Soil-vegetation-atmosphere transfer in regional scale climate modeling

R.A. Feddes, K. Metselaar, I.Wipfler and J.C. van Dam

Water balance components

Global circulation

Processes schematization rain/irrigation **Atmosphere** transpiration interception soil evaporation **Plant** surface runoff **Surface waters Unsaturated** zone drainage/ infiltration Flow / transport of: **Saturated** soil water soil heat zone drainage/ solutes infiltration Influenced by: hysteresis seepage/ \Leftrightarrow soil spatial percolation variability water repellency **Deep Groundwater** shrinkage cracks

Processes schematization rain/irrigation **Atmosphere** transpiration interception soil evaporation **Plant** surface runoff **Surface waters Unsaturated** zone drainage/ infiltration Flow / transport of: **Saturated** soil water soil heat zone drainage/ solutes infiltration Influenced by: hysteresis seepage/ \Leftrightarrow soil spatial percolation variability water repellency **Deep Groundwater** shrinkage cracks

Soil water flow equation

Darcy

$$q = -K \frac{\partial H}{\partial z}$$

Continuity

$$\frac{\partial \theta}{\partial t} = -\frac{\partial q}{\partial z} - S$$

Water uptake by roots

 $\mathsf{D}_{\mathsf{root}}$

Distribution root water extraction

Root length density L_{root} (cm cm⁻³)

Potential root water extraction rate S_p (d⁻¹)

$$S_{p}(z) = \frac{L_{\text{root}}(z)}{\int_{-D_{\text{root}}}^{0} L_{\text{root}}(z) \partial z} T_{p} \qquad S(z) = \alpha_{\text{rw}} S_{p}(z)$$

$$\int_{-D_{\text{most}}}^{0} S_{\text{p}} \, \partial z = T_{\text{p}}$$

Actual root water extraction rate S (d⁻¹)

$$S(z) = \alpha_{\rm rw} \, S_{\rm p}(z)$$

Actual root water extraction

Actual root water extraction:

$$S(z) = \alpha_{rw} S_p(z)$$

Effect root distribution

- Grass vegetation with 100% soil cover
- Loamy sand soil (B7 and O8 in Staring Series)
- Free drainage boundary condition at z = -200 cm
- At t = 0, h = -200 cm throughout soil profile
- No rainfall, potential transpiration $T_p = 4 \text{ mm d}^{-1}$

Relative root density distribution

Cumulative root fraction

with
$$Y = 1 - \beta^z$$

TESSEL-model for flow of water and heat

Possible effects of modifications on soil water balance

Possible effects of modifications on soil water balance

Tests with the detailed SWAP model

- Discretization
- Maximum rooting depth
- Leaf area index as a function of time
- Soil depth (shallow deep)
- Root extraction
- Soil texture
- Bottom boundary condition (Groundwater)

Effects SWAP tests on evapotranspiration *ET*

Location: Hungary – continental climate

Modifications in Tessel for Hungary

- Introduced changes
- Discretization
- Soil Depth
- Groundwater
- Root water uptake

ET- Tower, RS-SEBAL, [ET_{act} and ET_{pot}] -SWAP

SEBAL computations

Application of SEBAL voor 2005

SEBAL: Surface Energy Balance for Land

Basis inputs:

- Satellite based products
 Vegetation-index (NDVI)
 Surface albedo
 Surface radiation temperature
- Meteorological measurements
 - Air temperature
 - Relative humidity
 - Windvelocityd
 - Transmissivitty/incoming radiation

SEBAL computations

Satellite products

Derived from the MODIS satellite

1 km resolution (thermal)

Daily recording

Total of 19 cloudfree images

Transformed in weekly values of evapotranspiration for Hungary

Validation

2 measuring locations in Bugac en Matra

Pixel is not homogenous!

Validation Evapotranspiration flux

Validation fluxes with Bowen ratio

Validation with Energy balance

Comparison with Rainfall

Tropical Rainfall Measurement Mission (TRMM)

TRMM rainfall - SEBAL ET

Comparison with rainfall

Tropical Rainfall Measurement Mission (TRMM) and point measurements (meteorological stations)

Conclusions

- 1) Measured net radiation agrees well with SEBAL estimate
- 2) Measured energy balance does not 'close'
- 3) Corrected measurements agree well with the spatial SEBAL data
- 4) The spatial patterns of rainfall as measured by TRMM are reflected by the evapotranspiration values computed by SEBAL

