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Foreword

This report represents eight months of research in land use change modelling. This work
brought me a lot of insight on how to simulate temporal and spatial phenomena. | also
learnt that in research an answer inevitably brings new questions. Actually, it may be the
purpose of this thesis research; question what has already been done, explore new ways
to do things and maybe come up with better ones.

I would like to thank my supervisors, Gerard Heuvelink and Arnold Bregt for their
guidance and support to carry out this work. | would also like to thank Emiel van Loon
from the University of Amsterdam, for his decisive advice on Matlab programming.

| wish that this thesis is the starting point for further research on land use change
modelling and more particularly on the use of the Particle Swarm Optimization for
calibration purposes.

Aurélien Letourneau
10 April 2007, Wageningen
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Land cover and more particularly land use are cemplynamic systems influenced by
numerous factors (drivers and pressures) and aregofg in various ways (processes).
Land use change models (LUCMSs) are designed to sagpport for decision-making in
spatial planning. Unfortunately, many of the drsvand processes are not fully known or
understood, and induce uncertainty in the modeadiptiens. Thus, probabilistic models of
land use change, such as Markovian models, areopyppie to deal with prediction
uncertainty and to simulate land use change.

Nevertheless, LUCMs are simplified representatiafisa land use system and the
reliability of the model simulations depends on #tteuracy of the reference datasets, the
design of the conceptual model and the proper redidn of the model parameters. Here,
the main issue addressed in this research is thwateon of a spatial Markovian LUCM
(M-LUCM). The parameters of a LUCM cannot be ob¢girfrom an analytical analysis
since we need transition probabilities for singpeet steps, but only have data with more
than one time step intervals. Moreover the spatialdels take the influence of the
surrounding pixels into account which is diffictdt determine analytically. Thus, in order
to proceed to an automated search of the modelmedeas values, we used an
optimization algorithm; the Particle Swarm Optintiaa (PSO), which is based on the
theory of Swarm Intelligence.

Since parameter optimization is an iterative precdse chosen approach was to test and
configure the calibration method, using synthetatadets and simplistic M-LUCMs
developed by the author. This procedure enablesprmgress step-wise in the
experimentation of the calibration method, by aaliing increasingly complex land use
change processes. Here the processes consideretheepatial independence, expansion
and defragmentation models.

The performance of the PSO was evaluated basedaearotnputation time and the quality
of the calibration based on map comparison inditasiscape metrics and reference
parameters.

The basic models applied to synthetic land usesdtgarevealed to be very useful to
experiment and test the calibration method in diifié situations. Besides, calibrating the
most simplistic and unrealistic model (i.e. spaitalependence), enabled to visualize the
PSO behaviour and gain insight in the optimizagwacess. Thus, the results obtained
further facilitated the PSO configuration to caditer more complex models. The model
simulating the expansion presented the best cabibraesults, whereas the model for

defragmentation could not be calibrated properlsgbpbly due to an inappropriate

conceptual model.

Nevertheless, this research showed that PSO i®miging calibration method for M-
LUCMs. It was the first step to assess the usghalitd efficiency of the PSO and further
research should be undertaken to determine whé#tbeglgorithm can also be applied to
real world data.

Keywords: land use modelling, Markov theory, calibration, optimization, Particle Swarm
Optimization.
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1 Introduction

1.1 Context and background

Land cover and more particularly land use are cemplynamic systems influenced by
numerous factors (drivers and pressures) and amegaig in various ways (processes).
The changes in the use of the land are dependenibphysical factors (e.g. soil erosion,
land degradation, flooding...) but also on humanvéaas and the related strategic
policies, socio-economic drivers and factors (Kambaaer and Ardon 1999). Besides,
policy-makers, decision-makers, scientists as asllthe broad public are increasingly
concerned about environmental issues and natusalirees management. These issues
are both influenced by land use change and spalaining (Vitousek 1997). In other
words, the ecosystems services and the naturalineeso sustainability depend on how
they are exploited and managed by human activiG@msequently, land managers and
decision-makers needs tools to quantify, locate @rdalize probable future land use
changes in order to assess their consequenceg entlronment.

Land use change models (LUCM) are designed to bepaort for decision-making in
spatial planning. In addition, models can improwe anderstanding of the underlying
processes and drivers. Some of these models aerndeistic; they are designed
considering that there is a sound knowledge oflahd use change driver and processes,
as well as reliable data with negligible uncertaitdnfortunately, many of the drivers of
the land use system as well as the underlying peaseare not fully known or understood,
and induce uncertainty in the model predictionser€fore, probabilistic models of land
use changes such as stochastic models, and mdreujaaty Markovian models, are
appropriate to deal with prediction uncertainty iftam 2003). Indeed, such models can
provide the decision-maker with predictions wittifetient probabilities of occurrence
(Turner et al. 1995). In addition, a stochasticrapph is based on transition probabilities
from one state to another, and takes into accdwnnature, partly random, of land use
change processes. Riebsame et al. (1994) notettérefor LUCM to be able to deal with
surprises and unexpected events.

Besides, land use change can be seen as a phenomieich has a temporal and spatial
dimension. There are spatial dependencies, sinoatias in one area can influence the
land use allocation in the adjacent parcels (Tuetal. 1995). Thus, analysing complex
land use patterns as independent parcels can teawisinterpretations (Balzter et al.

1998). Therefore spatially-explicit models; i.e. dets that take into account the spatial
relationship among land use at neighbouring locatiare needed to facilitate a thorough
understanding and to improve land use predictiomfanagement and planning purposes.

Finally the reliability of the model simulations darconsequently the quality of the
decision taken, depend on the accuracy of the erefer datasets, the design of the
conceptual model and the proper calibration ofntloelel parameters.



1.2 Problem definition

The main issue addressed in this research is thwateon of spatial Markovian LUCMs

(M-LUCMS), which is elaborated in the next sectidm.this section, the Markov theory
and spatially explicit Markovian models will be &ity described. Next attention will be
given to the calibration of these models, and npaeicularly specific calibration issues
related to increasingly complex models.

1.2.1 The Markov property

Considering an arable land parcel, it is unlikdlgttit changes to a forest but it is more
probable that it stays arable land or perhaps asamgo built-up area. Likewise, built-up
area has a small chance to change into forestabteatand. Thus, we can notice that the
state at the current time influences the stateeahéxt step.

Wikipedia states that, in probability theory, “aodtastic process has the Markov
property” when “the conditional probability distution of future states of the process,
given the present state and all past states, depmrlg upon the current state and not on
any past states, i.e. it is conditionally indeperidef the past states (thmath of the
process) given the present state” (Wikipedia, ammbOctober 2006; Markov 1907). In
other words, Markov theory assumes that the curstaite of a system only causally
depends on the state which immediately precedaslitconsequently, the state at the next
time-step depends only on the current state. Thassticcession of system states over
time, where each state is dependent from the puswane, can be simulated by a Markov
chain.

This property is expressed by Equation 1 and ifdet in Figure 1.

P(Xt+1 Xt, Xt-11 Xt_z, vy Xt-T) = P(Xt+1 Xt) Equation 1

where: X; is the land use type of the considered cell at time t.
P is the transition probability.
T is the number of time-steps.

Figure 1 Transition process where only the immediat e preceding state is taken into account.

One should note that this model is suitable to &teuland use change processes where
spatial independencas assumed (see also Figure 3). In other wordsmibdel represents
land-use systems where the neighbouring land ysestizave no influence on the future
state of the cell considered.



In order to simulate land use change, a transitatrix is applied to an initial land use

raster-map to produce a prediction of the cellatesait the next time step. The transition
matrix contains the probabilities that a consideselll changes from one land use type to
another one, as shown in Table 1. The rows arectinent land use types and the
columns are the possible land use types at thetmeststep.

Table 1 Fictive transition matrix for a land use sy  stem with three different land use types.

Future land use type

Forest Urban Arable

= Forest 0.5 0.3 0.2
C

83

£2 | Urban 0 1 0
=0

5 S

= Arable 0.1 0.3 0.6

For instance, the transition matrix indicates that:

The probability that arable land changes into foie8.1,

The probability that arable land changes into urd@a is 0.3,

The probability that arable land remains arablel lizr0.6.
Note that the sum of the transition probabilitiegirow must be equal to 1 and that all the
transition probabilities must lie between 0 andntleed, it is certain that a land use type
either stays in its current state or changes inaf the other two land use types, thus the
sum of the probabilities in a row must be equdl.to

1.2.2 Spatially explicit Markovian models

Several models based on Markov chains have alieegly developed to simulate land use
change. Some of these also consider the spataigement of land use types (Balzter et
al. 1998; Balzter 2000; Schneider and Pontius 2Q@djfen 2003; Heldens 2006). As
mentioned earlier, analysing and simulating comjdexi use patterns without taking into
account their spatial interactions can lead to mespretation (Turner et al. 1995; Balzter
et al. 1998). For instance, a crop land, whichaurdings is extensively urban, has higher
probability to change to urban than a crop lanéted in a natural area. It is therefore a
logical and in many cases necessary extensiorchode spatial dependencies in LUCM.

In order to extend the model with spatial depena=sn@ Markov chain can be replaced
with a Markov Random Field (MRF). A MRF is a lodiextension of the Markov chain
from the one-dimensional case (time) to two or ndineensions (space and time). In this
framework, a land use type, at a considered locatall change (or not) to another one,
depending on the current land use at the sameidacand the land use in neighbouring
cells (see Figure 2). Here, one should note thaflBF is a form of cellular automata and
that the size of the neighbourhood can change dicgpto the application requirements.
Cellular automata are dynamic models, discretenre tand space, applied to a lattice
(grid-cells). All cells can be in n different statand may change state according to



transition rules (i.e. a transition probability mag} which take into account the state of the
neighbouring cells, see Equation 2 (compare withaton 1).

PX gjyeer X Xa2p -« Ximnyt, X101 X228+ Ximnyteds -0 X2, 1620 X1,2)
zeees X =PKijpeer Xeijyo Xi-1j)tr X j-ntr Xyt Xijix)

where: Xy is the land use at the cell located on row i and column j, at time t.

Equation 2

mis the number of rows in the lattice.

N is the number of columns in the lattice.
P is the transition probability.

Zis the number of time-steps.

Figure 2 Markovian model with spatial interactions: The state of the pixel att -1 and the state of it s
four neighbours at t -1 influence the state of the pixel at t.

Integrating spatial interaction in a Markovian mbde/olves more complex transition

rules:

Transition probabilities depend on the land usth@éneighbourhood. Compared to
a simple Markov chain, where the neighbourhoodrmeffect on the transition,
here the neighbourhood is composed of nine cellsof® neighbourhood): the cell
of interest and the eight adjacent cells (as showgure 2).

The number of entries in the transition matrix @ases; as the matrix must take
into account the combination of land use type(sha considered neighbourhood
(see Table 2). The size of the transition matrigceseases accordingly.



Table 2 Example transition matrix for a land use sys  tem with three different land use types, taking
into account the land use types occurring in the n eighbouring; F=forest, U= urban area, and A=arable
land.

Future land use types

Land use type in | Land use type combination

considered )égll in the neigh)t/)%urhood Relre; IR IS
Forest F 0.7 0.1 0.2
Forest U 0.5 0.4 0.1
Forest A 0.5 0.1 0.4
Forest FU 0.6 0.3 0.1
Forest FA 0.6 0.1 0.3
Forest UA 0.3 0.3 0.4
Forest FUA 0.4 0.3 0.3
Urban F 0 1 0
Urban U 0 1 0
Urban A 0 1 0
Urban FU 0 1 0
Urban FA 0 1 0
Urban UA 0 1 0
Urban FUA 0 1 0
Arable F 0.1 0.2 0.7
Arable U 0.1 0.4 0.5
Arable A 0 0.2 0.8
Arable FU 0.1 0.3 0.6
Arable FA 0.1 0.1 0.8
Arable UA 0.1 0.4 0.5
Arable FUA 0.1 0.3 0.6

1.2.3 Markovian model calibration

M-LUCMs aim at simulating land use changes overetinbut are a simplified
representation of reality (Veldkamp and Lambin 2004 order to reach a satisfactory
degree of similarity with the real world, the modeleds to be calibrated by choosing the
model parameters values such that the model resaitsh reality as closely as possible
(Li and Yeh 2002). Besides, as noted by Englun®Q@).9‘variability in spatial estimation
methodology has a significant effect on the quadityhe estimates, and on the quality of
decisions based on the estimates”. Therefore, ingeeded to design a thorough
methodology to calibrate a model in order to insee¢he prediction reliability and to
provide a reliable tool for decision-making.

The transition matrix is the model element whicledwto be calibrated by setting the
proper parameters values i.e. the transition prtibab. It is not possible to determine the
parameters values analytically since we need tiangprobabilities for a single time-step,
but only have data at time points that are sepdiagenore time steps. For example, land
use is not monitored every year but only once evenyor twenty years. Moreover the
spatial models take into account factors whichdiffecult to determine analytically, such
as the influence of the surrounding pixel. Thereféhe M-LUCMs need to be calibrated
by proceeding to an automated search of the paessnetalues using optimization
algorithms. Thus, the following calibration requirents are identified:

Reference datasets; an initial land use map (a) @@ a final one, later in time

i.e. after T time-steps (in this thesis we will ds€20). The initial land use map is



used as starting point for the model. The finatllase map is used as the reference
map to be matched as closely as possible by thelnsodulation.

Criteria to measure the goodness-of-fit of the nhedrulation to create a realistic
final land use map. These criteria can be map casga indices, landscape
metrics or single-map statistics.

An optimization algorithm to estimate the modelgmaeters values. Basically, this
iterative calibration technique, such as the Sitedldnnealing (SA), seeks for the
optimal combination of transition probabilitiesdbtain a simulation matching the
reality (i.e. the reference final land use map)ksely as possible. The search
process stops once the criteria to measure thenggeebf-fit are satisfied.

One should note that a calibration by iterationidgjty requests high computation

resources. Besides the calibration of models candoegplex when taking into account
several land use types or multiple spatial varmlfle and Yeh 2002). Thus it will be

necessary to limit the number of entries in thagitgon matrix (see Table 2) to manage
the complexity of the calibration process.

1.3 Research objectives and research questions

The overall objective of this research is to depedmd apply a calibration method for a
M-LUCM. In order to reach this objective severaearch questions need to be answered:
1. How to create basic M-LUCMs which enable to evadiuthe calibration method?

2. What are available calibration methods and whicé isnthe most appropriate for
calibration of a M-LUCM?

3. How to implement the calibration method and apptg ibasic M-LUCMs?

4. How to evaluate the calibration performance?

1.4 Report outline

In Chapter 2 the three conceptual models for tiseclid-LUCM are described, as well as
the synthetic datasets used to further calibrate rttodels. Then, the results of the
literature review on optimization algorithms ar@em in the third chapter. In Chapter 4,
first, the criteria to compare the reference maghwhe simulated ones are listed and
described. Then the concept of the selected atgons explained as well as the approach
to apply it to the basics M-LUCM. The results oktlealibration are presented and
discussed in Chapter 5. Finally, the research grestainswered in the last chapter, and
the conclusion and recommendations for future rebeare presented.



2 Basic land use change models and synthetic datase ts

The chosen approach is to test and configure atselealibration method, using synthetic
datasets as reference and simplistic land use ehdagkovian models, in order to:

1. Carry out numerous experiments with different calilon settings.
This research aims at evaluating possible M-LUCMbcation techniques and using
simple synthetic datasets, instead of complex weald data, is expected to reduce the
computation time of the calibration. This is be@atl®e number of land use classes present
in the map or the study area extent can be limied.simplicity, the synthetic land use
datasets will contain only two land use types “Qdd1”. Thus, faster calibration process
will enable to run multiple types of experimentghe time frame of this research.

2. Dispose of reference parameters

Using synthetic datasets provides reference pammétee section 2.6) which can serve
as benchmark to see how well the calibration manéménd these parameters. Indeed, to
generate a reference final land use map, the basdels will be applied to a fabricated
reference initial map, with known realistic paraerstto simulate the land use after T
time-steps. Then, the transition matrix, contairkngwn parameters, will be used as the
reference to be reached as closely as possibleahblgrating the models. Only one
simulation is done in order to generate a uniqdereace dataset. Besides, using this
method to generate synthetic datasets enable by verthe conceptual models are
properly simulating the process considered andbeaproperly calibrated. Finally, using
synthetic datasets, the processes consideredlreriderstood which enables to evaluate
only the calibration performance without the inteeince from data uncertainty or the lack
of knowledge about the land use change processes.

3. Test the calibration method in different situatiomg calibrating basic models
representing increasingly complex land use chamgegsses.
Three different basic M-LUCMs will be implementesimulating increasingly complex
land use change processes (see Figure 3). Thisquoxis chosen to progress step-wise
in the experimentation of the calibration methattlded, calibrating the most simplistic
model using synthetic datasets is expected to geowisight in the calibration process by
facilitating the analysis of the results obtained éurther facilitate the calibration of more
complex models. For this research the followingcpsses of interest have been selected
out of the range of existing land use change psEes
- Spatial independence this is the simplest case. Here the change d lase
depends only on the current state of the cell tdrast. This simple model, with
few parameters, will enable to test thoroughly tiadibration method and its
performance according to different settings.
Expansion one land use type gains area at the expensenef @nd use types.
For example, the expansion of urban areas as ogpdosthe reduction of rural
lands. Indeed, in practice arable land has a biggance to change into urban area
than the opposite. Moreover, the chance is biggecdlls neighbouring urban area
than for cells that are at a remote distance fioese areas. This model will enable
to test the calibration performance when more patama have to be calibrated and
where the land use change process is more complex.
Defragmentation; this represents the process whereby cells witfilai land use
become clustered and isolated land use types disappor example, the land use

-7-



type “arable land” is initially spread in little p=ls in the landscape and step by
step parcels are joining so that bigger parcekraible land emerge in the land use
pattern. This model has a higher degree of comygles cells having the same

land use type may have different probabilities loartge according to the patch
they are part of.

Spatial independence

F

Expansion

Defragmentation

=5

£.itd

t=0 t+1 t+n

LEGEND
Land use type A B
Colour

Figure 3 Fictive grid -cells representing the three land use change process  es of interest.




2.1 Conceptual framework

This section describes the conceptual model fottthee processes of interest. A literature
review has been carried out to identify recent M&M in order to implement simplified
versions. The basic M-LUCMs can be implemented gusimatrix algebra since a raster
map can be considered as a matrix whose size @& équhe size of the map in pixels.
Then the matrices computation can be translatex aatnputer code in a software tool
such as Matlab (http://www.mathworks.cpbm

The approach chosen is inspired from two similaClMs developed by de Almeida et al.
(2003) and Wu (2002) where the transition probaedi are determined by logistic
regression. Thus the land use transition probagsliare a function of a set of n factors
(see Equation 3).

P
Log(ﬁ) =go+a1 Xita 2 Xe+...¥@n X Equation 3

where: P is the transition probability
X1,...,Xnare the factors
1,--, n are the factor coefficients (i.e. importance).
o0 IS a constant.

We will not use in this research the same factomas and de Almeida such as the
distance to city centre, or distance to industz@es. Our model aims at being basic and
easy to handle, developed to be applied to sywmtltgtiasets; consequently the factors
considered will be:

The land use type of the cell of interest.

The surrounding land use types of the cell of eggeri.e. the neighbourhood

characteristics.
One should note that we are now using a logistizession to compute the transition
probabilities, consequently the calibration of thedel will now aim at determining the
logistic regression coefficients (i.e.o, 1, 2..., n) In order to obtain transition
probabilities which properly simulate the procegmterest. Thus, the transition matrix is
now replaced by a coefficients matrix as shownabl& 3, section 2.1.3.

2.1.1 The neighbourhood characteristics: the enrich ment factor

As mentioned in the Introduction land use change &patial phenomenon and the M-
LUCM needs to take into account the influence ef $hrrounding land use types during
the change processes. Besides, the amount ofsmtribe transition matrices needs to be
minimized to further facilitate and speed up theftioients calibration. As we are now
using a logistic regression to derive the transifiwobabilities, it is possible to take into
account the neighbourhood characteristics usingique factor for each land use type
which will dramatically minimizes the amount of gas in the matrix (see Table 3,
section 2.1.3). This factor, called the Enrichmiéattor (EF), was developed by Verburg
et al. (2004), to analyze the land use type intemas over a period of time. This research
aimed, originally, at using the EF, not as a fatbodetermine the probabilities of land use
change, but as a source of information to facditae calibration of LUCMs. However, as



stated by Verburg (2004), using the enrichmentofaeione, at detailed scale, yields
highly satisfactory simulations to predict the larg changes.
The EF of a land use type in a considered neighitomat is given by Equation 4.

Ne,i,d/Ne,d
EF(i) = W Equation 4

where: i is the land use type i.
cis the cell of interest C in the raster.
dis the size of the neighbourhood of the cell c.
N is the total number of cells in the neighbourhood of cell C.
Ne, i is the number of cells in state i in the neighbourhood of cell c.
N; is the total number of cells with state i in the raster.
N is the total number of cells in the raster.

This factor can be expressed for each land usepfygsent in the map. It represents the
occurrence of a considered land use type in thghbeurhood of each cell, related to its
overall occurrence in the map. First the occurreote considered land use type is
computed in the neighbourhood of each cell, aratedl|to the total number of cells in the
neighbourhood. Then, the occurrence of the santeuar type is computed in the entire
map and related to the total number of cell inrtfap.

One should note that in this research a neighbaurtud type Moore will be used, and
that different size of neighbourhood may need toaided according to the land use change

process which needs to be simulated (see Figurel 4he defragmentation model section
2.4).

Figure 4 Different sizes of Moore neighbourhoods af  ter Verburg (2004).
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2.1.2 Generic equation

Equation 5 is the generic equation which will bediso determine the land use transition
probabilities.

Pqi)
1- P
+amigj) - EF).d = mediumt @mjij) - EF(j),d = medium

Log( ) =a +asii)- EF),d = sman+ asji)- EF(j).d = smal

Equation 5

where: i is the land use type i.
j is the land use type j.
, Si, Sj, miand mjare the model coefficients.
Py is the transition probability that the cell with the land use i becomes j.
dis a small-sized and/or medium-sized neighbourhood.

Equation 5 will be adapted to the land use changegss of interest. Besides, the
transition probabilities between the different lande types take into account the
neighbourhood interactions using the EF as showBquation 4. In addition, si, sj,

mi and mj have values depending on the type of land ussitram as shown Table 3.

2.1.3 The coefficients matrix

The coefficients values can be presented in a xnfdrim (see Table 3). Here a land use
system with two land use types “0” and “1” is calesed.

Table 3 Generic coefficients matrix.

To
0 1
sO sl mO ml sO sl mO ml
g| O ©00 | SO0 | Sloo | MOpo) | Mleog | (o1 | SOpy | Sleoy | MOpy | Ml
o
w1 @) | SOuo | Sluo | MOuo) | Mlug | @y | SOay | Slay | MOuy | mMlay

2.1.4 Simplification

Equation 5 can be simplified as we use a binarg lase map, i.e. only two land use types
are present, therefore:
EF¢).q andEF) 4 are linearly correlated adc.i.d =N- Nc,j.d ; consequently the EF
for only one land use type is sufficient to deterenall the transition probabilities
and the other one can be removed from the logisgoession.
P(ii) + P(ij) =1 andP(ji) + P(jj) =1, thusP(ij) =1- P(ii) andP(j,-)z 1- P(ji). Thus, in order
to determine all the transition probabilities f@ch transition type, only one type
of transition probability is needed for each lasé type.

Consequently the transition probabilities can n@exbtermined using Equation 6.
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P . .
Log(ﬁ) = aqij) + asji - EF . d = sman+amjgij) - EF(j), d = medium
= ()

Equation 6

One should note thatsji)and amjq)in Equation 6 are not equal tsji)and amjgi)in
Equation 5. Besides, the coefficients matrix neeederive the transition probabilities
can now be presented as in Table 4.

Table 4 Simplified generic coefficients matrix.

To

0

sl ml
€10 ©0o | Sloo | Ml
o
w1 10) Slao) | Mlpg

Finally, considering that:
Zij) = &)+ asji - EF (). d = smai+ amjqi) - EF(j),d = medium, the Equation 6 can now
be written as Equation 7:

1

1+ e Z(ij) Equation 7

Py =

2.2 Model 1: Spatial independence

The spatial independencmodel aims at simulating land use change processasming
that there are no interactions among the neighlomaritand use types. In this case only
the temporal aspect (the cell current land use)tigéaken into account to compute the
transition probabilities. Thus the EF factor can reenoved and it is not needed to
determine the transition probabilities using a $tigi regression. Consequently the
transition probabilities can be directly calibratesl shown in Table 5. This simulation is
the most simple (a Markov chain) and is the inig@p to develop and experiment the
calibration method. The model flowchart is presdnteFigure 5.

Table 5 Transition matr ix for the Spatial Independence model.

To
0
£ 0 P o)
o
LL 1 P( 11)
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2.3 Model 2: Expansion

In order to simulate the expansion of land use tggainst another, the transition
probabilities are determined usigguation 8

P :
—) =ai+ asj(i - EF(j), d = small Equation 8

In the case of thexpansionmodel, it is assumed that only the land use typesctly
surrounding the cell of interest are necessary ampute the transition probabilities.
Therefore, in this case, the following factors t@een into account:
The current land use type.
The EF in a small neighbourhood; consequenthyj and EF(j),d = medium are
removed.
The model flowchart is presented in Figure 5 areddbrresponding coefficients matrix is
shown in Table 6.

Table 6 Transition matrix for model 2: Expansion.

To
0
sl
0 sl
g (00) (00)
L 1 (10) Sl

2.4 Model 3: Defragmentation

This model represents the expansion of large patoha considered land use type and the
reduction of the small ones. The transition proli#s are determined using Equation 9.

P . .
Log(ﬁ) = aqij) + asji) - EF ). d = sman+amjgj) - EF(j), d = medium
= ()

Equation 9

In the case of the defragmentation model, a celited in a small patch has more chances
to change of land use than a cell located in aelaogpe. In other words, the size of the
patch containing the cell of interest determingspitobability of change to another land
use type. Consequently, it is assumed that inieractfrom further distance occur
between the land use types and that two differemeissof neighbourhood are needed to
determine the transition probabilities. In this esathe following factors are taken into
account:

The current land use type.

The EF of a small-sized neighbourhodéX).

The EF of a medium-sized neighbourhodd?).

The model flowchart is presented in Figure 5 areddbrresponding coefficients matrix is
shown in Table 7.
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Table 7 Transition matrix for model3: Defragmentati

2.5 Generic flowchart of the basic M-LUCMs

Figure 5 presents the generic flowchart for theehrasic M-LUCMs.

on
To
0
sl ml
£ 0 (00) Sloo | Ml
L 1 (10) Slag | Mlgog

1. Compute map of Enrichment Factor for land use type "j".
2. Compute transition probabilities for land use type "i".

3. Simulate the land use map at next time-step.

Initial land use Coefficients
> map matrix fo!' : Random
) transitions i>i numbers map Legend
; and j>i
1
@ Input data
1
' .
. Intermediary
Enrichment —
Factor for land
= -
Probability
map for 4,( 4 )
transition
i>i and j>i
—————— >
Only for models
2and3
Actions

Figure 5 Generic flowchart of the three basics M-LU

CM.
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2.6 The synthetic datasets

The synthetic datasets can now be created usinglitffezent models according to the
process of interest. The land use datasets comtdial and final reference maps
representing the spatial distribution of two larse eypes “0” and “1” for a study area set
to 100 by 100 pixels.

2.6.1 Model 1: Spatial independence

As the spatial independencmodel aims at simulating the spatial independefciand
use change; the initial state is generated byibliging randomly the two land use type in
the map. Then thepatial independencenodel is applied, for T=20 time-steps, from the
initial map to create a final map using the follagitransition probabilities? o= 0.990
andP(10=0.005 The transition matrix is presented in Table 8.

Table 8 Reference transition matrix for the  spatial independence model for 1 time-step.

These transition probabilities produce a realiftial state where few land use changes
occur in the maps after 20 time-steps (see MapVE) can see that land use type “1” has
increased which is in accordance with the transiti@trix stating that a cell “0” has twice
more chance to become “1” than a cell “1” to becdfie

Initial land use map ‘ ‘ Final I‘and use map

10 , 10F

20 , 20

301 , 301

40r B 40+

501 B 50r

60r q 601

701 i 70-

80 1 80

90 i 90-

10— 20 40 60 80 00 1005 20 20 60 80 100
Map 1 Initial and final reference land use maps for  spatial independence model.

LEGEND
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2.6.2 Model 2: Expansion

As theexpansionrmodel aims at simulating the expansion of a cared land use type;
the initial state is a land use map presentingtehpaf land use type “1” surrounded by the
land use type “0”. After 20 time-steps, the land osap should present an expended patch
of land use type “1”. Thus model 2 is applied te tinmitial land use map with the
following parameters:

(00):20 and (10):-20.

31(00)2-12 and S](]_O)ZO.
The reference coefficients matrix is presentedabld@ 9.

Table 9 Reference transition matrix for the  expansion model for one time-step.

From

We can see that using these parametersefpansionmodel properly simulates the
expansion of a patch classified as land use typge(sée Map 2). Indeed, considering
Equation 7:

- When (o is positive and slqgis negative; if Ef is close to O theRo) is
close to 1.But ifEF is higher than 0, theRy) is close to 0. Consequently a
cell classified as “0” as few chance to stay “Oitils surrounded by cells classified
as “1".

When (10)is negative andsl;qis equal to zero; the EF has no influence on

the transition probability and cell classified 4S8 Will never become “0”.
Moreover it proves that thexpansionmodel can be calibrated so that it simulates the
expansion of a considered land use patch.

Initial land use map Final land use map

10¢ 1 10

20¢ 1 20¢

30 i 30.

40t 1 40f

50/ i s0L

60 1 601

701 b 701

80f : 80"

90/ : 90"
1005 20 40 60 80 w00 10— 20 40 60 80 100

Map 2 Initial and final reference land use maps for ~ the expansion model.
LEGEND
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2.6.3 Model 3: Defragmentation

The third model aims at simulating the defragmeéotatThus the initial map represents
different sizes of patches of land use type “ltraunded by the land use type “0” (see
Map 3). Due to the complexity of the process amdtitme available, it was not possible to
find the model coefficients simulating the procegiterest. Consequently the final state
is not generated using tkdefragmentatiormodel but it is simply drawn, representing two
major patches of land use type “1”. Besides, iha$ possible to verify that conceptual
model for the defragmentation enables to properykate the defragmentation as the
reference final map was not generated using theemblgvertheless, this model allows us
to test the calibration in more realistic condigprwhere the transition probabilities,
between the initial and final reference maps, ataawn.

Initial land use map Final land use map

10- 1 10F

20- 1 20-

30r ] 30r

401 1 40-

50r 1 50r

60r 1 60r

70r 1 70r

801 q 801

901 q 901
10055 20 40 60 80 w0 100=——3 20 40 60 80 100

Map 3 Initial and final reference land use maps for ~ the defragmentation model.

LEGEND
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3 Calibration method

It is necessary to have an overview of existingocation techniques for stochastic models
and more particularly Markovian models. As mentobearlier, we need to proceed to an
automated optimization of the models parametersgusearch algorithms such as the
simulated annealing. One should note that concgrtiie spatial independence model,
analytical analysis could be used to determindridngsition probabilities but this method
will not be explored as the purpose of this redeasdo explore the performances of an
automated calibration.

Basically the optimization algorithms are iteralyvéesting combinations of candidate
parameters (i.e. the logistic regression coeffisieagainst a fitness function which needs
to be minimized or maximized. In the case of M-LUEMhe goodness-of-fit (or fithess)
is determined by comparing the reference final mép the simulated one according to
pre-defined criteria of similarity. In other wortise algorithm is searching in a solution
space, the optimal coefficients combination leadiogsimilar reference and simulated
maps so that the land use change processes caplimated. Thus, a list of criteria must
be elaborated in order to determine the qualitthefcalibration i.e. when it is considered
optimal and can be stopped. These criteria carabedbon map comparison indices such
as Kappa statistics (Visser and de Nijs 2006) mglstmap statistics such as the landscape
metrics (McGarigal et al. 2002).

Therefore, first, a literature review has been iedrout to identify potentially useful
criteria, then a literature review has been und#erigo identify a promising optimization
algorithm in terms of efficiency and accuracy. Tpms and cons of the calibration
technique (e.g. computation time, ease of impleatemt, known use in literature...) are
reported so that a choice can be made.

3.1 Potential criteria for optimization

The selection of the criteria is an important saspit will influence the way the model
parameters will be optimized, hence the final sniy between the real world map and
the simulated one. Besides, it is necessary tletchiosen criteria take into account the
thematic aspects as well as the geometric chaistaterof the maps. In other words the
simulated map must be compared with the real wordgh not only in terms of land use
allocation accuracy but also in terms of pattemilarities. It implies that at least two
criteria should be used during the parameters aaiton phase. In order to identify
appropriate criteria for the optimization of the siebparameters, a review of classification
(thematic) and spatial indices has been carried This review has been done by listing
and describing map comparison indices offered bg tMap Comparison Kit
(Geonamica®, http://www.riks.nl/mck/index.phgs well as landscape metrics commonly
used within the FRAGSTAT software (McGarigal et2002).
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3.1.1 Thematic accuracy

The Map Comparison Kit (MCK) has been developedtliy Research Institute for
Knowledge Systems (RIKS) to assess and comparealspaidels output. This software
offers a selection of indices aiming at giving thiéerences extent between a pair of raster
maps as well as their location and nature. In Viasd de Nijs (2006), a description of the
comparison indices is presented.

First, the comparison between two maps can be thoseveral ways:

1. Visual map comparison simply comparing two maps with the human eye,;

2. Cell-by-cell map comparison these indices are derived from the computatiora of
confusion matrix between two raster maps, where dageeement and disagreement
between the maps are compiled. The indices derfnad the confusion matrix are the
kappa, kappa-histo and kappa-location statistics;

3. Fuzzy-set calculation rules follows the same principle than the cell-by-cell
comparison except that the comparison is done bypaning the neighbourhood of the
considered cells and not only the cell itself. Tiex computed is called the fuzzy-kappa;
4. Hierarchical fuzzy pattern matching this technique has been developed by Power et
al. (2001) and is based on the comparison of palygdharacteristics between the maps.
Here the polygons are defined as adjacent celidaritical class. The index computed is
called Global Matching Index;

5. Single-map statisticsthis method contrarily to the ones above is rwiveéd from cells
comparison but from the comparison of each majstta such as the landscape metrics
(e.g. average patch size), spatial trends (e.g.3®e&stimator), estimation of fractal forms
(e.g. fragmentation rate) and autocorrelation (&lgran’s | statistics), neighbourhood
characteristics (e.g. the enrichment factor)...

As we are trying to optimize the models parameaetomatically, the visual comparison
cannot be used. Fuzzy Kappa and fuzzy pattern mmgtcre similar conceptually and

mimic the human way to compare maps. These congpansethods seem to be very
promising indices of the difference between mapdgprunately they are discarded as
they are expected to be computer intensive in rdw@dwork of the optimization. Indeed
these methods need to assign neighbourhood categtwi the map cells to further
compute the fuzzy-statistics. Finally, the comparisising single-map statistics is more
related to the spatial characteristics of the maaps will not be considered for thematic
comparison. Thus the kappa statistics or indiceweld from them will be preferred to

compare the maps in terms of thematic similarige (e results; section 5).

The kappa statistics

As mentioned, the kappa statistics are derived ftbenconfusion matrix between two

maps which provide the ratio of identical cellsvadl as the cells “misclassified” for the

total number of cells in the map. In table 10, twaps A and B are compared cell by cell;
map A is the reference map at T=20 and map B isithelated map. The first row gives

the ratio of cells classified as “1” in the map Adaheir class in the map B. Accordingly,
the first column gives the ratio of cells clasgif@s “1” in the map B and their class in the
map A. The diagonal provides the ratio of identwzlls between the two maps.
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Table 10 Generic confusion matrix for two maps A an  d B with ¢ number of classes after Monserud
and Leemans (1992).

From this matrix the indices listed and describelbl, can be derived.

The fraction of agreemeR{(A); is the sum of all the cells identically classdi(i.e.
the diagonal). It is computed with Equation 10.

P(A) = Pii Equation 10

i=1

The expected fraction of agreement P(E); is thédalndity of agreement between
the two maps related to the observed distributtos.provided by Equation 11.

P(E) = (pir * pri) Equation 11

i=1

The maximum fraction of agreemeR(max): is the maximum probability of
agreement between the two maps related to thewwskdrstribution. It is given by
Equation 12.

P(max)=  min(pt,pri) Equation 12
i=1

Now the kappa statistic can be computed, it reptesthe fraction of agreement between
the two maps but corrected by the statisticallyctiomm of agreement obtained by
relocating all the cells in the map. It is givenbguation 13.
Kappa= P(A)- P(E) Equation 13

1- P(E)

It can be noted that the kappa index can be decsatpmto two different indices called

the kappa-histo (K-histo) and the kappa-locatioAd&). K-histo provides the similarity

of quantity of each class between the two mapssagiven by Equation 14.

K - histo= P(max)- P(E)
1- P(E)

Equation 14

One should note that a simpler index can be usegdldne of the k-histo; it is the
percentage of each class within the map. This indexot part of the MCK and will be
referred as thArea Agreement (AA) index.
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AA=1- abS( piT - pTI) Equation 15

K-location provides the similarity in terms of cell locatibetween the two maps and is
given by Equation 16.
P(A) - P(E)

K- loc= i
P(max)- P(E) Equation 16

One should note that now kappa can be expresstu ggoduct between K-histo and K-
location:

Kappa: K - histo* K - loc Equation 17

In order to select the most appropriate indicesoptémization criteria; we took into
account the necessity to minimize the computatioe twhile running the optimization
algorithm. Consequently a trade-off has to be nimdeeen the computational demand of
the criteria and the information needed to propenyimize and further calibrate the
models parameters. Thus, in the framework of #sgarch only the fraction of agreement
(P(A)) and the area agreemeA®y will be used as criteria.

3.1.2 Landscape metrics

However theP(A) and AA indices are limited in terms of spatial analySikerefore a
spatial criterion should provide information on hpvoperly the patches simulated by the
model are similar to those in the reference mapsdlect spatial criteria, the computer
resources required have been taken into accoumelsis the easiness to implement it in
Matlab environment as it is not primarily desigriedspatial analysis.

The FRAGSTATS software has been created and dexelop McGarigal et al. (20020
compute several landscape metrics. Landscape satecindices used to characterize the
complexity, fragmentation and distribution of thatghes presents in categorical maps.
Below is a representative sample of existing laapgsanetrics indices and their definition:
» Patch sizeis the simplest index and represents a fundamaettr#bute of the spatial
character of a patch;

» Patch shape complexityis related to the geometry of patches (e.g. singrid
compact, or irregular and convoluted). The most mam measures of a patch shape
complexity are based on the relative amount ofnpeter per area unit. It is also known as
patch perimeter-area ratio;

» Core Arearepresents the internal part of patches after ge edffer is eliminated. It
contains the patch size, shape, and edge efféaandesinto a single measure;

» Isolation/Proximity expresses the trend for patches of the same ddss felatively
isolated;

» Contrast provides the relative difference among patch types;

» Dispersionrefers to the trend of patches to be clumped vétipect to each other. A
way to determine this index is to compute the rstameighbour distances between
patches of the same type;

» Contagion & Interspersion gives the tendency of patch types to be spatially
aggregated,;

* Subdivision assesses the degree to which a patch type isvalddliinto separate
patches;

» Connectivity refers to the functional connections among patches
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Computing the average size of the land use pat(8% seems the most appropriate
criteria to assess the landscape metrics diffeeeheéveen the maps. Indeed, it is easily
implemented in Matlab and it is expected to bevahe for calibration purposes as the
models and datasets present simple land use attern

Thus, the selected thematic and spatial crit@&(ia), AAand PS, will be used to create the
fitness function for the optimization algorithm. Mimizing the fithess is expected to
optimize the model coefficient so that the modetidation matches as much as possible
the land use change processes of interest as svitleaspatial arrangement of the land use
types in the reference map.

3.2 Selection of optimization algorithm

In order to find an appropriate optimization al¢jom, a literature review has been carried
out to gain insight in optimization principles $@t an assessment of different techniques
could be done. Different potential algorithms hé&een listed as well as a description of
their advantages and disadvantages.

One should note that apart from the Genetic Algarg and the Simulated Annealing, the
rest of the algorithms listed below, have not besad for the calibration of LUCMs.
Besides, it was difficult to compare these algonishin terms of computation time and
efficiency as these features depend on the problemterest (i.e. the conceptual model),
the number of parameters to be optimized and thgater resources available.

However, one of the main drawbacks of optimizatalgorithms is that they can be
trapped in local optima, i.e. zones in the soluspace where the fitness is the best locally
(i.e. surrounded by worse solution) but not optimglwbally (see Figure 6). In order to
escape these local optima, some algorithms haeetarfwhich allows them to keep on
searching for better solutions even if an optimuas hlready been found and no better
solution is located nearby. This mechanism wilblet¢ter described in the Particle Swarm
Optimization section.

1]
= 2] [«]

criterion

Value of the l

—
Decreasing
temperature

Figure 6 Representation of the local optima (zones 1, 2 and 3) during the search performed by the
optimization algorithm. In the case of the simulate d annealing, the temperature is the factor which
enables the algorithm to escape the local optima in the solution space.
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Consequently, the resilience of the optimizatiogoathm to local optima will be an
important feature to take into account while sétgctthe most appropriate algorithm.
Besides, optimization algorithms are iterative psses; therefore it is necessary to
include the computation resources needed, as erioritwhen selecting an appropriate
calibration method. In addition, attention has bgeen to the availability of Matlab code
which will facilitate the implementation of the algthm. Finally, any relevant features of
the algorithm, such as the adaptability of the atgm to the problem of interest, will be
reported and taken into account for the final cloic

3.2.1 Potential optimization algorithm

In this section several optimization algorithm aescribed and the pros and cons are
reported in terms of:

Matlab code availability,

Resilience to local optima,

Computer resources needed,

The Simulated Annealing (SA) is a global optimization technique which move®tigh
the solution space by generating randomly nearlytieas of the current solution. A
better solution is always accepted but worse swigtican also be accepted in order to
escape from local optima. The acceptance of wark&iens depends of the temperature
factor which is set by the user.

Pros. The Matlab code already exists and it is modérasilient to local optima.

Cons It has no drawbacks considering the frameworkhif research. Nevertheless, SA
performances have already been studied and dedcfdseLUCM calibration issues.
Therefore an algorithm which has been less studmdd be preferred.

The Genetic Algorithm (GA); maintains a pool of solutions. The process otlifig
superior solutions mimics the one of the evolutisith crossing-over and/or mutations
altering the pool of solutions, worse solutionsnigedliscarded.

Pros. The Matlab code is available and it can be qundinding the solution.

Cons It is not resilient to local optima.

Ant Colony Optimization (ACO); uses ants (or agents) to explore the solutionespad
find locally productive areas (i.e. combination mdrameters generating a high fitness
value). It is able to produce results in problentere no global or up-to-date perspective
can be obtained with the other methods.

Pros: It has a high adaptability to dynamic solutiomasgs.

Cons The Matlab code is not available and it is né¢vant for optimizing the transition
matrices.

The Particle Swarm Optimization (PSO) is based on the theory on Swarm intelligence.
Birds, or particles, part of a swarm, are explorihg solution space and interact to find
the best solution.

Pros. It is very resilient to local optima. The Matlalmde is available. It is easily
adaptable to the problem of interest and requesttemputer resources.

Cons It is a basic algorithm search but does not leawerelevant drawbacks considering
our research framework.
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Stochastic Diffusion Search (SDS)as for the PSO, it is based on the theory on Swar
intelligence. It is composed of agent exploring slodution space and having one-to-one
communication on the partial evaluation of the hlizpsis.

Pros. The SDS is an accurate and efficient optimizatagorithm, resilient to local
optima. It is suited for problems where the obpextfunction is composed of sub-
function.

Cons The Matlab code is not available.

Tabu-search (TB) is a local search technique keeping in memorysttiations already
visited and discarded.

Pros: It is an efficient algorithm.

Cons The Matlab code is not available.

Cross-entropy search (CES)is a combinatorial optimization algorithm basedMonte
Carlo approach.

Pros. It is appropriate for problems where very smabljabilities need to be estimated
accurately. The Matlab code is available.

Cons It is not relevant for optimizing the transitiomatrices.

3.2.2 Selected optimization algorithm

The stochastic diffusion search seems to be a gmogialgorithm to optimize the M-
LUCMSs parameters as it is fitted to deal with ajecbve function composed of multiple
sub-functions (i.e. several criteria). Unfortungtehis algorithm does not have an
available Matlab code. Therefore, a similar aldonj the Particle Swarm Optimization
developed by Kennedy and Eberhart (1995) is chasenis:

Resilient to local optima,

The Matlab code is available and it is easily impdated,

Request few computer resources for itself,

Adaptable to the problem of interest.
Moreover the methodological background of this atgm is very appealing and the PSO
has never been used for land use change moddisatain.
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4 The Particle Swarm Optimization (PSO) algorithm

4.1 Conceptual framework

Kennedy and Eberhart introduced in 1995, the Rar8gvarm Optimization (PSO) based
on the behaviour of flock of birds (Kennedy and ihlagt 1995). The principle comes
from an observation; if you put some butter outsaféer just few minutes the first bird
(out of many more) comes to eat it, even thoughafidghe birds knew previously that the
butter was there. As explained by the authorsahibty to quickly find their goal (i.e. the
butter) comes from the fact that individuals inl@ck, a swarm or a school can benefit
from the discoveries of the others. Thus sharirigrmation among members of a flock,
provides advantages in seeking food. More precisedyindividuals have their velocity of
exploration of the space but it is influenced byghbours who are doing better i.e. who
are closer to the food. As a sociological phenomettre individuals try to mimic those
who are doing better to progress towards their .gmalother words, each individual
compares itself with the group (according to defieteria) to determine their progress
towards a goal. However, the birds are also infteenby their own experience, i.e. they
remember their closest position to the goal angadkso their exploration accordingly.
Consequently the exploration of the individualsietermined by their individuality and
their sociability.

As stated by the authors, applying this phenoménomathematical problems, such as
optimization, yields good solutions with inexpemsicost in computer resources.
Moreover, it is resilient to local optima as it lble shown in the coming section. Besides
this optimization techniques as already been agptiecalibrate biological model of DNA
sequences (Rasmussen and Krink 2003).

4.2 Application to the land use change models

Considering now, that the individuals are particksch of them having a position vector
(xi) and a velocity Vi ), exploring a solution space where the optimum (he maximum
fitness) is the location of the butter. One shaubte that the number of dimension in the
solution space equals the number of parametergdeificients) to be calibrated. The
position coordinates of each particle provide aigdbr each parameter (i.e. a candidate
solution) in order to simulate a land use map. Teach particle’s position is tested by
running the model and comparing the resulting magpirst a reference one. The
comparison provides a value to the relevant catevhich need to be optimized. This
fitness value (i.e. the sum of the criteria valuagj its related position are kept in
memory as the best performance of the particle.

In a second phase, the velocity of the particlesipdated (see Figure 8) for each
dimensions of the search space, according toégqus best positiong ) and the one of

the neighbouring particle which performed bept), Each particle has the same number

of neighbours which can be set according to usemn®€rest. These neighbours are
determined once and for all at the beginning ofdpgmization as shown in the example
in Figure 7; particle 1 has particles 9 and 2 aghimurs, particle 9 has particles 8 and 1
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as neighbours. One should note that these neighlarer not neighbours in space and
none of the particles have the same neighbours.

..89123456789 12...

Figure 7 Swarm of 9 particles with 2 neighbours.

Thus the particles new velocityi(t +1) ) is determined according to Equation 18.

Vit =MVoO+ W i(P -X() + WX e( P -d) Equation 18

where: Wi and W2 are respectively the weight for the individuality and sociability.
/1 and / 2 are random variables, uniformly distributed between 0 and 1, which are

different for each particle and dimensions.
i is the particle of interest.
t is the number of the PSO iteration.

Then the particles positions change according toaEgn 19.

Xit+1) = X¢)+ V¢ +1) Equation 19

One should note that the position of the partisl&kept within the range of the search
space as well as the range pre-defined for thecfgarnovement. In addition the best
neighbour which should not move as long as it Imaslktest fitness, will be randomly
displaced (approximately equal to a thousandtthefdomain of search) in the relevant
dimension, in order to “micro-explore” the viciniof the best solution.

Then the new particles positions are tested agiie. particles keep on exploring the
solution space until the target fitness or the mmaxn iterations defined for the algorithm
are reached (see Figure 8). Figure 9 shows thecHaw representing the PSO
optimization process.

One should note that using neighbouring partickesan improvement of the original
version of the PSO where only the best particleth| swarm was influencing the
exploration of the others. This new version isedlbcal PSO whereas the older is called
global PSO. Besides, the procedure, used to determinewadirection and speed of
exploration for the particles (see Figure 8), eeatithe algorithm to be resilient to local
optima. As observed by Kennedy and Eberhart, ifpduticles’ exploration (i.e. velocity)
is highly influenced by the best particle in theghdourhood (i.e Wi<W2), the swarm
prematurely wander around a local optimum. On asrdtland if the particles’ exploration
is highly influenced by their own best positiore(iW1>W2), the swarm becomes a group
of isolated individuals wandering through the shaspace. Finally, using particles with
equal individuality and sociability (i.eW1=W2) leads to the most efficient optimization
without falling into local optima.
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Figure 8 Process for updating each particle position based on its best position and the position of its
best neighbour. Here the solution space has onlytw o dimensions, thus two parameters are
calibrated.

4.2.1 The PSO settings

General

Maximum number of PSO iterations(max_iterations): Set the maximum number of
iterations for the optimization. Once the maximuomter of iterations is reached, the
algorithm stops searching for a solution.

Maximum number of simulation’s realizations (iterations_sim): Set the number of
realizations per simulation for each candidate doatibn of parameters. The fithess
computed will be an averaged of the number of zatbns.

The number of time-steps by simulation(nr_time_steps).

Problem solution space

Target fitness(target_fitness): Set the maximum fitness valueclwitan be expected.
This value represents how similar the referencesamailated maps are, according to the
defined criteria.

Number of dimensions(nr_dimensions): Set the number of dimensiongttiersolution
space. There is one dimension for each parameter.

Domain range (domain_min and domain_max): Set the boundari¢senfolution space.
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PSO control variables

Number of particles (nr_particles): Set the number of particles conmpthe swarm and
exploring the solution space. The more particlesidinger is the algorithm.

Number of neighbours (nr_neighbors): Set the number of neighbours erfiing a
considered particle. The number of neighbours igakdor all the particles and each
particle keep the same neighbours all along thienggetion.

Limits of location change(delta_min and delta_max): Set, for all iterati@m all the
particles, the maximum change of location. Delta ba different for each dimension of
the solution space.

Importance of individuality (i_weight): Set the importance of the particleésbposition
to determine the particle new velocity.

Minimum and maximum individuality (i_min and i_max): Set the range 0f applied
to the difference between the location of the phlatof interest and its best position. It is
different for each dimension of the solution space.

Importance of sociability (s_weight): Set the importance of the neighbouoflsiénce to
determine the particle new velocity.

Minimum and maximum sociability (s_min and s_max): Set the range/ af applied to

the difference between the particle of interest aadbest neighbour. It is different for
each dimension of the solution space.

4.2.2 PSO pseudo code

Step 1: Initialize the particles positions and velo  city

Create the matrix p_next for the particles’ next position of dimensions (nr_particles *
nr_dimensions )

Create the matrix p_velocity for the particles’ velocity of dimensions (nr_particles *
nr_dimensions )

Create the matrix p_bestsofar for the particles’ best position so far (nr_particles *
nr_dimensions )

Create the matrix p_bestsofar_glob for the best position among all the particles so far (1*
nr_dimensions )

Create the matrix p_bestfitness for the particles’ best fithess of dimension (nr_particles *1)
Create the matrix p_bestfitness_glob for best fithess among the particles of dimension 1*1

Step 2: Set particles neighbours

For each particle

Create a matrix p_neighbor identifying the neighbours for each particle of dimension
(nr_particles * nr_particles ).

Create a matrix p_best_neighbor for the best neighbour position for each particle, of dimension
(nr_particles * nr_dimensions ).

end for each particle

Step 3: Test the particle position and update fithe  ss

For each PSO iterations

For each patrticle

For the number of realizations per simulation

Run the models for each particle with their respective position as the transition matrix parameters.
Model X

Criteria

end for the number of realizations.

Compute the value of the different criteria ~ between the simulated and the reference maps. The
result is the fitness value; fitness = criteria 1+...+criteria 2
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(Update best fitness)

if fithess =target_fitness then quit optimizer and return global_best position

if fithess < fitness_sofar then p_bestsofar =p_bestsofar

if fitness > fitness_sofar then p_bestsofar =p_current and p_bestfitness =fitness

if fitness > p_bestfitness_glob then p_bestsofar_glob = p_current and p_bestfithess_glob =
fitness

end for each particle

Step 4: Update next particles’ position

For each particle

Get the best neighbour and Populate matrix p_bestneighbors
For each dimensions

Compute individuality and sociability factors
i_factor =i_weight*(i_min (i_max-i_min )*rand)
s_factor = s_weight *( s_min (s_max-s_min )*rand)
Delta

p_delta= p_bestsofar - p_current

n_delta= p_bestneighbors - p_current
delta=(i_factor * p_delta) + (s_factor * n_delta)
delta = p_velocity + delta

if delta >delta_min

delta=delta_min

elseif delta >delta_max

delta=delta_max

Next position

p_next =p_current + p_velocity

if p_next >domain _min

p_next =domain _min

elseif p_next > domain _max

p_next =domain_max

end for each dimension

end for each particle

end for each PSO iterations

All the Matlab codes for all the models and thermopation algorithm can be found in the
appendix section.
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4.2.3 PSO flowchart

Simulate land use map
with particles' positions

N simulated
land use maps

Compute average fitness
for N realizations

Fitness=target fithess
or
iteration=max iterations

Return best position
and fitness

NO

( Compare particle's fitness )

Updated particle Updated particle
best position best neighbour

N i

Update particles' velocities

Updated particles'

positions

Figure 9 Particle Swarm Optimization flowchart.
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5 Results of the calibration and discussion

An experimental plan has been designed to gaighhsnto the optimization process
according to different algorithm settings. The feswill be analyzed based on:

The quality of the calibration.

The time necessary to run it.
Thus, once primary acceptable results are obtaitiexl calibration settings have been
changed in order to speed up the process or tH#ygoithe simulation if possible.

5.1 Model 1: Spatial independence

One should note that we used an odd number of siey@s to generate the reference
datasets because we are in a binary map. Indead, ars even number of time-steps (e.g.
T=20) produces a final map which can be obtainedvy opposite pair of transition
probabilities (e.g. foyref=0.990 and foref=0, or Ryoyref=0 and Royef=0.990). One pair
of probabilities is correct but the other one ysell simulation where, at each time-step,
the cell “1” were changing to “0” and the cells “Were changing to “1”, and so on,
providing a proper final map but obtained with aodrrect process. This is due to the fact
that the maps only have two land use types andthigamodel was running for an even
number of time-steps. Using an odd number of tikepssgenerates a reference final map
which can be obtained using a unique pair of priitials (e.g. Rooref=0.990 and
Paoyef=0). This would not be needed in a land useesysvhere more than two land use
types are considered.

5.1.1 The criteria

In order to apply the PSO to tlspatial independenceodel, we first tested the selected
criteria to be used for optimization. For this mipdiee solution space has two dimensions
ranging from 0O to 1; as we have two parameters lware actually transition probabilities.
Thus, a position in the solution space gives ardiscpair of probabilities, to be used in
the transition matrix, in order to compute the d&m of the related model output.
Consequently, testing discrete positions allowausap the criteria values in the solution
space (see Figure 10, Figure 11). The horizonte gives the probabilit)=P g, the
vertical axis gives the probability=P10, as in shown in Table 1The mapped criteria
are:

The fraction of agreement P(A) as thematic critehare referred as the Cell

Agreement (CA) ranges from 0 to 1.

The Area Agreement (AA), as spatial criteria, ramfyem 0O to 1.

The sum of CA and AA, referred as the fitness gateCA and AA are equally

important and the sum varies from 0 to 2.

The kappa index ranges from -1 to 1.

The reference values, used to create the referenap, are Poref=0.990 and
Puoyref=0.005at each time-step. A high value indicates a higtes$s (i.e. high similarity)
between the simulated map and the reference maghdoconsidered criteria. In addition
the fitness value computed is an average of 1@zegans for each pair of probabilities. In
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the case of thepatial independenceodel, the average patch size (PS) is not a neleva
criterion since the land use types are randomlyidiged in the map.

Table 11 Test transition matrix.
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Figure 10 Map of the CA (left) and AA (right) value  in the solution space.
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Figure 11 Map of the summed (CA+AA) (left) and kapp  a index (right) value in the solution space.

We can see that for CA as for the kappa indexgtbleal optimum is located in the lower
corner of the solution space. We can notice thatetlis a wide part of the solution space
where the fitness is uniform and approximately édaal.5. Thus using these criteria
individually, to optimize the model parameters, slo®t seem to be a good way as the
fithess function does not provide sufficient inf@tmon to “lead” the particles toward the
global optimum. CA and kappa provide similar infation as they are both comparing
the maps cell by cell to provide their fractionagreement. Concerning AA, the global

-32-



optimum is a line from the upper left corner to tbeer right one. Again using the AA
criteria individually does not seem to be promisiag the global optimum is a line.
Consequently the best solution which could be abthiwould be a line of candidate
solution whereas we are looking for a unique ttamsimatrix. By combining CA and

AA, we obtain a solution space where the globainopin is still located in the lower right
corner but with a narrow local optimum. Consequerdbupling these two criteria allow
the particles to be “led” toward the global optimuvhere a unique pair of probabilities
gives the best fitness for the simulated map.

5.1.2 Primary results

Table 12 shows the solution found by the PSO ftieidint reference transition matrices.
The reference transition probabilities represemtekesing quantity of change. The fithess
computed is the sum of CA and AA indices.

Table 12 Table of primary results for different ref  erence transition matrices.

P(oo) P(lO) CA AA Fitness

Reference ] 0.9500 | 0.0500]0.5108 | 0.9973 | 1.5081
Best position | 0.9991 | 0.0000]0.5670 | 0.9995 | 1.5665
Reference | 0.9000 | 0.0500]0.5549 | 0.9963 | 1.5513
Best position | 0.0030 | 0.5000]0.5573 | 0.9965| 1.5538
Reference ] 0.9950 | 0.0050]0.8429 | 0.9987 | 1.8416
Best position | 1.0000 | 0.0000]0.9136 | 0.9997 | 1.9133
Reference ]0.9900 | 0.0050]0.7860 | 0.9986 | 1.7846
Best position | 0.9954 | 0.0000]0.8476 | 0.9990 | 1.8466
Reference ]0.9960 | 0.0040]0.8696 | 0.9981 | 1.8770
Best position | 1.0000 | 0.0001 | 0.9288 | 0.9999 | 1.9287
Reference ]0.9920|0.0040]0.8170|0.9987 | 1.8157
Best position | 0.9964 | 0.0000]0.8706 | 0.9980 | 1.8686
Reference ]0.9980 | 0.0020]0.9289 | 0.9981 | 1.9270
Best position | 1.0000 | 0.0001]0.9613 | 0.9988 | 1.9600
Reference ]0.9960 | 0.0020]0.8983 | 0.9969 | 1.8951
Best position | 0.9985 | 0.0000]0.9324 | 0.9986 | 1.9310
Reference  ]0.9990|0.0010]0.9631 | 0.9984 | 1.9615
Best position | 1.0000 | 0.0001 | 0.9785 | 0.9998 | 1.9783
Reference ]0.9980|0.0010]0.9453 | 0.9986 | 1.9439
Best position | 0.9993 | 0.0000]0.9642 | 0.9995| 1.9637

The value of each criterion is the average for ddlizations by candidate solution (i.e.
pair of probabilities).
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The PSO control variables have the initial settimgsch yielded, for the first time,
probabilities of change with higher similarity thére one used to produce the reference
map:

Maximum number of PSO iterations560

Number of realizations per simulatienl0

Number of particles 24

Number of neighbours 4

Limits of location change = 0.5

Importance ofndividuality = Importance oBociability

Using this configuration, the PSO does not find tbé&erence probabilities but finds
nearby solution. Moreover, this solution, on anrage of ten realizations, is performing
better, in terms of criteria of similarity (i.etriess), than the reference transition.

Nevertheless, we can notice that when a lot of géanoccur (Boref=0.95 and
Puoyef=0.05,Pooref=0.9 and Royef=0.05), the PSO cannot find the global optimdm.
fact, it finds transition probabilities for whichd& AA criterion is nearly optimal, but the
CA value is quite low see Table 12. As we are sating) land use change without spatial
interactions, the change can occur anywhere inntla@, with no relation with the
transition probabilities considered. In additio® €riteria is comparing the reference and
simulated maps cell by cell; consequently the nobv@nges occur over time, the lower is
the optimal value of the fraction of agreement. (C&) between the two maps. This is in
accordance with Pontius Jr et al.(2004) who staethe criteria used to calibrate a model
should fit the model purposes. Here the model sateslthe quantity of change but not its
location, thus AA criterion is suitable to calibeahespatial independenceodel, as it
gives useful information regarding the model pugsoBesides, CA criterion is not really
suited to calibrate this model unless few changesi since the final reference map and
the simulated map will have a higher fraction ofesgnent with the initial one.

5.1.3 PSO behaviour

In order to visualize the particle swarm behaviduring the optimization procedure; the
positions of the particles have been displayedaeh @lgorithm iteration. Figure 12 shows
four snapshots of the particles positions whileythee exploring the solution space to find
the global optimum. There are 12 patrticles, eadhei having 2 neighbours.
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Figure 12 Positions of the particles in the solution space.

Figure 12 shows that the PSO is exploring the smluspace as expected. First the
particles are positioned randomly in the solutipace (see Figure 12 A). We can see that
they are quickly attracted toward the region of ltheal optimum in the upper left corner
(see Figure 12 B). Nevertheless, we can note Watphrticles are located remotely from
the rest of the swarm; hence the swarm is not &@mp the local optimum as the particles
are not fully attracted by the neighbours which pegforming best so far. This behaviour
is due to the individuality effect. Consequentlye trest of the solution space is explored
and the global optimum region can be found as shawigure 12 C. We can also notice
in Figure 12 C that some particles influenced by bbest one are now moving toward the
global optimum. Moreover, after 17 iterations, paaticles are now positioned along the
line representing the best fitness for AA criteriémally, after some algorithm iterations,
all the particles are located within the global imptm region which confirms the
sociability effect of the algorithm (see Figure DR
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5.1.4 Sensitivity of results to the PSO control var iables

Even if the primary results are satisfactory, itseful to experiment different settings of
PSO control variables, in order to improve the Ififimess as well as to speed up the
algorithm computation time. The following resultegent the effect of the PSO control
variables on the algorithm efficiency (i.e. the ¢ino find the best solution) and accuracy
of the final best solution. The reference tranaitjgrobabilities to run these tests are
Pooyef=0.990 and P0yef=0.005 and the fitness function is equal to CA+AA. Unless
indicated otherwise, the default PSO control vdeslare:
- Number of realizations per simulatienl0

Number of particles 24

Number of neighbours 4

Limits of location change = 0.5

Importance ofndividuality = Importance okociability

The effects of the following PSO control variables/e been tested:
Number of particles and the number of their neighibo
Number of realizations by simulation.

The importance of sociability and individuality.
Weight of each criterion.
Limit of location change.

Number of particles vs. number of neighbours:

Figure 13 and Table 13 show the PSO progressioordiog to the number of particles
exploring the solution space and the number oftimagrs for each particle. In addition,
Table 13 provides the particle position which oféa the best fitness.

600 1.5000

- 1.8500
500

1.8000
400

- 1.7500

300 - 1.7000 m Number PSO

. 1.6500 iterations

200 == Best fitness

- 1.6000

100
- 1.5500

- 1.5000

Figure 13 PSO performance according to the number of particles and neighbours.
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Table 13 Table of PSO performance according to the nu  mber of particles and their neighbours.

st | ot Foenpestn | seattness | e
4 2 0.9956 0.0000 1.8452 457
4 4 0.1036 0.7712 1.5018 207
8 2 0.9953 0.0000 1.8463 307
8 4 0.9955 0.0000 1.8465 240
8 8 0.3785 0.5406 1.5029 373

12 2 0.9956 0.0000 1.8465 258
12 6 0.9955 0.0000 1.8465 269
12 12 0.9955 0.0000 1.8461 318
16 2 0.9958 0.0000 1.8464 336
16 8 0.9955 0.0000 1.8463 422
16 16 0.9956 0.0000 1.8466 374
20 2 0.9956 0.0000 1.8455 496
20 10 0.9956 0.0000 1.8465 377
20 20 0.9960 0.0000 1.8438 498
24 2 0.9955 0.0000 1.8467 251
24 12 0.9955 0.0000 1.8464 499
24 24 0.9955 0.0000 1.8465 312

One should note that if fewer particles are uslee agorithm will run faster; as the PSO
iterations will be shorter.

First of all, we can note in Figure 13 that the maxm fitness which can be obtained is
approximately equal to 1.85. Besides, using fewtigdas with many neighbours is not a
reliable setting as it cannot reach the maximakft after many algorithm iterations (see
results obtained with 4 and 8 particles). Howevbgse results can be improved by
decreasing the number of neighbours for each partitoreover it seems that decreasing
the neighbours improve the PSO efficiency (seeltesbtained with 12, 16 and 24
particles). Indeed, if the number of neighbourggsial to the number of particles, only
one particle, which is performing best, will influge the rest of the swarm, thus only one
promising direction will be explored. By reducirtgetnumber of neighbours, we include
“sub-groups” of particles, each of them followingfferent promising directions.
Consequently the probability to find the best soluis improved and the chance that the
PSO get trapped in a local optimum decreases. ditiad, as none of the particles have
the same neighbours, the best solution will selidommunicated to the rest of the swarm,
as shown by its behaviour in Figure 12.

Increasing the number of particles does not imprineefinal results. However, using 8
particles (or more) instead of 4 improves the @fficy of the PSO to find the best
position. Using more than 8 particles does not seenmprove significantly either the
results or the PSO efficiency. One should note tthedifferences in the maximum fitness
values for the same transition probabilities are tuthe fact that only ten realizations are
done by simulation. Consequently the fitness cag skghtly but not significantly for the
same particle position (see next section).
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Finally, running the PSO during 350 iterations w8tparticles and 2 neighbours seems the
most efficient PSO to find the best position. Tiuesused this configuration to implement
the final calibration of thepatial independenamodel (see Table 17).

Number of realizations by simulations

Figure 14 shows the average value of the fithes&+f3) for different number of
realizations done for each candidate solution.

A it Number of | Average
veragetitness realizations | fithess
1.7840 I

& $ _/n/
1.7835 ]\ 1 "

AN
1.7330 N $1 -1
— \\ —o—Average fitness _$ _/
1.7820 . 11 -/)

$11 -/

1.7815 T T T i ! Numberof

0 100 200 300 400 500 jterations 111 -/

Figure 14 Value of the average fitness for increasin g number of realizations.

We can see that around 150 iterations by simulatiom average fitness value stabilize
around 1.7818. Besides, setting the PSO with 180zeg¢ions to compute the fitness, we
noted that the best position found was the santleeagne found with only 10 realizations.
Thus, increasing the number of realizations, frodntd 100, to compute the average
fithess improves its accuracy but does not infleethe accuracy of best position found.

Weight of individuality and sociability

Table 14 shows the optimization results using diifé particle behaviour; from very
individual to very sociable.

Table 14 Results obtained with weighted individuali ty or sociability with 300 PSO iterations.

Individuality weight | Sociability weight | P(0=>0)cal | P(1=>0)cal CA AA Fitness
4 2 0.3465 0.5690 0.5074 0.9963 1.5037
2 2 0.9955 0.0000 0.8485 0.9979 1.8465
2 4 0.9955 0.0000 0.8467 0.9990 1.8458

Using patrticles with a higher individuality thancsability, yields poor results. This could
be expected as the particles are less attractedrdewthe region where one of their
neighbours did perform better. Consequently th@regf the global optima is not or less
explored. Increasing the maximum number of PSQutitens may allow the particles to
find the best position but it would results in vdong optimization process. This is in
accordance with Kennedy and Eberhart (1995) whiedtdnat individualist particles are
wandering independently in the solution space. d&si using particles with a higher
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sociability than individuality does not improve thelution found when the particles are
equally individual and sociable.

Weight of criteria

Table 15 shows the optimization results obtainediling more importance to one of the
two criteria at a time.

Table 15 Results obtained with weighted criteriawi  th 300 PSO iterations.

Weight for CA | Weight for AA | P(0=>0)cal | P(1=>0)cal CA AA Fitness f-:—t?\re?sest
1 0.9955 0.0000| 0.8485| 0.9979| 1.8465 2
0.9951 0.0000| 0.8444| 0.9972| 5.8306 6
0.1936 0.6930| 0.5057| 0.9978| 3.5264 6

Giving more importance to one of the criteria dgrithhe calibration process does not
improve either the PSO efficiency or the final les@see Table 15). Indeed emphasizing
the CA criterion yields very poor results as theOP&nnot find the optimal position.
Setting a higher weight for the AA criterion, th8® find a position for which the fitness
is slightly lower than the one obtained with equathportant criteria. Moreover the best
position found yield lower fitness for both critriTherefore using weighted criteria will
only be advised if the user gives more importaocente or more criteria.

Limits of location change (Delta)

Table 16 shows the effect of the limit of locatidmange on the final solution obtained by
the algorithm.

Table 16 Results obtained with different limit of | ocation change.

Limit of location change P(0=>0)cal P(1=>0)cal CA AA Fitness
+0.1 0.2986 0.6079 0.5064 0.9972 1.5036
0.5 0.9955 0.0000 0.8485 0.9979 1.8465
+1 0.9956 0.0000 0.8486 0.9977 1.8463

Allowing the particles to move only to a short diste from their current position (e.g.
delta=+0.1) causes the swarm to get stuck in al loptima as in Figure 12 B.
Consequently the final results are very poor (saklél 16). Moreover, this results show
that to be resilient to local optima, not only thelividuality and sociability of the
particles need to be set properly but also thet lohlocation change. On the other hand,
imposing no restriction of movement yields resaltse to the maximum fitness found so
far, even if the particles tend to explore along $blution space axis. Indeed, high delta is
preferable as the velocity is depending on thetjpos difference between two particles.
Thus if the patrticle is close to its best neighbatsrvelocity will be low even if the limit

of location change is set high. Consequently wepbirallowed the particles to move, for
each iteration, from one extreme of the soluticaicgpto another. Nevertheless, one should
note that this particular setting may not be silédbr a model other than thepatial
independencenodel which solution is close to the solution spadges.
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5.1.5 Final results

Table 17 presents the final calibration resultaot@d with the following PSO settings:
- Maximum number of PSO iteratiors300
Number of realizations per simulatienl0
Number of particles 8
Number of neighbours 2
Limits of location change + 1
Importance ofndividuality = Importance ofociability

Table 17 Final calibration results for ~ spatial independence model.

P o) Pao CA AA Fitness
Reference 0.9500 0.0500 0.5108 0.9973 1.5081
Best position 0.9992| 0.0000] 0.5667| 0.9996| 1.5663
Reference 0.9000 0.0500 0.5549 0.9963 1.5513
Best position 0.0000| 0.5048| 0.5571| 0.9976| 1.5547
Reference 0.9950| 0.0050| 0.8429| 0.9987| 1.8416
Best position 1.0000| 0.0000|] 0.9135| 0.9998| 1.9133
Reference 0.9900| 0.0050| 0.7860| 0.9986| 1.7846
Best position 0.9956| 0.0000] 0.8480| 0.9984| 1.8464
Reference 0.9960| 0.0040|] 0.8696| 0.9981| 1.8770
Best position 1.0000| 0.0001| 0.9288| 0.9999| 1.9287
Reference 0.9920| 0.0040|] 0.8170| 0.9987| 1.8157
Best position 0.9962| 0.0000] 0.8698| 0.9986| 1.8684
Reference 0.9980| 0.0020| 0.9289| 0.9981| 1.9270
Best position 1.0000| 0.0002|] 0.9606| 0.9996| 1.9602
Reference 0.9960| 0.0020] 0.8983| 0.9969| 1.8951
Best position 0.9984| 0.0000] 0.9318| 0.9991| 1.9309
Reference 0.9990| 0.0010] 0.9631| 0.9984| 1.9615
Best position 1.0000| 0.0001| 0.9785| 0.9998| 1.9783
Reference 0.9980| 0.0010] 0.9453| 0.9986| 1.9439
Best position 0.9993| 0.0000] 0.9647| 0.9990| 1.9637

Table 17 shows that these PSO settings yield exyuagtter results compared to our initial
configuration which was longer in computation tinfdwe final results obtained confirm
that the choice for the PSO settings is faster r@pmately 900 seconds) and produce
satisfactory results by finding the best transitoatrix.

We can note thatBcal, i.e. the calibrated transition probability ttlaacell “1” becomes
“0” is always very close to zero. This result isedio CA criterion. Indeed, if cells “1”
does not change (i.eRcal=0), the only disagreement possible, betweerteéfls “1”, is
with the ones which actually became “0” in the refece data, but very few cells had this
type of land use transition sinceidtef=0.005. Consequently CA criterion gets a high
value. On the other hand, ifaBcal O more changes occur randomly, during the
simulation, in the cells classified as “1” inifial Thus the CA criterion, between the
reference and the simulated maps, gets a low Chevsince there is more chance that
some cells “1” becomes “0” and that a disagreenoexcur between the reference and

- 40 -



simulated map. The “CA effect” explains also whg RSO performs worse when the
quantity of change is high, e.g. whepoffef=0.05. Besides &cal reflect as well this
phenomenon by compensating the difference betwggrePand Riocal, indeed we can
notice that Rocal is always slightly higher thanogref to compensatedgical < Pyoyref.

Besides, the fact that the PSO is performing ldssnamany changes occur may be more
due to the simplistic conceptual model for spatmlependence, rather than the PSO
algorithm itself. Indeed, Table 17 shows that ti&OFcould have reached the maximum
fitness if only the AA criterion was taken into acat. In this case, one should note that
the algorithm would not obtain a unique solution &line of best solutions. Better insight

will be gain when calibrating the model for expamsand/or defragmentation.

Finally, the overall performance of PSO is very @@ince the fithess of the calibrated

transition probabilities always (except in one ¢améperform the fitness of the reference
ones.

5.2 Model 2: Expansion

Theexpansiormodel simulates the expansion of a land use type another one. Here, a
patch of land use type “1” is expanding over thedlase type “0”. The land use change
probabilities are determined using Equation 8.

Pqii )
Log(ﬁ) = aq) +asjiy- EF) d = smai
1- P
And the coefficients matrix which needs to be qalibd is Table 6.
To
0
sl
g 0 (00) S1(00)
- i @y | Slao

Four parameters must be determine@o, (10, Slooy Skoo) and the solution space
has four dimensions.

5.2.1 The criteria

In order to calibrate thexpansionmodel we used the same criteria as for model 1. In
addition, we used the average patch size (PS) ie$ ¢thiteria. This model aims at
simulating the expansion of a considered land ustehp thus a criterion providing
information on the size of the patch is necessMygreover, this criterion provides
information on the number of patches present inéfierence and simulated maps. Indeed
the reference and simulated maps can have the aamant of land use type “1” but
without the PS criterion, the PSO will not be ataaifferentiate if the land use type “1”

is grouped into one or more patches. PS ranges @rtonl and the fitness function is the
sum of CA, AA and PS, and ranges from O to 3.
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5.2.2 Domain of search

In order to apply the PSO to tlexpansionmodel and test it, we used the following
control variables setting based on the knowledgeeglawith modell.
- Maximum number of PSO iterationsl80

Number of realizations per simulatienl0

Number of particles 8

Number of neighbours 2

Limits of location change= 2*domain_max - domain_min (i.e. domain of

search)

Importance ofndividuality = Importance osociability

Table 18 shows the primary results obtained witheout assumption on the domain of
search, i.e. the solution space had 4 dimensiomgimg from -50 to 50. Running the
simulation with the calibrated parameters made appgkat the patch was actually
expanding but the process simulated was not realistdeed, as for thespatial
independencenodel the cells “1” were changing to “0” and thedl€’0” were changing to
“1”, at each time-step and so on. Thus, the caklokrgparameters produced a proper final
state but obtained with an incorrect land use chapgocess. Therefore, further
experimentation has been carried out using hecrisles to calibrate the coefficients.
Here, heuristic is defined as a set of rules intelni increase the probability of solving a
problem. Table 18 shows the solutions obtained.

Table 18 Calibration results obtained for model 2w ith or without assumptions.

(00) (10) S100) Slug | CA AA PS | Fitness
Reference 20 -20 -12 0 0.9881 | 0.9984 |0.9984 | 2.9849
No assumptions |-50 49.9018 |39.8921 |50 0.9816 | 0.9994 | 0.9994 | 2.9804
Assumptions 34.7855 |-40 -22.0372 |0 0.9901 | 0.9979 | 0.9979 | 2.9859

The results obtained, without heuristic rule, warghtly lower than the one obtained with
the reference parameters. Consequently, if no $teurfule is given to perform the
calibration, the optimization is less efficient aetiable.

Thus, in order to avoid these types of misleadasylits, heuristic rule can be given to the
PSO. Theexpansiomrmodel is simulating a spatial expansion of comisd land use type;
consequently a cell classified as land use typecdli never change to land use type “0”
as land use type “1” is expanding, therefore theffaments to be calibrated do not have
the same domain of search and the following assomgptan be made:
Puoy O, therefore (1) is negative.
slis not necessary and can be set to zero.
Besides, a cell classified as “0” has little chatme&hange to “1” unless it is surrounded
by a significant amount of cells “1”, consequently:
(o0) IS positive.
sloo) is negative.
Consequently, using heuristic rule, only three fioehts have to be calibratedioo),
slooy (10)@nd the solution space has only three dimenslanaddition the coefficients
obtained in Table 18 showed thatloo) has an absolute value slightly lower thads) or
(10)-
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Thus we set the domain of search for each coefficie follow:
o). domain_min= 0 and domain_max= 40.
slo: domain_min= -30 and domain_max= 0.
@0y domain_min= -40 and domain_max= 0.
slio) is set to zero.

5.2.3 The number of particles

The following results present the effect of the R®@trol variables on the efficiency and
accuracy of the calibration. Figure 15 and Tablesh®w the effect of the number of
particles and the number of PSO iterations on ihal fesults obtained as well as the
progression of the PSO toward these results.

PSO progression
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Figure 15 PSO progression for model 2 using different number of particles.
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Table 19 Calibration results obtained for model 2 u  sing different number of particles.

Number of particles (00) @0) S1 0 Slye) | CA AA PS | Fitness
Reference 20 -20 12 0]0.9881 | 0.9984 (0.9984 | 2.9849
8134.7855| -40.0000 | -22.0372 0.0000 | 0.9901 | 0.9979|0.9979| 2.9859

12]39.5642 | -40.0000 | -25.1698 0.0000 | 0.9902 | 0.9985|0.9985| 2.9873

16 | 40.0000 | -40.0000 | -25.4024 0.0000|0.9911 | 0.9988|0.9988 | 2.9887

20]40.0000 | -40.0000 | -25.3944 0.0000 | 0.9912 | 0.9989|0.9989| 2.9890

40|40.0000 | -40.0000 | -25.3138 0.0000 | 0.9913 | 0.9986|0.9986| 2.9884

We can see that 8 particles are sufficient to &ndacceptable solution. Nevertheless, by
increasing the number of particles exploring thiitsmn space, we managed to increase
the quality of the solution obtained after 100 atens. Indeed the progression curve of
the PSO shows that the more particles are explahagolution space, the latter and the
higher they stop progressing. This was expecteth@solution space of thexpansion
model has an additional dimension compared to gpaetial independencenodel.
Nevertheless we can note that above 20 partitiesalgorithm does not find solution with
a better fitness. On the other hand running the B&@hg more than 100 iterations did
not improve the final fitness and may imply that tharticles tend to get trapped in a local
optimum when they are part of a “small swarm”. Ganpgently, in order to improve the
guality of the calibration it is more efficient ilacrease the number of particles rather than
the number of PSO iterations. A number of 20 pitiseems the most efficient setting in
terms of computation time.

5.2.4 Final results

Table 20 shows the calibrated coefficients for twets of reference coefficients
representing different amount of change, i.e. tkgagasion of the patch of land use type
“1”. The algorithm settings are as follow:
Maximum number of PSO iterationsl60
Number of realizations per simulatienl0
Number of particles 20
Number of neighbours 2
Limits of location change domain_max — domain_min(i.e. domain of search)
Importance ofndividuality = Importance osociability
ooy domain_min= 0 and domain_max= +40.
slo: domain_min= -30 and domain_max= 0.
0y domain_m= -40 and domain_max= 0.
slio) is set to zero.

Table 20 Final calibration results for model 2.

Number of particles (00) (10) S100) Slug | CA AA PS |Fitness
Reference 20 -20 -12 0]0.9881|0.9984 | 0.9984 | 2.9849
Best position 40.0000 | -40.0000| -25.3944 | 0.0000|0.9912|0.9989 |0.9989 | 2.9890
Reference 15 -20 -16 0]0.9910|0.9985|0.9985| 2.9880
Best position 19.5787 | -40.0000 | -20.9665| 0.0000|0.9909 |0.9995|0.9995| 2.9899
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Map 4 shows the reference initial and final land osaps (A and B). The reference final
map is generated using the following coefficients:

(00 =15

(10) = -20

S](oo) =-16

51(10) =0
In addition two realizations (C and D) of the firmimulated map, using the calibrated
coefficients, are presented.

A Initial land use map Final land use map B
10f 8 10f
201 1 20F
30r 8 30-
40+ 4 40+
501 b 501
60 q 60r
70F 1 701
801 J 80r
901 b 901
100 20 40 60 80 w0 20 40 60 80 100
C : ; D
Final land use map Final land use map
101 b 10p
20r q 20F
301 b 301
401 b 401
501 b 501
60r 1 60
701 q 70F
80r J 801
901 b 901
1005 20 40 60 80 w0 20 40 60 80 100

Map 4 Reference initial (A) and final (B) land use  maps and two simulated land use maps (C and D) for

model2.
0]

Table 20 shows that the PSO yields coefficientd witbetter fithess than the reference
one in both cases. We can note that, as for mgdéklposition found is not the same as
the reference one. Nevertheless, we can see thatatlo (ocal / sloocal for the
calibrated coefficients is nearly equal {goyef / slooyef. Indeed the ratiogey Skoo)is
controlling the rate of expansion of the patch. §iwe PSO vyields good coefficients by
finding the position in the solution space for whid oyef / slooyef) ( ©ocal /
sloopcal). Besides, in all casesgogcal is always equal to -40. Indeed, comparing the
initial reference land use map and the final one,can see that no cell “1” is changing to
“0”, consequently as long asio) is set low enough, its value does not influence th
pattern of the final simulated map. Thus in thecemtual model for expansiong could
be set as a constant heuristically. Indeed thisldveeduce the number of coefficients to
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be calibrated and the number of dimensions of thiatisn space. Finally the overall
fithess of the calibrated model is very close ®itiaximum which suggest that the choice
of the criteria is the most appropriate considerihg land use change process to be
simulated.

5.3 Model 3: Defragmentation

The defragmentatiormodel simulates the expansion of big patches adresidered land
use type, whereas smaller ones are shrinking. @hd Lse change probabilities are
determined using Equation 9.

Pii : .
LOg(ﬁ) = &)+ asjii - EF) d = smar+amji) - EF(j),d = medium
= (i)

And the coefficients matrix which needs to be aalibd is Table 7.

To

0

sl ml
£ 0 ©0) | Sloo) | Ml
L 1 @) | Slaoy | Mlao

Now, six parameters need to be calibratgd, (10, Skooy Skio, Mooy and Ml
Besides, in order to calibrate this model, we usedsame criteria as for tlexpansion
model. To run the experimentations, the default B&tings are as follow:
- Maximum number of PSO iterationsl80

Number of realizations per simulatiorl®

Number of particles 24

Number of neighbours 2

Limits of location change domain_max — domain_min(i.e. domain of search)

Importance ofndividuality = Importance o§ociability

5.3.1 Domain of search

Table 21 presents the results obtained providinghair heuristic rules to the PSO to
explore the solution space. If heuristic rules previded, the parameters have the
following domain of search:

(0=>0): domain_min® and domain_max=80.

s1(0=>0): domain_min=80 and domain_max®.

(1=>0): domain_m=80 and domain_max®.

s1(1=>0) domain_m=80 and domain_max®.

m1(0=>0) domain_m=80 and domain_max®.

s1(1=>0) domain_m=®$ and domain_max=80.
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Table 21 Calibration results obtained for model 3 w

ith or without assumptions.

(00)

(10)

sl (00)

51(10)

ml (00)

ml (10)

CA

AA

PS

Fitness

No
assumptions

-80.0000

-80.0000

79.9079

40.2733

33.5081

80.0000

0.8617 | 0.9968

0.9984 | 2.8569

Assumptions

80.0000

-80.0000

0.0000

-65.3774

-68.7600

0.0000

0.9209 | 0.9991

0.9322 | 2.8523

Table 21 shows that the PSO without heuristic rylekls results with a fithess equal to
2.9859 which is better than the ones obtained hétlristic rules. Nevertheless, as for the
previous models; running the simulation with thébrated coefficients made appear that
the process simulated was not realistic; the €gllsvere changing to “0” and the cells”0”
were changing to “1”, at each time-step and soltws these results were discarded. On
the other hand, using heuristic rules yielded shglower fitness but the land use change
process simulated was realistic. Besides, we céathat the solution obtained generate a
simulated map which reach almost 1 for the AA cidtevhereas CA and PS are closer to

0.93.

5.3.2 The number of particles

In order to improve the final fitness, further exipeent were carried out using 40 patrticles
to explore the solution space.

Table 22 Calibration results obtained for model 3 u

sing different number of particles.

(00)

(10

sl (00)

sl (10)

ml (00)

m 1(10)

CA

PS

Fitness

Assumptions

80.0000

-80.0000

0.0000

65.3774

-68.7600

0.0000

0.9209

0.9991 | 0.9322

2.8523

Assumptions
and 40
particles

77.5644

-80.0000

0.0000

80.0000

-66.7506

27.3032

0.9219

0.9987|0.9324

2.8529

Table 22 shows that a slightly better solution banfound by increasing the number of
particles. Besides, we can note that the solutitmend with the different PSO

configuration have different positions. This may duee to some coefficients which are
correlated and/or unnecessary; consequently thebeuwf parameters to be calibrated
could be reduced.

5.3.3 Final results

Map 5 shows the initial and final reference maps(# B) and a final simulated map (C)
using calibrated coefficients.

We can note, comparing Map 5 B and C, that the R8©to find coefficients generating

a land use change process for which some of theh@stare shrinking and others are
expanding. Indeed all the patches are expanding.rffly be due to:
The conceptual model for defragmentation which a$ suited to simulate this
process; consequently the PSO cannot find a paeasnedbmbination yielding an
acceptable simulated map. Maybe increasing the @fizbe neighbourhoods to
compute the EF would improve tdefragmentatiormodel.
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The domain of search is not properly set. Indeedynparticles are either on the
edges of the solution space or equal to 0.
Thus further research should be done in order tprome the calibration of the
defragmentatiormodel.

A . i B
Initial land use map Final land use map
10 i 10
201 q 201
301 q 301
401 q 401
501 q 501
601 q 601
701 q 70
801 q 801
901 q 90
1005 20 40 60 80 00 1005 20 40 60 80 100
Final simulated land use map C

O T T T
1 10— =

50— -

s B

Map 5 Reference (A and B) and simulated (C) land us e maps for the defragmentation model.
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6 Conclusion and recommendations

The objective of this research was to develop @maion method for M-LUCMs. The
results obtained with the Particle Swarm Optim@atallow us to answer our research
guestions and provide recommendations for furtbgearch.

1. How to create basic M-LUCMs which enable to evalua the calibration
method?
Using a logistic regression to determine the lasd change transition probabilities is a
suitable framework to create simplistic M-LUCMs tag number of parameters can be
limited to only one. Furthermore, the logistic reggion could be used to simulate
increasingly complex land use change processesipfysadding any relevant parameters
in the logistic regression equation.
Moreover, the basic models applied to synthetid lase datasets, proved to be very
useful to experiment and test the calibration metho different situations, as the
computation time was reduced using only two lanel types with a limited area extent.
Besides, calibrating the model for spatial indeggee, which is not realistic, enables to
visualize the PSO behaviour in a 2D solution spd@be. results obtained with this model
further facilitated the configuration of the PSOctlibrate more complex models. Thus,
callbratlng simplistic LUCMSs using synthetic dattssprovides:
Benchmarks (i.e. the reference parameters) to atethe performance of the
calibration method.
A sound analysis of the calibration results withoucertainty regarding a
possible lack of knowledge about the land use ohgrgcesses or the data
themselves.
Insight on the PSO’s optimization process.

2. What are available calibration methods and which oe is the most
appropriate for calibration of a M-LUCM?

Many optimization algorithms exist; most of themditheir principle in evolution theory
(e.g. genetic algorithms) or the swarm intellige(eg. the ant colony optimization or the
PSO). But it is not easy, or even possible, to am@ghem in terms of efficiency or
accuracy as the calibration results often dependghe problem considered or the
computer resources used to carry out the resedlevertheless, looking closer to the
general optimization process, all optimization altpons may get trapped into local
optima; consequently their resilience to local watican be an objective feature to
identify a relevant optimization algorithm. Indeetiiring the experimentation, the PSO
algorithm never got trapped into a local optimumless the number of particles exploring
the solution space was set very low.
In addition the PSO is an algorithm, which can lasilg implemented and is highly
adaptable to the model to be calibrated; it hasadly been used to calibrate DNA
sequences models. Besides, the calibration ofhitee tmodels showed that the PSO can
deal with multi-dimension solution space, simply ingreasing the number of particles
accordingly.
Finally the PSO can find parameters combinatiording fithess very close to the
maximum, more particularly looking at the resutis theexpansiormodel.
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3. How to implement the calibration method and apply i to basic M-LUCMs?
Using matrices computation to simulate the land als#nge processes and calibrate the
model allowed us implement the computer code instlime environment; Matlab. The
Matlab software is worldwide known as an efficigobl for matrices computation.
Nevertheless, it can be limited when spatial anslgseds to be carried out such as the
computation of landscape metrics. Thus we hadii the land use pattern analysis to the
computation of the average patch size.
As mentioned previously the PSO algorithm is veltgable to the problem of interest
and its application to the M-LUCMs was quite sthifprward:
The solution space has a dimension for each paeartebe calibrated.
Each particle in the solution is a candidate cortibidm of parameters to be applied
to the model.
Then each candidate combination is tested by rgntna simulation and computing the
criteria of interest in order to obtain the ovefdfiess.

4. How to evaluate the calibration performance?
Using basic M-LUCMs applied to synthetic datasetviges reference land use maps
with known parameters. The position of the knownapeeters in the solution space can
then be considered as a benchmark to determihe i$alution found by the PSO is close
to the reference. Furthermore, the fithess compwithdthe reference parameters provides
a second benchmark on the quality of the simulatising calibrated parameters. Indeed,
the results obtained showed that the fitness ofréfierence parameters provide a more
reliable benchmark than the position of the refeegmarameters in the solution space.
Besides, once primary satisfactory results weraionbtl, it is necessary to explore if it is
possible to improve the efficiency of the PSO todfithe best solution in terms of
computation time. To do so, it is needed to hatboaough understanding of the PSO
optimization process and the effect of the comtianiables on its efficiency. Thus many
experiments were necessary to test different PS@igtoation in order to maximize the
calibration efficiency in terms of computation tirag well as quality.

Recommendations
This research showed that the PSO is a promisifigraon method for M-LUCMs.
Nevertheless, it was the first step to assessdability and efficiency of the PSO. Further
research must be undertaken to know if this allgeritan be applied to real world data.
Thus experimentations should be run with:
- more than two land use types occurring in the mapsst of the land use change
models simulate processes and interactions among laad use types.
more complex land use change processes and, cambgumore parameters to
determine the transition probabilities. Indeeddlarse change processes are not
only driven by the spatial interactions of the largk patterns but also by socio-
economic and biophysical factors.
a bigger area extent.
finer criteria (e.g. fuzzy-kappa) to improve thelilmation and simulation
outcomes.
In the framework of this future research, our eigrere can provide few advices
regarding the setting of the PSO. First, it is 13saey to carefully select the relevant
criteria according to the model purposes, i.e.ldnel use change process to be simulated.
Then determining the domain of search using expastvledge on land use change, can
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greatly improve the calibration reliability and ieféncy. Besides, as recommended by
Kennedy and Eberhart, an equal individuality andiamlity provides a PSO which is
resilient to local optima and can find the globasbsolution. Finally the ratio between the
number of particles and the number of neighboutsradene the number of promising
solutions to be explored and the number of padidiedicated to the exploration of these
solutions.
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Computer code for model 1: Spatial Independence

PSO
close all;
clear;
clc;

tic;

qﬁ * * * * * * * * /

% Definitions of data parameters */
96********************************/

rows=100;
cols=100;
nrclasses=2;

96*********************************/

% Definitions of simulation control variables */
QFFrkAFIRAAI KA IR A KA KA A KA A KK

iterations_sim=10;
nr_time_steps=19;

qﬁ * * * * * * * * /

% Create reference data */
96*********************************/

initseed1;
Create_lu_initial;
ref _data_modell;

96*********************************/

% Variables for particles behavior */
Yk Rk kkekkekkkekk
nr_particles = 8;

nr_neighbors = 2;
max_iterations_ PSO =300;

% set limits for location changes */
delta_min =[-1 -1];
delta_max =[1 1];

% set individuality %

i_weight = 2.0;

i_min =0.0; % low stochastic weight factor %
i_max = 1.0; % high stochastic weight factor %

% set sociality %

s_weight = 2.0;

s_min = 0.0; % low stochastic weight factor %
s_max = 1.0; % high stochastic weight factor %
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96*******************************************96

% Next 3 variables related to problem solution spac
Qprrrriiikikkkkitiiikkkkokkkokottkkokkkkokokokok
fithess_ini = -100000;

target_fitness = 2;

nr_dimensions = 2; % dim. of solution space */
d=nr_dimensions;

domain_max=[1 1];

domain_min=[0 0];

qﬁ * * * * * * * /

% End of control variable definitions. */
96******************************/

% Initialize particles' location and velocity*/
p_position=zeros(nr_particles,nr_dimensions);
p_velocity=zeros(nr_particles,nr_dimensions);
p_bestfitness=fitness_ini*ones(nr_particles,3);
for p=1:nr_particles
for d=1:nr_dimensions
p_position(p,d)=domain_min(:,d)+(domain_max(:,
domain_min(:,d))*rand,;
p_velocity(p,d)=delta_min(:,d)+(delta_max(:,d)
delta_min(:,d))*rand;
end
end
p_bestsofar_glob=zeros(1,d);
p_bestsofar=p_position;
p_bestfitness_glob=fitness_ini*ones(1,3);

% % set particles' neighbors */
% not symmetric!!!
p_neighbor=ones(nr_particles);
p_neighbor=p_neighbor.*(-999999);
for k=1:nr_particles
for I=-nr_neighbors/2:nr_neighbors/2
if k+l<=0
p_neighbor(k,abs(k+I+nr_particles))=1;
elseif k+I>nr_particles
p_neighbor(k,abs(k+I-nr_particles))=1;
else p_neighbor(k,k+)=1;
end
end
end

% run Particle Swarm Optimizer */

p_current=p_position;
progress=zeros(max_iterations_PSO,4);

for m=1:max_iterations_ PSO %do {
%%%%Current positions%%%%%%%%%%
filename=['results\positions_',int2str(m)];

save(filename,'p_current');

% test their fitness. */

-56 -

e. *

d)-



for p=1:nr_particles
criteria_1=0;
criteria_2=0;
for n=1:iterations_sim
Sim_model1;
compute_criteria;
criteria_1=criteria_1+pa;
criteria_2=criteria_2+perct;
end % end for each iteration */
fithess1=criteria_1/iterations_sim;
fithess2=criteria_2/iterations_sim;
fitness=fithess1+fithess2;

if fitness>p_bestfitness(p,3)
p_bestsofar(p,:)=p_current(p,:);
p_bestfitness(p,1)=fitness1;
p_bestfitness(p,2)=fitness2;
p_bestfitness(p,3)=fitness;

end

if fitness>p_bestfitness_glob(1,3)
p_bestsofar_glob(1,:)=p_current(p,:)
p_bestfitness_glob=[fitness1 fithess?2 fitness ]
end

if fithess==target_fitness
p_final(1,:)=p_current(p,:)
figure(100)
imagesc (lu_initial)
axis equal
figure(200)
imagesc (lu_ref)
axis equal
figure(300)
imagesc (lu_sim_final)
axis equal
toc
return

end

end % end for each particle p */

%%%%record results%%%%%% %% %%%%%%%%%

%%%%Best positions%%%%%%%%%%
best_positions=p_bestsofar;
best_positions(;,3:5)=p_bestfitness;
filename=['results\best_positions_',int2str(m)];
save(filename,'best_positions');
%%%%Progress%%%%%%%%
progress(m,:)=[m p_bestfitness_glob]

if m==max_iterations_PSO
filename=['results\progression_',int2str(m)];
save(filename,'progress";

end
%Determine particle next velocity and update positi on
for p=1:nr_particles
[C,I][=max(p_neighbor(p,:).*transpose(p_bestfitne ss(:,3)));

p_bestneighbor(p,:)=p_bestsofar(l,:);
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for d=1:nr_dimensions
i_factor = i_weight*(i_min+(i_max-i_min)*rand
s_factor = s_weight*(s_min+(s_max-s_min)*rand
pdelta(p,d) = p_bestsofar(p,d) - p_current(p,
ndelta(p,d) = p_bestneighbor(p,d) - p_current
delta (p,d) = (i_factor(p,d)* pdelta(p,d)) +
ndelta(p,d));

p_velocity(p,d) = p_velocity(p,d) + delta (p,
if p_velocity(p,d) < delta_min(d)
p_velocity(p,d)=delta_min(d);
elseif p_velocity(p,d) > delta_max(d)
p_velocity(p,d)=delta_max(d);
end
if delta(p,d)==0
p_velocity(p,d)=0.01*domain_max(:,d)* (-1
end
p_current(p,d)= p_current(p,d) + p_velocity(p
if p_current(p,d) < domain_min(d)
p_current(p,d)=domain_min(d);
elseif p_current(p,d) > domain_max(d)
p_current(p,d)=domain_max(d);
end
end % end for each dimension d */
end % end of: for each particle p */

plot_position;
end % end of: while iterations <= max_iterations */
plot_best_position;

toc;

-58 -

(p.d));
(p.d));
d);

(p,d);
(s_factor(p,d) *

d);

+ (1-(-1))*rand);

,d);



Initseed1

seed = 931316739;
rand(‘'seed’,seed);
randn(‘'seed’,seed);

Create lu _initial

%%%create and save random initial map%%%%%
lu_initial=round(rand(rows,cols));
filename=['data\lu_initial'];

save (filename,'lu_initial');

%%%display initial land use map%%%%
figure(100);
imagesc(lu_initial);
axis equal;

ref data modell
%%%%%%%%% %% % %% %% %% %% %% Simulate spatial
independence%%%%%%%%%%%%%%%%%%%%%%% %

%1. Input variables and data

trans_matrix_ref=[0.990 0.005];
lu_current=lu_initial;

%2. Create land use for next time-steps
for t=1:nr_time_steps

%a.Create probability maps of becoming 0
p_map=trans_matrix_ref(1)*(1-
lu_current)+trans_matrix_ref(2)*lu_current;

%b.simulate land use based on p_map and random numbers%
R=rand(rows,cols);

lu_new=(R>p_map);

lu_current=lu_new;

%3. save final reference and display

if t==nr_time_steps
lu_ref=lu_new;
save('data\ref_final_year','lu_ref' );
figure(200);
imagesc(lu_ref);
axis equal;

end

%4.display land use map for each time-step
figure(t);
imagesc(lu_new);
axis equal;

end

-59 -



Sim modell

%%%%% %% %% %% %% %% %% %% %%%Simulate spatial
independence%%%%%%%%%%% %% %% %% %% % %% %%

%21. Input initial land use
lu_current=lu_initial;

%2. Simulate land use for next time-steps
trans_matrix=p_current(p,:);

for t=1:nr_time_steps

%a.Create probability maps
p_map=trans_matrix(1)*(1-lu_current)+trans_matr

%b.simulate land use based on p_map and random
R=rand(rows,cols);

lu_new=(R>p_map);

lu_current=lu_new;

%3. display results
if t==nr_time_steps
lu_sim_final=lu_new;
figure(300);
imagesc(lu_sim_final);
axis equal;
end
end

compute criteria
nrcells=rows*cols;

%%%Compute Area Agreement (AA)%%%%%%
perct_1=(sum(sum(lu_ref==1)))/nrcells;
perct_2=(sum(sum(lu_sim_final==1)))/nrcells;

perct=1-abs(perct_1-perct_2);

%%%%Compute Cell Agreement (CA)%%%% %%
agree_00=zeros(rows,cols);
agree_11=zeros(rows,cols);
exp_01=zeros(rows,cols);
exp_10=zeros(rows,cols);

agree_00=(lu_ref+lu_sim_final==0);
agree_11=(lu_ref+lu_sim_final==2);
exp_01=(lu_ref-lu_sim_final==-1);
exp_10=(lu_ref-lu_sim_final==1);

pa_00=(sum(sum(agree_00)))/nrcells;
pa_l11=(sum(sum(agree_11)))/nrcells;
pe_01=(sum(sum(exp_01)))/nrcells;
pe_10=(sum(sum(exp_10)))/nrcells;
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pa=pa_00+pa_11;

%%%%%%%%Additional indices%%%%%%%
% pO0T=pa_00+pe_01;

% plT=pe_10+pa_11;

% pTO=pa_00+pe_10;

% pTl=pe Ol+pa_11,;

% pe=p0T*pTO+plT*pT1;

% [A]=min (pOT,pTO);

% [B]=min (p1T,pT1);

% pmax=A+B;

%

% Khisto=(pmax-pe)/(1-pe);

% Klocation=(pa-pe)/(pmax-pe);

% Kappa=Khisto*Klocation;

%%Display differences%%%
% figure(700);

% imagesc(pe);

% axis equal;

plot position
X=p_current(;,1);
y=p_current(;,2);

figure (400)

plot (x,y,'r+','MarkerSize',10)
axis manual equal

axis ([0101)

grid on

plot best position
x=best_positions(:,1);
y=best_positions(:,2);

figure (500)

plot (x,y,'r+','MarkerSize',10)
axis manual equal

axis ([0101)

grid on
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Computer code for model 2: Defragmentation

PSO
close all;
clear;
clc;

tic;

96*********************************/

% Definitions of data parameters */
Qi kKRR KRR KRN |

rows=100;
cols=100;
nrclasses=2;

qﬁ * * * * * * * * /

% Definitions of simulation control variables */
96********************************/

iterations_sim=10;
nr_time_steps=20;

96*********************************/

% Create reference data */
QfpFrikxikmik ok koot kkokkk f

initseed1l;
create_lu_initial;
ref _data_model2;

Ytttk

% Begin definitions of control variables */
96********************************/
nr_particles = 20;

nr_neighbors = 2;

max_iterations_PSO =100;

% set limits for location changes */
delta_min =[-40 -40 -30 O];
delta_max =[40 40 30 0];

% set individuality %

i_weight = 2.0;

i_min =0.0; % low stochastic weight factor %
i_max = 1.0; % high stochastic weight factor %
% set sociality %

s_weight = 2.0;

s_min = 0.0; % low stochastic weight factor %
s_max = 1.0; % high stochastic weight factor %

qﬁ * * * * * * * * * * agﬁ

% Next 3 variables related to problem solution spac
96********************************************/

fitness_ini = -100000;
target_fitness = 3;
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nr_dimensions = 4; % dim. of solution space */
d=nr_dimensions;

domain_max=[40 0 0 0];

domain_min=[0 -40 -30 0];

%******************************/

% End of control variable definitions. */
QfpFxkxkxikkiick ik kokkiok [

% Initialize particles' location */
p_position=zeros(nr_particles,nr_dimensions);
p_velocity=zeros(nr_particles,nr_dimensions);
p_bestfitness=fitness_ini*ones(nr_particles,4);
for p=1:nr_particles
for d=1:nr_dimensions
p_position(p,d)=domain_min(:,d)+(domain_max(:,
domain_min(:,d))*rand;
p_velocity(p,d)=delta_min(:,d)+(delta_max(:,d)
delta_min(:,d))*rand,;
end
end
p_bestsofar_glob=zeros(1,nr_dimensions);
p_bestsofar=p_position;
p_bestfitness_glob=fitness_ini*ones(1,4);

% % set particles' neighbors */
% not symmetric!!!
p_neighbor=ones(nr_particles);
p_neighbor=p_neighbor.*(-999999);
for k=1:nr_particles
for I=-nr_neighbors/2:nr_neighbors/2
if k+l<=0
p_neighbor(k,abs(k+I+nr_particles))=1;
elseif k+I>nr_particles
p_neighbor(k,abs(k+I-nr_particles))=1;
else p_neighbor(k,k+)=1;
end
end
end

% run Particle Swarm Optimizer */
count_1=0;
progress=zeros(max_iterations_PSO,5);

for m=1:max_iterations_PSO %do {
% Make the "next locations" current and then */
% test their fitness. */
p_current=p_position;
for p=1:nr_particles
% count_2=0;
criterial=0;
criteria2=0;
criteria3=0;
for n=1:iterations_sim
Sim_model2; %%%%run simulation
compute_criteria; %%%%compute criteria v
criterial=criterial+pa;
criteria2=criteria2+perct;
criteria3=criteria3+avpatchsize;
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end
fitness1=criterial/iterations_sim;
fitness2=criteria2/iterations_sim;
fitness3=criteria3/iterations_sim;
fitness=fitness1+fithess2+fitness3;

if fithess>p_bestfitness(p,4)
p_bestsofar(p,:)=p_current(p,:);
p_bestfitness(p,1)=fitnessl;
p_bestfitness(p,2)=fitness2;
p_bestfitness(p,3)=fitness3;
p_bestfitness(p,4)=fitness;

end

if fitness>p_bestfitness_glob(1,4)
p_bestsofar_glob(1,:)=p_current(p,:)
p_bestfitness_glob=[fitness1 fithess2 fitness

end

if fitness==target_fitness
p_final(1,:)=p_current(p,:)
figure(100)
imagesc (lu_initial)
figure(200)
imagesc (lu_ref)
figure(300)
imagesc (lu_sim_final)
toc
return

end

end % end of: for each particle p */

%record results
%%%%positions%% %% %% % %% %
best_positions=p_bestsofar;
best_positions(:,5:8)=p_bestfitness
filename=['results\best_positions_',int2str(m)];
save(filename,'best_positions');
%%%%progress%%%%%%%%
progress(m,:)=[m p_bestfitness_glob];

if m==max_iterations_ PSO
filename=['results\progression_',int2str(m)];
save(filename,'progress";

end

%Determine next particle position
for p=1:nr_particles %each particle p do {
[C,I][=max(p_neighbor(p,:).*transpose(p_bestfitne
p_bestneighbor(p,:)=p_bestsofar(l,:); %n =
getNeighborWithBestFitness(p)
for d=1:nr_dimensions %do {
i_factor = i_weight*(i_min+(i_max-i_min)*rand
s_factor = s_weight*(s_min+(s_max-s_min)*rand
pdelta(p,d) = p_bestsofar(p,d) - p_current(p,
ndelta(p,d) = p_bestneighbor(p,d) - p_current
delta (p,d) = (i_factor(p,d)* pdelta(p,d)) +
ndelta(p,d));
p_velocity(p,d) = p_velocity(p,d) + delta (p,
if p_velocity(p,d) < delta_min(d)
p_velocity(p,d)=delta_min(d);
elseif p_velocity(p,d) > delta_max(d)
p_velocity(p,d)=delta_max(d);
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end

if delta(p,d)==0

p_velocity(p,d)=0.01*domain_max(:,d)* (-1 + (1-(-1))*rand);
end
p_current(p,d)= p_current(p,d) + p_velocity(p ,d);

if p_current(p,d) < domain_min(d)
p_current(p,d)=domain_min(d);
elseif p_current(p,d) > domain_max(d)
p_current(p,d)=domain_max(d);
end
end
end % end for each particle p */
count_l=count_1+1
end % end of: while iterations <= max_iterations * /
% %%%%%%% %% %% %% %% %% %% %% %% %% %% % %% % %% Y%t oprat barartd of

toc;

ref data model2
%%%%%%% %% %% %% %% %% % %% %% Create reference data fortigpha
expansion%%%%%%%%%%%%%%%%%%%%%% %%

%1. Input variables and data
neighbor_size=9;
map_size=rows*cols;
trans_matrix_ref=[20,-12;-20,0];
lu_current=lu_initial;

%%%%%%%%%%Beginning simulation
for t=1:nr_time_steps

%%%%%%%%%%Compute Enrichment Factor (EF)
%counter of cells in state 1 in map
count_tot=0;
count=zeros(rows,cols);
for f=1:rows
for g=1:cols
if lu_current(f,g)==1
count_tot=count_tot+1,
end
end
end
if sum(sum(count_tot))==0
count=zeros(rows,cols);
else
%%%%%%%%%%%%count EF1 for cells in first
row%%%%%%%%%%% %% %% %% %% %% %% %% % % %% %%
fori=1
for j=2:cols-1
for k=0:1
for I=-1:1
r=i+k;
c=j+;
if lu_current(r,c)==1
count(i,j)=count(i,j)+1;%counter of cells in state 1
in neighbourhood
end
end
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end
if lu_current(i,j)==1
count(i,j)=(count(i,j))-1;
end
count(i,j)=((count(i,j)/(6-1))/(count_tot/map _size));%enrichment
factor map for class 1
end
end
%%%%6%%% %% %% % %% %% %% %% %% %% %% %% %6 %% % %6 %00
%%%%%
%%%%%%%%%%%%%%count EF1 for cell in last
row%%%%%%%%%%%%% %% %% %% %% %% %% %% %% % %%
for i=rows
for j=2:cols-1
for k=-1:0
for I=-1:1
r=i+k;
C:j+|;
if lu_current(r,c)==1
count(i,j)=count(i,j)+1;%counter of cells in state 1
in neighbourhood
end
end
end
if lu_current(i,j)==1
count(i,j)=(count(i,j))-1;
end
count(i,j)=((count(i,j)/(6-1))/(count_tot/map _size));%enrichment
factor map for class 1
end
end
%%%%%%% %% %% % %% %% %% %% %% %% %% %% %% %% %%
%%%
%%%%%%%%%%%%count EF1 for cells in first
column%%%%%%%%%%%%%% %% %% %% %% %% %% % %%
for i=2:rows-1
for j=1
for k=-1:1
for I=0:1
r=i+k;
c=j+;
if lu_current(r,c)==1
count(i,j)=count(i,j)+1;%counter of cells in state 1
in neighbourhood
end
end
end
if lu_current(i,j)==1
count(i,j)=(count(i,j))-1;
end
count(i,j)=((count(i,j)/(6-1))/(count_tot/map _size));%enrichment
factor map for class 1
end
end
%%%%%%% %% %% % %% %% %% %% %% %% %% %% %% %% %%
%%%
%%%%%%%%%%%%count EF1 for cells in last
column%%%6%%%%%%%%%% %% %% %% %% %% %% % %% %%
for i=2:rows-1
for j=cols
for k=-1:1

0,60.000000000 Bk v 0%%%%

%%%%

%%%%
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for I=-1:0
r=i+k;
C:j+|;
if lu_current(r,c)==1
count(i,j)=count(i,j)+1;%counter of cells in state 1
in neighbourhood
end
end
end
if lu_current(i,j)==1
count(i,j)=(count(i,j))-1;
end
count(i,j)=((count(i,j)/(6-1))/(count_tot/map _size));%enrichment
factor map for class 1
end
end
%%%%%%% %% %% % %% %% %% %% %% %% %% %% %% %% %%
%%%
%%%%%%%%%%%%%%Count EF1 for cells in each
corner%%%%%%%%% %% %% %% %% %% %% %% %% % %%
fori=1
for j=1
for k=0:1
for I=0:1
r=i+k;
c=j+;
if lu_current(r,c)==1
count(i,j)=count(i,j)+1;%counter of cells in state 1
in neighbourhood
end
end
end
if lu_current(i,j)==1
count(i,j)=(count(i,j))-1;
end
count(i,j)=((count(i,j)/(4-1))/(count_tot/map _size));%enrichment
factor map for class 1
end
end

%%%%

fori=1
for j=cols
for k=0:1
for I=-1:0
r=i+k;
C:j+|;
if lu_current(r,c)==1
count(i,j)=count(i,j)+1;%counter of cells in state 1
in neighbourhood
end
end
end
if lu_current(i,j)==1
count(i,j)=(count(i,j))-1;
end
count(i,j)=((count(i,j)/(4-1))/(count_tot/map _size));%enrichment
factor map for class 1
end
end

for i=rows
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for j=1
for k=-1:0
for I=0:1
r=i+k;
c=j+;
if lu_current(r,c)==1
count(i,j)=count(i,j)+1;%counter of cells in state 1
in neighbourhood
end
end
end
if lu_current(i,j)==1
count(i,j)=(count(i,j))-1;
end
count(i,j)=((count(i,j)/(6-1))/(count_tot/map _size));%enrichment
factor map for class 1
end
end

for i=rows
for j=cols
for k=-1:0
for I=-1:0
r=i+k;
C:j+|;
if lu_current(r,c)==1
count(i,j)=count(i,j)+1;%counter of cells in state 1
in neighbourhood
end
end
end
if lu_current(i,j)==1
count(i,j)=(count(i,j))-1;
end
count(i,j)=((count(i,j)/(6-1))/(count_tot/map _size));%enrichment
factor map for class 1
end
end
%%%%%%%%%0%6%0% %% %% %% %% %% %% % %% %% % %% %%
%%%
%%%%%%% %% %% %% %% %%Count EF1 for the rest of the
map%%%6%6%6% %% %% %% %% %% %% %% %% %% %%
for i=2:(rows-1)
for j=2:(cols-1)
for k=-1:1
for I=-1:1
r=i+k;
c=j+;
if lu_current(r,c)==1
count(i,j)=count(i,j)+1;%counter of cells in state 1
in neighbourhood
end
end
end
if lu_current(i,j)==1
count(i,j)=(count(i,j))-1;
end
count(i,j)=((count(i,j)/(neighbor_size-
1))/(count_tot/map_size));%enrichment factor map fo rclass 1
end
end

%%%%
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%%%%%%%%compute probability map
p_map=zeros(rows,cols); % empty grid storing the tr ansition
probabilities for class 1
for i=1:rows
for j=1:cols
p_map(i,j)= (1/(1+exp(-trans_matrix_ref (1,2)-
(trans_matrix_ref(1,2)*count(i,j))))*(1-lu_current( LN)+...
(1/(1+exp(-trans_matrix_ref(2,1)-
(trans_matrix_ref(2,2)*count(i,j))))*lu_current(i,j );
end
end
end

%%%%%%%%simulate land use based on p_map and random numbers
R=rand(rows,cols);

lu_new=(R>p_map);

lu_current=lu_new;

%%%%%%%%display land use map for each time-step
figure(t);

imagesc(lu_new);

axis equal;

%%%%%%%% save and display result
if t==20
lu_ref=lu_new;
save('data\ref_final_year','lu_ref' );
figure(200);
imagesc(lu_ref)
axis equal;
end
end

Sim model2
%%%%%%%%% %% %% %% %% % %% %% Simulate spatial expansidn%%%%%%%%%%% %% % %% %% %%

%1. Input variables and data
neighbor_size=9;
map_size=rows*cols;

trans_matrix=p_current(p,:);

lu_current=lu_initial;

%Beginning simulation
for t=1:nr_time_steps

%%%%%%Compute enrichment factor
%counter of cells in state 1 in map
count_tot=0;

count=zeros(rows,cols);
for f=1:rows
for g=1:cols
if lu_current(f,g)==1
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count_tot=count_tot+1,
end
end
end
if sum(sum(count_tot))==0
count=zeros(rows,cols);
else
%%%%%%%%%%%%count EF1 for cells in first
row%%%%%%%%%%%%%% %% %% %% %% %% %% %% %% %
fori=1
for j=2:cols-1
for k=0:1
for|I=-1:1
r=i+k;
c=j+;
if lu_current(r,c)==1
count(i,j)=count(i,j)+1;%counter of cells in state 1
in neighbourhood
end
end
end
if lu_current(i,j)==1
count(i,j)=(count(i,j))-1;
end
count(i,j)=((count(i,j)/(6-1))/(count_tot/map _size));%enrichment
factor map for class 1
end
end
%%%%%%% %% %% % %% %% %% %% %% %% %% %% %6 %% % %%
%%%%%
%%%%%%%%%%%%%%count EF1 for cell in last
row%%%%%%%%%%%%% %% %% %% %% %% %% %% %% % %%
for i=rows
for j=2:cols-1
for k=-1:0
for I=-1:1
r=i+k;
C:j+|;
if lu_current(r,c)==1
count(i,j)=count(i,j)+1;%counter of cells in state 1
in neighbourhood
end
end
end
if lu_current(i,j)==1
count(i,j)=(count(i,j))-1;
end
count(i,j)=((count(i,j)/(6-1))/(count_tot/map _size));%enrichment
factor map for class 1
end
end
%%%%%%% %% %% % %% %% %% %% %% %% %% %% %% %% %%
%%%
%%%%%%%%%%%%count EF1 for cells in first
column%%%%%%%%%% %% %% %% %% %% %% %% %% % %%
for i=2:rows-1
for j=1
for k=-1:1
for 1=0:1
r=i+k;
c=j+;

%% %%

%%%%
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if lu_current(r,c)==1
count(i,j)=count(i,j)+1;%counter of cells in state 1
in neighbourhood
end
end
end
if lu_current(i,j)==1
count(i,j)=(count(i,j))-1;
end
count(i,j)=((count(i,j)/(6-1))/(count_tot/map _size));%enrichment
factor map for class 1
end
end
%%%%%%% %% %% % %% %% %% %% %% %% %% %% %% %% %%
%%%
%%%%%%%%%%%%count EF1 for cells in last
column%%%%%%%%%%% %% %% %% %% %% %% %% %% %% %
for i=2:rows-1
for j=cols
for k=-1:1
for I=-1:0
r=i+k;
C:j+|;
if lu_current(r,c)==1
count(i,j)=count(i,j)+1;%counter of cells in state 1
in neighbourhood
end
end
end
if lu_current(i,j)==1
count(i,j)=(count(i,j))-1;
end
count(i,j)=((count(i,j)/(6-1))/(count_tot/map _size));%enrichment
factor map for class 1
end
end
%%%%%%% %% %% %% %% %% %% %% %% %% %% %% %% %% %09
%%%
%%%%%%%%%%%%%%Count EF1 for cells in each
corner%%%%%%%%% %% %% %% %% %% %% %% %% % %%
fori=1
for j=1
for k=0:1
for I=0:1
r=i+k;
c=j+;
if lu_current(r,c)==1
count(i,j)=count(i,j)+1;%counter of cells in state 1
in neighbourhood
end
end
end
if lu_current(i,j)==1
count(i,j)=(count(i,j))-1;
end
count(i,j)=((count(i,j)/(4-1))/(count_tot/map _size));%enrichment
factor map for class 1
end
end

%%%%

HRRALBLBRBRBRBDALDBRBRBRADALERE 6%%%%

for i=1
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for j=cols
for k=0:1
for I=-1:0
r=i+k;
c=j+;
if lu_current(r,c)==1
count(i,j)=count(i,j)+1;%counter of cells in state 1
in neighbourhood
end
end
end
if lu_current(i,j)==1
count(i,j)=(count(i,j))-1;
end
count(i,j)=((count(i,j)/(4-1))/(count_tot/map _size));%enrichment
factor map for class 1
end
end

for i=rows
for j=1
for k=-1:0
for I=0:1
r=i+k;
C:j+|;
if lu_current(r,c)==1
count(i,j)=count(i,j)+1;%counter of cells in state 1
in neighbourhood
end
end
end
if lu_current(i,j)==1
count(i,j)=(count(i,j))-1;
end
count(i,j)=((count(i,j)/(6-1))/(count_tot/map _size));%enrichment
factor map for class 1
end
end

for i=rows
for j=cols
for k=-1:0
for I=-1:0
r=i+k;
C:j+|;
if lu_current(r,c)==1
count(i,j)=count(i,j)+1;%counter of cells in state 1
in neighbourhood
end
end
end
if lu_current(i,j)==1
count(i,j)=(count(i,j))-1;
end
count(i,j)=((count(i,j)/(6-1))/(count_tot/map _size));%enrichment
factor map for class 1
end
end
%%%%%%% %% %% % %% %% %% %% %% %% %% %% %% %% %%
%%%

%%%%
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%%%%%% %% %% %% %% %%%Count EF1 for the rest of the
map% %% %% %% %% %% %% %% %% %% %% %% % %%
for i=2:(rows-1)
for j=2:(cols-1)
for k=-1:1
for I=-1:1
r=i+k;
C:j+|;
if lu_current(r,c)==1
count(i,j)=count(i,j)+1;%counter
in neighbourhood
end
end
end
if lu_current(i,j)==1
count(i,j)=(count(i,j))-1;
end
count(i,j)=((count(i,j)/(neighbor_size-1))/(c
%enrichment factor map for class 1
end
end
end

%%%%%%%compute probability map
p_map=zeros(rows,cols); % empty grid storing the tr
probabilities for class 1
for i=1:rows
for j=1:cols
p_map(i,j)= (1/(1+exp(-trans_matrix(1)-
(trans_matrix(3)*count(i,j))))*(1-lu_current(i,j)))
(1/(1+exp(-trans_matrix(2)-
(trans_matrix(4)*count(i,j))))*lu_current(i,j));
end
end

%%%%%%%simulate land use based on p_map and random
R=rand(rows,cols);

lu_new=(R>p_map);

lu_current=lu_new;

%%%%%%%display land use map for each time-step
figure(t);

imagesc(lu_new);

axis equal;

%%%%%%% display and save results

if t==20

lu_sim_final=lu_new;
% filename=['data\sim_final_year"];
% save(filename,'lu_sim_final");

figure(t);

imagesc(lu_new);

axis equal;

end

end

compute criteria
nrcells=rows*cols;
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%%%%%%compute Area Agreement (AA)%%%%%%%
perctl=sum(sum(lu_ref))/nrcells;
perct2=sum(sum(lu_sim_final))/nrcells;
perct=1-abs((perctl-perct2));

%%%%%%%compute Cell Agreement (CA)%%%%%%
agree_00=zeros(rows,cols);
agree_11=zeros(rows,cols);
% exp_01=zeros(rows,cols);
% exp_10=zeros(rows,cols);

agree_00=(lu_ref+lu_sim_final)==0;
agree_11=(lu_ref+lu_sim_final)==2;
% exp_01=(lu_ref-lu_sim_final)==-1,
% exp_10=(lu_ref-lu_sim_final)==1,;

pa=(sum(sum(agree_00))+sum(sum(agree_11)))/nrcells;

%%%%%%Compute average patch size 5PS)
L=bwlabel(lu_ref);
avpatchsizel=perctl/max(max(L));

L=bwlabel(lu_sim_final);
if max(max(L))==0
avpatchsize2=0;
else
avpatchsize2=perct2/max(max(L));
end
avpatchsize=1-(abs(avpatchsizel-avpatchsize?2));
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Computer code for model 3: Defragmentation

PSO
close all;
clear;
clc;

tic;

qﬁ * * * * * * * * /

% Definitions of data parameters */
96********************************/

rows=100;
cols=100;
nrclasses=2;

96*********************************/

% Definitions of simulation control variables */
[ ieaisiaisiaiisiaiishaiisaisaisiaisiaiisaisy

iterations_sim=10;
nr_time_steps=20;

QFFrkRFRIAF IR AF IR AF IR AAIK AKX AAIRK |
% Create reference data */
QFFrkRFRRAF IR AF K AF IR AAI K AKX AKX |

initseed1;
create_initial_final_maps;

96*********************************/

% Begin definitions of control variables */
Yprrttiiikkkkkokttkiikkkkkokok
nr_particles = 24;

nr_neighbors = 2;

max_iterations_ PSO =100;

% set limits for location changes */
delta_min =[-80 -80 -80 -80 -80 -80];
delta_max =[80 80 80 80 80 80];

% set individuality %

i_weight = 2.0;

i_min = 0.0; % low stochastic weight factor %
i_max = 1.0; % high stochastic weight factor %
% set sociality %

s_weight = 2.0;

s_min = 0.0; % low stochastic weight factor %
s_max = 1.0; % high stochastic weight factor %

qﬁ * * * * * * * * * * agﬁ

% Next 3 variables related to problem solution spac
96********************************************/

fitness_ini = -100000;
target_fithess = 10;
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nr_dimensions = 6; % dim. of solution space */
d=nr_dimensions;

domain_max=[80 0 0 0 0 80];

domain_min=[0 -80 -80 -80 -80 0];

%******************************/

% End of control variable definitions. */
QfpFxkxkxikkiick ik kokkiok [

% Initialize particles' location */
p_position=zeros(nr_particles,nr_dimensions);
p_velocity=zeros(nr_particles,nr_dimensions);
p_bestfitness=fitness_ini*ones(nr_particles,4);
for p=1:nr_particles
for d=1:nr_dimensions
p_position(p,d)=domain_min(:,d)+(domain_max(:, d)-
domain_min(:,d))*rand;
p_velocity(p,d)=delta_min(:,d)+(delta_max(:,d) -
delta_min(:,d))*rand,;
end
%p_position(p,1)=trans_matrix(1)-rand/100;
p_position(p,2)=trans_matrix(2)-rand/100;
end
p_bestsofar_glob=zeros(1,nr_dimensions);
p_bestsofar=p_position;
p_bestfitness_glob=fitness_ini*ones(1,4);

% % set particles' neighbors */
% not symmetric!!!
p_neighbor=ones(nr_particles);
p_neighbor=p_neighbor.*(-999999);
for k=1:nr_particles
for I=-nr_neighbors/2:nr_neighbors/2
if k+l<=0
p_neighbor(k,abs(k+l+nr_particles))=1;
elseif k+I>nr_particles
p_neighbor(k,abs(k+l-nr_particles))=1;
else p_neighbor(k,k+)=1;
end
end
end

% run Particle Swarm Optimizer */
%count_1=0;
progress=zeros(max_iterations_PSO,5);

%load('C:\Thesis\Model\Optimization\Model3\results\ variables.mat’)

for m=1:max_iterations_ PSO %do {
% Make the "next locations" current and then */
% test their fitness. */
p_current=p_position;
for p=1:nr_particles
%count_2=0;
criterial=0;
criteria2=0;
criteria3=0;
for n=1:iterations_sim
Sim_model3;
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kappa_stat;

criterial=criterial+pa;

criteria2=criteria2+perct;

criteria3=criteria3+avpatchsize;
end

fitnessl=criterial/iterations_sim;
fitness2=criteria2/iterations_sim;
fitness3=criteria3/iterations_sim;
fitness=5*fitness1+fithess2+4*fitness3;

if fitness>p_bestfitness(p,4)
p_bestsofar(p,:)=p_current(p,:);
p_bestfitness(p,1)=fitness1;
p_bestfitness(p,2)=fitness2;
p_bestfitness(p,3)=fitness3;
p_bestfitness(p,4)=fitness;

end

if fithess>p_bestfitness_glob(1,4)
p_bestsofar_glob(1,:)=p_current(p,:)
p_bestfitness_glob=[fitness1 fithess?2 fitness

end

if fithess==target_fitness
p_final(1,:)=p_current(p,:)
figure(100)
imagesc (lu_initial)
figure(200)
imagesc (lu_ref)
figure(300)
imagesc (lu_sim_final)
toc
return

end

end % end of: for each particle p */

%record results
%%%%0positions% %% %% %% %% %
best_positions=p_bestsofar;
best_positions(;,7:10)=p_bestfitness
filename=['results\best_positions_',int2str(m)];
save(filename,'best_positions');
%%%%progress%%%%%%%%
progress(m,:)=[m p_bestfitness_glob]

if m==max_iterations_PSO
filename=['results\progression_',int2str(m)];
save(filename,'progress);

end

%Determine next particle position

for p=1:nr_particles %each particle p do {

[C,I][=max(p_neighbor(p,:).*transpose(p_bestfitne

p_bestneighbor(p,:)=p_bestsofar(l,:); %n =
getNeighborWithBestFitness(p)

for d=1:nr_dimensions %do {

i_factor = i_weight*(i_min+(i_max-i_min)*rand

s_factor = s_weight*(s_min+(s_max-s_min)*rand

pdelta(p,d) = p_bestsofar(p,d) - p_current(p,

ndelta(p,d) = p_bestneighbor(p,d) - p_current

delta (p,d) = (i_factor(p,d)* pdelta(p,d)) +
ndelta(p,d));
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p_velocity(p,d) = p_velocity(p,d) + delta (p,
if p_velocity(p,d) < delta_min(d)
p_velocity(p,d)=delta_min(d);
elseif p_velocity(p,d) > delta_max(d)
p_velocity(p,d)=delta_max(d);
end
if delta(p,d)==0
p_velocity(p,d)=0.01*domain_max(:,d)* (-1
end
p_current(p,d)= p_current(p,d) + p_velocity(p
if p_current(p,d) < domain_min(d)
p_current(p,d)=domain_min(d);
elseif p_current(p,d) > domain_max(d)
p_current(p,d)=domain_max(d);
end
end
end % end of: for each particle p */
end % end while iterations <= max_iterations */

% end of main program */
toc;

create initial final maps
%%%%%%create initial reference map
lu_initial=imread('lu_initial3.tif");
lu_initial=lu_initial(:,:,1);
for i=1:rows
for j=1:cols
if lu_initial(i,j)>0
lu_initial(i,j)=1;
end
end
end
lu_initial=(lu_initial==1);
%%%%%save and display
save('data\lu_initial','lu_initial');
figure(100);
imagesc(lu_initial);
axis equal;
%%%%%%%% create final reference map
lu_ref=imread ('lu_ref_final3.tif");
lu_ref=lu_ref(;,:,1);

for i=1:rows
for j=1:cols
if lu_ref(i,j)>0
lu_ref(i,j)=1;
end
end
end
lu_ref=(lu_ref==1);
%%%%%%%save and display
save('data\ref_final_year','lu_ref");
figure(200);
imagesc(lu_ref);
axis equal;

Sim model3

%6%%%%%%%%% %% %% %% %%%%%%Simulate spatial
defragmentation%6%6%%%%%%%%%%%% %% %% %% %% %%
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%1. Input variables and data
neighbor_size1=9;
neighbor_size2=25;
map_size=rows*cols;

trans_matrix=p_current(p,:);

lu_current=lu_initial;

%Beginning simulation
for t=1:nr_time_steps

%%%%%%Compute Enrichment Factor (EF)

%counter of cells in state 1 in map
count_tot=0;
for f=1:rows
for g=1:cols
if lu_current(f,g)==1
count_tot=count_tot+1;
end
end
end
if sum(sum(count_tot))==0
count=zeros(rows,cols);
else
%%%%%%%%%%%%Count_1 EF1 for small sized
neighbourhood%%%%%%%%%%%%%%%%%%%%%%%%
count_1=zeros(rows,cols);
%%%%%%%%%%%%count EF1 for cells in first
row%%%%%%%%%%%%%% %% %% %% %% %% %% %% %% %
fori=1
for j=2:cols-1
for k=0:1
for I=-1:1
r=i+k;
C:j+|;
if lu_current(r,c)==1
count_1(i,j)=count_1(i,j)+1;%coun ter of cells in state
1 in neighbourhood
end
end
end
if lu_current(i,j)==1
count_1(i,j)=(count_1(i,j))-1;
end
count_1(i,j)=((count_1(i,j)/(6-
1))/(count_tot/map_size));%enrichment factor map fo rclass 1
end
end
%%%%%%% %% %% % %% %% %% %% %% %% %% %% %% %% %%
%%%
%%%%%%%%%%%%%%count EF1 for cell in last
row%%%%%%%%%%% %% %% %% %% %% %% %% %% %% %%
for i=rows
for j=2:cols-1
for k=-1:0
for I=-1:1

%%%%
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r=i+k;

c=j+;
if lu_current(r,c)==1
count_1(i,j)=count_1(i,j)+1;%coun ter of cells in state
1 in neighbourhood
end
end

end
if lu_current(i,j)==1
count_1(i,j)=(count_1(i,j))-1;
end
count_1(i,j)=((count_1(i,j)/(6-
1))/(count_tot/map_size));%enrichment factor map fo rclass 1
end
end
%%%%%%% %% %% %% %% % %% %% %% %% %% %% %% %% %%
%%%
%%%%%%%%%%%%count EF1 for cells in first
column%%%%%% %% %% %% %% %% %% %% %% %% %% %%
for i=2:rows-1
for j=1
for k=-1:1
for I=0:1
r=i+k;
c=j+;
if lu_current(r,c)==1
count_1(i,j)=count_1(i,j)+1;%coun ter of cells in state
1 in neighbourhood
end
end
end
if lu_current(i,j)==1
count_1(i,j)=(count_1(i,j))-1;
end
count_1(i,j)=((count_1(i,j)/(6-
1))/(count_tot/map_size));%enrichment factor map fo rclass 1
end
end

%%%%

%%%%%%% %% %% % %% %% %% %% %% %% %% %% % %% % % %0 %RB88%84808282046089820460808804¢ 0%%%%
%%%
%%%%%%%%%%%%count EF1 for cells in last
column%%9%6%%%%%%%%%%% %% %% %% %% %% %% % %%
for i=2:rows-1
for j=cols
for k=-1:1
for I=-1:0
r=i+k;
c=j+;
if lu_current(r,c)==1
count_1(i,j)=count_1(i,j)+1;%coun ter of cells in state
1 in neighbourhood
end
end
end
if lu_current(i,j)==1
count_1(i,j)=(count_1(i,j))-1;
end
count_1(i,j)=((count_1(i,j)/(6-
1))/(count_tot/map_size));%enrichment factor map fo rclass 1
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end
end
%%%%%% %% %% %% % % %% %% %% %% %% % %% %% % %% %%
%%%
%%%%%%%% %% %% %%count EF1 for cells in each
corner%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=1
for j=1
for k=0:1
for I=0:1
r=i+k;
c=j+;
if lu_current(r,c)==1
count_1(i,j)=count_1(i,j)+1;%coun ter of cells in state
1 in neighbourhood
end
end
end
if lu_current(i,j)==1
count_1(i,j)=(count_1(i,j))-1;
end
count_1(i,j)=((count_1(i,j)/(4-
1))/(count_tot/map_size));%enrichment factor map fo rclass 1
end
end

%%%%

fori=1
for j=cols
for k=0:1
for I=-1:0
r=i+k;
C:j+|;
if lu_current(r,c)==1
count_1(i,j)=count_1(i,j)+1;%coun ter of cells in state
1 in neighbourhood
end
end
end
if lu_current(i,j)==1
count_1(i,j)=(count_1(i,j))-1;
end
count_1(i,j)=((count_1(i,j)/(4-
1))/(count_tot/map_size));%enrichment factor map fo rclass 1
end
end

for i=rows
for j=1
for k=-1:0
for I=0:1
r=i+k;
c=j+;
if lu_current(r,c)==1
count_1(i,j)=count_1(i,j)+1;%coun ter of cells in state
1 in neighbourhood
end
end
end
if lu_current(i,j)==1
count_1(i,j)=(count_1(i,j))-1;
end
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count_1(i,j)=((count_1(i,j)/(4-
1))/(count_tot/map_size));%enrichment factor map fo rclass 1
end
end

for i=rows
for j=cols
for k=-1:0
for I=-1:0
r=i+k;
C:j+|;
if lu_current(r,c)==1
count_1(i,j)=count_1(i,j)+1;%coun ter of cells in state
1 in neighbourhood
end
end
end
if lu_current(i,j)==1
count_1(i,j)=(count_1(i,j))-1;
end
count_1(i,j)=((count_1(i,j)/(4-
1))/(count_tot/map_size));%enrichment factor map fo rclass 1
end
end
%%%%%% %% %% %% % % %% %% %% %% %% %% %% % % %% %%
%%%
%%%%%% %% % %% %% %% %%count EF1 for the rest of the
map%%%%6%6% %% %% %% %% %% %% %% %% %% %
for i=2:(rows-1)
for j=2:(cols-1)
for k=-1:1
for I=-1:1
r=i+k;
c=j+;
if lu_current(r,c)==1
count_1(i,j)=count_1(i,j)+1;%coun ter of cells in state
1 in neighbourhood
end
end
end
if lu_current(i,j)==1
count_1(i,j)=(count_1(i,j))-1;
end
count_1(i,j)=((count_1(i,j)/(neighbor_sizel-
1))/(count_tot/map_size));%enrichment factor map fo rclass 1
end
end
%%%%%%%%%%6%0% %% %% %% %% %% %% %% %% %% %% %%
%%%

%%%%

%%%%

%%%%%%%%%%%%%%count_2 EF1 for medium sized
neighbourhood%%%%%%%%%%%%%%%%%%%
count_2=zeros(rows,cols);
%%%%%%%%%%%%count EF1 for cells in first
row%%%%%%%%%%%%%% %% %% %% %% %% %% %% %% %
fori=1
for j=3:cols-2
for k=0:2
for |=-2:2
r=i+k;
c=j+;
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if lu_current(r,c)==1
count_2(i,j)=count_2(i,j)+1;%coun ter of cells in state
1 in neighbourhood
end
end
end
if lu_current(i,j)==1
count_2(i,j)=(count_2(i,j))-1;
end
count_2(i,j)=((count_2(i,j)/(15-
1))/(count_tot/map_size));%enrichment factor map fo rclass 1
end
end
%%%%%%% %% %% % %% %% %% %% %% %% %% %% %% %% %%
%%%
%%%%%%%%%%%%%%count EF1 for cell in last
row%%%%%%%%%%% %% %% %% %% %% %% %% %% %% %%
for i=rows
for j=3:cols-2
for k=-2:0
for |=-2:2
r=i+k;
C:j+|;
if lu_current(r,c)==1
count_2(i,j)=count_2(i,j)+1;%coun ter of cells in state
1 in neighbourhood
end
end
end
if lu_current(i,j)==1
count_2(i,j)=(count_2(i,j))-1;
end
count_2(i,j)=((count_2(i,j)/(15-
1))/(count_tot/map_size));%enrichment factor map fo rclass 1
end
end
%

%%%%

%%%%%%% %% %% % %% %% %% %% %% %% %% %% %6 %% % %%
%%%
%%%%%%%%%%%%count EF1 for cells in first
column%%%%%%%%% %% %% %% %% %% %% %% %% % %%
for i=3:rows-2
for j=1
for k=-2:2
for 1=0:2
r=i+k;
C:j+|;
if lu_current(r,c)==1
count_2(i,j)=count_2(i,j)+1;%coun ter of cells in state
1 in neighbourhood
end
end
end
if lu_current(i,j)==1
count_2(i,j)=(count_2(i,j))-1;
end
count_2(i,j)=((count_2(i,j)/(15-
1))/(count_tot/map_size));%enrichment factor map fo rclass 1
end
end

%%%%
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%%%%%%% %% %% %% %% % %% %% %% %% %% %% %% %% %%
%%%
%%%%%%%%%%%%count EF1 for cells in last
column%%%6%%%%%%% %% %% %% %% %% %% %% %% % %%
for i=3:rows-2
for j=cols
for k=-2:2
for I=-2:0
r=i+k;
c=j+;
if lu_current(r,c)==1
count_2(i,j)=count_2(i,j)+1;%coun ter of cells in state
1 in neighbourhood
end
end
end
if lu_current(i,j)==1
count_2(i,j)=(count_2(i,j))-1;
end
count_2(i,j)=((count_2(i,j)/(15-
1))/(count_tot/map_size));%enrichment factor map fo rclass 1
end
end
%%%%6%%% %% %% % %% %% %% %% %% %% %% %% %6 %% % %6 %00
%%%
%%%%%%%%%%%%%%count EF1 for cells in each
corner%%%%%%%%%%%%% %% %% %% %% %% %% %%
fori=1
for j=1
for k=0:2
for 1=0:2
r=i+k;
C:j+|;
if lu_current(r,c)==1
count_2(i,j)=count_2(i,j)+1;%coun ter of cells in state
1 in neighbourhood
end
end
end
if lu_current(i,j)==1
count_2(i,j)=(count_2(i,j))-1;
end
count_2(i,j)=((count_2(i,j)/(9-
1))/(count_tot/map_size));%enrichment factor map fo rclass 1
end
end

%%%%

HRBBBIBIBILAARLLNBNE

for i=1
for j=cols
for k=0:2
for I=-2:0
r=i+k;
c=j+;
if lu_current(r,c)==1
count_2(i,j)=count_2(i,j)+1;%coun ter of cells in state
1 in neighbourhood
end
end
end
if lu_current(i,j)==1
count_2(i,j)=(count_2(i,j))-1;
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end
count_2(i,j)=((count_2(i,j)/(9-
1))/(count_tot/map_size));%enrichment factor map fo
end
end

for i=rows
for j=1
for k=-2:0
for 1=0:2
r=i+k;
C:j+|;
if lu_current(r,c)==1
count_2(i,j)=count_2(i,j)+1;%coun
1 in neighbourhood
end
end
end
if lu_current(i,j)==1
count_2(i,j)=(count_2(i,j))-1;
end
count_2(i,j)=((count_2(i,j)/(9-
1))/(count_tot/map_size));%enrichment factor map fo
end
end

for i=rows
for j=cols
for k=-2:0
for I=-2:0
r=i+k;
c=j+;
if lu_current(r,c)==1
count_2(i,j)=count_2(i,j)+1;%coun
1 in neighbourhood
end
end
end
if lu_current(i,j)==1
count_2(i,j)=(count_2(i,j))-1;
end
count_2(i,j)=((count_2(i,j)/(9-
1))/(count_tot/map_size));%enrichment factor map fo
end
end

fori=1
for j=2
for k=0:2
for I=-1:2
r=i+k;
C:j+|;
if lu_current(r,c)==1
count_2(i,j)=count_2(i,j)+1;%coun
1 in neighbourhood
end
end
end
if lu_current(i,j)==1
count_2(i,j)=(count_2(i,j))-1;
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end
count_2(i,j)=((count_2(i,j)/(12-
1))/(count_tot/map_size));%enrichment factor map fo
end
end

fori=1
for j=cols-1
for k=0:2
for I=-2:1
r=i+k;
C:j+|;
if lu_current(r,c)==1
count_2(i,j)=count_2(i,j)+1;%coun
1 in neighbourhood
end
end
end
if lu_current(i,j)==1
count_2(i,j)=(count_2(i,j))-1;
end
count_2(i,j)=((count_2(i,j)/(12-
1))/(count_tot/map_size));%enrichment factor map fo
end
end

for i=rows
for j=2
for k=-2:0
for I=-1:2
r=i+k;
c=j+;
if lu_current(r,c)==1
count_2(i,j)=count_2(i,j)+1;%coun
1 in neighbourhood
end
end
end
if lu_current(i,j)==1
count_2(i,j)=(count_2(i,j))-1;
end
count_2(i,j)=((count_2(i,j)/(12-
1))/(count_tot/map_size));%enrichment factor map fo
end
end

for i=rows
for j=cols-1
for k=-2:0
for I=-2:1
r=i+k;
C:j+|;
if lu_current(r,c)==1
count_2(i,j)=count_2(i,j)+1;%coun
1 in neighbourhood
end
end
end
if lu_current(i,j)==1
count_2(i,j)=(count_2(i,j))-1;
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end
count_2(i,j)=((count_2(i,j)/(12-
1))/(count_tot/map_size));%enrichment factor map fo
end
end

fori=2
for j=1
for k=-1:2
for 1=0:2
r=i+k;
C:j+|;
if lu_current(r,c)==1
count_2(i,j)=count_2(i,j)+1;%coun
1 in neighbourhood
end
end
end
if lu_current(i,j)==1
count_2(i,j)=(count_2(i,j))-1;
end
count_2(i,j)=((count_2(i,j)/(12-
1))/(count_tot/map_size));%enrichment factor map fo
end
end

fori=2
for j=cols
for k=-1:2
for I=-2:0
r=i+k;
C:j+|;
if lu_current(r,c)==1
count_2(i,j)=count_2(i,j)+1;%coun
1 in neighbourhood
end
end
end
if lu_current(i,j)==1
count_2(i,j)=(count_2(i,j))-1;
end
count_2(i,j)=((count_2(i,j)/(12-
1))/(count_tot/map_size));%enrichment factor map fo
end
end

for i=rows-1
for j=1
for k=-2:1
for 1=0:2
r=i+k;
C:j+|;
if lu_current(r,c)==1
count_2(i,j)=count_2(i,j)+1;%coun
1 in neighbourhood
end
end
end
if lu_current(i,j)==1
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count_2(i,j)=(count_2(i,j))-1;
end
count_2(i,j)=((count_2(i,j)/(12-
1))/(count_tot/map_size));%enrichment factor map fo rclass 1
end
end

for i=rows-1
for j=cols
for k=-2:1
for I=-2:0
r=i+k;
c=j+;
if lu_current(r,c)==1
count_2(i,j)=count_2(i,j)+1;%coun ter of cells in state
1 in neighbourhood
end
end
end
if lu_current(i,j)==1
count_2(i,j)=(count_2(i,j))-1;
end
count_2(i,j)=((count_2(i,j)/(12-
1))/(count_tot/map_size));%enrichment factor map fo rclass 1
end
end
%%%%6%%% %% %% % %% %% %% %% %% %% %% %% %6 %% % %6 %00
%%%
%%%%%%% %% %% %% %% %%count EF1 for the rest of the
map%%%% %% %% %% %% %% %% %% %% %% %% %
for i=3:(rows-2)
for j=3:(cols-2)
for k=-2:2
for |=-2:2
r=i+k;
C:j+|;
if lu_current(r,c)==1
count_2(i,j)=count_2(i,j)+1;%coun ter of cells in state
1 in neighbourhood
end
end
end
if lu_current(i,j)==1
count_2(i,j)=(count_2(i,j))-1;
end
count_2(i,j)=((count_2(i,j)/(neighbor_size2-
1))/(count_tot/map_size));%enrichment factor map fo rclass 1
end
end
%%%%%% %% %% %% %% %% %% %% %% %% %% %% %6 %% % %6 %00
%%%
end

0,60.000000000 Bk v 0%%%%
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%%%%%%%compute probability map
p_map=zeros(rows,cols); % empty grid storing the tr ansition
probabilities for class 1
for i=1:rows
for j=1:cols
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p_map(i,j)= (1/(1+exp(-trans_matrix(1)-
(trans_matrix(3)*count_1(i,j))-(trans_matrix(5)*cou
lu_current(i,j)))+...

(1/(1+exp(-trans_matrix(2)-
(trans_matrix(4)*count_1(i,j))-
(trans_matrix(6)*count_2(i,j))))*lu_current(i,j));

end
end

%%%%%%%%simulate land use based on p_map and random
R=rand(rows,cols);

lu_new=(R>p_map);

lu_current=lu_new;

%%%%%%%%%display land use map for each time-step
% figure(t);

% imagesc(lu_new);

% axis equal;

%%%%%%%%%%Save results
if t==nr_time_steps
lu_sim_final=zeros(rows,cols);
lu_sim_final=lu_new;
end

end

compute criteria

nrcells=rows*cols;

%%%compute Area Agreement (AA)%%%%%%
perct_1=(sum(sum(lu_ref==1)))/nrcells;
perct_2=(sum(sum(lu_sim_final==1)))/nrcells;

perct=1-abs(perct_1-perct_2);

nt_2(i,j))))*(1-

numbers

%%%%%%%%compute Cell Agreement (CA)%%% %% %% %% %% %8%80%%

agree_00=zeros(100,100);
agree_11=zeros(100,100);
exp_01=zeros(100,100);
exp_10=zeros(100,100);

if sum(sum(lu_sim_final))==
agree_00=(lu_ref==0);
%agree_11=lu_ref;
%exp_01=lu_ref;
exp_10=(lu_ref==1);

elseif sum(sum(lu_sim_final))==nrcells
%agree_00=(lu_ref==0);
agree_11=(lu_ref==1);
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exp_01=(lu_ref==0);

%exp_10=lu_ref-1;

avpatchsize_sim=1;
else
agree_00=(lu_ref+lu_sim_final)==0;
agree_11=(lu_ref+lu_sim_final)==2;
exp_01=(lu_ref-lu_sim_final)==-1,
exp_10=(lu_ref-lu_sim_final)==1;
end

pa_00=(sum(sum(agree_00)))/nrcells;
pa_l11=(sum(sum(agree_11)))/nrcells;
pe_0l1=(sum(sum(exp_01)))/nrcells;
pe_10=(sum(sum(exp_10)))/nrcells;
pa=pa_00+pa_11;

%%%%%%%%additional indices%%%%%%
% pO0T=pa_00+pe_01,;

% pl1T=pe_10+pa_11,;

% pTO=pa_00+pe_10;

% pTl=pe_Ol+pa_11;

% pe=p0T*pTO+plT*pT1,;

%

% kappa=(pa-pe)/(1-pe);

%%%%%%%%%compute average patch size (PS)%%%%%% %% Yd%%/0%%
L=bwlabel(lu_ref);
avpatchsize_ref=0;
for label=1:max(max(L))
count=0;
for i=1:rows
for j=1:cols
if L(i,j)==label
count=count+1;
end
end
end
avpatchsize_ref=avpatchsize_ref+count;
end
avpatchsize_ref=avpatchsize ref/max(max(L))/nrcells ;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(M%%@%%%%%%%%%%%%%
avpatchsize_sim=0;
if sum(sum(lu_sim_final))==
avpatchsize_sim=0;
elseif avpatchsize sim==nrcells;
avpatchsize_sim=1;
else
L=bwlabel(lu_sim_final);
avpatchsize_sim=0;
for label=1:max(max(L))
count=0;
for i=1:rows
for j=1:cols
if L(i,j)==label
count=count+1,;
end
end
end
avpatchsize_sim=avpatchsize sim+count;
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end
avpatchsize_sim=avpatchsize_sim/max(max(L))/nrcells
end

avpatchsize=1-(abs(avpatchsize_ref-avpatchsize_sim)
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