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Abstract 
Extreme discharges of the Rhine are likely to change as a result of the changing climate. 
A common way to assess impacts of climate change is to use Regional Climate Model 
(RCM) output to drive impact models. For the assessment of very rare discharge events 
in a large river basin (e.g. with return periods of 1250 years) there are two major 
problems. First, available RCM simulations are usually way too short for the robust 
estimation of such rare events. Second, RCM output is generally too biased for direct use 
in impact models. 

Nearest Neighbour Resampling (NRR) stochastically extends meteorological time series to 
any length. The generated synthetic time series are subject to the same characteristics 
as the reference time series and are generally thought to contain rare multi-day 
extremes in accordance with the time series length. The discharge of the Rhine at Lobith 
is closely related to the upstream precipitation of multiple preceding days. So, 
hydrological modelling on the basis of very long synthetic time series may result in more 
robust estimation of very rare discharge events at Lobith. 

The RACMO simulation used for this study was nested in a simulation with the Global 
Circulation Model ECHAM5 forced by the SRES emission scenario A1B. The simulation is 
biased with respect to a reference observational data set with precipitation and 
temperature. Too high spatial and temporal coherency of the rainfall events result in too 
many wet days. A wet-day adjustment is developed that leaves the Probability Density 
Function (PDF) of wet-day amounts largely intact and slightly reduces the spatial and 
temporal coherency. These daily, local scale adjustments also improve the large-scale 
and multi-day variability. Yet, an additional power-law correction is necessary to 
efficiently reduce the remaining biases in average precipitation and the coefficient of 
variability (CV). For the daily temperature a shifting and scaling are sufficient to correct 
for biases in average temperature and standard deviation. 

After the successive application of the Nearest Neighbour Resampling and the bias 
correction (BC) still some small biases remain. Yet, rare large-scale multi-day rainfall 
events in the bias-corrected RCM output are very well reproduced compared to the 
results of the synthetic time series based on historical data. This justifies the application 
of the generated and corrected time series for hydrological modelling and assessment of 
extreme discharges at Lobith. 

Rare 10-day large-scale precipitation events upstream of Lobith with return periods 
between 10 and 1250 years increase 7% to 10% according the RACMO simulation and 
the proposed methods. Rare events with return periods of 1250 years in the current 
climate will have a 3 to 4 times higher occurrence probability around 2050. 
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1. Introduction 
River dikes protecting the Netherlands against flooding along the Rhine are designed for 
discharges with a return period of 1250 years. Currently, the design discharge at Lobith 
amounts 16000m3s-1 (Te Linde et al., 2010). The estimation of such rare events from 
historical discharge series is very uncertain, since those series usually have a limited 
length. Therefore, KNMI and RIZA have developed a stochastic weather generator, the 
Rainfall Generator for the Rhine (Beersma, 2002). This Rainfall Generator is based on 
Nearest Neighbour Resampling (NRR) techniques, originally proposed by Young (1994). 
The resampling of historical time series in the Rhine basin has been optimised for the 
assessment of extreme discharges within various studies, for instance by Wójcik et al. 
(2000) and by Beersma and Buishand (2003). 

As a result of climate change the distribution of extreme discharges is likely to change. 
To explore the range of plausible future climate conditions, climate simulations are 
performed with perturbed green house gas concentrations. For the assessment of 
regional climate change, Regional Climate Models (RCM’s) are nested in coarse resolution 
Global Circulation Models (GCM’s) (Giorgi, 2009). Leander and Buishand (2007) and 
Leander et al. (2008) resampled RCM output for the assessment extreme discharges of 
the Meuse. However, for successful hydrological modelling bias correction appeared 
necessary. 

The objective of this study is to apply a comparable Nearest Neighbour Resampling 
scheme on RCM output and correct the generated time series for the most important 
biases. After the resampling and bias correction the time series should be suitable for 
hydrological modelling. The hydrological model output is used to explore plausible 
changes in extreme Rhine discharges at Lobith (Te Linde et al., 2010). 

For this study, a transient run (1950-2100) with the 2nd version of the KNMI Regional 
Atmospheric Climate MOdel (RACMO2) is used (Lenderink et al., 2003). The output is 
stochastically extended (10000 years) with the help of Nearest Neighbour Resampling 
and is used as input for the hydrological model HBV. These models and the reference 
meteorological data are briefly introduced in chapter 2. Subsequently, chapter 3 
extensively describes the biases in precipitation and temperature in the RACMO output 
with respect to the historical reference. Special attention is paid to the large scale multi-
day variability and extremes, since the Rhine discharge at Lobith typically depends on the 
weather of multiple preceding days. In chapter 4 the bias correction is optimised and 
chapter 5 explains the combined effect of the resampling and subsequent bias correction. 
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2. Data and tools 

2.1. HBV-Rhine domain 
The meteorological time series are prepared for simulations with the hydrological model 
HBV1 (Lindström, 1997). HBV-Rhine covers the whole Rhine basin upstream of Lobith, 
where the Rhine enters the Netherlands and distinguishes 134 subcatchments (Eberle et 
al., 2005). It uses daily precipitation and temperature and monthly potential 
evapotranspiration as input. The potential evapotranspiration is indirectly obtained from 
air temperature within HBV-Rhine. For the spatial analysis of the meteorological data, the 
subcatchments have been divided over 14 regions, largely based on the main tributaries 
of the Rhine (Figure 2.1). 

 

Figure 2.1 134 subcatchments used in HBV-Rhine divided over 14 regions 

2.2. Reference data 
Daily precipitation and temperature (1961-1995) obtained from the International 
Commission for the Hydrology of the Rhine Basin (CHR) serves as a reference for the 
validation and bias correction of the climate model output. The data has been compiled 

                                          
1 HBV (Hydrologiska Byråns Vattenbalansavdelning) is a Swedish abbreviation for a 
rainfall-runoff model based on the water balance which describes the hydrological 
processes at the catchment scale conceptually. 
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for the 134 subcatchments within HBV-Rhine (Eberle et al., 2005). Per subcatchment, 
daily precipitation has been derived from gridded data,, where the area average was 
calculated from the arithmetic mean of the grid values within the subcatchment. For all 
German subcatchments except within the Moselle basin the REGNIE dataset (1 x 1 km2 
grid as provided by the Deutscher Wetterdienst (DWD)) has been used. For the Swiss 
part a 2 x 2 km2 gridded data set (Dällenbach, 2000) and for the Moselle and French part 
a 7 x 7 km2 gridded data set (Helbig, 2004) were used. 

The temperature data have been derived from 49 meteorological stations from CHR, 
DWD, Metéo France and MeteoSchweiz. For the interpolation to mean subcatchment 
height, a correction of 0.6°C/100m has been applied. 

2.3. RACMO2 simulations 
In this study, the output of two simulations with the regional climate model RACMO2 is 
used (Lenderink et al., 2003; Van Meijgaard et al., 2008). The first simulation was nested 
in the reanalysis ERA40 (Uppala et al., 2005) and the second in a transient simulation 
(1950-2100) with the general circulation model ECHAM5 (Jungclaus et al., 2006) forced 
by the SRES A1B scenario (Nakicenovic et al., 2000). The simulations will be referred to 
as RA-ERA and RA-ECH respectively. According to Demuzere et al. (2009), the general 
circulation types over Western and Central Europe are well reproduced by ECHAM5 from 
October until April. From late spring to early summer (MJJAS) western type circulation 
patterns are significantly overestimated. 

The RACMO domain covers Europe completely and a large part of the Northern Atlantic 
Ocean. Both simulations were run on a spatial resolution of about 25 x 25 km2 and daily 
output has been made available within the ENSEMBLES project (Van der Linden and 
Mitchell, 2009). 

RACMO2 showed good performance on precipitation (Van den Hurk et al., 2005). The 
interannual variation in summertime temperature is well represented and relatively 
insensitive for circulation biases (Lenderink et al., 2007). Thiessen interpolation has been 
used to translate the gridded RACMO output to subcatchment averages. 

2.4. Nearest Neighbour Resampling 
The Rainfall Generator for the Rhine has been developed and optimised for the 
hydrological modelling and assessment of extreme Rhine discharges (Wójcik et al., 2000 
Buishand and Brandsma, 2001). The Rainfall Generator applies Nearest Neighbour 
Resampling (NRR) of observed meteorological time series to obtain new sequences of any 
length (e.g. 1000 years and longer). 

Nearest Neighbour Resampling involves the simultaneous sampling with replacement of 
various meteorological variables of a specific historical day (t). For the incorporation of 
autocorrelation the sampled day (t) depends on the characteristics of the previous 
sampled days (t-1, t-2, …) (Young, 1994; Rajagopalan and Lall, 1999). For day (ts) in the 
stochastic series, a specific historical day (t) is randomly selected from the k=10 “nearest 
neighbours”. The nearest neighbours are those historical days of which the characteristics 
are most similar to the characteristics of the previously selected historical day for ts-1.  

Smoothing meteorological data 
The temperature (T) and precipitation (P) time series are standardised prior to the 
resampling. The temperature (at time t) is standardised by subtracting the estimated 
mean (md) and dividing by the estimated standard deviation (sd) for the specific calendar 
day (d): 

( ) ddtt smTT /~ −= , ;365,...2,1 Jt =   ( ) 1365mod1 +−= td  
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tT  and tT
~

 are the original and standardised temperature and md and sd are smoothed 

estimates for the sample mean and sampled standard deviation for the specific calendar 
day. Daily precipitation is smoothed by dividing by the mean of the calendar days 
exceeding 0.3 mm of the specific calendar day. 

Nearest neighbours and the feature vector 
For the incorporation of seasonality, the nearest neighbours are selected from the 61 
calendar days around the specific day (Leander and Buishand, 2007). A feature vector Dt 
is applied to determine the nearest neighbours in the historical record. Dt is formed out 
of q=3 standardised weather variables sampled for t. Dt contains the arithmetic mean of 

the standardised precipitation ( tP
~

) and temperature ( tT
~

) within the 134 subcatchments – 

in previous studies Dt has been determined from 34 meteorological stations (e.g. 
Beersma, 2002). Dt is completed by the fraction of subcatchments with more than 0.3 
mm precipitation (F). F helps to roughly distinguish between large-scale and convective 
precipitation. The nearest neighbours in the historical record depend on the weighted 
Euclidean distance δ(Dt,Du): 

( ) ( )
=

−=
q

j
ujtjjut vvwDD

1

2,δ  

where vtj and vuj are the jth components of Dt and Du and  w1=w2=w3=1 are the scaling 
weights. For the random selection of one of the k=10 nearest neighbours, a kernel is 
applied that gives higher selection weights (pn) to closer neighbours (Lall and Sharma, 
1996): 

 =

=
k

i

n
i

n
p

1
/1

/1
 

2.5. Resampling of observed CHR data 
The Nearest Neighbour Resampling (NNR) has been applied to extend the CHR 
precipitation and temperature time series. The long synthetic time series enable more 
robust estimation of extreme events with long return periods. Discharge of the Rhine at 
Lobith correlates rather well to 10-day basin-average precipitation (PRh-10). Figure 2.2 
shows the reproduction of annual extremes of PRh-10 by NNR. The extreme value 
distributions seem to deviate somewhat for return periods larger than 10 years. It should 
however be noted that for return periods comparable to the length of the time series the 
return periods associated to the largest annual maxima are relatively uncertain. 
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Figure 2.2 Return level plot for the 10-day basin-average precipitation including the 
annual maxima (dots) and the Nearest Neighbour Resampling extrapolation (continuous 
line) based on the CHR 1961-1995 P and T data. 
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3. Analyses of biases in climate simulation 
A climate model is said to be biased if the statistical characteristics differ from the 
observed climate for the same period. In practice, all statistical properties of the climate 
model output, like the mean, the standard deviation and higher quantiles of a certain 
element are potentially biased. Since all these elements and their characteristics are 
mutually dependent, corrections of one bias will by definition change other 
characteristics: some other biases will be (partly) solved, but new biases and artefacts 
may be introduced. Therefore, it is very important to assess the biases of the main 
characteristics and to assess the characteristics which closely relate to the parameter of 
interest. The Rhine discharge at Lobith, for instance, is highly dependent on the 10-day 
precipitation sum in upstream the basin. 

3.1. Mean precipitation 
The mean precipitation in RA-ECH is strongly biased (Figure 3.1). Winter (djf) 
precipitation is in most sub-basins more than 20% larger than observed. The bias in 
summer precipitation is spatially more variable, roughly between -25 (west) and +25% 
(east). 

 

Figure 3.1 Bias of RA-ECH in mean precipitation (%). Left: winter (djf). Right: 
summer (jja) 

Comparing RA-ECH and RA-ERA allows for disaggregating the bias into the individual 
contributions of ECHAM5 and RACMO2. In summer, RA-ECH gives much more 
precipitation in the north of Europe (including the entire Rhine basin) than when nested 
in ERA40 (Figure 3.2-right). This is a logical result of the too high relative contribution of 
westerlies in the ECHAM5 simulation. The negative bias in summer (Figure 3.1-right) 
should be attributed largely to the dynamical downscaling with RACMO2 (and not to the 
global climate simulation with ECHAM5). 

Despite the fair reproduction of circulation types in the winter half year, ECHAM5 
transports too much moisture into Europe (Figure 3.2-left). In winter, this bias is even 
strengthened by the dynamical downscaling with RACMO2 (not shown). This results in 
the very large discrepancies between observed and modelled precipitation for the Rhine 
basin in winter. 
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Figure 3.2 Absolute difference in daily precipitation between RA-ECH and RA-ERA 
[mm] Left: winter (djf). Right: summer (jja) 

3.2. Wet days 
The discrepancy in mean precipitation of RA-ECH compared to RA-ERA is mainly reflected 
in the wet day frequency (fwet: P >= 0.05 mm). Noticeably, the bias in fwet is rather 
constant through the entire basin (Figure 3.3). Yet, there is a distinct annual cycle, 
especially in the southern regions (Neckar, Upper Rhine 2 and Schweiz). 

The bias in mean precipitation on wet days only (mwet) varies spatially far more than 
fwet (Figure 3.4). Like fwet, also the bias in mwet is characterised by a distinct annual 
cycle with a large underestimation of wet-day precipitation in summer and autumn. 
Obviously, the bias in mwet is much smaller than the biases in mean precipitation on all 
days (Figure 3.1). 
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Figure 3.3 Bias in wet day frequency (fwet). Boxplots show the biases of the 
subcatchment per region. The colours give the biases per season. The black dots 
represent the biases for the region average precipitation. The rightmost boxplots give the 
biases per region and the accompanying dots the bias of the Rhine basin average. 

 

 

Figure 3.4 As Figure 3.3, but for biases in mean precipitation on wet days only, i.e. 
days with more than 0.05 mm precipitation (mwet). 
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3.3. Precipitation variability 
As a consequence of the surplus of wet days, the variability of daily precipitation is 
generally too low (±-20% in winter). Figure 3.5 gives the distribution of bias in the 
Coefficient of Variation (CV)2 per subcatchment and per season. 

 

Figure 3.5 As Figure 3.3, but for biases in CV daily precipitation. 

Taking into account the wet days only, the Coefficient of Variation (cvwet) is fairly well 
reproduced by RA-ECH, especially in the transition seasons (Figure 3.6). However, in 
summer cvwet is generally somewhat overestimated (+10%) and winter cvwet is 
generally underestimated (-10%). 

As a result of the too low CV of daily precipitation, also the CV of multiple days is largely 
underestimated (Figure 3.7). Since the Rhine discharge at Lobith is typically dependent 
on multi-day precipitation, this will considerably affect the hydrological modelling. 

                                          
2 The Coefficient of Variation of daily precipitation equals the standard deviation of the 
daily precipitation divided by the mean daily precipitation.  
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Figure 3.6 As Figure 3.3, but for biases in CV daily precipitation amounts on wet days 
only 

 

 

Figure 3.7 As Figure 3.3, but for biases in CV of 10-day precipitation sums. 
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3.4. Large scale 10-day precipitation extremes 
Large scale 10-day precipitation (PRh-10) extremes according to RA-ECH compare rather 
well to the observed extremes (Figure 3.8). Yet, the slope of the distribution of annual 
extremes is too flat. So, the moderate extremes (i.e. with shorter return periods) are too 
high and the highest extremes (longer return periods) are too low. This is especially 
visible in the NNR extrapolations. The overestimation of the moderate extremes is caused 
by the too persistent supply of moisture, resulting in too many “very wet” 10-day 
periods. Conversely, the individual precipitation amounts in these “very wet” periods are 
generally too small. This is, amongst others, reflected in the underestimation (except for 
summer) of CVRh-10 (Figure 3.7: black dots in rightmost Boxplots). 

 

Figure 3.8 Return level plot for the 10-day basin-average precipitation including the 
annual maxima (dots) and the Nearest Neighbour Resampling extrapolation (continuous 
line). Green refers to CHR-data and red to uncorrected RA-ECH data. 

3.5. Temperature 
The simulated temperature is subject to serious biases too (Figure 3.9). The mean winter 
temperature is too high; mostly between 1 and 2°C in some subcatchments even more 
than 2,5°C. This is probably related to the large amount of moist air transported into 
Europe, which in winter is usually warmer than dry air from eastern direction and is 
heated due to the condensation process when rainfall occurs. Temperatures in the other 
seasons are reasonably reproduced. Yet, the temporal variability is generally too low (-
0.5 – 0.0 °C, not shown). 
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Figure 3.9 As Figure 3.3, but for biases in mean daily temperature. 
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4. Bias correction 

4.1. General line of approach 
Since all adjustments will introduce new biases and artefacts, it was tried to keep the 
bias correction (BC) as simple as possible. However, the correction should be able to 
efficiently remove the most important biases. After BC at least the general 
characteristics, like the mean, variability and autocorrelation structure, should be close to 
the observed climate. In addition we consider large-scale multiday variation and 
especially 10-day extremes as very important, since these characteristics largely 
determine the extreme discharge at Lobith. 

The bias corrections are applied per calendar month. This largely smoothes the effect of 
natural variability, while the annual cycle is optimally maintained. No additional spatial 
smoothing is applied, since the spatial heterogeneity of the biases is larger than the 
natural variability. 

The bias correction for precipitation consists of two steps. First, the number of wet days 
is adjusted. Second, a power law function is applied to correct for the mean and CV on 
wet days. The correction for the temperature is applied independently from the 
precipitation correction and may therefore introduce (small) physical inconsistencies. 

The correction has been determined for the reference period 1961-1995 and it is 
assumed that the monthly bias does not change in time, i.e. the correction algorithm 
determined for the past/current climate is also applied to the future climate. 

4.2. Correction of the number of wet days 
A large part of the biases can be attributed to the large overestimation of the wet day 
frequency (fwet). Therefore first, fwet is adjusted. The applied method leaves the wet-
day characteristics unchanged as much as possible (see below). 

Wet days are “dried” by changing the precipitation amount to zero. In very few cases, in 
the RACMO simulation, fwet is slightly underestimated and dry days need to be “wetted”. 
The correction for fwet is done as follows. 

Selected precipitation amounts 
The adjustment of fwet should not change the probability density function of the wet-day 
amounts (PDF-wet). This is achieved if the added or removed wet days are drawn from a 
similar distribution as the original PDF-wet. For example if nine wet days have to be 
dried, the selected days correspond to the 10%, 20% … 90% quantiles of PDF-wet. 

In case of “wetting”, the selected quantiles from PDF-wet are used to assign the amounts 
corresponding to these quantiles to the same number of originally “dry” days. 

Selection criteria 
Random selection of wet days for drying would considerably disturb the temporal 
structure of wet and dry days. For the reproduction of multiday variability and extremes 
of PRh-10, it is important to leave the temporal coherence largely intact. By trial and error 
the following selection criterion has been found; wet days are only available for drying if 
four of the six surrounding days are dry or moderately wet (P ≤ 1.0 mm). For the wetting 
of dry days, the day should be preceded by a wet day. 

The application of this selection criterion only slightly decreases the temporal and spatial 
correlation. In this specific case, this decrease is an improvement since the spatial and 
temporal correlation structure is generally too high in RA-ECH. Note that this selection 
criterion might be optimized differently for RCM simulations in which the spatial and 
temporal structure differs from that in RA-ECH. 
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Procedure 
The wet days that initially satisfy the selection criterion generally belong to the lower 
quantiles of PDF-wet, since heavy precipitation amounts usually preceded and followed 
by several other wet days. To circumvent this problem, first the lower quantiles are 
selected. For every dried day, new wet days get available for drying (also higher 
amounts). As a result, enough wet days will become available for the higher quantiles. 

In case of wetting, the added precipitation amounts exactly match the necessary 
quantiles/selected precipitation amounts. But additionally, the dry days to be wetted 
have to be selected. This is done by ranking the dry days on the basis of the preceding 
wet day amounts and matching the specific quantile and the dry-day quantile. 

Characteristics after wet day adjustment 
The adjustment of the number of wet days substantially improves the characteristics of 
the individual subcatchments. After adjustment, the biases in mean precipitation and CV 
(all days) are very similar to the biases in mwet and cvwet (not shown). The fwet 
adjustment considerably increases the multi-day variability. For winter, spring and 
autumn this is an improvement, but for summer the bias in multi-day variability gets 
bigger (Figure 4.1). 

 
 

Figure 4.1 As Figure 3.7, but after adjustment of the wet-day frequency 

Since the correction of fwet mainly involves drying of wet days, this correction obviously 
reduces the large-scale extremes (Figure 4.2). Yet, the slope of the annual extremes 
clearly improves. This is a result of the better representation of the CV of 10-day 
precipitation, especially in winter. 
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Figure 4.2 Annual maxima of the Rhine-basin average 10-day precipitation sums 

4.3. Correction of mean and variability 
Additional correction of the precipitation on wet days (PDF-wet) is necessary to improve 
the general daily characteristics and to increase the underestimated large-scale multi-day 
extremes. This is done by a power-law adjustment (Leander and Buishand, 2007). 

ib
i PaP =*  

with P the modelled precipitation sum, P* the corrected precipitation sum and ai and bi 
coefficients dependent on month i. The desired values for mwet* and cvwet* directly 
follow from the biases in mwet and cvwet in RA-ECH (1961-1995) as derived in chapter 3 
and from the mwet and cvwet itself. Subsequently, the parameters ai and bi were 
iteratively determined such that mwet* and cvwet* exactly match the desired values. 

In this study, the biases in mwet and cvwet are considered to be constant in time. This 
means that the parameters have to be determined separately for the reference period 
(1961-1995) and the future period (2036-2065). This is in contrast to the study of 
Leander and Buishand (2007) who determined the parameters ai and bi for the reference 
period and kept them constant in time. 

Characteristics after complete correction 
The proposed bias correction not only effectively removes the biases in daily 
characteristics, but also strongly improves large-scale multi-day variability, especially in 
winter and autumn (Figure 4.3). 
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Figure 4.3 As Figure 4.1, but after applying the entire proposed bias correction 

Especially, the reproduction of the 10-day large-scale extremes is good (Figure 4.4). 
First, the wet-day adjustment corrects for the slope of the extremes. Then, the power-
law function ensures the observed and corrected RACMO extremes largely overlap. Only 
for return levels higher than 10 years the annual extremes deviate. Regarding the limited 
time series length, this is probably caused by statistical uncertainty. 

 

Figure 4.4 Annual maxima of the Rhine-basin average 10-day precipitation sums 
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4.4. Correction of temperature 
The bias correction of temperature simply involves a shifting to adjust for the mean and a 
scaling to adjust for the standard deviation (Leander and Buishand, 2007). 

( )
( )( )mod

mod* i
i

obs
iobs

i TT
Ts

Ts
TT −+=  

with T the modelled day-temperature, T* the corrected temperature, obs
iT  and mod

iT  the 

mean temperature in month i and ( )obs
iTs  and ( )mod

iTs  the standard deviation of the daily 

temperature in month i. 

Characteristics after complete correction 
After correction, the bias in the mean and standard deviation of the daily temperature is 
by definition zero. The correction also considerably reduces the bias in multi-day 
temperature variation. For example, the standard deviation of 20-day mean temperature 
(subcatchments, regions, basin) varies from -0.2 – 0.1 ˚C after correction (not shown). 
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5. Bias-corrected resampled RCM output 

5.1. Characteristics after resampling and correction 
Biases after the subsequent use of Nearest Neighbour Resampling (NNR) and the 
proposed bias correction (BC) are larger than the biases after individual application of 
both techniques. The winter precipitation is for instance overestimated on average by 
8.1% (Figures 5.1 and 5.2). Yet, these biases are small compared to the discrepancies 
between observed precipitation and raw RA-ECH output (Fig 3.1). 

 

Figure 5.1 Bias in mean precipitation after resampling and bias correction (%). Left: 
winter (djf). Right: summer (jja) 

The reproduction of the large-scale multi-day variability is hardly influenced by the 
resampling (Figure 4.3). 

 

Figure 5.2 Biases in four precipitation characteristics after proposed resampling and 
bias correction. The boxplots give the distribution of the region-average biases and the 
accompanying red dots the bias of the Rhine basin average. The colours give the biases 
per season. 
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The additional discrepancy caused by the subsequent application of NRR and BC has two 
reasons. First, the resampling has been especially optimised for reproducing the annual 
extremes as good as possible. The reproduction of the general characteristics, like mean 
and daily variability, was given less weight. Second, the bias correction procedure has 
been constructed and calibrated from original short RACMO time slices and not from the 
long resampled RACMO time series – i.e. the coefficients ai and bi have not been re-
calibrated for the resampled RACMO data. 

5.2. Annual extremes 
As a result of the overestimation of mean and standard deviation of daily Rhine basin-
average precipitation PRh, the moderate extremes are slightly overestimated too. But 
after NRR and BC, the RA-ECH extreme events for return periods longer than 10-20 years 
are very similar to the CHR extremes after NRR (Figure 5.3). 

Future extremes 
Therefore, it can be justified to apply the bias correction to the generated time series for 
the assessment of changes of extreme discharges at the Rhine (Figure 5.3). According to 
the proposed method and the applied RACMO simulation, basin-average 10-day 
precipitation amounts with return periods between 10 and 1250 years will roughly 
increase between 7% and 10% in the period between 1995 and 2050. This is equivalent 
to a reduction of a return period of 1250 years (in the current climate) to about 300 
years around 2050. 

 

Figure 5.3 Annual maxima of the Rhine-basin average 10-day precipitation sums 
according to CHR-observations and bias-corrected RA-ECH output. Continuous lines give 
the extrapolation according to Nearest Neighbour Resampling. 
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6. Conclusions and discussion 
RACMO output is biased and therefore not directly applicable in impact models. The 
biases in the wet day frequency are most pronounced, but also the mean and variability 
on wet days are seriously biased. The two-step correction involving first the wet day 
frequency and subsequently the mean and variability of precipitation on wet days per 
subcatchment also remarkably well reduces biases in multi-day and large-scale 
precipitation characteristics (Figures 4.3 and 4.4). Therefore, the generated time series 
are suitable for modelling hydrological extremes 

Following the proposed method, large-scale 10-day precipitation extremes with return 
periods between 10 and 1250 years will increase by approximately 7% to 10%. 

The Nearest Neighbour Resampling and the bias correction are separately tuned. Both 
methods slightly interfere and after successive application some biases remain. However, 
annual extremes with return periods longer than 10-20 years are well reproduced after 
resampling and correction. Combined tuning may improve the modelling results - i.e. the 
optimisation of the number of nearest neighbours (k), the elements (q) and scaling 
weights (wj) within the feature vector (Dt), the procedure of wet-day adjustment etc. The 
most straightforward way is to optimise the BC on the basis of NRR time series. 

General applicability 
The proposed method is not generally applicable, although the proposed method gives 
very satisfying results for large-scale multi-day variability and extremes in RA-ECH. 
Spatial and temporal biases in other RCM simulations are possibly of a very different 
nature than in RA-ECH. Before application of the proposed methods on other RCM 
simulations, the performance should be carefully checked and if necessary re-optimised. 

The proposed method is optimised for the assessment of extreme Rhine discharges at 
Lobith, that typically depend on Rhine-basin average 10-day precipitation sums (in 
winter). For smaller catchments local (e.g. convective) precipitation extremes may 
dominate the discharge extremes rather than the large-scale multi-day (frontal) 
extremes. 
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