
 I

Centre for Geo-Information

Thesis Report GIRS-2007-06

Calibration of Markovian land use change models

Aurélien Letourneau

A
pr

il
/ 2

00
7

II

III

Calibration of Markovian land use change models

Aurélien Letourneau

Registration number 781127-514-050

Supervisors:

Dr. ir. Gerard B.M. Heuvelink
Prof. Dr. ir. Arnold K. Bregt

A thesis submitted in partial fulfilment of the degree of Master of Science
 at Wageningen University and Research Centre,

 The Netherlands.

April, 2007
Wageningen, The Netherlands

Thesis code number: GRS-80436
Wageningen University and Research Centre
Laboratory of Geo-Information Science and Remote Sensing
Thesis Report: GIRS-2007-06

IV

V

Foreword

This report represents eight months of research in land use change modelling. This work
brought me a lot of insight on how to simulate temporal and spatial phenomena. I also
learnt that in research an answer inevitably brings new questions. Actually, it may be the
purpose of this thesis research; question what has already been done, explore new ways
to do things and maybe come up with better ones.

I would like to thank my supervisors, Gerard Heuvelink and Arnold Bregt for their
guidance and support to carry out this work. I would also like to thank Emiel van Loon
from the University of Amsterdam, for his decisive advice on Matlab programming.

I wish that this thesis is the starting point for further research on land use change
modelling and more particularly on the use of the Particle Swarm Optimization for
calibration purposes.

Aurélien Letourneau
10 April 2007, Wageningen

VI

VII

���������	�
��
���
�

������������	
����
������������������������������ ���������������������������������

� �	����	
��� ��� ��� �������
� �	���������� ��� ��� ������
� �	�����
� ��� ��� ���������

��	����
������
	��������������������������������� ���

�	�
�	��� ��� �

� ��	�����	�� ���

��� � ��	��	�
����
�������� ��� ���������������������������� �� ��
��� � �������������	��� ��� ������������������������������������� �� ��
��� � ��� � �������������� ��� ��� �� ��
���� � ������������������ � ������� ���!��� ��� �������������������������� �" ��
���" � ������� ���!�������#����� ��� ����������������������������������� �$��
��� � ��
���������	����
������
�������	��� ��� ���� ��
�� � ����	���	���� ��� ��� �� ��

� �
����
��������
����������
���!�	��	����
	
�	 �����"��

��� � �����	�
����
������ ��� ������������������������������ �#��
��� � ��� ��%�#�&����!���������������� ' ������ ������ ��(����� �� �) ��
���� %� ������*&���� ��� ��� ��� ��
���" � ������((���� ��������� ��� �� � ��
���+ � �����(������ ��� ��� �������� ��
��� � ����� �$� �
	�
�������������� ��� ������������������� ��� ��
��� � ����� �$�� ��
���� ��� ����������������������������������� ��� ��
�� � ����� �$�� ���
����	
	��� ��� ������������������������ ��� ��
��% � �������������
�	����	����
��� ������ ��� ����� ��
��� 	 ���!�	��	����
	
�	 ��� ������������������������������� ��%��
��,� � �!��� ' �� �������� !��� !� �� ��� �������������������������������� �$ ��
��,�� � �!��� �' �� ��� ��� ��� ��� �, ��
��,�" � �!��� "' �! �(��%�� ����� ��� ������������������������������������� �- ��

�

�

VIII

� �
����
	������	������������������������������������ �������������������������������#��

��� � �	��	�
�����	���
�������	���&
	��� ��� ������������� ��# ��
"�� � �����������&���� ��� ��� �) ��
"��� � � !������������� ��� �� ��
��� ����	���������	���&
	����
�����	�� ��� ����������� ��� ��
"��� � ��� �����������.���� ���%������ ��� ��������������������������� ��" ��
"���� � ������!�������.���� ���%������ ��� ����������������������������� ��+ ��

 	����
�	������
�����	���&
	����'��(�
�����	������ �������%��

 �� � �����	�
����
������ ��� ����������������������������� ��%��
 ��
 �����
	����	��	����
��������
��������� ��� ����%��
+��� � ��� ��� ������ %� ��� ��� �����- ��
+���� ��� ����&!����!� ��� ��� �����/ ��
+���" ��� �(��0����� ��� ��� ������"1 ��

% ����	����	����
����
	����
�������������������� ������������������

%�� � ����� �$� �
	�
�������������� ��� ������������������� ��� ��
$�� � ����������� ��� ��� ������������" ��
$��� � ����������&��� ��� ��� �����"" ��
$��" ��� �#������&� ��� ��� �������"+ ��
$��+ � � ����������(����&����������� ��� ��� ����������#��� ���", ��
$��$ (� ������&��� ��� ��� ����������+1��
%�� � ����� �$�� ��
���� ��� ����������������������������������� � � ��
$��� � ����������� ��� ��� ������������+ ��
$���� ! ���� ��(������� ��� ���+� ��
$���" � ��� &�#����(���������� ��� ��� �+" ��
$���+ (� ������&��� ��� ��� ����������++��
%�� � ����� �$�� ���
����	
	��� ��� ������������������������ � � ��
$�"� ! ���� ��(������� ��� ���+, ��
$�"�� � ��� &�#����(���������� ��� ��� �+- ��
$�"�" (� ������&��� ��� ��� ����������+- ��

� ����������
������������
	������������������������ ���������������)��

�� ���%���

�� ��%%��

� ����	������������������ �$� �
	�
�� ������������ ��� �%%��
� ����	������������������ �$�� ���
����	
	��� ��� ����� ��� ��
� ����	������������������ �$�� ���
����	
	��� ��� ����� �"� ��

IX

�*+,*-+.�/0�1234+5�267�0-89,+5�

List of tables
Table 1 Fictive transition matrix for a land use system with three different land use types. .. - 3 -�
Table 2 Example transition matrix for a land use system with three different land use types, taking
into account the land use types occurring in the neighbouring; F=forest, U= urban area, and
A=arable land. .. - 5 -�
Table 3 Generic coefficients matrix. ... - 11 -�
Table 4 Simplified generic coefficients matrix. ... - 12 -�
Table 5 Transition matrix for the Spatial Independence model. .. - 12 -�
Table 6 Transition matrix for model 2: Expansion. .. - 13 -�
Table 7 Transition matrix for model3: Defragmentation ... - 14 -�
Table 8 Reference transition matrix for the spatial independence model for 1 time-step. .. - 15 -�
Table 9 Reference transition matrix for the expansion model for one time-step. - 16 -�
Table 10 Generic confusion matrix for two maps A and B with c number of classes after Monserud
and Leemans (1992). ... - 20 -�
Table 11 Test transition matrix. .. - 32 -�
Table 12 Table of primary results for different reference transition matrices. - 33 -�
Table 13 Table of PSO performance according to the number of particles and their neighbours. -
37 -�
Table 14 Results obtained with weighted individuality or sociability with 300 PSO iterations.- 38 -�
Table 15 Results obtained with weighted criteria with 300 PSO iterations. - 39 -�
Table 16 Results obtained with different limit of location change. - 39 -�
Table 17 Final calibration results for spatial independence model. - 40 -�
Table 18 Calibration results obtained for model 2 with or without assumptions. - 42 -�
Table 19 Calibration results obtained for model 2 using different number of particles. - 44 -�
Table 20 Final calibration results for model 2. ... - 44 -�
Table 21 Calibration results obtained for model 3 with or without assumptions. - 47 -�
Table 22 Calibration results obtained for model 3 using different number of particles. - 47 -�

List of figures
Figure 1 Transition process where only the immediate preceding state is taken into account.- 2 -�
Figure 2 Markovian model with spatial interactions: The state of the pixel at t -1 and the state of its
four neighbours at t -1 influence the state of the pixel at t. .. - 4 -�
Figure 3 Fictive grid-cells representing the three land use change processes of interest. - 8 -�
Figure 4 Different sizes of Moore neighbourhoods after Verburg (2004). - 10 -�
Figure 5 Generic flowchart of the three basics M-LUCM. .. - 14 -�
Figure 6 Representation of the local optima (zones 1, 2 and 3) during the search performed by the
optimization algorithm. In the case of the simulated annealing, the temperature is the factor which
enables the algorithm to escape the local optima in the solution space. - 22 -�
Figure 7 Swarm of 9 particles with 2 neighbours. .. - 26 -�
Figure 8 Process for updating each particle position based on its best position and the position of
its best neighbour. Here the solution space has only two dimensions, thus two parameters are
calibrated. ... - 27 -�
Figure 9 Particle Swarm Optimization flowchart. ... - 30 -�
Figure 10 Map of the CA (left) and AA (right) value in the solution space. - 32 -�
Figure 11 Map of the summed (CA+AA) (left) and kappa index (right) value in the solution space. -
32 -�
Figure 12 Positions of the particles in the solution space. ... - 35 -�
Figure 13 PSO performance according to the number of particles and neighbours............ - 36 -�
Figure 14 Value of the average fitness for increasing number of realizations. - 38 -�
Figure 15 PSO progression for model 2 using different number of particles. - 43 -�

X

List of maps
Map 1 Initial and final reference land use maps for spatial independence model. - 15 -�
Map 2 Initial and final reference land use maps for the expansion model. - 16 -�
Map 3 Initial and final reference land use maps for the defragmentation model. - 17 -�
Map 4 Reference initial (A) and final (B) land use maps and two simulated land use maps (C and
D) for model2. .. - 45 -�
Map 5 Reference (A and B) and simulated (C) land use maps for the defragmentation model.- 48 -�

XI

�-51�/0�233,+*-21-/65�

EF Enrichment Factor
LUCM Land use change model
MCK Map Comparison Kit
M-LUCM Markovian land use change model
MRF Markov Random Field
PSO Particle Swarm Optimization
RIKS Research Institute for Knowledge Systems

XII

XIII

351,2:1�
Land cover and more particularly land use are complex dynamic systems influenced by
numerous factors (drivers and pressures) and are changing in various ways (processes).
Land use change models (LUCMs) are designed to be a support for decision-making in
spatial planning. Unfortunately, many of the drivers and processes are not fully known or
understood, and induce uncertainty in the model predictions. Thus, probabilistic models of
land use change, such as Markovian models, are appropriate to deal with prediction
uncertainty and to simulate land use change.

Nevertheless, LUCMs are simplified representations of a land use system and the
reliability of the model simulations depends on the accuracy of the reference datasets, the
design of the conceptual model and the proper calibration of the model parameters. Here,
the main issue addressed in this research is the calibration of a spatial Markovian LUCM
(M-LUCM). The parameters of a LUCM cannot be obtained from an analytical analysis
since we need transition probabilities for single time steps, but only have data with more
than one time step intervals. Moreover the spatial models take the influence of the
surrounding pixels into account which is difficult to determine analytically. Thus, in order
to proceed to an automated search of the model parameters values, we used an
optimization algorithm; the Particle Swarm Optimization (PSO), which is based on the
theory of Swarm Intelligence.

Since parameter optimization is an iterative process, the chosen approach was to test and
configure the calibration method, using synthetic datasets and simplistic M-LUCMs
developed by the author. This procedure enables to progress step-wise in the
experimentation of the calibration method, by calibrating increasingly complex land use
change processes. Here the processes considered were the spatial independence, expansion
and defragmentation models.

The performance of the PSO was evaluated based on the computation time and the quality
of the calibration based on map comparison indices, landscape metrics and reference
parameters.

The basic models applied to synthetic land use datasets revealed to be very useful to
experiment and test the calibration method in different situations. Besides, calibrating the
most simplistic and unrealistic model (i.e. spatial independence), enabled to visualize the
PSO behaviour and gain insight in the optimization process. Thus, the results obtained
further facilitated the PSO configuration to calibrate more complex models. The model
simulating the expansion presented the best calibration results, whereas the model for
defragmentation could not be calibrated properly, probably due to an inappropriate
conceptual model.

Nevertheless, this research showed that PSO is a promising calibration method for M-
LUCMs. It was the first step to assess the usability and efficiency of the PSO and further
research should be undertaken to determine whether the algorithm can also be applied to
real world data.

Keywords: land use modelling, Markov theory, calibration, optimization, Particle Swarm
Optimization.

XIV

- 1 -

1 Introduction

1.1 Context and background

Land cover and more particularly land use are complex dynamic systems influenced by
numerous factors (drivers and pressures) and are changing in various ways (processes).
The changes in the use of the land are dependent on biophysical factors (e.g. soil erosion,
land degradation, flooding…) but also on human activities and the related strategic
policies, socio-economic drivers and factors (Kammerbauer and Ardon 1999). Besides,
policy-makers, decision-makers, scientists as well as the broad public are increasingly
concerned about environmental issues and natural resources management. These issues
are both influenced by land use change and spatial planning (Vitousek 1997). In other
words, the ecosystems services and the natural resources sustainability depend on how
they are exploited and managed by human activities. Consequently, land managers and
decision-makers needs tools to quantify, locate and visualize probable future land use
changes in order to assess their consequences on the environment.

Land use change models (LUCM) are designed to be a support for decision-making in
spatial planning. In addition, models can improve our understanding of the underlying
processes and drivers. Some of these models are deterministic; they are designed
considering that there is a sound knowledge of the land use change driver and processes,
as well as reliable data with negligible uncertainty. Unfortunately, many of the drivers of
the land use system as well as the underlying processes are not fully known or understood,
and induce uncertainty in the model predictions. Therefore, probabilistic models of land
use changes such as stochastic models, and more particularly Markovian models, are
appropriate to deal with prediction uncertainty (Luijten 2003). Indeed, such models can
provide the decision-maker with predictions with different probabilities of occurrence
(Turner et al. 1995). In addition, a stochastic approach is based on transition probabilities
from one state to another, and takes into account the nature, partly random, of land use
change processes. Riebsame et al. (1994) noted the need for LUCM to be able to deal with
surprises and unexpected events.

Besides, land use change can be seen as a phenomenon which has a temporal and spatial
dimension. There are spatial dependencies, since activities in one area can influence the
land use allocation in the adjacent parcels (Turner et al. 1995). Thus, analysing complex
land use patterns as independent parcels can lead to misinterpretations (Balzter et al.
1998). Therefore spatially-explicit models; i.e. models that take into account the spatial
relationship among land use at neighbouring locations, are needed to facilitate a thorough
understanding and to improve land use prediction for management and planning purposes.

Finally the reliability of the model simulations and consequently the quality of the
decision taken, depend on the accuracy of the reference datasets, the design of the
conceptual model and the proper calibration of the model parameters.

- 2 -

1.2 Problem definition

The main issue addressed in this research is the calibration of spatial Markovian LUCMs
(M-LUCMs), which is elaborated in the next section. In this section, the Markov theory
and spatially explicit Markovian models will be briefly described. Next attention will be
given to the calibration of these models, and more particularly specific calibration issues
related to increasingly complex models.

1.2.1 The Markov property

Considering an arable land parcel, it is unlikely that it changes to a forest but it is more
probable that it stays arable land or perhaps changes into built-up area. Likewise, built-up
area has a small chance to change into forest or arable land. Thus, we can notice that the
state at the current time influences the state at the next step.

Wikipedia states that, in probability theory, “a stochastic process has the Markov
property” when “the conditional probability distribution of future states of the process,
given the present state and all past states, depends only upon the current state and not on
any past states, i.e. it is conditionally independent of the past states (the path of the
process) given the present state” (Wikipedia, accessed October 2006; Markov 1907). In
other words, Markov theory assumes that the current state of a system only causally
depends on the state which immediately precedes it and, consequently, the state at the next
time-step depends only on the current state. Thus the succession of system states over
time, where each state is dependent from the previous one, can be simulated by a Markov
chain.

This property is expressed by Equation 1 and illustrated in Figure 1.
.

P(Xt+1� Xt, Xt-1, Xt-2, …, Xt-T) = P(Xt+1� Xt) Equation 1

where: Xt is the land use type of the considered cell at time t.

P is the transition probability.
 T is the number of time-steps.

Figure 1 Transition process where only the immediat e preceding state is taken into account.

One should note that this model is suitable to simulate land use change processes where
spatial independence is assumed (see also Figure 3). In other words, the model represents
land-use systems where the neighbouring land use types have no influence on the future
state of the cell considered.

- 3 -

In order to simulate land use change, a transition matrix is applied to an initial land use
raster-map to produce a prediction of the cells’ state at the next time step. The transition
matrix contains the probabilities that a considered cell changes from one land use type to
another one, as shown in Table 1. The rows are the current land use types and the
columns are the possible land use types at the next time step.

Table 1 Fictive transition matrix for a land use sy stem with three different land use types.

 Future land use type

 Forest Urban Arable

C
ur

re
nt

 la
nd

us

e
ty

pe

Forest 0.5 0.3 0.2

Urban 0 1 0

Arable 0.1 0.3 0.6

For instance, the transition matrix indicates that:

· The probability that arable land changes into forest is 0.1,
· The probability that arable land changes into urban area is 0.3,
· The probability that arable land remains arable land is 0.6.

Note that the sum of the transition probabilities in a row must be equal to 1 and that all the
transition probabilities must lie between 0 and 1. Indeed, it is certain that a land use type
either stays in its current state or changes into one of the other two land use types, thus the
sum of the probabilities in a row must be equal to 1.

1.2.2 Spatially explicit Markovian models

Several models based on Markov chains have already been developed to simulate land use
change. Some of these also consider the spatial arrangement of land use types (Balzter et
al. 1998; Balzter 2000; Schneider and Pontius 2001; Luijten 2003; Heldens 2006). As
mentioned earlier, analysing and simulating complex land use patterns without taking into
account their spatial interactions can lead to misinterpretation (Turner et al. 1995; Balzter
et al. 1998). For instance, a crop land, which surroundings is extensively urban, has higher
probability to change to urban than a crop land located in a natural area. It is therefore a
logical and in many cases necessary extension to include spatial dependencies in LUCM.

In order to extend the model with spatial dependencies, a Markov chain can be replaced
with a Markov Random Field (MRF). A MRF is a logical extension of the Markov chain
from the one-dimensional case (time) to two or more dimensions (space and time). In this
framework, a land use type, at a considered location, will change (or not) to another one,
depending on the current land use at the same location and the land use in neighbouring
cells (see Figure 2). Here, one should note that an MRF is a form of cellular automata and
that the size of the neighbourhood can change according to the application requirements.
Cellular automata are dynamic models, discrete in time and space, applied to a lattice
(grid-cells). All cells can be in n different states and may change state according to

- 4 -

transition rules (i.e. a transition probability matrix) which take into account the state of the
neighbouring cells, see Equation 2 (compare with Equation 1).

P(X (i,j)t+1� X(1,1)t, X(1,2)t,…, X(m,n)t, X(1,1)t-1, X(1,2)t-1,…, X(m,n)t-1,…, X(1,1)t-z, X(1,2)t-

z,…, X(m,n)t-z)=P(X(i,j)t+1� X(i,j)t, X(i-1,j)t, X(i,j-1)t, X(i+1,j)t, X(i,j+1)t)
Equation 2

where: X(i,j)t is the land use at the cell located on row i and column j, at time t.
m is the number of rows in the lattice.
n is the number of columns in the lattice.
P is the transition probability.
z is the number of time-steps.

Figure 2 Markovian model with spatial interactions: The state of the pixel at t -1 and the state of it s
four neighbours at t -1 influence the state of the pixel at t.

Integrating spatial interaction in a Markovian model involves more complex transition
rules:

� Transition probabilities depend on the land use in the neighbourhood. Compared to
a simple Markov chain, where the neighbourhood has no effect on the transition,
here the neighbourhood is composed of nine cells (Moore neighbourhood): the cell
of interest and the eight adjacent cells (as shown in Figure 2).

� The number of entries in the transition matrix increases; as the matrix must take
into account the combination of land use type(s) in the considered neighbourhood
(see Table 2). The size of the transition matrices increases accordingly.

- 5 -

Table 2 Example transition matrix for a land use sys tem with three different land use types, taking
into account the land use types occurring in the n eighbouring; F=forest, U= urban area, and A=arable
land.

 Future land use types
Land use type in
considered cell

Land use type combination
in the neighbourhood

Forest Urban Arable

Forest F 0.7 0.1 0.2
Forest U 0.5 0.4 0.1
Forest A 0.5 0.1 0.4
Forest FU 0.6 0.3 0.1
Forest FA 0.6 0.1 0.3
Forest UA 0.3 0.3 0.4
Forest FUA 0.4 0.3 0.3
Urban F 0 1 0
Urban U 0 1 0
Urban A 0 1 0
Urban FU 0 1 0
Urban FA 0 1 0
Urban UA 0 1 0
Urban FUA 0 1 0
Arable F 0.1 0.2 0.7
Arable U 0.1 0.4 0.5
Arable A 0 0.2 0.8
Arable FU 0.1 0.3 0.6
Arable FA 0.1 0.1 0.8
Arable UA 0.1 0.4 0.5
Arable FUA 0.1 0.3 0.6

1.2.3 Markovian model calibration

M-LUCMs aim at simulating land use changes over time, but are a simplified
representation of reality (Veldkamp and Lambin 2001). In order to reach a satisfactory
degree of similarity with the real world, the model needs to be calibrated by choosing the
model parameters values such that the model results match reality as closely as possible
(Li and Yeh 2002). Besides, as noted by Englund (1990): “variability in spatial estimation
methodology has a significant effect on the quality of the estimates, and on the quality of
decisions based on the estimates”. Therefore, it is needed to design a thorough
methodology to calibrate a model in order to increase the prediction reliability and to
provide a reliable tool for decision-making.

The transition matrix is the model element which needs to be calibrated by setting the
proper parameters values i.e. the transition probabilities. It is not possible to determine the
parameters values analytically since we need transition probabilities for a single time-step,
but only have data at time points that are separated by more time steps. For example, land
use is not monitored every year but only once every ten or twenty years. Moreover the
spatial models take into account factors which are difficult to determine analytically, such
as the influence of the surrounding pixel. Therefore, the M-LUCMs need to be calibrated
by proceeding to an automated search of the parameters values using optimization
algorithms. Thus, the following calibration requirements are identified:

· Reference datasets; an initial land use map (at T=0) and a final one, later in time
i.e. after T time-steps (in this thesis we will use T=20). The initial land use map is

- 6 -

used as starting point for the model. The final land use map is used as the reference
map to be matched as closely as possible by the model simulation.

· Criteria to measure the goodness-of-fit of the model simulation to create a realistic
final land use map. These criteria can be map comparison indices, landscape
metrics or single-map statistics.

· An optimization algorithm to estimate the model parameters values. Basically, this
iterative calibration technique, such as the Simulated Annealing (SA), seeks for the
optimal combination of transition probabilities to obtain a simulation matching the
reality (i.e. the reference final land use map) as closely as possible. The search
process stops once the criteria to measure the goodness-of-fit are satisfied.

One should note that a calibration by iteration typically requests high computation
resources. Besides the calibration of models can be complex when taking into account
several land use types or multiple spatial variables (Li and Yeh 2002). Thus it will be
necessary to limit the number of entries in the transition matrix (see Table 2) to manage
the complexity of the calibration process.

1.3 Research objectives and research questions

The overall objective of this research is to develop and apply a calibration method for a
M-LUCM. In order to reach this objective several research questions need to be answered:

1. How to create basic M-LUCMs which enable to evaluate the calibration method?
2. What are available calibration methods and which one is the most appropriate for

calibration of a M-LUCM?
3. How to implement the calibration method and apply it to basic M-LUCMs?
4. How to evaluate the calibration performance?

1.4 Report outline

In Chapter 2 the three conceptual models for the basic M-LUCM are described, as well as
the synthetic datasets used to further calibrate the models. Then, the results of the
literature review on optimization algorithms are given in the third chapter. In Chapter 4,
first, the criteria to compare the reference map with the simulated ones are listed and
described. Then the concept of the selected algorithm is explained as well as the approach
to apply it to the basics M-LUCM. The results of the calibration are presented and
discussed in Chapter 5. Finally, the research questions answered in the last chapter, and
the conclusion and recommendations for future research are presented.

- 7 -

2 Basic land use change models and synthetic datase ts

The chosen approach is to test and configure a selected calibration method, using synthetic
datasets as reference and simplistic land use change Markovian models, in order to:

1. Carry out numerous experiments with different calibration settings.
This research aims at evaluating possible M-LUCM calibration techniques and using
simple synthetic datasets, instead of complex real world data, is expected to reduce the
computation time of the calibration. This is because the number of land use classes present
in the map or the study area extent can be limited. For simplicity, the synthetic land use
datasets will contain only two land use types “0” and “1”. Thus, faster calibration process
will enable to run multiple types of experiments in the time frame of this research.

2. Dispose of reference parameters
Using synthetic datasets provides reference parameters (see section 2.6) which can serve
as benchmark to see how well the calibration manages to find these parameters. Indeed, to
generate a reference final land use map, the basic models will be applied to a fabricated
reference initial map, with known realistic parameters to simulate the land use after T
time-steps. Then, the transition matrix, containing known parameters, will be used as the
reference to be reached as closely as possible by calibrating the models. Only one
simulation is done in order to generate a unique reference dataset. Besides, using this
method to generate synthetic datasets enable to verify if the conceptual models are
properly simulating the process considered and can be properly calibrated. Finally, using
synthetic datasets, the processes considered are fully understood which enables to evaluate
only the calibration performance without the interference from data uncertainty or the lack
of knowledge about the land use change processes.

3. Test the calibration method in different situations by calibrating basic models
representing increasingly complex land use change processes.

Three different basic M-LUCMs will be implemented; simulating increasingly complex
land use change processes (see Figure 3). This procedure is chosen to progress step-wise
in the experimentation of the calibration method. Indeed, calibrating the most simplistic
model using synthetic datasets is expected to provide insight in the calibration process by
facilitating the analysis of the results obtained and further facilitate the calibration of more
complex models. For this research the following processes of interest have been selected
out of the range of existing land use change processes:

· Spatial independence; this is the simplest case. Here the change of land use
depends only on the current state of the cell of interest. This simple model, with
few parameters, will enable to test thoroughly the calibration method and its
performance according to different settings.

· Expansion; one land use type gains area at the expense of other land use types.
For example, the expansion of urban areas as opposed to the reduction of rural
lands. Indeed, in practice arable land has a bigger chance to change into urban area
than the opposite. Moreover, the chance is bigger for cells neighbouring urban area
than for cells that are at a remote distance from these areas. This model will enable
to test the calibration performance when more parameters have to be calibrated and
where the land use change process is more complex.

· Defragmentation; this represents the process whereby cells with similar land use
become clustered and isolated land use types disappear. For example, the land use

- 8 -

type “arable land” is initially spread in little parcels in the landscape and step by
step parcels are joining so that bigger parcels of arable land emerge in the land use
pattern. This model has a higher degree of complexity as cells having the same
land use type may have different probabilities of change according to the patch
they are part of.

Figure 3 Fictive grid -cells representing the three land use change process es of interest.

LEGEND
Land use type A B
Colour

Spatial independence

Expansion

Defragmentation

t=0 t+1 t+n

- 9 -

2.1 Conceptual framework

This section describes the conceptual model for the three processes of interest. A literature
review has been carried out to identify recent M-LUCMs in order to implement simplified
versions. The basic M-LUCMs can be implemented using matrix algebra since a raster
map can be considered as a matrix whose size is equal to the size of the map in pixels.
Then the matrices computation can be translated into computer code in a software tool
such as Matlab (http://www.mathworks.com).

The approach chosen is inspired from two similar LUCMs developed by de Almeida et al.
(2003) and Wu (2002) where the transition probabilities are determined by logistic
regression. Thus the land use transition probabilities are a function of a set of n factors
(see Equation 3).

0 1 1 2 2() ...
1

n n
P

Log X X X
P

a a a a· · ·= + + + +
-

 Equation 3

where: P is the transition probability
 X1,…,Xn are the factors
 � 1,.., � n are the factor coefficients (i.e. importance).
 � 0 is a constant.

We will not use in this research the same factor as Wu and de Almeida such as the
distance to city centre, or distance to industrial zones. Our model aims at being basic and
easy to handle, developed to be applied to synthetic datasets; consequently the factors
considered will be:

· The land use type of the cell of interest.
· The surrounding land use types of the cell of interest, i.e. the neighbourhood

characteristics.
One should note that we are now using a logistic regression to compute the transition
probabilities, consequently the calibration of the model will now aim at determining the
logistic regression coefficients (i.e. � 0, � 1, � 2,..., � n) in order to obtain transition
probabilities which properly simulate the process of interest. Thus, the transition matrix is
now replaced by a coefficients matrix as shown in Table 3, section 2.1.3.

2.1.1 The neighbourhood characteristics: the enrich ment factor

As mentioned in the Introduction land use change is a spatial phenomenon and the M-
LUCM needs to take into account the influence of the surrounding land use types during
the change processes. Besides, the amount of entries in the transition matrices needs to be
minimized to further facilitate and speed up the coefficients calibration. As we are now
using a logistic regression to derive the transition probabilities, it is possible to take into
account the neighbourhood characteristics using a unique factor for each land use type
which will dramatically minimizes the amount of entries in the matrix (see Table 3,
section 2.1.3). This factor, called the Enrichment Factor (EF), was developed by Verburg
et al. (2004), to analyze the land use type interactions over a period of time. This research
aimed, originally, at using the EF, not as a factor to determine the probabilities of land use
change, but as a source of information to facilitate the calibration of LUCMs. However, as

- 10 -

stated by Verburg (2004), using the enrichment factor alone, at detailed scale, yields
highly satisfactory simulations to predict the land use changes.
The EF of a land use type in a considered neighbourhood is given by Equation 4.

NN
nn

EF
i

dcdic
i

/
/ ,,,

)(= Equation 4

where: i is the land use type i.

 c is the cell of interest c in the raster.
 d is the size of the neighbourhood of the cell c.
 nc is the total number of cells in the neighbourhood of cell c.
 nc, i is the number of cells in state i in the neighbourhood of cell c.
 Ni is the total number of cells with state i in the raster.
 N is the total number of cells in the raster.

This factor can be expressed for each land use type present in the map. It represents the
occurrence of a considered land use type in the neighbourhood of each cell, related to its
overall occurrence in the map. First the occurrence of a considered land use type is
computed in the neighbourhood of each cell, and related to the total number of cells in the
neighbourhood. Then, the occurrence of the same land use type is computed in the entire
map and related to the total number of cell in the map.

One should note that in this research a neighbourhood of type Moore will be used, and
that different size of neighbourhood may need to be used according to the land use change
process which needs to be simulated (see Figure 4 and the defragmentation model section
2.4).

Figure 4 Different sizes of Moore neighbourhoods af ter Verburg (2004).

- 11 -

2.1.2 Generic equation

Equation 5 is the generic equation which will be used to determine the land use transition
probabilities.

mediumdjijmediumdiij

smalldjijsmalldiij
ij

ij

EFmjEFmi

EFsjEFsi
P

P
Log

=·=·

=·=·

++

++=
-

),()(),()(

),()(),()(
)(

)(
)

1
(

aa

aaa
 Equation 5

where: i is the land use type i.
 j is the land use type j.
 � , � si, � sj, � mi and � mj are the model coefficients.
 P(ij) is the transition probability that the cell with the land use i becomes j.
 d is a small-sized and/or medium-sized neighbourhood.

Equation 5 will be adapted to the land use change process of interest. Besides, the
transition probabilities between the different land use types take into account the
neighbourhood interactions using the EF as shown in Equation 4. In addition � , � si, � sj,
� mi and � mj have values depending on the type of land use transition as shown Table 3.

2.1.3 The coefficients matrix

The coefficients values can be presented in a matrix form (see Table 3). Here a land use
system with two land use types “0” and “1” is considered.

Table 3 Generic coefficients matrix.

 To
 0 1

 � � s0 � s1 � m0 � m1 � � s0 � s1 � m0 � m1

F
ro

m
 0 � (00) � s0(00) � s1(00) � m0(00) � m1(00) � (01) � s0(01) � s1(01) � m0(01) � m1(01)

1 � (10) � s0(10) � s1(10) � m0(10) � m1(10) � (11) � s0(11) � s1(11) � m0(11) � m1(11)

2.1.4 Simplification

Equation 5 can be simplified as we use a binary land use map, i.e. only two land use types
are present, therefore:

· EF(i),d and EF(j),d are linearly correlated as djcdic nnn ,,,, -= ; consequently the EF
for only one land use type is sufficient to determine all the transition probabilities
and the other one can be removed from the logistic regression.

· P(ii) + P(ij) = 1 and P(ji) + P(jj) = 1, thus P(ij) = 1- P(ii) and P(jj)= 1- P(ji). Thus, in order
to determine all the transition probabilities for each transition type, only one type
of transition probability is needed for each land use type.

Consequently the transition probabilities can now be determined using Equation 6.

- 12 -

mediumdjijsmalldjijij
ij

ij
EFmjEFsj

P
P

Log =·=· ++=
-

),()(),()()(
)(

)(
)

1
(aaa

 Equation 6

One should note that)(ijsja and)(ijmja in Equation 6 are not equal to)(ijsja and)(ijmja in
Equation 5. Besides, the coefficients matrix needed to derive the transition probabilities
can now be presented as in Table 4.

Table 4 Simplified generic coefficients matrix.

 To
 0
 � � s1 � m1

F
ro

m

0 � (00) � s1(00) � m1(00)

1 � (10) � s1(10) � m1(10)

Finally, considering that:

mediumdjijsmalldjijijij EFmjEFsjz =·=· ++=),()(),()()()(aaa , the Equation 6 can now
be written as Equation 7:

)(1
1

)(
ijzij

e
P -+

= Equation 7

2.2 Model 1: Spatial independence

The spatial independence model aims at simulating land use change processes assuming
that there are no interactions among the neighbourhood land use types. In this case only
the temporal aspect (the cell current land use type) is taken into account to compute the
transition probabilities. Thus the EF factor can be removed and it is not needed to
determine the transition probabilities using a logistic regression. Consequently the
transition probabilities can be directly calibrated as shown in Table 5. This simulation is
the most simple (a Markov chain) and is the initial step to develop and experiment the
calibration method. The model flowchart is presented in Figure 5.

Table 5 Transition matr ix for the Spatial Independence model.

 To
 0

F
ro

m
 0 P(00)

1 P(11)

- 13 -

2.3 Model 2: Expansion

In order to simulate the expansion of land use type against another, the transition
probabilities are determined using Equation 8.

smalldjijij
ij

ij
EFsj

P
P

Log =·+=
-

),()()(
)(

)(
)

1
(aa Equation 8

In the case of the expansion model, it is assumed that only the land use types directly
surrounding the cell of interest are necessary to compute the transition probabilities.
Therefore, in this case, the following factors are taken into account:

· The current land use type.
· The EF in a small neighbourhood; consequently � mj and mediumdjEF =),(are

removed.
The model flowchart is presented in Figure 5 and the corresponding coefficients matrix is
shown in Table 6.

Table 6 Transition matrix for model 2: Expansion.

2.4 Model 3: Defragmentation

This model represents the expansion of large patches of a considered land use type and the
reduction of the small ones. The transition probabilities are determined using Equation 9.

mediumdjijsmalldjijij
ij

ij
EFmjEFsj

P
P

Log =·=· ++=
-

),()(),()()(
)(

)(
)

1
(aaa

 Equation 9

In the case of the defragmentation model, a cell located in a small patch has more chances
to change of land use than a cell located in a larger one. In other words, the size of the
patch containing the cell of interest determines its probability of change to another land
use type. Consequently, it is assumed that interactions from further distance occur
between the land use types and that two different sizes of neighbourhood are needed to
determine the transition probabilities. In this case, the following factors are taken into
account:

· The current land use type.
· The EF of a small-sized neighbourhood (d=1).
· The EF of a medium-sized neighbourhood (d=2).

The model flowchart is presented in Figure 5 and the corresponding coefficients matrix is
shown in Table 7.

 To
 0
 � � s1

F
ro

m
 0 � (00) � s1(00)

1 � (10) � s1(10)

- 14 -

Table 7 Transition matrix for model3: Defragmentati on

 To
 0
 � � s1 � m1

F
ro

m
 0 � (00) � s1(00) � m1(00)

1 � (10) � s1(10) � m1(10)

2.5 Generic flowchart of the basic M-LUCMs

Figure 5 presents the generic flowchart for the three basic M-LUCMs.

1. Compute map of Enrichment Factor for land use type "j".

2. Compute transition probabilities for land use type "i".

3. Simulate the land use map at next time-step.

Actions

Initial land use
map
(t)

3

Probability
map for

transition
i>i and j>i

Enrichment
Factor for land

use "j"

Coefficients
matrix for

transitions i>i
and j>i

Random
numbers map

Simulated land
use map

(t+1)

Input data

Intermediary
results

Final
results

Only for models
 2 and 3

Legend

1

4 Action

Figure 5 Generic flowchart of the three basics M-LU CM.

- 15 -

2.6 The synthetic datasets

The synthetic datasets can now be created using the different models according to the
process of interest. The land use datasets contain initial and final reference maps
representing the spatial distribution of two land use types “0” and “1” for a study area set
to 100 by 100 pixels.

2.6.1 Model 1: Spatial independence

As the spatial independence model aims at simulating the spatial independence of land
use change; the initial state is generated by distributing randomly the two land use type in
the map. Then the spatial independence model is applied, for T=20 time-steps, from the
initial map to create a final map using the following transition probabilities: P(00)= 0.990
and P(10)=0.005. The transition matrix is presented in Table 8.

Table 8 Reference transition matrix for the spatial independence model for 1 time-step.

 To
 0

F
ro

m
 0 0.990

1 0.005

These transition probabilities produce a realistic final state where few land use changes
occur in the maps after 20 time-steps (see Map 1). We can see that land use type “1” has
increased which is in accordance with the transition matrix stating that a cell “0” has twice
more chance to become “1” than a cell “1” to become “0”.

0 20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

Initial land use map

 0 20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

Final land use map

Map 1 Initial and final reference land use maps for spatial independence model.

LEGEND
0
1

- 16 -

2.6.2 Model 2: Expansion

As the expansion model aims at simulating the expansion of a considered land use type;
the initial state is a land use map presenting a patch of land use type “1” surrounded by the
land use type “0”. After 20 time-steps, the land use map should present an expended patch
of land use type “1”. Thus model 2 is applied to the initial land use map with the
following parameters:

· � (00)=20 and � (10)=-20.
· � s1(00)=-12 and � s1(10)=0.

The reference coefficients matrix is presented in Table 9.

Table 9 Reference transition matrix for the expansion model for one time-step.

 To
 0
 � � s1

F
ro

m
 0 20 -12

1 -20 0

We can see that using these parameters, the expansion model properly simulates the
expansion of a patch classified as land use type “1” (see Map 2). Indeed, considering
Equation 7:

· When � (00) is positive and � s1(00) is negative; if EF(1) is close to 0 then P(00) is
close to 1.But if EF(1) is higher than 0, then P(00) is close to 0. Consequently a
cell classified as “0” as few chance to stay “0” if it is surrounded by cells classified
as “1”.

· When � (10) is negative and � s1(10) is equal to zero; the EF has no influence on
the transition probability and cell classified as “1” will never become “0”.

Moreover it proves that the expansion model can be calibrated so that it simulates the
expansion of a considered land use patch.

0 20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

Initial land use map

 0 20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

Final land use map

Map 2 Initial and final reference land use maps for the expansion model.

LEGEND
0
1

- 17 -

2.6.3 Model 3: Defragmentation

The third model aims at simulating the defragmentation. Thus the initial map represents
different sizes of patches of land use type “1”, surrounded by the land use type “0” (see
Map 3). Due to the complexity of the process and the time available, it was not possible to
find the model coefficients simulating the process of interest. Consequently the final state
is not generated using the defragmentation model but it is simply drawn, representing two
major patches of land use type “1”. Besides, it is not possible to verify that conceptual
model for the defragmentation enables to properly simulate the defragmentation as the
reference final map was not generated using the model. Nevertheless, this model allows us
to test the calibration in more realistic conditions, where the transition probabilities,
between the initial and final reference maps, are unknown.

0 20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

Initial land use map

 0 20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

Final land use map

Map 3 Initial and final reference land use maps for the defragmentation model.

LEGEND
0
1

- 18 -

3 Calibration method

It is necessary to have an overview of existing calibration techniques for stochastic models
and more particularly Markovian models. As mentioned earlier, we need to proceed to an
automated optimization of the models parameters using search algorithms such as the
simulated annealing. One should note that concerning the spatial independence model,
analytical analysis could be used to determine the transition probabilities but this method
will not be explored as the purpose of this research is to explore the performances of an
automated calibration.

Basically the optimization algorithms are iteratively testing combinations of candidate
parameters (i.e. the logistic regression coefficients) against a fitness function which needs
to be minimized or maximized. In the case of M-LUCMs, the goodness-of-fit (or fitness)
is determined by comparing the reference final map with the simulated one according to
pre-defined criteria of similarity. In other words the algorithm is searching in a solution
space, the optimal coefficients combination leading to similar reference and simulated
maps so that the land use change processes can be replicated. Thus, a list of criteria must
be elaborated in order to determine the quality of the calibration i.e. when it is considered
optimal and can be stopped. These criteria can be based on map comparison indices such
as Kappa statistics (Visser and de Nijs 2006) or single-map statistics such as the landscape
metrics (McGarigal et al. 2002).

Therefore, first, a literature review has been carried out to identify potentially useful
criteria, then a literature review has been undertaken to identify a promising optimization
algorithm in terms of efficiency and accuracy. The pros and cons of the calibration
technique (e.g. computation time, ease of implementation, known use in literature…) are
reported so that a choice can be made.

3.1 Potential criteria for optimization

The selection of the criteria is an important step as it will influence the way the model
parameters will be optimized, hence the final similarity between the real world map and
the simulated one. Besides, it is necessary that the chosen criteria take into account the
thematic aspects as well as the geometric characteristics of the maps. In other words the
simulated map must be compared with the real world map not only in terms of land use
allocation accuracy but also in terms of pattern similarities. It implies that at least two
criteria should be used during the parameters optimization phase. In order to identify
appropriate criteria for the optimization of the model parameters, a review of classification
(thematic) and spatial indices has been carried out. This review has been done by listing
and describing map comparison indices offered by the Map Comparison Kit
(Geonamica®, http://www.riks.nl/mck/index.php) as well as landscape metrics commonly
used within the FRAGSTAT software (McGarigal et al. 2002).

- 19 -

3.1.1 Thematic accuracy

The Map Comparison Kit (MCK) has been developed by the Research Institute for
Knowledge Systems (RIKS) to assess and compare spatial models output. This software
offers a selection of indices aiming at giving the differences extent between a pair of raster
maps as well as their location and nature. In Visser and de Nijs (2006), a description of the
comparison indices is presented.
First, the comparison between two maps can be done in several ways:
1. Visual map comparison, simply comparing two maps with the human eye;
2. Cell-by-cell map comparison; these indices are derived from the computation of a
confusion matrix between two raster maps, where the agreement and disagreement
between the maps are compiled. The indices derived from the confusion matrix are the
kappa, kappa-histo and kappa-location statistics;
3. Fuzzy-set calculation rules; follows the same principle than the cell-by-cell
comparison except that the comparison is done by comparing the neighbourhood of the
considered cells and not only the cell itself. The index computed is called the fuzzy-kappa;
4. Hierarchical fuzzy pattern matching; this technique has been developed by Power et
al. (2001) and is based on the comparison of polygons characteristics between the maps.
Here the polygons are defined as adjacent cells of identical class. The index computed is
called Global Matching Index;
5. Single-map statistics; this method contrarily to the ones above is not derived from cells
comparison but from the comparison of each map statistics such as the landscape metrics
(e.g. average patch size), spatial trends (e.g. LOESS estimator), estimation of fractal forms
(e.g. fragmentation rate) and autocorrelation (e.g. Moran’s I statistics), neighbourhood
characteristics (e.g. the enrichment factor)...

As we are trying to optimize the models parameters automatically, the visual comparison
cannot be used. Fuzzy Kappa and fuzzy pattern matching are similar conceptually and
mimic the human way to compare maps. These comparison methods seem to be very
promising indices of the difference between maps, unfortunately they are discarded as
they are expected to be computer intensive in the framework of the optimization. Indeed
these methods need to assign neighbourhood categories to the map cells to further
compute the fuzzy-statistics. Finally, the comparison using single-map statistics is more
related to the spatial characteristics of the maps and will not be considered for thematic
comparison. Thus the kappa statistics or indices derived from them will be preferred to
compare the maps in terms of thematic similarity (see the results; section 5).

The kappa statistics
As mentioned, the kappa statistics are derived from the confusion matrix between two
maps which provide the ratio of identical cells as well as the cells “misclassified” for the
total number of cells in the map. In table 10, two maps A and B are compared cell by cell;
map A is the reference map at T=20 and map B is the simulated map. The first row gives
the ratio of cells classified as “1” in the map A and their class in the map B. Accordingly,
the first column gives the ratio of cells classified as “1” in the map B and their class in the
map A. The diagonal provides the ratio of identical cells between the two maps.

- 20 -

Table 10 Generic confusion matrix for two maps A an d B with c number of classes after Monserud
and Leemans (1992).

From this matrix the indices listed and described below, can be derived.

· The fraction of agreement P(A); is the sum of all the cells identically classified (i.e.
the diagonal). It is computed with Equation 10.

�
=

=
c

i

iipAP
1

)(Equation 10

· The expected fraction of agreement P(E); is the probability of agreement between

the two maps related to the observed distribution. It is provided by Equation 11.

)*()(
1

�
=

=
c

i

TiiT ppEP Equation 11

· The maximum fraction of agreement P(max): is the maximum probability of

agreement between the two maps related to the observed distribution. It is given by
Equation 12.

1

(max) min(,)
c

iT Ti

i

P p p
=

= � Equation 12

Now the kappa statistic can be computed, it represents the fraction of agreement between
the two maps but corrected by the statistically fraction of agreement obtained by
relocating all the cells in the map. It is given by Equation 13.

)(1
)()(

EP
EPAP

Kappa
-

-
= Equation 13

It can be noted that the kappa index can be decomposed into two different indices called
the kappa-histo (K-histo) and the kappa-location (K-loc). K-histo provides the similarity
of quantity of each class between the two maps and is given by Equation 14.

)(1
)((max)

EP
EPP

histoK
-

-
=- Equation 14

One should note that a simpler index can be used in place of the k-histo; it is the
percentage of each class within the map. This index is not part of the MCK and will be
referred as the Area Agreement (AA) index.

- 21 -

)(1 TiiT ppabsAA --= Equation 15

K-location provides the similarity in terms of cell location between the two maps and is
given by Equation 16.

)((max)
)()(
EPP

EPAP
locK

-
-

=- Equation 16

One should note that now kappa can be expressed as the product between K-histo and K-
location:

locKhistoKKappa --= * Equation 17

In order to select the most appropriate indices as optimization criteria; we took into
account the necessity to minimize the computation time while running the optimization
algorithm. Consequently a trade-off has to be made between the computational demand of
the criteria and the information needed to properly optimize and further calibrate the
models parameters. Thus, in the framework of this research only the fraction of agreement
(P(A)) and the area agreement (AA) will be used as criteria.

3.1.2 Landscape metrics

However the P(A) and AA indices are limited in terms of spatial analysis. Therefore a
spatial criterion should provide information on how properly the patches simulated by the
model are similar to those in the reference map. To select spatial criteria, the computer
resources required have been taken into account as well as the easiness to implement it in
Matlab environment as it is not primarily designed for spatial analysis.
The FRAGSTATS software has been created and developed by McGarigal et al. (2002) to
compute several landscape metrics. Landscape metrics are indices used to characterize the
complexity, fragmentation and distribution of the patches presents in categorical maps.
Below is a representative sample of existing landscape metrics indices and their definition:
 • Patch size is the simplest index and represents a fundamental attribute of the spatial
character of a patch;
 • Patch shape complexity is related to the geometry of patches (e.g. simple and
compact, or irregular and convoluted). The most common measures of a patch shape
complexity are based on the relative amount of perimeter per area unit. It is also known as
patch perimeter-area ratio;
 • Core Area represents the internal part of patches after an edge buffer is eliminated. It
contains the patch size, shape, and edge effect distance into a single measure;
 • Isolation/Proximity expresses the trend for patches of the same class to be relatively
isolated;
 • Contrast provides the relative difference among patch types;
 • Dispersion refers to the trend of patches to be clumped with respect to each other. A
way to determine this index is to compute the nearest-neighbour distances between
patches of the same type;
 • Contagion & Interspersion gives the tendency of patch types to be spatially
aggregated;
 • Subdivision assesses the degree to which a patch type is subdivided into separate
patches;
• Connectivity refers to the functional connections among patches.

- 22 -

Computing the average size of the land use patches (PS) seems the most appropriate
criteria to assess the landscape metrics differences between the maps. Indeed, it is easily
implemented in Matlab and it is expected to be relevant for calibration purposes as the
models and datasets present simple land use patterns.

Thus, the selected thematic and spatial criteria: P(A), AA and PS, will be used to create the
fitness function for the optimization algorithm. Maximizing the fitness is expected to
optimize the model coefficient so that the model simulation matches as much as possible
the land use change processes of interest as well as the spatial arrangement of the land use
types in the reference map.

3.2 Selection of optimization algorithm

In order to find an appropriate optimization algorithm, a literature review has been carried
out to gain insight in optimization principles so that an assessment of different techniques
could be done. Different potential algorithms have been listed as well as a description of
their advantages and disadvantages.

One should note that apart from the Genetic Algorithms and the Simulated Annealing, the
rest of the algorithms listed below, have not been used for the calibration of LUCMs.
Besides, it was difficult to compare these algorithms in terms of computation time and
efficiency as these features depend on the problem of interest (i.e. the conceptual model),
the number of parameters to be optimized and the computer resources available.

However, one of the main drawbacks of optimization algorithms is that they can be
trapped in local optima, i.e. zones in the solution space where the fitness is the best locally
(i.e. surrounded by worse solution) but not optimum globally (see Figure 6). In order to
escape these local optima, some algorithms have a factor which allows them to keep on
searching for better solutions even if an optimum has already been found and no better
solution is located nearby. This mechanism will be better described in the Particle Swarm
Optimization section.

Figure 6 Representation of the local optima (zones 1, 2 and 3) during the search performed by the
optimization algorithm. In the case of the simulate d annealing, the temperature is the factor which
enables the algorithm to escape the local optima in the solution space.

- 23 -

Consequently, the resilience of the optimization algorithm to local optima will be an
important feature to take into account while selecting the most appropriate algorithm.
Besides, optimization algorithms are iterative processes; therefore it is necessary to
include the computation resources needed, as a criterion when selecting an appropriate
calibration method. In addition, attention has been given to the availability of Matlab code
which will facilitate the implementation of the algorithm. Finally, any relevant features of
the algorithm, such as the adaptability of the algorithm to the problem of interest, will be
reported and taken into account for the final choice.

3.2.1 Potential optimization algorithm

In this section several optimization algorithm are described and the pros and cons are
reported in terms of:

· Matlab code availability,
· Resilience to local optima,
· Computer resources needed,

The Simulated Annealing (SA); is a global optimization technique which moves through
the solution space by generating randomly nearby solutions of the current solution. A
better solution is always accepted but worse solutions can also be accepted in order to
escape from local optima. The acceptance of worse solutions depends of the temperature
factor which is set by the user.
Pros: The Matlab code already exists and it is moderately resilient to local optima.
Cons: It has no drawbacks considering the framework of this research. Nevertheless, SA
performances have already been studied and described for LUCM calibration issues.
Therefore an algorithm which has been less studied would be preferred.

The Genetic Algorithm (GA); maintains a pool of solutions. The process of finding
superior solutions mimics the one of the evolution, with crossing-over and/or mutations
altering the pool of solutions, worse solutions being discarded.
Pros: The Matlab code is available and it can be quick in finding the solution.
Cons: It is not resilient to local optima.

Ant Colony Optimization (ACO) ; uses ants (or agents) to explore the solution space and
find locally productive areas (i.e. combination of parameters generating a high fitness
value). It is able to produce results in problems where no global or up-to-date perspective
can be obtained with the other methods.
Pros: It has a high adaptability to dynamic solution spaces.
Cons: The Matlab code is not available and it is not relevant for optimizing the transition
matrices.

The Particle Swarm Optimization (PSO); is based on the theory on Swarm intelligence.
Birds, or particles, part of a swarm, are exploring the solution space and interact to find
the best solution.
Pros: It is very resilient to local optima. The Matlab code is available. It is easily
adaptable to the problem of interest and request few computer resources.
Cons: It is a basic algorithm search but does not have any relevant drawbacks considering
our research framework.

- 24 -

Stochastic Diffusion Search (SDS); as for the PSO, it is based on the theory on Swarm
intelligence. It is composed of agent exploring the solution space and having one-to-one
communication on the partial evaluation of the hypothesis.
Pros: The SDS is an accurate and efficient optimization algorithm, resilient to local
optima. It is suited for problems where the objective function is composed of sub-
function.
Cons: The Matlab code is not available.

Tabu-search (TB); is a local search technique keeping in memory the solutions already
visited and discarded.
Pros: It is an efficient algorithm.
Cons: The Matlab code is not available.

Cross-entropy search (CES); is a combinatorial optimization algorithm based on Monte
Carlo approach.
Pros: It is appropriate for problems where very small probabilities need to be estimated
accurately. The Matlab code is available.
Cons: It is not relevant for optimizing the transition matrices.

3.2.2 Selected optimization algorithm

The stochastic diffusion search seems to be a promising algorithm to optimize the M-
LUCMs parameters as it is fitted to deal with an objective function composed of multiple
sub-functions (i.e. several criteria). Unfortunately this algorithm does not have an
available Matlab code. Therefore, a similar algorithm, the Particle Swarm Optimization
developed by Kennedy and Eberhart (1995) is chosen as it is:

· Resilient to local optima,
· The Matlab code is available and it is easily implemented,
· Request few computer resources for itself,
· Adaptable to the problem of interest.

Moreover the methodological background of this algorithm is very appealing and the PSO
has never been used for land use change models calibration.

- 25 -

4 The Particle Swarm Optimization (PSO) algorithm

4.1 Conceptual framework

Kennedy and Eberhart introduced in 1995, the Particle Swarm Optimization (PSO) based
on the behaviour of flock of birds (Kennedy and Eberhart 1995). The principle comes
from an observation; if you put some butter outside, after just few minutes the first bird
(out of many more) comes to eat it, even though, not all the birds knew previously that the
butter was there. As explained by the authors this ability to quickly find their goal (i.e. the
butter) comes from the fact that individuals in a flock, a swarm or a school can benefit
from the discoveries of the others. Thus sharing information among members of a flock,
provides advantages in seeking food. More precisely, the individuals have their velocity of
exploration of the space but it is influenced by neighbours who are doing better i.e. who
are closer to the food. As a sociological phenomenon, the individuals try to mimic those
who are doing better to progress towards their goal. In other words, each individual
compares itself with the group (according to defined criteria) to determine their progress
towards a goal. However, the birds are also influenced by their own experience, i.e. they
remember their closest position to the goal and adapt also their exploration accordingly.
Consequently the exploration of the individuals is determined by their individuality and
their sociability.

As stated by the authors, applying this phenomenon to mathematical problems, such as
optimization, yields good solutions with inexpensive cost in computer resources.
Moreover, it is resilient to local optima as it will be shown in the coming section. Besides
this optimization techniques as already been applied to calibrate biological model of DNA
sequences (Rasmussen and Krink 2003).

4.2 Application to the land use change models

Considering now, that the individuals are particles, each of them having a position vector
(ix

�
) and a velocity (iv

�
), exploring a solution space where the optimum (i.e. the maximum

fitness) is the location of the butter. One should note that the number of dimension in the
solution space equals the number of parameters (or coefficients) to be calibrated. The
position coordinates of each particle provide a value for each parameter (i.e. a candidate
solution) in order to simulate a land use map. Then each particle’s position is tested by
running the model and comparing the resulting map against a reference one. The
comparison provides a value to the relevant criteria which need to be optimized. This
fitness value (i.e. the sum of the criteria values) and its related position are kept in
memory as the best performance of the particle.

In a second phase, the velocity of the particles is updated (see Figure 8) for each
dimensions of the search space, according to its previous best position (ip

�
) and the one of

the neighbouring particle which performed best (np
�

). Each particle has the same number
of neighbours which can be set according to users’ interest. These neighbours are
determined once and for all at the beginning of the optimization as shown in the example
in Figure 7; particle 1 has particles 9 and 2 as neighbours, particle 9 has particles 8 and 1

- 26 -

as neighbours. One should note that these neighbours are not neighbours in space and
none of the particles have the same neighbours.

...8 9 1 2 3 4 5 6 7 8 9 1 2...

Figure 7 Swarm of 9 particles with 2 neighbours.

Thus the particles new velocity ((1)i tv +

�
) is determined according to Equation 18.

(1) () 1 1 () 2 2 ()() ()i t i t i i i t i n i tv v w p x w p xj j+ = + × - + × -

� �� � � � � �
 Equation 18

where: 1w and 2w are respectively the weight for the individuality and sociability.

1j
�

 and 2j
�

 are random variables, uniformly distributed between 0 and 1, which are
different for each particle and dimensions.
i is the particle of interest.
t is the number of the PSO iteration.

Then the particles positions change according to Equation 19.

(1) () (1)i t i t i tx x v+ += +
� � �

 Equation 19

One should note that the position of the particle is kept within the range of the search
space as well as the range pre-defined for the particle movement. In addition the best
neighbour which should not move as long as it has the best fitness, will be randomly
displaced (approximately equal to a thousandth of the domain of search) in the relevant
dimension, in order to “micro-explore” the vicinity of the best solution.

Then the new particles positions are tested again. The particles keep on exploring the
solution space until the target fitness or the maximum iterations defined for the algorithm
are reached (see Figure 8). Figure 9 shows the flowchart representing the PSO
optimization process.

One should note that using neighbouring particles is an improvement of the original
version of the PSO where only the best particle of the swarm was influencing the
exploration of the others. This new version is called local PSO whereas the older is called
global PSO. Besides, the procedure, used to determine a new direction and speed of
exploration for the particles (see Figure 8), enables the algorithm to be resilient to local
optima. As observed by Kennedy and Eberhart, if the particles’ exploration (i.e. velocity)
is highly influenced by the best particle in the neighbourhood (i.e. 1w < 2w), the swarm
prematurely wander around a local optimum. On another hand if the particles’ exploration
is highly influenced by their own best position (i.e. 1w > 2w), the swarm becomes a group
of isolated individuals wandering through the search space. Finally, using particles with
equal individuality and sociability (i.e. 1w = 2w) leads to the most efficient optimization
without falling into local optima.

- 27 -

Figure 8 Process for updating each particle position based on its best position and the position of its
best neighbour. Here the solution space has only tw o dimensions, thus two parameters are
calibrated.

4.2.1 The PSO settings

General
Maximum number of PSO iterations (max_iterations): Set the maximum number of
iterations for the optimization. Once the maximum number of iterations is reached, the
algorithm stops searching for a solution.
Maximum number of simulation’s realizations (iterations_sim): Set the number of
realizations per simulation for each candidate combination of parameters. The fitness
computed will be an averaged of the number of realizations.
The number of time-steps by simulation (nr_time_steps).

Problem solution space
Target fitness (target_fitness): Set the maximum fitness value which can be expected.
This value represents how similar the reference and simulated maps are, according to the
defined criteria.
Number of dimensions (nr_dimensions): Set the number of dimensions for the solution
space. There is one dimension for each parameter.
Domain range (domain_min and domain_max): Set the boundaries of the solution space.

Particle
best position

(ip
�

)

Particle
current position

(()i tx
�

)

()n i tp x-
� �

()i i tp x-
� �

(1)i tv +
�

()tv
�

Best neighbour

position (np
�

)

(1)i tx +
�

- 28 -

PSO control variables
Number of particles (nr_particles): Set the number of particles composing the swarm and
exploring the solution space. The more particles the longer is the algorithm.
Number of neighbours (nr_neighbors): Set the number of neighbours influencing a
considered particle. The number of neighbours is equal for all the particles and each
particle keep the same neighbours all along the optimization.
Limits of location change (delta_min and delta_max): Set, for all iterations and all the
particles, the maximum change of location. Delta can be different for each dimension of
the solution space.
Importance of individuality (i_weight): Set the importance of the particle’s best position
to determine the particle new velocity.
Minimum and maximum individuality (i_min and i_max): Set the range of 1j

�
 applied

to the difference between the location of the particle of interest and its best position. It is
different for each dimension of the solution space.
Importance of sociability (s_weight): Set the importance of the neighbours influence to
determine the particle new velocity.
Minimum and maximum sociability (s_min and s_max): Set the range of 2j

�
 applied to

the difference between the particle of interest and its best neighbour. It is different for
each dimension of the solution space.

4.2.2 PSO pseudo code

Step 1: Initialize the particles positions and velo city
Create the matrix p_next for the particles’ next position of dimensions (nr_particles *
nr_dimensions)
Create the matrix p_velocity for the particles’ velocity of dimensions (nr_particles *
nr_dimensions)
Create the matrix p_bestsofar for the particles’ best position so far (nr_particles *
nr_dimensions)
Create the matrix p_bestsofar_glob for the best position among all the particles so far (1*
nr_dimensions)
Create the matrix p_bestfitness for the particles’ best fitness of dimension (nr_particles *1)
Create the matrix p_bestfitness_glob for best fitness among the particles of dimension 1*1

Step 2: Set particles neighbours
For each particle
Create a matrix p_neighbor identifying the neighbours for each particle of dimension
(nr_particles * nr_particles).
Create a matrix p_best_neighbor for the best neighbour position for each particle, of dimension
(nr_particles * nr_dimensions).
end for each particle

Step 3: Test the particle position and update fitne ss
For each PSO iterations
For each particle
For the number of realizations per simulation
Run the models for each particle with their respective position as the transition matrix parameters.
Model X
Criteria
end for the number of realizations.

Compute the value of the different criteria between the simulated and the reference maps. The
result is the fitness value; fitness = criteria 1+…+criteria 2

- 29 -

(Update best fitness)
if fitness =target_fitness then quit optimizer and return global_best position
if fitness < fitness_sofar then p_bestsofar =p_bestsofar
if fitness > fitness_sofar then p_bestsofar =p_current and p_bestfitness =fitness
if fitness > p_bestfitness_glob then p_bestsofar_glob = p_current and p_bestfitness_glob =
fitness
end for each particle

Step 4: Update next particles’ position
For each particle
Get the best neighbour and Populate matrix p_bestneighbors
For each dimensions
Compute individuality and sociability factors
i_factor = i_weight*(i_min (i_max -i_min)*rand)
s_factor = s_weight *(s_min (s_max -s_min)*rand)
Delta
p_delta = p_bestsofar - p_current
n_delta = p_bestneighbors - p_current
delta =(i_factor * p_delta) + (s_factor * n_delta)
delta = p_velocity + delta
if delta >delta_min
delta =delta_min
elseif delta >delta_max
delta =delta_max
Next position
p_next = p_current + p_velocity
if p_next > domain _min
p_next = domain _min
elseif p_next > domain _max
p_next =domain_max
end for each dimension
end for each particle

end for each PSO iterations

All the Matlab codes for all the models and the optimization algorithm can be found in the
appendix section.

- 30 -

4.2.3 PSO flowchart

Initial particles'
random positions

Fitness=target fitness
or

iteration=max iterations

Return best position
and fitness

Update particles' velocities

NO

Compute average fitness
for N realizations

Updated particle
best position

Updated particle
best neighbour

Compare particle's fitness

YES

Updated particles'
positions

Input data

Intermediary
results

Final
results

Legend

Action

Decision

Simulate land use map
with particles' positions

N simulated
land use maps

Reference
land use map

Figure 9 Particle Swarm Optimization flowchart.

- 31 -

5 Results of the calibration and discussion

An experimental plan has been designed to gain insight into the optimization process
according to different algorithm settings. The results will be analyzed based on:

· The quality of the calibration.
· The time necessary to run it.

Thus, once primary acceptable results are obtained, the calibration settings have been
changed in order to speed up the process or the quality of the simulation if possible.

5.1 Model 1: Spatial independence

One should note that we used an odd number of time-steps to generate the reference
datasets because we are in a binary map. Indeed, using an even number of time-steps (e.g.
T=20) produces a final map which can be obtained by two opposite pair of transition
probabilities (e.g. P(00)ref=0.990 and P(10)ref=0, or P(00)ref=0 and P(10)ref=0.990). One pair
of probabilities is correct but the other one yields a simulation where, at each time-step,
the cell “1” were changing to “0” and the cells “0” were changing to “1”, and so on,
providing a proper final map but obtained with an incorrect process. This is due to the fact
that the maps only have two land use types and that the model was running for an even
number of time-steps. Using an odd number of time-steps generates a reference final map
which can be obtained using a unique pair of probabilities (e.g. P(00)ref=0.990 and
P(10)ref=0). This would not be needed in a land use system where more than two land use
types are considered.

5.1.1 The criteria

In order to apply the PSO to the spatial independence model, we first tested the selected
criteria to be used for optimization. For this model, the solution space has two dimensions
ranging from 0 to 1; as we have two parameters which are actually transition probabilities.
Thus, a position in the solution space gives a discrete pair of probabilities, to be used in
the transition matrix, in order to compute the fitness of the related model output.
Consequently, testing discrete positions allow us to map the criteria values in the solution
space (see Figure 10, Figure 11). The horizontal axis gives the probability X=P(00), the
vertical axis gives the probability Y=P(10), as in shown in Table 11. The mapped criteria
are:

· The fraction of agreement P(A) as thematic criteria, here referred as the Cell
Agreement (CA) ranges from 0 to 1.

· The Area Agreement (AA), as spatial criteria, ranges from 0 to 1.
· The sum of CA and AA, referred as the fitness criteria. CA and AA are equally

important and the sum varies from 0 to 2.
· The kappa index ranges from -1 to 1.

The reference values, used to create the reference map, are P(00)ref=0.990 and
P(10)ref=0.005 at each time-step. A high value indicates a high fitness (i.e. high similarity)
between the simulated map and the reference map for the considered criteria. In addition
the fitness value computed is an average of 10 realizations for each pair of probabilities. In

- 32 -

the case of the spatial independence model, the average patch size (PS) is not a relevant
criterion since the land use types are randomly distributed in the map.

P(0=>0)

P
(1

=
>

0)

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

0.2

0.3

0.4

0.5

0.6

0.7

0.8

CA value in the solution space

P(0=>0)

P
(1

=
>

0)

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

AA value in the solution space

Figure 10 Map of the CA (left) and AA (right) value in the solution space.

P(0=>0)

P
(1

=
>

0)

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Value of CA+AA in the solution space

P(0=>0)

P
(1

=
>

0)

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Kappa value in the solution space

Figure 11 Map of the summed (CA+AA) (left) and kapp a index (right) value in the solution space.

We can see that for CA as for the kappa index, the global optimum is located in the lower
corner of the solution space. We can notice that there is a wide part of the solution space
where the fitness is uniform and approximately equal to 1.5. Thus using these criteria
individually, to optimize the model parameters, does not seem to be a good way as the
fitness function does not provide sufficient information to “lead” the particles toward the
global optimum. CA and kappa provide similar information as they are both comparing
the maps cell by cell to provide their fraction of agreement. Concerning AA, the global

Table 11 Test transition matrix.

 To
 0

F
ro

m
 0 X

1 Y

- 33 -

optimum is a line from the upper left corner to the lower right one. Again using the AA
criteria individually does not seem to be promising as the global optimum is a line.
Consequently the best solution which could be obtained would be a line of candidate
solution whereas we are looking for a unique transition matrix. By combining CA and
AA, we obtain a solution space where the global optimum is still located in the lower right
corner but with a narrow local optimum. Consequently, coupling these two criteria allow
the particles to be “led” toward the global optimum where a unique pair of probabilities
gives the best fitness for the simulated map.

5.1.2 Primary results

Table 12 shows the solution found by the PSO for different reference transition matrices.
The reference transition probabilities represent decreasing quantity of change. The fitness
computed is the sum of CA and AA indices.

Table 12 Table of primary results for different ref erence transition matrices.

 P(00) P(10) CA AA Fitness

Reference 0.9500 0.0500 0.5108 0.9973 1.5081

Best position 0.9991 0.0000 0.5670 0.9995 1.5665

Reference 0.9000 0.0500 0.5549 0.9963 1.5513

Best position 0.0030 0.5000 0.5573 0.9965 1.5538

Reference 0.9950 0.0050 0.8429 0.9987 1.8416

Best position 1.0000 0.0000 0.9136 0.9997 1.9133

Reference 0.9900 0.0050 0.7860 0.9986 1.7846

Best position 0.9954 0.0000 0.8476 0.9990 1.8466

Reference 0.9960 0.0040 0.8696 0.9981 1.8770

Best position 1.0000 0.0001 0.9288 0.9999 1.9287

Reference 0.9920 0.0040 0.8170 0.9987 1.8157

Best position 0.9964 0.0000 0.8706 0.9980 1.8686

Reference 0.9980 0.0020 0.9289 0.9981 1.9270

Best position 1.0000 0.0001 0.9613 0.9988 1.9600

Reference 0.9960 0.0020 0.8983 0.9969 1.8951

Best position 0.9985 0.0000 0.9324 0.9986 1.9310

Reference 0.9990 0.0010 0.9631 0.9984 1.9615

Best position 1.0000 0.0001 0.9785 0.9998 1.9783

Reference 0.9980 0.0010 0.9453 0.9986 1.9439

Best position 0.9993 0.0000 0.9642 0.9995 1.9637

The value of each criterion is the average for 10 realizations by candidate solution (i.e.
pair of probabilities).

- 34 -

The PSO control variables have the initial settings which yielded, for the first time,
probabilities of change with higher similarity than the one used to produce the reference
map:

· Maximum number of PSO iterations = 500
· Number of realizations per simulation = 10
· Number of particles = 24
· Number of neighbours = 4
· Limits of location change = ± 0.5
· Importance of individuality = Importance of sociability

Using this configuration, the PSO does not find the reference probabilities but finds
nearby solution. Moreover, this solution, on an average of ten realizations, is performing
better, in terms of criteria of similarity (i.e. fitness), than the reference transition.

Nevertheless, we can notice that when a lot of changes occur (P(00)ref=0.95 and
P(10)ref=0.05, P(00)ref=0.9 and P(10)ref=0.05), the PSO cannot find the global optimum. In
fact, it finds transition probabilities for which the AA criterion is nearly optimal, but the
CA value is quite low see Table 12. As we are simulating land use change without spatial
interactions, the change can occur anywhere in the map, with no relation with the
transition probabilities considered. In addition, CA criteria is comparing the reference and
simulated maps cell by cell; consequently the more changes occur over time, the lower is
the optimal value of the fraction of agreement (i.e. CA) between the two maps. This is in
accordance with Pontius Jr et al.(2004) who state that the criteria used to calibrate a model
should fit the model purposes. Here the model simulates the quantity of change but not its
location, thus AA criterion is suitable to calibrate the spatial independence model, as it
gives useful information regarding the model purposes. Besides, CA criterion is not really
suited to calibrate this model unless few changes occur, since the final reference map and
the simulated map will have a higher fraction of agreement with the initial one.

5.1.3 PSO behaviour

In order to visualize the particle swarm behaviour during the optimization procedure; the
positions of the particles have been displayed at each algorithm iteration. Figure 12 shows
four snapshots of the particles positions while they are exploring the solution space to find
the global optimum. There are 12 particles, each of them having 2 neighbours.

- 35 -

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P(0>0)

P
(1

>0
)

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P(0>0)

P
(1

>0
)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P(0>0)

P
(1

>0
)

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P(0>0)

P
(1

>0
)

Figure 12 Positions of the particles in the solution space.

Figure 12 shows that the PSO is exploring the solution space as expected. First the
particles are positioned randomly in the solution space (see Figure 12 A). We can see that
they are quickly attracted toward the region of the local optimum in the upper left corner
(see Figure 12 B). Nevertheless, we can note that two particles are located remotely from
the rest of the swarm; hence the swarm is not trapped in the local optimum as the particles
are not fully attracted by the neighbours which are performing best so far. This behaviour
is due to the individuality effect. Consequently, the rest of the solution space is explored
and the global optimum region can be found as shown in Figure 12 C. We can also notice
in Figure 12 C that some particles influenced by the best one are now moving toward the
global optimum. Moreover, after 17 iterations, the particles are now positioned along the
line representing the best fitness for AA criterion. Finally, after some algorithm iterations,
all the particles are located within the global optimum region which confirms the
sociability effect of the algorithm (see Figure 12 D).

Initial random positions Positions after 8 iterations

Positions after 17 iterations Positions after 170 iterations

A B

C D

- 36 -

5.1.4 Sensitivity of results to the PSO control var iables

Even if the primary results are satisfactory, it is useful to experiment different settings of
PSO control variables, in order to improve the final fitness as well as to speed up the
algorithm computation time. The following results present the effect of the PSO control
variables on the algorithm efficiency (i.e. the time to find the best solution) and accuracy
of the final best solution. The reference transition probabilities to run these tests are
P(00)ref=0.990 and P(10)ref=0.005 and the fitness function is equal to CA+AA. Unless
indicated otherwise, the default PSO control variables are:

· Number of realizations per simulation = 10
· Number of particles = 24
· Number of neighbours = 4
· Limits of location change = ± 0.5
· Importance of individuality = Importance of sociability

The effects of the following PSO control variables have been tested:

� Number of particles and the number of their neighbours.
� Number of realizations by simulation.
� The importance of sociability and individuality.
� Weight of each criterion.
� Limit of location change.

� Number of particles vs. number of neighbours:

Figure 13 and Table 13 show the PSO progression according to the number of particles
exploring the solution space and the number of neighbours for each particle. In addition,
Table 13 provides the particle position which obtained the best fitness.

Figure 13 PSO performance according to the number of particles and neighbours.

Number of neighbours

Number of particles

- 37 -

Table 13 Table of PSO performance according to the nu mber of particles and their neighbours.

Number of
particles

Number of
neighbours

Best position
Best fitness Number of

PSO iterations P(0=>0)cal P(1=>0)cal

4 2 0.9956 0.0000 1.8452 457

4 4 0.1036 0.7712 1.5018 207

8 2 0.9953 0.0000 1.8463 307

8 4 0.9955 0.0000 1.8465 240

8 8 0.3785 0.5406 1.5029 373

12 2 0.9956 0.0000 1.8465 258

12 6 0.9955 0.0000 1.8465 269

12 12 0.9955 0.0000 1.8461 318

16 2 0.9958 0.0000 1.8464 336

16 8 0.9955 0.0000 1.8463 422

16 16 0.9956 0.0000 1.8466 374

20 2 0.9956 0.0000 1.8455 496

20 10 0.9956 0.0000 1.8465 377

20 20 0.9960 0.0000 1.8438 498

24 2 0.9955 0.0000 1.8467 251

24 12 0.9955 0.0000 1.8464 499

24 24 0.9955 0.0000 1.8465 312

One should note that if fewer particles are used, the algorithm will run faster; as the PSO
iterations will be shorter.

First of all, we can note in Figure 13 that the maximum fitness which can be obtained is
approximately equal to 1.85. Besides, using few particles with many neighbours is not a
reliable setting as it cannot reach the maximal fitness after many algorithm iterations (see
results obtained with 4 and 8 particles). However, these results can be improved by
decreasing the number of neighbours for each particle. Moreover it seems that decreasing
the neighbours improve the PSO efficiency (see results obtained with 12, 16 and 24
particles). Indeed, if the number of neighbours is equal to the number of particles, only
one particle, which is performing best, will influence the rest of the swarm, thus only one
promising direction will be explored. By reducing the number of neighbours, we include
“sub-groups” of particles, each of them following different promising directions.
Consequently the probability to find the best solution is improved and the chance that the
PSO get trapped in a local optimum decreases. In addition, as none of the particles have
the same neighbours, the best solution will still be communicated to the rest of the swarm,
as shown by its behaviour in Figure 12.

Increasing the number of particles does not improve the final results. However, using 8
particles (or more) instead of 4 improves the efficiency of the PSO to find the best
position. Using more than 8 particles does not seem to improve significantly either the
results or the PSO efficiency. One should note that the differences in the maximum fitness
values for the same transition probabilities are due to the fact that only ten realizations are
done by simulation. Consequently the fitness can vary slightly but not significantly for the
same particle position (see next section).

- 38 -

Finally, running the PSO during 350 iterations with 8 particles and 2 neighbours seems the
most efficient PSO to find the best position. Thus we used this configuration to implement
the final calibration of the spatial independence model (see Table 17).

� Number of realizations by simulations

Figure 14 shows the average value of the fitness (CA+AA) for different number of
realizations done for each candidate solution.

Figure 14 Value of the average fitness for increasin g number of realizations.

We can see that around 150 iterations by simulation, the average fitness value stabilize
around 1.7818. Besides, setting the PSO with 100 realizations to compute the fitness, we
noted that the best position found was the same as the one found with only 10 realizations.
Thus, increasing the number of realizations, from 10 to 100, to compute the average
fitness improves its accuracy but does not influence the accuracy of best position found.

� Weight of individuality and sociability

Table 14 shows the optimization results using different particle behaviour; from very
individual to very sociable.

Table 14 Results obtained with weighted individuali ty or sociability with 300 PSO iterations.

Individuality weight Sociability weight P(0=>0)cal P(1=>0)cal CA AA Fitness

4 2 0.3465 0.5690 0.5074 0.9963 1.5037

2 2 0.9955 0.0000 0.8485 0.9979 1.8465

2 4 0.9955 0.0000 0.8467 0.9990 1.8458

Using particles with a higher individuality than sociability, yields poor results. This could
be expected as the particles are less attracted towards the region where one of their
neighbours did perform better. Consequently the region of the global optima is not or less
explored. Increasing the maximum number of PSO iterations may allow the particles to
find the best position but it would results in very long optimization process. This is in
accordance with Kennedy and Eberhart (1995) who stated that individualist particles are
wandering independently in the solution space. Besides, using particles with a higher

Number of
realizations

Average
fitness

$� �-/"/ �

1� �-/"� �

$1� �-/�/ �

-$� �-/� �

11� �-/) �

$11� �-// �

111� �-// �

- 39 -

sociability than individuality does not improve the solution found when the particles are
equally individual and sociable.

� Weight of criteria

Table 15 shows the optimization results obtained by giving more importance to one of the
two criteria at a time.

Table 15 Results obtained with weighted criteria wi th 300 PSO iterations.

Weight for CA Weight for AA P(0=>0)cal P(1=>0)cal CA AA Fitness
Target
fitness

1 1 0.9955 0.0000 0.8485 0.9979 1.8465 2

1 5 0.9951 0.0000 0.8444 0.9972 5.8306 6

5 1 0.1936 0.6930 0.5057 0.9978 3.5264 6

Giving more importance to one of the criteria during the calibration process does not
improve either the PSO efficiency or the final results (see Table 15). Indeed emphasizing
the CA criterion yields very poor results as the PSO cannot find the optimal position.
Setting a higher weight for the AA criterion, the PSO find a position for which the fitness
is slightly lower than the one obtained with equally important criteria. Moreover the best
position found yield lower fitness for both criteria. Therefore using weighted criteria will
only be advised if the user gives more importance to one or more criteria.

� Limits of location change (Delta)

Table 16 shows the effect of the limit of location change on the final solution obtained by
the algorithm.

Table 16 Results obtained with different limit of l ocation change.

Limit of location change P(0=>0)cal P(1=>0)cal CA AA Fitness

±0.1 0.2986 0.6079 0.5064 0.9972 1.5036

±0.5 0.9955 0.0000 0.8485 0.9979 1.8465

±1 0.9956 0.0000 0.8486 0.9977 1.8463

Allowing the particles to move only to a short distance from their current position (e.g.
delta=±0.1) causes the swarm to get stuck in a local optima as in Figure 12 B.
Consequently the final results are very poor (see Table 16). Moreover, this results show
that to be resilient to local optima, not only the individuality and sociability of the
particles need to be set properly but also the limit of location change. On the other hand,
imposing no restriction of movement yields results close to the maximum fitness found so
far, even if the particles tend to explore along the solution space axis. Indeed, high delta is
preferable as the velocity is depending on the positions difference between two particles.
Thus if the particle is close to its best neighbour, its velocity will be low even if the limit
of location change is set high. Consequently we simply allowed the particles to move, for
each iteration, from one extreme of the solution space to another. Nevertheless, one should
note that this particular setting may not be suitable for a model other than the spatial
independence model which solution is close to the solution space edges.

- 40 -

5.1.5 Final results

Table 17 presents the final calibration results obtained with the following PSO settings:

· Maximum number of PSO iterations = 300
· Number of realizations per simulation = 10
· Number of particles = 8
· Number of neighbours = 2
· Limits of location change = ± 1
· Importance of individuality = Importance of sociability

Table 17 Final calibration results for spatial independence model.

 P(00) P(10) CA AA Fitness

Reference 0.9500 0.0500 0.5108 0.9973 1.5081

Best position 0.9992 0.0000 0.5667 0.9996 1.5663

Reference 0.9000 0.0500 0.5549 0.9963 1.5513

Best position 0.0000 0.5048 0.5571 0.9976 1.5547

Reference 0.9950 0.0050 0.8429 0.9987 1.8416

Best position 1.0000 0.0000 0.9135 0.9998 1.9133

Reference 0.9900 0.0050 0.7860 0.9986 1.7846

Best position 0.9956 0.0000 0.8480 0.9984 1.8464

Reference 0.9960 0.0040 0.8696 0.9981 1.8770

Best position 1.0000 0.0001 0.9288 0.9999 1.9287

Reference 0.9920 0.0040 0.8170 0.9987 1.8157

Best position 0.9962 0.0000 0.8698 0.9986 1.8684

Reference 0.9980 0.0020 0.9289 0.9981 1.9270

Best position 1.0000 0.0002 0.9606 0.9996 1.9602

Reference 0.9960 0.0020 0.8983 0.9969 1.8951

Best position 0.9984 0.0000 0.9318 0.9991 1.9309

Reference 0.9990 0.0010 0.9631 0.9984 1.9615

Best position 1.0000 0.0001 0.9785 0.9998 1.9783

Reference 0.9980 0.0010 0.9453 0.9986 1.9439

Best position 0.9993 0.0000 0.9647 0.9990 1.9637

Table 17 shows that these PSO settings yield equal or better results compared to our initial
configuration which was longer in computation time. The final results obtained confirm
that the choice for the PSO settings is faster (approximately 900 seconds) and produce
satisfactory results by finding the best transition matrix.

We can note that P(10)cal, i.e. the calibrated transition probability that a cell “1” becomes
“0” is always very close to zero. This result is due to CA criterion. Indeed, if cells “1”
does not change (i.e. P(10)cal=0), the only disagreement possible, between the cells “1”, is
with the ones which actually became “0” in the reference data, but very few cells had this
type of land use transition since P(10)ref=0.005. Consequently CA criterion gets a high
value. On the other hand, if P(10)cal� 0 more changes occur randomly, during the
simulation, in the cells classified as “1” initially. Thus the CA criterion, between the
reference and the simulated maps, gets a low CA value since there is more chance that
some cells “1” becomes “0” and that a disagreement occur between the reference and

- 41 -

simulated map. The “CA effect” explains also why the PSO performs worse when the
quantity of change is high, e.g. when P(10)ref=0.05. Besides P(00)cal reflect as well this
phenomenon by compensating the difference between P(10)ref and P(10)cal, indeed we can
notice that P(00)cal is always slightly higher than P(00)ref to compensate P(10)cal < P(10)ref.

Besides, the fact that the PSO is performing less when many changes occur may be more
due to the simplistic conceptual model for spatial independence, rather than the PSO
algorithm itself. Indeed, Table 17 shows that the PSO could have reached the maximum
fitness if only the AA criterion was taken into account. In this case, one should note that
the algorithm would not obtain a unique solution but a line of best solutions. Better insight
will be gain when calibrating the model for expansion and/or defragmentation.

Finally, the overall performance of PSO is very good since the fitness of the calibrated
transition probabilities always (except in one case) outperform the fitness of the reference
ones.

5.2 Model 2: Expansion

The expansion model simulates the expansion of a land use type over another one. Here, a
patch of land use type “1” is expanding over the land use type “0”. The land use change
probabilities are determined using Equation 8.

smalldjijij
ij

ij
EFsj

P
P

Log =·+=
-

),()()(
)(

)(
)

1
(aa

And the coefficients matrix which needs to be calibrated is Table 6.

Four parameters must be determined; � (00), � (10), � s1(00), � s1(00) and the solution space
has four dimensions.

5.2.1 The criteria

In order to calibrate the expansion model we used the same criteria as for model 1. In
addition, we used the average patch size (PS) as third criteria. This model aims at
simulating the expansion of a considered land use patch, thus a criterion providing
information on the size of the patch is necessary. Moreover, this criterion provides
information on the number of patches present in the reference and simulated maps. Indeed
the reference and simulated maps can have the same amount of land use type “1” but
without the PS criterion, the PSO will not be able to differentiate if the land use type “1”
is grouped into one or more patches. PS ranges from 0 to 1 and the fitness function is the
sum of CA, AA and PS, and ranges from 0 to 3.

 To
 0
 � � s1

F
ro

m
 0 � (00) � s1(00)

1 � (10) � s1(10)

- 42 -

5.2.2 Domain of search

In order to apply the PSO to the expansion model and test it, we used the following
control variables setting based on the knowledge gained with model1.

· Maximum number of PSO iterations = 100
· Number of realizations per simulation = 10
· Number of particles = 8
· Number of neighbours = 2
· Limits of location change = 2*domain_max - domain_min (i.e. domain of

search)
· Importance of individuality = Importance of sociability

Table 18 shows the primary results obtained without any assumption on the domain of
search, i.e. the solution space had 4 dimensions ranging from -50 to 50. Running the
simulation with the calibrated parameters made appear that the patch was actually
expanding but the process simulated was not realistic. Indeed, as for the spatial
independence model the cells “1” were changing to “0” and the cells”0” were changing to
“1”, at each time-step and so on. Thus, the calibrated parameters produced a proper final
state but obtained with an incorrect land use change process. Therefore, further
experimentation has been carried out using heuristic rules to calibrate the coefficients.
Here, heuristic is defined as a set of rules intended to increase the probability of solving a
problem. Table 18 shows the solutions obtained.

Table 18 Calibration results obtained for model 2 w ith or without assumptions.

 � (00) � (10) � s1(00) � s1(10) CA AA PS Fitness

Reference 20 -20 -12 0 0.9881 0.9984 0.9984 2.9849

No assumptions -50 49.9018 39.8921 50 0.9816 0.9994 0.9994 2.9804

Assumptions 34.7855 -40 -22.0372 0 0.9901 0.9979 0.9979 2.9859

The results obtained, without heuristic rule, were slightly lower than the one obtained with
the reference parameters. Consequently, if no heuristic rule is given to perform the
calibration, the optimization is less efficient and reliable.

Thus, in order to avoid these types of misleading results, heuristic rule can be given to the
PSO. The expansion model is simulating a spatial expansion of considered land use type;
consequently a cell classified as land use type “1” can never change to land use type “0”
as land use type “1” is expanding, therefore the coefficients to be calibrated do not have
the same domain of search and the following assumptions can be made:

· P(10)� 0, therefore � (10) is negative.
· � s1 is not necessary and can be set to zero.

Besides, a cell classified as “0” has little chance to change to “1” unless it is surrounded
by a significant amount of cells “1”, consequently:

· � (00) is positive.
· � s1(00) is negative.

Consequently, using heuristic rule, only three coefficients have to be calibrated: � (00),
� s1(00), � (10) and the solution space has only three dimensions. In addition the coefficients
obtained in Table 18 showed that � s1(00) has an absolute value slightly lower than � (00) or
� (10).

- 43 -

Thus we set the domain of search for each coefficient as follow:
· � (00): domain_min= 0 and domain_max= 40.
· � s1(00): domain_min= -30 and domain_max= 0.
· � (10): domain_min= -40 and domain_max= 0.
· � s1(10) is set to zero.

5.2.3 The number of particles

The following results present the effect of the PSO control variables on the efficiency and
accuracy of the calibration. Figure 15 and Table 19 show the effect of the number of
particles and the number of PSO iterations on the final results obtained as well as the
progression of the PSO toward these results.

Figure 15 PSO progression for model 2 using different number of particles.

- 44 -

Table 19 Calibration results obtained for model 2 u sing different number of particles.

Number of particles � (00) � (10) � s1(00) � s1(10) CA AA PS Fitness

Reference 20 -20 12 0 0.9881 0.9984 0.9984 2.9849

8 34.7855 -40.0000 -22.0372 0.0000 0.9901 0.9979 0.9979 2.9859

12 39.5642 -40.0000 -25.1698 0.0000 0.9902 0.9985 0.9985 2.9873

16 40.0000 -40.0000 -25.4024 0.0000 0.9911 0.9988 0.9988 2.9887

20 40.0000 -40.0000 -25.3944 0.0000 0.9912 0.9989 0.9989 2.9890

40 40.0000 -40.0000 -25.3138 0.0000 0.9913 0.9986 0.9986 2.9884

We can see that 8 particles are sufficient to find an acceptable solution. Nevertheless, by
increasing the number of particles exploring the solution space, we managed to increase
the quality of the solution obtained after 100 iterations. Indeed the progression curve of
the PSO shows that the more particles are exploring the solution space, the latter and the
higher they stop progressing. This was expected as the solution space of the expansion
model has an additional dimension compared to the spatial independence model.
Nevertheless we can note that above 20 particles, the algorithm does not find solution with
a better fitness. On the other hand running the PSO during more than 100 iterations did
not improve the final fitness and may imply that the particles tend to get trapped in a local
optimum when they are part of a “small swarm”. Consequently, in order to improve the
quality of the calibration it is more efficient to increase the number of particles rather than
the number of PSO iterations. A number of 20 particles seems the most efficient setting in
terms of computation time.

5.2.4 Final results

Table 20 shows the calibrated coefficients for two sets of reference coefficients
representing different amount of change, i.e. the expansion of the patch of land use type
“1”. The algorithm settings are as follow:

· Maximum number of PSO iterations = 100
· Number of realizations per simulation = 10
· Number of particles = 20
· Number of neighbours = 2
· Limits of location change = domain_max – domain_min (i.e. domain of search)
· Importance of individuality = Importance of sociability
· � (00): domain_min= 0 and domain_max= +40.
· � s1(00): domain_min= -30 and domain_max= 0.
· � (10): domain_m= -40 and domain_max= 0.
· � s1(10) is set to zero.

Table 20 Final calibration results for model 2.

Number of particles � (00) � (10) � s1(00) � s1(10) CA AA PS Fitness

Reference 20 -20 -12 0 0.9881 0.9984 0.9984 2.9849

Best position 40.0000 -40.0000 -25.3944 0.0000 0.9912 0.9989 0.9989 2.9890

Reference 15 -20 -16 0 0.9910 0.9985 0.9985 2.9880

Best position 19.5787 -40.0000 -20.9665 0.0000 0.9909 0.9995 0.9995 2.9899

- 45 -

Map 4 shows the reference initial and final land use maps (A and B). The reference final
map is generated using the following coefficients:

· � (00) =15
· � (10) = -20
· � s1(00) = -16
· � s1(10) = 0

In addition two realizations (C and D) of the final simulated map, using the calibrated
coefficients, are presented.

 0 20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

Initial land use map

 0 20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

Final land use map

0 20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

Final land use map

 0 20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

Final land use map

Map 4 Reference initial (A) and final (B) land use maps and two simulated land use maps (C and D) for
model2.

Table 20 shows that the PSO yields coefficients with a better fitness than the reference
one in both cases. We can note that, as for model 1, the position found is not the same as
the reference one. Nevertheless, we can see that the ratio � (00)cal / � s1(00)cal for the
calibrated coefficients is nearly equal to � (00)ref / � s1(00)ref. Indeed the ratio � (00)/ � s1(00) is
controlling the rate of expansion of the patch. Thus the PSO yields good coefficients by
finding the position in the solution space for which: (� (00)ref / � s1(00)ref)� (� (00)cal /
� s1(00)cal). Besides, in all cases, � (10)cal is always equal to -40. Indeed, comparing the
initial reference land use map and the final one, we can see that no cell “1” is changing to
“0”, consequently as long as � (10) is set low enough, its value does not influence the
pattern of the final simulated map. Thus in the conceptual model for expansion; � (10) could
be set as a constant heuristically. Indeed this would reduce the number of coefficients to

0
1

A B

C D

- 46 -

be calibrated and the number of dimensions of the solution space. Finally the overall
fitness of the calibrated model is very close to the maximum which suggest that the choice
of the criteria is the most appropriate considering the land use change process to be
simulated.

5.3 Model 3: Defragmentation

The defragmentation model simulates the expansion of big patches of a considered land
use type, whereas smaller ones are shrinking. The land use change probabilities are
determined using Equation 9.

mediumdjijsmalldjijij
ij

ij
EFmjEFsj

P
P

Log =·=· ++=
-

),()(),()()(
)(

)(
)

1
(aaa

And the coefficients matrix which needs to be calibrated is Table 7.

 To
 0
 � � s1 � m1

F
ro

m
 0 � (00) � s1(00) � m1(00)

1 � (10) � s1(10) � m1(10)

Now, six parameters need to be calibrated � (00), � (10), � s1(00), � s1(10), � m1(00) and � m1(10).
Besides, in order to calibrate this model, we used the same criteria as for the expansion
model. To run the experimentations, the default PSO settings are as follow:

· Maximum number of PSO iterations = 100
· Number of realizations per simulation = 10
· Number of particles = 24
· Number of neighbours = 2
· Limits of location change = domain_max – domain_min (i.e. domain of search)
· Importance of individuality = Importance of sociability

5.3.1 Domain of search

Table 21 presents the results obtained providing or not heuristic rules to the PSO to
explore the solution space. If heuristic rules are provided, the parameters have the
following domain of search:

· � (0=>0): domain_min= 0 and domain_max= +80.
· � s1(0=>0): domain_min= -80 and domain_max= 0.
· � (1=>0): domain_m= -80 and domain_max= 0.
· � s1(1=>0) domain_m= -80 and domain_max= 0.
· � m1(0=>0) domain_m= -80 and domain_max= 0.
· � s1(1=>0) domain_m= 0 and domain_max= +80.

- 47 -

Table 21 Calibration results obtained for model 3 w ith or without assumptions.

 � (00) � (10) � s1(00) � s1(10) � m1(00) � m1(10) CA AA PS Fitness
No
assumptions -80.0000 -80.0000 79.9079 40.2733 33.5081 80.0000 0.8617 0.9968 0.9984 2.8569

Assumptions 80.0000 -80.0000 0.0000 -65.3774 -68.7600 0.0000 0.9209 0.9991 0.9322 2.8523

Table 21 shows that the PSO without heuristic rules yields results with a fitness equal to
2.9859 which is better than the ones obtained with heuristic rules. Nevertheless, as for the
previous models; running the simulation with the calibrated coefficients made appear that
the process simulated was not realistic; the cells “1” were changing to “0” and the cells”0”
were changing to “1”, at each time-step and so on. Thus these results were discarded. On
the other hand, using heuristic rules yielded slightly lower fitness but the land use change
process simulated was realistic. Besides, we can note that the solution obtained generate a
simulated map which reach almost 1 for the AA criteria whereas CA and PS are closer to
0.93.

5.3.2 The number of particles

In order to improve the final fitness, further experiment were carried out using 40 particles
to explore the solution space.

Table 22 Calibration results obtained for model 3 u sing different number of particles.

 � (00) � (10) � s1(00) � s1(10) � m1(00) � m1(10) CA AA PS Fitness

Assumptions 80.0000 -80.0000 0.0000
-

65.3774
-68.7600 0.0000 0.9209 0.9991 0.9322 2.8523

Assumptions
and 40
particles

77.5644 -80.0000 0.0000
-

80.0000
-66.7506 27.3032 0.9219 0.9987 0.9324 2.8529

Table 22 shows that a slightly better solution can be found by increasing the number of
particles. Besides, we can note that the solutions found with the different PSO
configuration have different positions. This may be due to some coefficients which are
correlated and/or unnecessary; consequently the number of parameters to be calibrated
could be reduced.

5.3.3 Final results

Map 5 shows the initial and final reference maps (A and B) and a final simulated map (C)
using calibrated coefficients.

We can note, comparing Map 5 B and C, that the PSO fails to find coefficients generating
a land use change process for which some of the patches are shrinking and others are
expanding. Indeed all the patches are expanding. This may be due to:

· The conceptual model for defragmentation which is not suited to simulate this
process; consequently the PSO cannot find a parameters combination yielding an
acceptable simulated map. Maybe increasing the size of the neighbourhoods to
compute the EF would improve the defragmentation model.

- 48 -

· The domain of search is not properly set. Indeed many particles are either on the
edges of the solution space or equal to 0.

Thus further research should be done in order to improve the calibration of the
defragmentation model.

0 20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

Initial land use map

 0 20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

Final land use map

0 20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

Final simulated land use map

Map 5 Reference (A and B) and simulated (C) land us e maps for the defragmentation model.

0
1

A B

C

- 49 -

6 Conclusion and recommendations

The objective of this research was to develop a calibration method for M-LUCMs. The
results obtained with the Particle Swarm Optimization allow us to answer our research
questions and provide recommendations for further research.

1. How to create basic M-LUCMs which enable to evaluate the calibration
method?

Using a logistic regression to determine the land use change transition probabilities is a
suitable framework to create simplistic M-LUCMs as the number of parameters can be
limited to only one. Furthermore, the logistic regression could be used to simulate
increasingly complex land use change processes by simply adding any relevant parameters
in the logistic regression equation.
Moreover, the basic models applied to synthetic land use datasets, proved to be very
useful to experiment and test the calibration method in different situations, as the
computation time was reduced using only two land use types with a limited area extent.
Besides, calibrating the model for spatial independence, which is not realistic, enables to
visualize the PSO behaviour in a 2D solution space. The results obtained with this model
further facilitated the configuration of the PSO to calibrate more complex models. Thus,
calibrating simplistic LUCMs using synthetic datasets provides:

· Benchmarks (i.e. the reference parameters) to evaluate the performance of the
calibration method.

· A sound analysis of the calibration results without uncertainty regarding a
possible lack of knowledge about the land use change processes or the data
themselves.

· Insight on the PSO’s optimization process.

2. What are available calibration methods and which one is the most
appropriate for calibration of a M-LUCM?

Many optimization algorithms exist; most of them find their principle in evolution theory
(e.g. genetic algorithms) or the swarm intelligence (e.g. the ant colony optimization or the
PSO). But it is not easy, or even possible, to compare them in terms of efficiency or
accuracy as the calibration results often depends on the problem considered or the
computer resources used to carry out the research. Nevertheless, looking closer to the
general optimization process, all optimization algorithms may get trapped into local
optima; consequently their resilience to local optima can be an objective feature to
identify a relevant optimization algorithm. Indeed, during the experimentation, the PSO
algorithm never got trapped into a local optimum, unless the number of particles exploring
the solution space was set very low.
In addition the PSO is an algorithm, which can be easily implemented and is highly
adaptable to the model to be calibrated; it has already been used to calibrate DNA
sequences models. Besides, the calibration of the three models showed that the PSO can
deal with multi-dimension solution space, simply by increasing the number of particles
accordingly.
Finally the PSO can find parameters combination yielding fitness very close to the
maximum, more particularly looking at the results for the expansion model.

- 50 -

3. How to implement the calibration method and apply it to basic M-LUCMs?
Using matrices computation to simulate the land use change processes and calibrate the
model allowed us implement the computer code in the same environment; Matlab. The
Matlab software is worldwide known as an efficient tool for matrices computation.
Nevertheless, it can be limited when spatial analysis needs to be carried out such as the
computation of landscape metrics. Thus we had to limit the land use pattern analysis to the
computation of the average patch size.
As mentioned previously the PSO algorithm is very adaptable to the problem of interest
and its application to the M-LUCMs was quite straight forward:

· The solution space has a dimension for each parameter to be calibrated.
· Each particle in the solution is a candidate combination of parameters to be applied

to the model.
Then each candidate combination is tested by running the simulation and computing the
criteria of interest in order to obtain the overall fitness.

4. How to evaluate the calibration performance?
Using basic M-LUCMs applied to synthetic datasets provides reference land use maps
with known parameters. The position of the known parameters in the solution space can
then be considered as a benchmark to determine if the solution found by the PSO is close
to the reference. Furthermore, the fitness computed with the reference parameters provides
a second benchmark on the quality of the simulation using calibrated parameters. Indeed,
the results obtained showed that the fitness of the reference parameters provide a more
reliable benchmark than the position of the reference parameters in the solution space.
Besides, once primary satisfactory results were obtained, it is necessary to explore if it is
possible to improve the efficiency of the PSO to find the best solution in terms of
computation time. To do so, it is needed to have a thorough understanding of the PSO
optimization process and the effect of the control variables on its efficiency. Thus many
experiments were necessary to test different PSO configuration in order to maximize the
calibration efficiency in terms of computation time as well as quality.

Recommendations
This research showed that the PSO is a promising calibration method for M-LUCMs.
Nevertheless, it was the first step to assess the usability and efficiency of the PSO. Further
research must be undertaken to know if this algorithm can be applied to real world data.
Thus experimentations should be run with:

· more than two land use types occurring in the maps; most of the land use change
models simulate processes and interactions among many land use types.

· more complex land use change processes and, consequently, more parameters to
determine the transition probabilities. Indeed, land use change processes are not
only driven by the spatial interactions of the land use patterns but also by socio-
economic and biophysical factors.

· a bigger area extent.
· finer criteria (e.g. fuzzy-kappa) to improve the calibration and simulation

outcomes.
In the framework of this future research, our experience can provide few advices
regarding the setting of the PSO. First, it is necessary to carefully select the relevant
criteria according to the model purposes, i.e. the land use change process to be simulated.
Then determining the domain of search using expert knowledge on land use change, can

- 51 -

greatly improve the calibration reliability and efficiency. Besides, as recommended by
Kennedy and Eberhart, an equal individuality and sociability provides a PSO which is
resilient to local optima and can find the global best solution. Finally the ratio between the
number of particles and the number of neighbours determine the number of promising
solutions to be explored and the number of particles dedicated to the exploration of these
solutions.

- 52 -

�

- 53 -

�+0+,+6:+5�

BALZTER, H., 2000, Markov chain models for vegetation dynamics. Ecological Modelling,
126, pp. 139-154.

BALZTER, H., BRAUN, P.W. and KOHLER, W., 1998, Cellular automata models for
vegetation dynamics. Ecological Modelling, 107, pp. 113-125.

DE ALMEIDA , C.M., BATTY , M., MONTEIRO, A.M.V., CAMARA , G., SOARES-FILHO, B.S.,
CERQUEIRA, G.C. and PENNACHIN, C.L., 2003, Stochastic cellular automata
modeling of urban land use dynamics: Empirical development and estimation.
Computers, Environment and Urban Systems, 27, pp. 481-509.

ENGLUND, E.J., 1990, A Variance of Geostatisticians. Mathematical Geology, 22, pp. 417-
455.

HELDENS, W.H., 2006, Spatio-temporal modelling of land cover using Markov theory.

KAMMERBAUER, J. and ARDON, C., 1999, Land use dynamics and landscape change
pattern in a typical watershed in the hillside region of central Honduras.
Agriculture Ecosystems & Environment, 75, pp. 93-100.

KENNEDY, J. and EBERHART, R., 1995, Particle swarm optimization. In IEEE International
Conference on Neural Networks - Conference Proceedings.

LI, X. and YEH, A.G., 2002, Neural-network-based cellular automata for simulating
multiple land use changes using GIS. International Journal of Geographical
Information Science, 16, pp. 323-343.

LUIJTEN, J.C., 2003, A systematic method for generating land use patterns using stochastic
rules and basic landscape characteristics: results for a Colombian hillside
watershed. Agriculture Ecosystems & Environment, 95, pp. 427-441.

MARKOV, A., 1907. Extension of the limit theorems of probability theory to a sum of

variables connected in a chain. The notes of the imperial Academy of Sciences of
St. Petersburg VIII series (Physio-Mathematical College XXII): No.9.

MCGARIGAL, K., S. A. CUSHMAN, M. C. NEEL, AND E. ENE, 2002. FRAGSTATS: Spatial

Pattern Analysis Program for Categorical Maps. Computer software program
produced by the authors at the University of Massachusetts, Amherst. Available at
the following web site: www.umass.edu/landeco/research/fragstats/fragstats.html.

MONSERUD, R.A. and LEEMANS, R., 1992, Comparing global vegetation maps with the
Kappa statistic. Ecological Modelling, 62, pp. 275-293.

PONTIUS JR, R.G., HUFFAKER, D. and DENMAN, K., 2004, Useful techniques of validation
for spatially explicit land-change models. Ecological Modelling, 179, pp. 445-461.

POWER, C., SIMMS, A. and WHITE, R., 2001, Hierarchical fuzzy pattern matching for the
regional comparison of land use maps. International Journal of Geographical
Information Science, 15, pp. 77-100.

- 54 -

RASMUSSEN, T.K. and KRINK, T., 2003, Improved Hidden Markov Model training for
multiple sequence alignment by a particle swarm optimization - evolutionary
algorithm hybrid. Biosystems, 72, pp. 5-17.

RIEBSAME, W.E., MEYER, W.B. and TURNER, B.L., 1994, Modeling Land-Use and Cover
as Part of Global Environmental-Change. Climatic Change, 28, pp. 45-64.

SCHNEIDER, L.C. and PONTIUS, R.G., 2001, Modeling land-use change in the Ipswich
watershed, Massachusetts, USA. Agriculture Ecosystems & Environment, 85, pp.
83-94.

TURNER, M.G., ARTHAUD, G.J., ENGSTROM, R.T., HEJL, S.J., LIU, J.G., LOEB, S. and
MCKELVEY, K., 1995, Usefulness of Spatially Explicit Population-Models in Land
Management. Ecological Applications, 5, pp. 12-16.

VELDKAMP, A. and LAMBIN , E.F., 2001, Predicting land-use change. Agriculture
Ecosystems & Environment, 85, pp. 1-6.

VERBURG, P.H., DE NIJS, T.C.M., VAN ECK, J.R., VISSER, H. and DE JONG, K., 2004, A
method to analyse neighbourhood characteristics of land use patterns. Computers,
Environment and Urban Systems, 28, pp. 667-690.

VISSER, H. and DE NIJS, T., 2006, The Map Comparison Kit. Environmental Modelling &
Software, 21, pp. 346-358.

VITOUSEK, P.M., 1997, Human domination of Earth's ecosystems (vol 277, pg 494, 1997).
Science, 278, pp. 21-21.

WU, F., 2002, Calibration of stochastic cellular automata: The application to rural-urban
land conversions. International Journal of Geographical Information Science, 16,
pp. 795-818.

- 55 -

;;+67-<�

Computer code for model 1: Spatial Independence

PSO
close all;
clear;
clc;
tic;

%*********************************/
% Definitions of data parameters */
%********************************/

rows=100;
cols=100;
nrclasses=2;

%*********************************/
% Definitions of simulation control variables */
%********************************/

iterations_sim=10;
nr_time_steps=19;

%*********************************/
% Create reference data */
%*********************************/

initseed1;
Create_lu_initial;
ref_data_model1;

%*********************************/
% Variables for particles behavior */
%********************************/
nr_particles = 8;
nr_neighbors = 2;
max_iterations_PSO =300;

% set limits for location changes */
delta_min = [-1 -1];
delta_max = [1 1];

% set individuality %
i_weight = 2.0;
i_min = 0.0; % low stochastic weight factor %
i_max = 1.0; % high stochastic weight factor %

% set sociality %
s_weight = 2.0;
s_min = 0.0; % low stochastic weight factor %
s_max = 1.0; % high stochastic weight factor %

- 56 -

%***%
% Next 3 variables related to problem solution spac e. */
%**/
fitness_ini = -100000;
target_fitness = 2;
nr_dimensions = 2; % dim. of solution space */
d=nr_dimensions;
domain_max=[1 1];
domain_min=[0 0];

%******************************/
% End of control variable definitions. */
%******************************/

% Initialize particles' location and velocity*/
p_position=zeros(nr_particles,nr_dimensions);
p_velocity=zeros(nr_particles,nr_dimensions);
p_bestfitness=fitness_ini*ones(nr_particles,3);
for p=1:nr_particles
 for d=1:nr_dimensions
 p_position(p,d)=domain_min(:,d)+(domain_max(:, d)-
domain_min(:,d))*rand;
 p_velocity(p,d)=delta_min(:,d)+(delta_max(:,d) -
delta_min(:,d))*rand;
 end
end
p_bestsofar_glob=zeros(1,d);
p_bestsofar=p_position;
p_bestfitness_glob=fitness_ini*ones(1,3);

% % set particles' neighbors */
% not symmetric!!!
p_neighbor=ones(nr_particles);
p_neighbor=p_neighbor.*(-999999);
for k=1:nr_particles
 for l=-nr_neighbors/2:nr_neighbors/2
 if k+l<=0
 p_neighbor(k,abs(k+l+nr_particles))=1;
 elseif k+l>nr_particles
 p_neighbor(k,abs(k+l-nr_particles))=1;
 else p_neighbor(k,k+l)=1;
 end
 end
end

% run Particle Swarm Optimizer */

p_current=p_position;
progress=zeros(max_iterations_PSO,4);

for m=1:max_iterations_PSO %do {

%%%%Current positions%%%%%%%%%%
filename=['results\positions_',int2str(m)];
save(filename,'p_current');

% test their fitness. */

- 57 -

for p=1:nr_particles
 criteria_1=0;
 criteria_2=0;
 for n=1:iterations_sim
 Sim_model1;
 compute_criteria;
 criteria_1=criteria_1+pa;
 criteria_2=criteria_2+perct;
 end % end for each iteration */
 fitness1=criteria_1/iterations_sim;
 fitness2=criteria_2/iterations_sim;
 fitness=fitness1+fitness2;

 if fitness>p_bestfitness(p,3)
 p_bestsofar(p,:)=p_current(p,:);
 p_bestfitness(p,1)=fitness1;
 p_bestfitness(p,2)=fitness2;
 p_bestfitness(p,3)=fitness;
 end

 if fitness>p_bestfitness_glob(1,3)
 p_bestsofar_glob(1,:)=p_current(p,:)
 p_bestfitness_glob=[fitness1 fitness2 fitness]
 end

 if fitness==target_fitness
 p_final(1,:)=p_current(p,:)
 figure(100)
 imagesc (lu_initial)
 axis equal
 figure(200)
 imagesc (lu_ref)
 axis equal
 figure(300)
 imagesc (lu_sim_final)
 axis equal
 toc
 return
 end
end % end for each particle p */

%%%%record results%%%%%%%%%%%%%%%%%

%%%%Best positions%%%%%%%%%%
best_positions=p_bestsofar;
best_positions(:,3:5)=p_bestfitness;
filename=['results\best_positions_',int2str(m)];
save(filename,'best_positions');
%%%%Progress%%%%%%%%
progress(m,:)=[m p_bestfitness_glob]
if m==max_iterations_PSO
filename=['results\progression_',int2str(m)];
save(filename,'progress');
end

%Determine particle next velocity and update positi on
for p=1:nr_particles
 [C,I]=max(p_neighbor(p,:).*transpose(p_bestfitne ss(:,3)));
 p_bestneighbor(p,:)=p_bestsofar(I,:);

- 58 -

 for d=1:nr_dimensions
 i_factor = i_weight*(i_min+(i_max-i_min)*rand (p,d));
 s_factor = s_weight*(s_min+(s_max-s_min)*rand (p,d));
 pdelta(p,d) = p_bestsofar(p,d) - p_current(p, d);
 ndelta(p,d) = p_bestneighbor(p,d) - p_current (p,d);
 delta (p,d) = (i_factor(p,d)* pdelta(p,d)) + (s_factor(p,d) *
ndelta(p,d));

 p_velocity(p,d) = p_velocity(p,d) + delta (p, d);
 if p_velocity(p,d) < delta_min(d)
 p_velocity(p,d)=delta_min(d);
 elseif p_velocity(p,d) > delta_max(d)
 p_velocity(p,d)=delta_max(d);
 end
 if delta(p,d)==0
 p_velocity(p,d)=0.01*domain_max(:,d)* (-1 + (1-(-1))*rand);
 end
 p_current(p,d)= p_current(p,d) + p_velocity(p ,d);
 if p_current(p,d) < domain_min(d)
 p_current(p,d)=domain_min(d);
 elseif p_current(p,d) > domain_max(d)
 p_current(p,d)=domain_max(d);
 end
 end % end for each dimension d */
end % end of: for each particle p */

plot_position;

end % end of: while iterations <= max_iterations */

plot_best_position;

toc;

- 59 -

Initseed1
seed = 931316739;
rand('seed',seed);
randn('seed',seed);

Create_lu_initial
%%%create and save random initial map%%%%%
lu_initial=round(rand(rows,cols));
filename=['data\lu_initial'];
save (filename,'lu_initial');

%%%display initial land use map%%%%
 figure(100);
 imagesc(lu_initial);
 axis equal;

ref_data_model1
%%%%%%%%%%%%%%%%%%%%%%Simulate spatial
independence%%%%%%%%%%%%%%%%%%%%%%%%

%1. Input variables and data

trans_matrix_ref=[0.990 0.005];
lu_current=lu_initial;

%2. Create land use for next time-steps

for t=1:nr_time_steps

 %a.Create probability maps of becoming 0
 p_map=trans_matrix_ref(1)*(1-
lu_current)+trans_matrix_ref(2)*lu_current;

 %b.simulate land use based on p_map and random numbers%
 R=rand(rows,cols);
 lu_new=(R>p_map);
 lu_current=lu_new;

 %3. save final reference and display
 if t==nr_time_steps
 lu_ref=lu_new;
 save('data\ref_final_year','lu_ref');
 figure(200);
 imagesc(lu_ref);
 axis equal;
 end

 %4.display land use map for each time-step
 figure(t);
 imagesc(lu_new);
 axis equal;
end

- 60 -

Sim_model1
%%%%%%%%%%%%%%%%%%%%%%Simulate spatial
independence%%%%%%%%%%%%%%%%%%%%%%%%

%1. Input initial land use

lu_current=lu_initial;

%2. Simulate land use for next time-steps

trans_matrix=p_current(p,:);

for t=1:nr_time_steps

 %a.Create probability maps
 p_map=trans_matrix(1)*(1-lu_current)+trans_matr ix(2)*lu_current;

 %b.simulate land use based on p_map and random numbers%
 R=rand(rows,cols);
 lu_new=(R>p_map);
 lu_current=lu_new;

%3. display results
 if t==nr_time_steps
 lu_sim_final=lu_new;
 figure(300);
 imagesc(lu_sim_final);
 axis equal;
 end
end

compute_criteria
nrcells=rows*cols;

%%%Compute Area Agreement (AA)%%%%%%
perct_1=(sum(sum(lu_ref==1)))/nrcells;
perct_2=(sum(sum(lu_sim_final==1)))/nrcells;

perct=1-abs(perct_1-perct_2);

%%%%Compute Cell Agreement (CA)%%%%%%
agree_00=zeros(rows,cols);
agree_11=zeros(rows,cols);
exp_01=zeros(rows,cols);
exp_10=zeros(rows,cols);

agree_00=(lu_ref+lu_sim_final==0);
agree_11=(lu_ref+lu_sim_final==2);
exp_01=(lu_ref-lu_sim_final==-1);
exp_10=(lu_ref-lu_sim_final==1);

pa_00=(sum(sum(agree_00)))/nrcells;
pa_11=(sum(sum(agree_11)))/nrcells;
pe_01=(sum(sum(exp_01)))/nrcells;
pe_10=(sum(sum(exp_10)))/nrcells;

- 61 -

pa=pa_00+pa_11;

%%%%%%%%Additional indices%%%%%%%
% p0T=pa_00+pe_01;
% p1T=pe_10+pa_11;
% pT0=pa_00+pe_10;
% pT1=pe_01+pa_11;
% pe=p0T*pT0+p1T*pT1;

% [A]=min (p0T,pT0);
% [B]=min (p1T,pT1);
% pmax=A+B;
%
% Khisto=(pmax-pe)/(1-pe);
% Klocation=(pa-pe)/(pmax-pe);

% Kappa=Khisto*Klocation;

%%Display differences%%%
% figure(700);
% imagesc(pe);
% axis equal;

plot_position
x=p_current(:,1);
y=p_current(:,2);
figure (400)
plot (x,y,'r+','MarkerSize',10)
axis manual equal
axis ([0 1 0 1])
grid on

plot_best_position
x=best_positions(:,1);
y=best_positions(:,2);
figure (500)
plot (x,y,'r+','MarkerSize',10)
axis manual equal
axis ([0 1 0 1])
grid on

- 62 -

Computer code for model 2: Defragmentation

PSO
close all;
clear;
clc;
tic;

%*********************************/
% Definitions of data parameters */
%********************************/

rows=100;
cols=100;
nrclasses=2;

%*********************************/
% Definitions of simulation control variables */
%********************************/

iterations_sim=10;
nr_time_steps=20;

%*********************************/
% Create reference data */
%*********************************/

initseed1;
create_lu_initial;
ref_data_model2;

%*********************************/
% Begin definitions of control variables */
%********************************/
nr_particles = 20;
nr_neighbors = 2;
max_iterations_PSO =100;

% set limits for location changes */
delta_min = [-40 -40 -30 0];
delta_max = [40 40 30 0];

% set individuality %
i_weight = 2.0;
i_min = 0.0; % low stochastic weight factor %
i_max = 1.0; % high stochastic weight factor %
% set sociality %
s_weight = 2.0;
s_min = 0.0; % low stochastic weight factor %
s_max = 1.0; % high stochastic weight factor %

%***%
% Next 3 variables related to problem solution spac e. */
%**/
fitness_ini = -100000;
target_fitness = 3;

- 63 -

nr_dimensions = 4; % dim. of solution space */
d=nr_dimensions;
domain_max=[40 0 0 0];
domain_min=[0 -40 -30 0];

%******************************/
% End of control variable definitions. */
%******************************/

% Initialize particles' location */
p_position=zeros(nr_particles,nr_dimensions);
p_velocity=zeros(nr_particles,nr_dimensions);
p_bestfitness=fitness_ini*ones(nr_particles,4);
for p=1:nr_particles
 for d=1:nr_dimensions
 p_position(p,d)=domain_min(:,d)+(domain_max(:, d)-
domain_min(:,d))*rand;
 p_velocity(p,d)=delta_min(:,d)+(delta_max(:,d) -
delta_min(:,d))*rand;
 end
end
p_bestsofar_glob=zeros(1,nr_dimensions);
p_bestsofar=p_position;
p_bestfitness_glob=fitness_ini*ones(1,4);

% % set particles' neighbors */
% not symmetric!!!
p_neighbor=ones(nr_particles);
p_neighbor=p_neighbor.*(-999999);
for k=1:nr_particles
 for l=-nr_neighbors/2:nr_neighbors/2
 if k+l<=0
 p_neighbor(k,abs(k+l+nr_particles))=1;
 elseif k+l>nr_particles
 p_neighbor(k,abs(k+l-nr_particles))=1;
 else p_neighbor(k,k+l)=1;
 end
 end
end

% run Particle Swarm Optimizer */
count_1=0;
progress=zeros(max_iterations_PSO,5);

for m=1:max_iterations_PSO %do {
 % Make the "next locations" current and then */
 % test their fitness. */
p_current=p_position;
for p=1:nr_particles
 % count_2=0;
 criteria1=0;
 criteria2=0;
 criteria3=0;
 for n=1:iterations_sim
 Sim_model2; %%%%run simulation
 compute_criteria; %%%%compute criteria v alue
 criteria1=criteria1+pa;
 criteria2=criteria2+perct;
 criteria3=criteria3+avpatchsize;

- 64 -

 end
fitness1=criteria1/iterations_sim;
fitness2=criteria2/iterations_sim;
fitness3=criteria3/iterations_sim;
fitness=fitness1+fitness2+fitness3;

 if fitness>p_bestfitness(p,4)
 p_bestsofar(p,:)=p_current(p,:);
 p_bestfitness(p,1)=fitness1;
 p_bestfitness(p,2)=fitness2;
 p_bestfitness(p,3)=fitness3;
 p_bestfitness(p,4)=fitness;
 end
 if fitness>p_bestfitness_glob(1,4)
 p_bestsofar_glob(1,:)=p_current(p,:)
 p_bestfitness_glob=[fitness1 fitness2 fitness 3 fitness]
 end
 if fitness==target_fitness
 p_final(1,:)=p_current(p,:)
 figure(100)
 imagesc (lu_initial)
 figure(200)
 imagesc (lu_ref)
 figure(300)
 imagesc (lu_sim_final)
 toc
 return
 end
end % end of: for each particle p */

%record results
%%%%positions%%%%%%%%%%
best_positions=p_bestsofar;
best_positions(:,5:8)=p_bestfitness
filename=['results\best_positions_',int2str(m)];
save(filename,'best_positions');
%%%%progress%%%%%%%%
progress(m,:)=[m p_bestfitness_glob];
if m==max_iterations_PSO
filename=['results\progression_',int2str(m)];
save(filename,'progress');
end

%Determine next particle position
for p=1:nr_particles %each particle p do {
 [C,I]=max(p_neighbor(p,:).*transpose(p_bestfitne ss(:,3)));
 p_bestneighbor(p,:)=p_bestsofar(I,:); %n =
getNeighborWithBestFitness(p)
 for d=1:nr_dimensions %do {
 i_factor = i_weight*(i_min+(i_max-i_min)*rand (p,d));
 s_factor = s_weight*(s_min+(s_max-s_min)*rand (p,d));
 pdelta(p,d) = p_bestsofar(p,d) - p_current(p, d);
 ndelta(p,d) = p_bestneighbor(p,d) - p_current (p,d);
 delta (p,d) = (i_factor(p,d)* pdelta(p,d)) + (s_factor(p,d) *
ndelta(p,d));
 p_velocity(p,d) = p_velocity(p,d) + delta (p, d);
 if p_velocity(p,d) < delta_min(d)
 p_velocity(p,d)=delta_min(d);
 elseif p_velocity(p,d) > delta_max(d)
 p_velocity(p,d)=delta_max(d);

- 65 -

 end
 if delta(p,d)==0
 p_velocity(p,d)=0.01*domain_max(:,d)* (-1 + (1-(-1))*rand);
 end
 p_current(p,d)= p_current(p,d) + p_velocity(p ,d);
 if p_current(p,d) < domain_min(d)
 p_current(p,d)=domain_min(d);
 elseif p_current(p,d) > domain_max(d)
 p_current(p,d)=domain_max(d);
 end
 end
 end % end for each particle p */
count_1=count_1+1
 end % end of: while iterations <= max_iterations * /
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%end % end of main program */

toc;

ref_data_model2
%%%%%%%%%%%%%%%%%%%%%%Create reference data for spatial
expansion%%%%%%%%%%%%%%%%%%%%%%%%

%1. Input variables and data
neighbor_size=9;
map_size=rows*cols;
trans_matrix_ref=[20,-12;-20,0];
lu_current=lu_initial;

%%%%%%%%%%Beginning simulation

for t=1:nr_time_steps

%%%%%%%%%%Compute Enrichment Factor (EF)
%counter of cells in state 1 in map
count_tot=0;
count=zeros(rows,cols);
for f=1:rows
 for g=1:cols
 if lu_current(f,g)==1
 count_tot=count_tot+1;
 end
 end
end
if sum(sum(count_tot))==0
 count=zeros(rows,cols);
else
%%%%%%%%%%%%count EF1 for cells in first
row%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=1
 for j=2:cols-1
 for k=0:1
 for l=-1:1
 r=i+k;
 c=j+l;
 if lu_current(r,c)==1
 count(i,j)=count(i,j)+1;%counter of cells in state 1
in neighbourhood
 end
 end

- 66 -

 end
 if lu_current(i,j)==1
 count(i,j)=(count(i,j))-1;
 end
 count(i,j)=((count(i,j)/(6-1))/(count_tot/map _size));%enrichment
factor map for class 1
 end
end
%%
%%%%%
%%%%%%%%%%%%%%count EF1 for cell in last
row%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=rows
 for j=2:cols-1
 for k=-1:0
 for l=-1:1
 r=i+k;
 c=j+l;
 if lu_current(r,c)==1
 count(i,j)=count(i,j)+1;%counter of cells in state 1
in neighbourhood
 end
 end
 end
 if lu_current(i,j)==1
 count(i,j)=(count(i,j))-1;
 end
 count(i,j)=((count(i,j)/(6-1))/(count_tot/map _size));%enrichment
factor map for class 1
 end
end
%%
%%%
%%%%%%%%%%%%count EF1 for cells in first
column%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=2:rows-1
 for j=1
 for k=-1:1
 for l=0:1
 r=i+k;
 c=j+l;
 if lu_current(r,c)==1
 count(i,j)=count(i,j)+1;%counter of cells in state 1
in neighbourhood
 end
 end
 end
 if lu_current(i,j)==1
 count(i,j)=(count(i,j))-1;
 end
 count(i,j)=((count(i,j)/(6-1))/(count_tot/map _size));%enrichment
factor map for class 1
 end
end
%%
%%%
%%%%%%%%%%%%count EF1 for cells in last
column%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=2:rows-1
 for j=cols
 for k=-1:1

- 67 -

 for l=-1:0
 r=i+k;
 c=j+l;
 if lu_current(r,c)==1
 count(i,j)=count(i,j)+1;%counter of cells in state 1
in neighbourhood
 end
 end
 end
 if lu_current(i,j)==1
 count(i,j)=(count(i,j))-1;
 end
 count(i,j)=((count(i,j)/(6-1))/(count_tot/map _size));%enrichment
factor map for class 1
 end
end
%%
%%%
%%%%%%%%%%%%%%Count EF1 for cells in each
corner%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=1
 for j=1
 for k=0:1
 for l=0:1
 r=i+k;
 c=j+l;
 if lu_current(r,c)==1
 count(i,j)=count(i,j)+1;%counter of cells in state 1
in neighbourhood
 end
 end
 end
 if lu_current(i,j)==1
 count(i,j)=(count(i,j))-1;
 end
 count(i,j)=((count(i,j)/(4-1))/(count_tot/map _size));%enrichment
factor map for class 1
 end
end

for i=1
 for j=cols
 for k=0:1
 for l=-1:0
 r=i+k;
 c=j+l;
 if lu_current(r,c)==1
 count(i,j)=count(i,j)+1;%counter of cells in state 1
in neighbourhood
 end
 end
 end
 if lu_current(i,j)==1
 count(i,j)=(count(i,j))-1;
 end
 count(i,j)=((count(i,j)/(4-1))/(count_tot/map _size));%enrichment
factor map for class 1
 end
end

for i=rows

- 68 -

 for j=1
 for k=-1:0
 for l=0:1
 r=i+k;
 c=j+l;
 if lu_current(r,c)==1
 count(i,j)=count(i,j)+1;%counter of cells in state 1
in neighbourhood
 end
 end
 end
 if lu_current(i,j)==1
 count(i,j)=(count(i,j))-1;
 end
 count(i,j)=((count(i,j)/(6-1))/(count_tot/map _size));%enrichment
factor map for class 1
 end
end

for i=rows
 for j=cols
 for k=-1:0
 for l=-1:0
 r=i+k;
 c=j+l;
 if lu_current(r,c)==1
 count(i,j)=count(i,j)+1;%counter of cells in state 1
in neighbourhood
 end
 end
 end
 if lu_current(i,j)==1
 count(i,j)=(count(i,j))-1;
 end
 count(i,j)=((count(i,j)/(6-1))/(count_tot/map _size));%enrichment
factor map for class 1
 end
end
%%
%%%
%%%%%%%%%%%%%%%%%Count EF1 for the rest of the
map%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=2:(rows-1)
 for j=2:(cols-1)
 for k=-1:1
 for l=-1:1
 r=i+k;
 c=j+l;
 if lu_current(r,c)==1
 count(i,j)=count(i,j)+1;%counter of cells in state 1
in neighbourhood
 end
 end
 end
 if lu_current(i,j)==1
 count(i,j)=(count(i,j))-1;
 end
 count(i,j)=((count(i,j)/(neighbor_size-
1))/(count_tot/map_size));%enrichment factor map fo r class 1
 end
end

- 69 -

%%%%%%%%compute probability map
p_map=zeros(rows,cols); % empty grid storing the tr ansition
probabilities for class 1
 for i=1:rows
 for j=1:cols
 p_map(i,j)= (1/(1+exp(-trans_matrix_ref (1,1)-
(trans_matrix_ref(1,2)*count(i,j))))*(1-lu_current(i,j)))+...
 (1/(1+exp(-trans_matrix_ref(2,1)-
(trans_matrix_ref(2,2)*count(i,j))))*lu_current(i,j));
 end
 end
end

%%%%%%%%simulate land use based on p_map and random numbers
R=rand(rows,cols);
lu_new=(R>p_map);
lu_current=lu_new;

%%%%%%%%display land use map for each time-step
figure(t);
imagesc(lu_new);
axis equal;

%%%%%%%% save and display result
 if t==20
 lu_ref=lu_new;
 save('data\ref_final_year','lu_ref');
 figure(200);
 imagesc(lu_ref)
 axis equal;
 end
end

 Sim_model2
%%%%%%%%%%%%%%%%%%%%%%Simulate spatial expansion%%%%%%%%%%%%%%%%%%%%%%%%

%1. Input variables and data
neighbor_size=9;
map_size=rows*cols;

trans_matrix=p_current(p,:);

lu_current=lu_initial;

 %Beginning simulation

for t=1:nr_time_steps

%%%%%%Compute enrichment factor
%counter of cells in state 1 in map
count_tot=0;

count=zeros(rows,cols);
for f=1:rows
 for g=1:cols
 if lu_current(f,g)==1

- 70 -

 count_tot=count_tot+1;
 end
 end
end
if sum(sum(count_tot))==0
 count=zeros(rows,cols);
else
%%%%%%%%%%%%count EF1 for cells in first
row%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=1
 for j=2:cols-1
 for k=0:1
 for l=-1:1
 r=i+k;
 c=j+l;
 if lu_current(r,c)==1
 count(i,j)=count(i,j)+1;%counter of cells in state 1
in neighbourhood
 end
 end
 end
 if lu_current(i,j)==1
 count(i,j)=(count(i,j))-1;
 end
 count(i,j)=((count(i,j)/(6-1))/(count_tot/map _size));%enrichment
factor map for class 1
 end
end
%%
%%%%%
%%%%%%%%%%%%%%count EF1 for cell in last
row%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=rows
 for j=2:cols-1
 for k=-1:0
 for l=-1:1
 r=i+k;
 c=j+l;
 if lu_current(r,c)==1
 count(i,j)=count(i,j)+1;%counter of cells in state 1
in neighbourhood
 end
 end
 end
 if lu_current(i,j)==1
 count(i,j)=(count(i,j))-1;
 end
 count(i,j)=((count(i,j)/(6-1))/(count_tot/map _size));%enrichment
factor map for class 1
 end
end
%%
%%%
%%%%%%%%%%%%count EF1 for cells in first
column%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=2:rows-1
 for j=1
 for k=-1:1
 for l=0:1
 r=i+k;
 c=j+l;

- 71 -

 if lu_current(r,c)==1
 count(i,j)=count(i,j)+1;%counter of cells in state 1
in neighbourhood
 end
 end
 end
 if lu_current(i,j)==1
 count(i,j)=(count(i,j))-1;
 end
 count(i,j)=((count(i,j)/(6-1))/(count_tot/map _size));%enrichment
factor map for class 1
 end
end
%%
%%%
%%%%%%%%%%%%count EF1 for cells in last
column%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=2:rows-1
 for j=cols
 for k=-1:1
 for l=-1:0
 r=i+k;
 c=j+l;
 if lu_current(r,c)==1
 count(i,j)=count(i,j)+1;%counter of cells in state 1
in neighbourhood
 end
 end
 end
 if lu_current(i,j)==1
 count(i,j)=(count(i,j))-1;
 end
 count(i,j)=((count(i,j)/(6-1))/(count_tot/map _size));%enrichment
factor map for class 1
 end
end
%%
%%%
%%%%%%%%%%%%%%Count EF1 for cells in each
corner%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=1
 for j=1
 for k=0:1
 for l=0:1
 r=i+k;
 c=j+l;
 if lu_current(r,c)==1
 count(i,j)=count(i,j)+1;%counter of cells in state 1
in neighbourhood
 end
 end
 end
 if lu_current(i,j)==1
 count(i,j)=(count(i,j))-1;
 end
 count(i,j)=((count(i,j)/(4-1))/(count_tot/map _size));%enrichment
factor map for class 1
 end
end

for i=1

- 72 -

 for j=cols
 for k=0:1
 for l=-1:0
 r=i+k;
 c=j+l;
 if lu_current(r,c)==1
 count(i,j)=count(i,j)+1;%counter of cells in state 1
in neighbourhood
 end
 end
 end
 if lu_current(i,j)==1
 count(i,j)=(count(i,j))-1;
 end
 count(i,j)=((count(i,j)/(4-1))/(count_tot/map _size));%enrichment
factor map for class 1
 end
end

for i=rows
 for j=1
 for k=-1:0
 for l=0:1
 r=i+k;
 c=j+l;
 if lu_current(r,c)==1
 count(i,j)=count(i,j)+1;%counter of cells in state 1
in neighbourhood
 end
 end
 end
 if lu_current(i,j)==1
 count(i,j)=(count(i,j))-1;
 end
 count(i,j)=((count(i,j)/(6-1))/(count_tot/map _size));%enrichment
factor map for class 1
 end
end

for i=rows
 for j=cols
 for k=-1:0
 for l=-1:0
 r=i+k;
 c=j+l;
 if lu_current(r,c)==1
 count(i,j)=count(i,j)+1;%counter of cells in state 1
in neighbourhood
 end
 end
 end
 if lu_current(i,j)==1
 count(i,j)=(count(i,j))-1;
 end
 count(i,j)=((count(i,j)/(6-1))/(count_tot/map _size));%enrichment
factor map for class 1
 end
end
%%
%%%

- 73 -

%%%%%%%%%%%%%%%%%Count EF1 for the rest of the
map%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=2:(rows-1)
 for j=2:(cols-1)
 for k=-1:1
 for l=-1:1
 r=i+k;
 c=j+l;
 if lu_current(r,c)==1
 count(i,j)=count(i,j)+1;%counter of cells in state 1
in neighbourhood
 end
 end
 end
 if lu_current(i,j)==1
 count(i,j)=(count(i,j))-1;
 end
 count(i,j)=((count(i,j)/(neighbor_size-1))/(c ount_tot/map_size));
%enrichment factor map for class 1
 end
end
end

%%%%%%%compute probability map
p_map=zeros(rows,cols); % empty grid storing the tr ansition
probabilities for class 1
 for i=1:rows
 for j=1:cols
 p_map(i,j)= (1/(1+exp(-trans_matrix(1)-
(trans_matrix(3)*count(i,j))))*(1-lu_current(i,j))) +...
 (1/(1+exp(-trans_matrix(2)-
(trans_matrix(4)*count(i,j))))*lu_current(i,j));
 end
 end

%%%%%%%simulate land use based on p_map and random numbers
R=rand(rows,cols);
lu_new=(R>p_map);
lu_current=lu_new;

%%%%%%%display land use map for each time-step
figure(t);
imagesc(lu_new);
axis equal;

%%%%%%% display and save results
 if t==20
 lu_sim_final=lu_new;
% filename=['data\sim_final_year'];
% save(filename,'lu_sim_final');
 figure(t);
 imagesc(lu_new);
 axis equal;
 end
end

compute_criteria
nrcells=rows*cols;

- 74 -

%%%%%%compute Area Agreement (AA)%%%%%%%
perct1=sum(sum(lu_ref))/nrcells;
perct2=sum(sum(lu_sim_final))/nrcells;
perct=1-abs((perct1-perct2));

%%%%%%%compute Cell Agreement (CA)%%%%%%
agree_00=zeros(rows,cols);
agree_11=zeros(rows,cols);
% exp_01=zeros(rows,cols);
% exp_10=zeros(rows,cols);

agree_00=(lu_ref+lu_sim_final)==0;
agree_11=(lu_ref+lu_sim_final)==2;
% exp_01=(lu_ref-lu_sim_final)==-1;
% exp_10=(lu_ref-lu_sim_final)==1;

pa=(sum(sum(agree_00))+sum(sum(agree_11)))/nrcells;

%%%%%%Compute average patch size 5PS)
L=bwlabel(lu_ref);
avpatchsize1=perct1/max(max(L));

L=bwlabel(lu_sim_final);
if max(max(L))==0
 avpatchsize2=0;
else
avpatchsize2=perct2/max(max(L));
end
avpatchsize=1-(abs(avpatchsize1-avpatchsize2));

- 75 -

- 76 -

Computer code for model 3: Defragmentation

PSO
close all;
clear;
clc;
tic;

%*********************************/
% Definitions of data parameters */
%********************************/

rows=100;
cols=100;
nrclasses=2;

%*********************************/
% Definitions of simulation control variables */
%********************************/

iterations_sim=10;
nr_time_steps=20;

%*********************************/
% Create reference data */
%*********************************/

initseed1;
create_initial_final_maps;

%*********************************/
% Begin definitions of control variables */
%********************************/
nr_particles = 24;
nr_neighbors = 2;
max_iterations_PSO =100;

% set limits for location changes */
delta_min = [-80 -80 -80 -80 -80 -80];
delta_max = [80 80 80 80 80 80];

% set individuality %
i_weight = 2.0;
i_min = 0.0; % low stochastic weight factor %
i_max = 1.0; % high stochastic weight factor %
% set sociality %
s_weight = 2.0;
s_min = 0.0; % low stochastic weight factor %
s_max = 1.0; % high stochastic weight factor %

%***%
% Next 3 variables related to problem solution spac e. */
%**/
fitness_ini = -100000;
target_fitness = 10;

- 77 -

nr_dimensions = 6; % dim. of solution space */
d=nr_dimensions;
domain_max=[80 0 0 0 0 80];
domain_min=[0 -80 -80 -80 -80 0];

%******************************/
% End of control variable definitions. */
%******************************/

% Initialize particles' location */
p_position=zeros(nr_particles,nr_dimensions);
p_velocity=zeros(nr_particles,nr_dimensions);
p_bestfitness=fitness_ini*ones(nr_particles,4);
for p=1:nr_particles
 for d=1:nr_dimensions
 p_position(p,d)=domain_min(:,d)+(domain_max(:, d)-
domain_min(:,d))*rand;
 p_velocity(p,d)=delta_min(:,d)+(delta_max(:,d) -
delta_min(:,d))*rand;
 end
%p_position(p,1)=trans_matrix(1)-rand/100;
p_position(p,2)=trans_matrix(2)-rand/100;
end
p_bestsofar_glob=zeros(1,nr_dimensions);
p_bestsofar=p_position;
p_bestfitness_glob=fitness_ini*ones(1,4);

% % set particles' neighbors */
% not symmetric!!!
p_neighbor=ones(nr_particles);
p_neighbor=p_neighbor.*(-999999);
for k=1:nr_particles
 for l=-nr_neighbors/2:nr_neighbors/2
 if k+l<=0
 p_neighbor(k,abs(k+l+nr_particles))=1;
 elseif k+l>nr_particles
 p_neighbor(k,abs(k+l-nr_particles))=1;
 else p_neighbor(k,k+l)=1;
 end
 end
end

% run Particle Swarm Optimizer */
%count_1=0;
progress=zeros(max_iterations_PSO,5);

%load('C:\Thesis\Model\Optimization\Model3\results\ variables.mat')

for m=1:max_iterations_PSO %do {
 % Make the "next locations" current and then */
 % test their fitness. */
p_current=p_position;
for p=1:nr_particles
 %count_2=0;
 criteria1=0;
 criteria2=0;
 criteria3=0;
 for n=1:iterations_sim
 Sim_model3;

- 78 -

 kappa_stat;
 criteria1=criteria1+pa;
 criteria2=criteria2+perct;
 criteria3=criteria3+avpatchsize;
 end

fitness1=criteria1/iterations_sim;
fitness2=criteria2/iterations_sim;
fitness3=criteria3/iterations_sim;
fitness=5*fitness1+fitness2+4*fitness3;

 if fitness>p_bestfitness(p,4)
 p_bestsofar(p,:)=p_current(p,:);
 p_bestfitness(p,1)=fitness1;
 p_bestfitness(p,2)=fitness2;
 p_bestfitness(p,3)=fitness3;
 p_bestfitness(p,4)=fitness;
 end
 if fitness>p_bestfitness_glob(1,4)
 p_bestsofar_glob(1,:)=p_current(p,:)
 p_bestfitness_glob=[fitness1 fitness2 fitness 3 fitness]
 end
 if fitness==target_fitness
 p_final(1,:)=p_current(p,:)
 figure(100)
 imagesc (lu_initial)
 figure(200)
 imagesc (lu_ref)
 figure(300)
 imagesc (lu_sim_final)
 toc
 return
 end
end % end of: for each particle p */

%record results
%%%%positions%%%%%%%%%%
best_positions=p_bestsofar;
best_positions(:,7:10)=p_bestfitness
filename=['results\best_positions_',int2str(m)];
save(filename,'best_positions');
%%%%progress%%%%%%%%
progress(m,:)=[m p_bestfitness_glob]
if m==max_iterations_PSO
filename=['results\progression_',int2str(m)];
save(filename,'progress');
end
%Determine next particle position

for p=1:nr_particles %each particle p do {
 [C,I]=max(p_neighbor(p,:).*transpose(p_bestfitne ss(:,3)));
 p_bestneighbor(p,:)=p_bestsofar(I,:); %n =
getNeighborWithBestFitness(p)
 for d=1:nr_dimensions %do {
 i_factor = i_weight*(i_min+(i_max-i_min)*rand (p,d));
 s_factor = s_weight*(s_min+(s_max-s_min)*rand (p,d));
 pdelta(p,d) = p_bestsofar(p,d) - p_current(p, d);
 ndelta(p,d) = p_bestneighbor(p,d) - p_current (p,d);
 delta (p,d) = (i_factor(p,d)* pdelta(p,d)) + (s_factor(p,d) *
ndelta(p,d));

- 79 -

 p_velocity(p,d) = p_velocity(p,d) + delta (p, d);
 if p_velocity(p,d) < delta_min(d)
 p_velocity(p,d)=delta_min(d);
 elseif p_velocity(p,d) > delta_max(d)
 p_velocity(p,d)=delta_max(d);
 end
 if delta(p,d)==0
 p_velocity(p,d)=0.01*domain_max(:,d)* (-1 + (1-(-1))*rand);
 end
 p_current(p,d)= p_current(p,d) + p_velocity(p ,d);
 if p_current(p,d) < domain_min(d)
 p_current(p,d)=domain_min(d);
 elseif p_current(p,d) > domain_max(d)
 p_current(p,d)=domain_max(d);
 end
 end
 end % end of: for each particle p */
end % end while iterations <= max_iterations */

% end of main program */
toc;

create_initial_final_maps
%%%%%%create initial reference map
lu_initial=imread('lu_initial3.tif');
lu_initial=lu_initial(:,:,1);
for i=1:rows
 for j=1:cols
 if lu_initial(i,j)>0
 lu_initial(i,j)=1;
 end
 end
end
lu_initial=(lu_initial==1);
%%%%%save and display
save('data\lu_initial','lu_initial');
figure(100);
imagesc(lu_initial);
axis equal;
%%%%%%%% create final reference map
lu_ref=imread ('lu_ref_final3.tif');
lu_ref=lu_ref(:,:,1);

for i=1:rows
 for j=1:cols
 if lu_ref(i,j)>0
 lu_ref(i,j)=1;
 end
 end
end
lu_ref=(lu_ref==1);
%%%%%%%save and display
save('data\ref_final_year','lu_ref');
figure(200);
imagesc(lu_ref);
axis equal;

Sim_model3
%%%%%%%%%%%%%%%%%%%%%%Simulate spatial
defragmentation%%%%%%%%%%%%%%%%%%%%%%%%

- 80 -

%1. Input variables and data
neighbor_size1=9;
neighbor_size2=25;
map_size=rows*cols;

trans_matrix=p_current(p,:);

lu_current=lu_initial;

 %Beginning simulation
for t=1:nr_time_steps

%%%%%%Compute Enrichment Factor (EF)

%counter of cells in state 1 in map
count_tot=0;
for f=1:rows
 for g=1:cols
 if lu_current(f,g)==1
 count_tot=count_tot+1;
 end
 end
end
if sum(sum(count_tot))==0
 count=zeros(rows,cols);
else
%%%%%%%%%%%%Count_1 EF1 for small sized
neighbourhood%%%%%%%%%%%%%%%%%%%%%%%%
count_1=zeros(rows,cols);
%%%%%%%%%%%%count EF1 for cells in first
row%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=1
 for j=2:cols-1
 for k=0:1
 for l=-1:1
 r=i+k;
 c=j+l;
 if lu_current(r,c)==1
 count_1(i,j)=count_1(i,j)+1;%coun ter of cells in state
1 in neighbourhood
 end
 end
 end
 if lu_current(i,j)==1
 count_1(i,j)=(count_1(i,j))-1;
 end
 count_1(i,j)=((count_1(i,j)/(6-
1))/(count_tot/map_size));%enrichment factor map fo r class 1
 end
end
%%
%%%
%%%%%%%%%%%%%%count EF1 for cell in last
row%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=rows
 for j=2:cols-1
 for k=-1:0
 for l=-1:1

- 81 -

 r=i+k;
 c=j+l;
 if lu_current(r,c)==1
 count_1(i,j)=count_1(i,j)+1;%coun ter of cells in state
1 in neighbourhood
 end
 end
 end
 if lu_current(i,j)==1
 count_1(i,j)=(count_1(i,j))-1;
 end
 count_1(i,j)=((count_1(i,j)/(6-
1))/(count_tot/map_size));%enrichment factor map fo r class 1
 end
end
%%
%%%
%%%%%%%%%%%%count EF1 for cells in first
column%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=2:rows-1
 for j=1
 for k=-1:1
 for l=0:1
 r=i+k;
 c=j+l;
 if lu_current(r,c)==1
 count_1(i,j)=count_1(i,j)+1;%coun ter of cells in state
1 in neighbourhood
 end
 end
 end
 if lu_current(i,j)==1
 count_1(i,j)=(count_1(i,j))-1;
 end
 count_1(i,j)=((count_1(i,j)/(6-
1))/(count_tot/map_size));%enrichment factor map fo r class 1
 end
end

%%
%%%
%%%%%%%%%%%%count EF1 for cells in last
column%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=2:rows-1
 for j=cols
 for k=-1:1
 for l=-1:0
 r=i+k;
 c=j+l;
 if lu_current(r,c)==1
 count_1(i,j)=count_1(i,j)+1;%coun ter of cells in state
1 in neighbourhood
 end
 end
 end
 if lu_current(i,j)==1
 count_1(i,j)=(count_1(i,j))-1;
 end
 count_1(i,j)=((count_1(i,j)/(6-
1))/(count_tot/map_size));%enrichment factor map fo r class 1

- 82 -

 end
end
%%
%%%
%%%%%%%%%%%%%%count EF1 for cells in each
corner%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=1
 for j=1
 for k=0:1
 for l=0:1
 r=i+k;
 c=j+l;
 if lu_current(r,c)==1
 count_1(i,j)=count_1(i,j)+1;%coun ter of cells in state
1 in neighbourhood
 end
 end
 end
 if lu_current(i,j)==1
 count_1(i,j)=(count_1(i,j))-1;
 end
 count_1(i,j)=((count_1(i,j)/(4-
1))/(count_tot/map_size));%enrichment factor map fo r class 1
 end
end

for i=1
 for j=cols
 for k=0:1
 for l=-1:0
 r=i+k;
 c=j+l;
 if lu_current(r,c)==1
 count_1(i,j)=count_1(i,j)+1;%coun ter of cells in state
1 in neighbourhood
 end
 end
 end
 if lu_current(i,j)==1
 count_1(i,j)=(count_1(i,j))-1;
 end
 count_1(i,j)=((count_1(i,j)/(4-
1))/(count_tot/map_size));%enrichment factor map fo r class 1
 end
end

for i=rows
 for j=1
 for k=-1:0
 for l=0:1
 r=i+k;
 c=j+l;
 if lu_current(r,c)==1
 count_1(i,j)=count_1(i,j)+1;%coun ter of cells in state
1 in neighbourhood
 end
 end
 end
 if lu_current(i,j)==1
 count_1(i,j)=(count_1(i,j))-1;
 end

- 83 -

 count_1(i,j)=((count_1(i,j)/(4-
1))/(count_tot/map_size));%enrichment factor map fo r class 1
 end
end

for i=rows
 for j=cols
 for k=-1:0
 for l=-1:0
 r=i+k;
 c=j+l;
 if lu_current(r,c)==1
 count_1(i,j)=count_1(i,j)+1;%coun ter of cells in state
1 in neighbourhood
 end
 end
 end
 if lu_current(i,j)==1
 count_1(i,j)=(count_1(i,j))-1;
 end
 count_1(i,j)=((count_1(i,j)/(4-
1))/(count_tot/map_size));%enrichment factor map fo r class 1
 end
end
%%
%%%
%%%%%%%%%%%%%%%%%count EF1 for the rest of the
map%%%%%%%%%%%%%%%%%%%%%%%%%
for i=2:(rows-1)
 for j=2:(cols-1)
 for k=-1:1
 for l=-1:1
 r=i+k;
 c=j+l;
 if lu_current(r,c)==1
 count_1(i,j)=count_1(i,j)+1;%coun ter of cells in state
1 in neighbourhood
 end
 end
 end
 if lu_current(i,j)==1
 count_1(i,j)=(count_1(i,j))-1;
 end
 count_1(i,j)=((count_1(i,j)/(neighbor_size1-
1))/(count_tot/map_size));%enrichment factor map fo r class 1
 end
end
%%
%%%

%%%%%%%%%%%%%%count_2 EF1 for medium sized
neighbourhood%%%%%%%%%%%%%%%%%%%
count_2=zeros(rows,cols);
%%%%%%%%%%%%count EF1 for cells in first
row%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=1
 for j=3:cols-2
 for k=0:2
 for l=-2:2
 r=i+k;
 c=j+l;

- 84 -

 if lu_current(r,c)==1
 count_2(i,j)=count_2(i,j)+1;%coun ter of cells in state
1 in neighbourhood
 end
 end
 end
 if lu_current(i,j)==1
 count_2(i,j)=(count_2(i,j))-1;
 end
 count_2(i,j)=((count_2(i,j)/(15-
1))/(count_tot/map_size));%enrichment factor map fo r class 1
 end
end
%%
%%%
%%%%%%%%%%%%%%count EF1 for cell in last
row%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=rows
 for j=3:cols-2
 for k=-2:0
 for l=-2:2
 r=i+k;
 c=j+l;
 if lu_current(r,c)==1
 count_2(i,j)=count_2(i,j)+1;%coun ter of cells in state
1 in neighbourhood
 end
 end
 end
 if lu_current(i,j)==1
 count_2(i,j)=(count_2(i,j))-1;
 end
 count_2(i,j)=((count_2(i,j)/(15-
1))/(count_tot/map_size));%enrichment factor map fo r class 1
 end
end
%

%%
%%%
%%%%%%%%%%%%count EF1 for cells in first
column%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=3:rows-2
 for j=1
 for k=-2:2
 for l=0:2
 r=i+k;
 c=j+l;
 if lu_current(r,c)==1
 count_2(i,j)=count_2(i,j)+1;%coun ter of cells in state
1 in neighbourhood
 end
 end
 end
 if lu_current(i,j)==1
 count_2(i,j)=(count_2(i,j))-1;
 end
 count_2(i,j)=((count_2(i,j)/(15-
1))/(count_tot/map_size));%enrichment factor map fo r class 1
 end
end

- 85 -

%%
%%%
%%%%%%%%%%%%count EF1 for cells in last
column%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=3:rows-2
 for j=cols
 for k=-2:2
 for l=-2:0
 r=i+k;
 c=j+l;
 if lu_current(r,c)==1
 count_2(i,j)=count_2(i,j)+1;%coun ter of cells in state
1 in neighbourhood
 end
 end
 end
 if lu_current(i,j)==1
 count_2(i,j)=(count_2(i,j))-1;
 end
 count_2(i,j)=((count_2(i,j)/(15-
1))/(count_tot/map_size));%enrichment factor map fo r class 1
 end
end
%%
%%%
%%%%%%%%%%%%%%count EF1 for cells in each
corner%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=1
 for j=1
 for k=0:2
 for l=0:2
 r=i+k;
 c=j+l;
 if lu_current(r,c)==1
 count_2(i,j)=count_2(i,j)+1;%coun ter of cells in state
1 in neighbourhood
 end
 end
 end
 if lu_current(i,j)==1
 count_2(i,j)=(count_2(i,j))-1;
 end
 count_2(i,j)=((count_2(i,j)/(9-
1))/(count_tot/map_size));%enrichment factor map fo r class 1
 end
end

for i=1
 for j=cols
 for k=0:2
 for l=-2:0
 r=i+k;
 c=j+l;
 if lu_current(r,c)==1
 count_2(i,j)=count_2(i,j)+1;%coun ter of cells in state
1 in neighbourhood
 end
 end
 end
 if lu_current(i,j)==1
 count_2(i,j)=(count_2(i,j))-1;

- 86 -

 end
 count_2(i,j)=((count_2(i,j)/(9-
1))/(count_tot/map_size));%enrichment factor map fo r class 1
 end
end

for i=rows
 for j=1
 for k=-2:0
 for l=0:2
 r=i+k;
 c=j+l;
 if lu_current(r,c)==1
 count_2(i,j)=count_2(i,j)+1;%coun ter of cells in state
1 in neighbourhood
 end
 end
 end
 if lu_current(i,j)==1
 count_2(i,j)=(count_2(i,j))-1;
 end
 count_2(i,j)=((count_2(i,j)/(9-
1))/(count_tot/map_size));%enrichment factor map fo r class 1
 end
end

for i=rows
 for j=cols
 for k=-2:0
 for l=-2:0
 r=i+k;
 c=j+l;
 if lu_current(r,c)==1
 count_2(i,j)=count_2(i,j)+1;%coun ter of cells in state
1 in neighbourhood
 end
 end
 end
 if lu_current(i,j)==1
 count_2(i,j)=(count_2(i,j))-1;
 end
 count_2(i,j)=((count_2(i,j)/(9-
1))/(count_tot/map_size));%enrichment factor map fo r class 1
 end
end

for i=1
 for j=2
 for k=0:2
 for l=-1:2
 r=i+k;
 c=j+l;
 if lu_current(r,c)==1
 count_2(i,j)=count_2(i,j)+1;%coun ter of cells in state
1 in neighbourhood
 end
 end
 end
 if lu_current(i,j)==1
 count_2(i,j)=(count_2(i,j))-1;

- 87 -

 end
 count_2(i,j)=((count_2(i,j)/(12-
1))/(count_tot/map_size));%enrichment factor map fo r class 1
 end
end

for i=1
 for j=cols-1
 for k=0:2
 for l=-2:1
 r=i+k;
 c=j+l;
 if lu_current(r,c)==1
 count_2(i,j)=count_2(i,j)+1;%coun ter of cells in state
1 in neighbourhood
 end
 end
 end
 if lu_current(i,j)==1
 count_2(i,j)=(count_2(i,j))-1;
 end
 count_2(i,j)=((count_2(i,j)/(12-
1))/(count_tot/map_size));%enrichment factor map fo r class 1
 end
end

for i=rows
 for j=2
 for k=-2:0
 for l=-1:2
 r=i+k;
 c=j+l;
 if lu_current(r,c)==1
 count_2(i,j)=count_2(i,j)+1;%coun ter of cells in state
1 in neighbourhood
 end
 end
 end
 if lu_current(i,j)==1
 count_2(i,j)=(count_2(i,j))-1;
 end
 count_2(i,j)=((count_2(i,j)/(12-
1))/(count_tot/map_size));%enrichment factor map fo r class 1
 end
end

for i=rows
 for j=cols-1
 for k=-2:0
 for l=-2:1
 r=i+k;
 c=j+l;
 if lu_current(r,c)==1
 count_2(i,j)=count_2(i,j)+1;%coun ter of cells in state
1 in neighbourhood
 end
 end
 end
 if lu_current(i,j)==1
 count_2(i,j)=(count_2(i,j))-1;

- 88 -

 end
 count_2(i,j)=((count_2(i,j)/(12-
1))/(count_tot/map_size));%enrichment factor map fo r class 1
 end
end

for i=2
 for j=1
 for k=-1:2
 for l=0:2
 r=i+k;
 c=j+l;
 if lu_current(r,c)==1
 count_2(i,j)=count_2(i,j)+1;%coun ter of cells in state
1 in neighbourhood
 end
 end
 end
 if lu_current(i,j)==1
 count_2(i,j)=(count_2(i,j))-1;
 end
 count_2(i,j)=((count_2(i,j)/(12-
1))/(count_tot/map_size));%enrichment factor map fo r class 1
 end
end

for i=2
 for j=cols
 for k=-1:2
 for l=-2:0
 r=i+k;
 c=j+l;
 if lu_current(r,c)==1
 count_2(i,j)=count_2(i,j)+1;%coun ter of cells in state
1 in neighbourhood
 end
 end
 end
 if lu_current(i,j)==1
 count_2(i,j)=(count_2(i,j))-1;
 end
 count_2(i,j)=((count_2(i,j)/(12-
1))/(count_tot/map_size));%enrichment factor map fo r class 1
 end
end

for i=rows-1
 for j=1
 for k=-2:1
 for l=0:2
 r=i+k;
 c=j+l;
 if lu_current(r,c)==1
 count_2(i,j)=count_2(i,j)+1;%coun ter of cells in state
1 in neighbourhood
 end
 end
 end
 if lu_current(i,j)==1

- 89 -

 count_2(i,j)=(count_2(i,j))-1;
 end
 count_2(i,j)=((count_2(i,j)/(12-
1))/(count_tot/map_size));%enrichment factor map fo r class 1
 end
end

for i=rows-1
 for j=cols
 for k=-2:1
 for l=-2:0
 r=i+k;
 c=j+l;
 if lu_current(r,c)==1
 count_2(i,j)=count_2(i,j)+1;%coun ter of cells in state
1 in neighbourhood
 end
 end
 end
 if lu_current(i,j)==1
 count_2(i,j)=(count_2(i,j))-1;
 end
 count_2(i,j)=((count_2(i,j)/(12-
1))/(count_tot/map_size));%enrichment factor map fo r class 1
 end
end
%%
%%%
%%%%%%%%%%%%%%%%%count EF1 for the rest of the
map%%%%%%%%%%%%%%%%%%%%%%%%%
for i=3:(rows-2)
 for j=3:(cols-2)
 for k=-2:2
 for l=-2:2
 r=i+k;
 c=j+l;
 if lu_current(r,c)==1
 count_2(i,j)=count_2(i,j)+1;%coun ter of cells in state
1 in neighbourhood
 end
 end
 end
 if lu_current(i,j)==1
 count_2(i,j)=(count_2(i,j))-1;
 end
 count_2(i,j)=((count_2(i,j)/(neighbor_size2-
1))/(count_tot/map_size));%enrichment factor map fo r class 1
 end
end
%%
%%%
end

%%%%%%%compute probability map
p_map=zeros(rows,cols); % empty grid storing the tr ansition
probabilities for class 1
 for i=1:rows
 for j=1:cols

- 90 -

 p_map(i,j)= (1/(1+exp(-trans_matrix(1)-
(trans_matrix(3)*count_1(i,j))-(trans_matrix(5)*cou nt_2(i,j))))*(1-
lu_current(i,j)))+...
 (1/(1+exp(-trans_matrix(2)-
(trans_matrix(4)*count_1(i,j))-
(trans_matrix(6)*count_2(i,j))))*lu_current(i,j));
 end
 end

%%%%%%%%simulate land use based on p_map and random numbers
R=rand(rows,cols);
lu_new=(R>p_map);
lu_current=lu_new;

%%%%%%%%%display land use map for each time-step
% figure(t);
% imagesc(lu_new);
% axis equal;

%%%%%%%%%%Save results
 if t==nr_time_steps
 lu_sim_final=zeros(rows,cols);
 lu_sim_final=lu_new;
 end

end

compute_criteria

nrcells=rows*cols;

%%%compute Area Agreement (AA)%%%%%%
perct_1=(sum(sum(lu_ref==1)))/nrcells;
perct_2=(sum(sum(lu_sim_final==1)))/nrcells;

perct=1-abs(perct_1-perct_2);

%%%%%%%%compute Cell Agreement (CA)%%%%%%%%%%%%%%%%%%

agree_00=zeros(100,100);
agree_11=zeros(100,100);
exp_01=zeros(100,100);
exp_10=zeros(100,100);

if sum(sum(lu_sim_final))==0
 agree_00=(lu_ref==0);
 %agree_11=lu_ref;
 %exp_01=lu_ref;
 exp_10=(lu_ref==1);
elseif sum(sum(lu_sim_final))==nrcells
 %agree_00=(lu_ref==0);
 agree_11=(lu_ref==1);

- 91 -

 exp_01=(lu_ref==0);
 %exp_10=lu_ref-1;
 avpatchsize_sim=1;
else
agree_00=(lu_ref+lu_sim_final)==0;
agree_11=(lu_ref+lu_sim_final)==2;
exp_01=(lu_ref-lu_sim_final)==-1;
exp_10=(lu_ref-lu_sim_final)==1;
end

pa_00=(sum(sum(agree_00)))/nrcells;
pa_11=(sum(sum(agree_11)))/nrcells;
pe_01=(sum(sum(exp_01)))/nrcells;
pe_10=(sum(sum(exp_10)))/nrcells;
pa=pa_00+pa_11;

%%%%%%%%additional indices%%%%%%
% p0T=pa_00+pe_01;
% p1T=pe_10+pa_11;
% pT0=pa_00+pe_10;
% pT1=pe_01+pa_11;
% pe=p0T*pT0+p1T*pT1;
%
% kappa=(pa-pe)/(1-pe);

%%%%%%%%%compute average patch size (PS)%%%%%%%%%%%%%%%%
L=bwlabel(lu_ref);
avpatchsize_ref=0;
for label=1:max(max(L))
count=0;
for i=1:rows
 for j=1:cols
 if L(i,j)==label
 count=count+1;
 end
 end
end
avpatchsize_ref=avpatchsize_ref+count;
end
avpatchsize_ref=avpatchsize_ref/max(max(L))/nrcells ;
%%%
avpatchsize_sim=0;
if sum(sum(lu_sim_final))==0
 avpatchsize_sim=0;
elseif avpatchsize_sim==nrcells;
 avpatchsize_sim=1;
else
L=bwlabel(lu_sim_final);
avpatchsize_sim=0;
for label=1:max(max(L))
count=0;
for i=1:rows
 for j=1:cols
 if L(i,j)==label
 count=count+1;
 end
 end
end
avpatchsize_sim=avpatchsize_sim+count;

- 92 -

end
avpatchsize_sim=avpatchsize_sim/max(max(L))/nrcells ;
end

avpatchsize=1-(abs(avpatchsize_ref-avpatchsize_sim));

