussen 

micropsore embrogenese en pollenontwikkeling. Samenvattend is het algemene beeld dat 

er meerdere wegen zijn die kunnen leiden tot embryo inductie.  

Hoofdstuk 3 beschrijft de rol van histon acteylatie in stress-geinduceerde microspore 

embryogenese in   Brassica napus. Remming van histon acetylases (HDAC’s) met de HDAC-

remmer trichostatin A (TSA) levert hetzelfde effect op als hitte stress dat normaal gebruikt 

wordt voor de inductie van embryonale celgroei in cultures van B. napus. Arabidopsis is 

recalcitrant voor haploide embryogenese, echter behandeling met TSA zorgt ook voor 

embryonale celdeling in deze modelplant. Onze resultaten geven aan dat de totipotentie van 

de mannelijke gameet in stand gehouden wordt door een HDAC-afhankelijk mechanisme en 

dat de stress behandeling die normaal gebruikt wordt voor de inductie van haploide 

embryo’s ingrijpt op de HDAC-afhankelijke route. De remming van HDAC’s of HDAC-

geregelde routes door stress en de daarmee samenhangende histon acetylatiestatus zou het 

overkoepelende regulatiemechanisme voor haploide embryogenese kunnen zijn.  
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Hoofdstuk 4 bouwt voort op de kennis van hoofdstuk 3 over de rol van HDAC remmers op 

plant totipotentie. Een scala aan chemisch verschillende HDAC remmers is uitgetest en 

hieruit zijn een aantal extra remmers gevonden die ook in staat zijn  embryogenese te 

stimuleren en embryo aantallen te verhogen. Een opvallende observatie is gedaan tijdens 

deze studie: het stadium van de microspore/pollen, waarvan uit  wordt gegaan, is van belang 

voor de kwaliteit van de gevormde embryo’s.  In controle cultures zijn de embryo’s die 

gevormd zijn vanuit oudere micropspore/pollen vooral gestoord in hun basaal gelegen regio, 

wat tot uiting komt door een verschuiving van normale embryo’s met een top (cotylen) en 

basale (wortel) polariteit naar abnormale embryo’s met gereduceerde basale regio en 

balvormige embryo’s. Deze abnormale vormen kunnen gedeeltelijk hersteld worden door 

een behandeling met HDAC remmers, die de groei van de basale regio van het embryo 

bevorderen. De graduele verbetering van de basale embryo identiteit ging gepaard met een 

verhoogde en bredere expressie van de DR5 auxine merker. De embryo’s gevormd in 

controle en met HDAC remmer behandelde cultures zijn vergelijkbaar met embryo’s waarin 

de expressie van het Arabidopsis TOPLESS (TPL)/HDAC19/BODENLOS (BDL) repressor 

complex veranderd is. Dit complex beperkt de expressie van AUXIN RESPONSE FACTOR 

ARF5/MONOPTEROS (MP) tot de basale regio van het embryo tijdens zygotische embryo 

ontwikkeling.  

Om te begrijpen waarom de meeste embryonale celclusters niet verder ontwikkelen, 

hebben we het transcriptoom van deze celclusters vergeleken met die van globulaire 

embryo’s, waarin de weefseldifferentiatie net op gang is gekomen. Deze analyse liet zien dat 

veel genen die (auxine gerelateerde) patroonvorming in het embryo sturen, waren geremd 

in de celclusters. Dit resultaat zou simpel te verklaren kunnen zijn door de afwezigheid van 

patroonvorming in deze celclusters of kan betekenen dat auxin een rol speelt bij de vorming 

van deze embryonale celclusters.  

In hoofdstuk 5 is de studie beschreven hoe de identiteit en patroonvorming van het 

embryo tot stand komt in twee verschillende B. napus microspore embryogenese routes: the 

‘zygotische’ route die gekenmerkt wordt door de vormig van een suspensor en vervolgens 

het embryo en de tweede route, waarin in eerste instantie een ongeorganiseerde structuur 

zonder suspensor gevormd wordt. We hebben specifiek de vraag gesteld hoe 

patroonvorming tot stand kan komen zonder dat een eerste asymmetrische deling optreedt 

of een suspensor gevormd wordt. Analyse van de embryo identiteit (GRP) en auxine (PIN1, 
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PIN7 en DR5) merkers laat zien dat de identiteit al bepaald is voordat celdeling plaats vindt 

en onafhankelijk is van de delingspatronen die daarop volgen. Het programma voor een 

suspensorloos embryo wordt gekarakteriseerd door een tijdelijk auxine maximum, gevolgd 

door het vastleggen van de top- en basale kanten tijdens het globulaire stadium, dat samen 

gaat met het verwijderen van de pollen exinelaag om het embryo. Anders dan bij zygotische 

embryovorming, is polair auxin transport (PAT) niet nodig voor embryo initiatie of polariteit 

in dit systeem.  Suspensor bevattende embryo’s ontwikkelen zich op een zelfde manier als 

zygotische embryo’s, waarbij PAT noodzakelijk is voor het specificeren van het 

embryolichaam van de suspensor.  Haploide embryogenese volgt daarom tenminste twee 

programma’s, een PAT afhankelijke route en een alternatieve PAT onafhankelijke route die 

gekarakteriseerd wordt door een tijdelijk auxine maximum.   

In het laatste hoofdstuk 6 wordt het werk van dit proefschrift in een breder kader van 

plant ontwikkeling geplaatst. De epigenetische regulatie van veranderingen in 

pollenontwikkeling, die beïnvloed worden door stress, worden vooral benadrukt. Een model 

wordt gepostuleerd hoe histon acetylatieniveau’s,  die ontstaan door HAT en HDAC 

activiteiten, uiteindelijk bepalen wat er met een pollen gebeurt.   
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在离体条件下，植物未成熟的花粉（雄性小孢子）能够由配子体发育途径转变为

孢子体发育途径，经过胚胎发生途径产生小孢子胚胎，并且能正常萌发成单倍体植株。

小孢子诱导产生的单倍体胚胎不仅广泛运用于植物育种中，而且是研究植物胚胎发育

的重要模式实验系统。本论文旨在深入理解单倍体胚胎的发生机制，我们以油菜和拟

南芥为实验材料，研究方向主要集中在以下两个方面：1、染色质修饰对单倍体胚胎诱

导和发育的作用。2、与生长素相关的过程对单倍体胚胎诱导和发育的影响。 

第一章以油菜为例，介绍了小孢子胚胎的应用前景和影响小孢子胚胎发生的重要

因素，以及生长素和表观遗传因素对合子胚和离体条件下胚胎发育的影响。 

第二章对小孢子胚胎研究的最新进展进行综述，主要涉及到离体培养条件下小孢

子命运改变及小孢子胚胎形态建成过程中所发生的细胞生物学和分子生物学变化。阐

述了细胞分裂模式和胚柄的存在以及花粉壁破裂作为位置信号对小孢子胚胎极性建立

的重要性，并从雄配子体发育的角度揭示了小孢子胚胎诱导过程中的分子生物学变化。

最后指出运用小孢子胚胎发生体系可寻找胚胎相关基因。 

第三章揭示了组蛋白乙酰化状态在小孢子胚胎发生中的作用。胁迫处理能够诱导

产生小孢子胚胎，用组蛋白去乙酰化酶抑制剂 TSA 抑制组蛋白乙酰化酶的活性，提高

组蛋白乙酰化水平，也可以产生类似胁迫处理的效果，从而诱导小孢子胚性细胞增殖。

对于无法诱导小孢子胚胎的拟南芥，经过 TSA 处理也能诱导其小孢子胚性细胞增殖。

说明雄配子体的全能性受组蛋白去乙酰化酶控制，胁迫处理诱导产生小孢子胚胎可能

也依赖于组蛋白去乙酰化酶途径，遗传分析表明 HDA17 在该过程中起作用。胁迫抑制

组蛋白去乙酰化酶或者该酶介导的组蛋白乙酰化状态改变可能是诱导单倍体胚胎产生

的调节点。 

在第四章，我们评价了一组不同化学结构的组蛋白去乙酰化酶抑制剂对促进小孢

子胚胎诱导和发育的作用。组蛋白去乙酰化酶抑制剂包括 SAHA, scriptaid, oxamflatin 和 

apicidin 都能够促进胚性细胞增殖或者提高胚胎发生率，但是大多数胚性细胞都不能分

化成胚胎。通过转录组分析比较胁迫诱导产生的正常胚胎和组蛋白去乙酰化酶抑制剂

诱导产生的胚性细胞团，我们发现它们相关性很大，但是控制胚胎极性建立和分化的

关键因子以及生长素和细胞分裂素信号途径相关的基因在胚性细胞团中下调。同时我

们发现初始的小孢子或花粉的发育阶段影响最终产生胚胎的质量，组蛋白去乙酰化酶
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抑制剂促进较老花粉的胚胎产生率并且促进根芽分生组织的分化，同时增加了的生长

素应答。说明乙酰化酶抑制小孢子或花粉的生长素应答，并且与小孢子胚胎形态的建

立相关。 

油菜早期的合子胚含有胚柄，而且在胚胎发育过程中细胞分裂十分规则。第五章

我们探讨了在缺乏胚柄和细胞分裂不规则的情况下，小孢子胚胎是如何建立极性并且

发育成正常胚胎的。通过控制胁迫处理的温度，油菜的小孢子胚胎发生可经过两个途

径，一个是与合子胚类似的有胚柄的途径，另一个是无胚柄的途径。我们以胚胎特异

基因（GRP）和生长素相关基因（DR5, PIN1, PIN7）为标记基因，揭示了其在小孢子胚

胎发育过程中的时空表达模式。研究发现在小孢子胚胎形成过程中，生长素应答发生

在第一次细胞分裂之前。在无胚柄的小孢子胚胎产生和极性建立过程中，生长素极性

运输不是必需的，花粉壁的破裂可能导致极性的建立；而对有胚柄的小孢子胚胎来说，

生长素极性运输是极性建立所必需的。虽然两条途径中小孢子胚胎的细胞分裂不规则，

但是后期经历了与合子胚类似的发育过程，说明有规则的细胞分裂对于胚胎命运的和

胚胎形态的建立不是必需的。 

第六章，我们讨论了该论文的主要工作，指出表观遗传学在植物发育命运转变中

的重要作用，特别是组蛋白乙酰化状态的改变对胁迫应答和对植物发育的影响。我们

提出模型来解释组蛋白去乙酰化酶如何通过抑制不同基因的转录来控制小孢子的命运。

并讨论了组蛋白去乙酰化酶抑制剂在小孢子胚胎诱导方面的应用前景，特别是运用在

不能诱导产生单倍体胚胎的重要模式植物和经济作物上。 
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