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Preface

This thesis is partly resulting from a decision | made at
the start of my Biology Master at Wageningen University.
| then decided that | wanted to combine biology and
GIS/RS in a thesis, since they form a perfect combination
for analysis of spatial patterns determined by biological
processes. | think the tick Ixodes ricinus is a fascinating
biological study object, because it has such a
complicated life-cycle that is influenced by many factors.
What's more, it also transmits various pathogens,
including Borrelia, causing Lyme disease in humans. |
enjoyed it very much to study the tick in a GIS, because |
always had to come up with challenging and creative
routes from the starting point to an end result.

Actually, this is a second (optional) thesis within my
Master and hence only 24 credits. One of my personal
goals, getting acquainted with ArcGIS and using the
program in a biological context is reached. It was a new
experience for me to have only 4 months for all the work
and | found it difficult to stick to the research questions,
since new ideas popped up rapidly during my work.

But all in all, I think I managed to perform interesting
analysis on the data | got from several sources, with an
end result that brought us nearer to risk modeling of
Lyme disease in the Netherlands. However, the current
map is not ready to use for a broad public.

All this work could never have been done without the
help and input from various people. Therefore | would
like to thank Ron van Lammeren and Willem Takken for
their comments on the report.

All the people that were involved in collection of the ticks
from the various studies are being thanked, also for
allowing me to use their data in my study.

The following people from Alterra and the GRS-
department are thanked for their kind help during the
start-up phase; Aldo Bergsma, Gerard Hazeu, Frans Rip
and Roland van Zoest.

Last but not least, Margriet Montizaan from the Royal
Dutch Hunting Association is thanked for providing data
on roe deer density in the Netherlands.

Jacob Beeuwkes
February 2007
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Abstract

Lyme disease is an infectious disease in humansgitaused by spirochetes of the
genusBorrelia burgdorferi sensu lato. The European sheep tidkddes ricinus L.) is
the most important vector of this bacterium and tansmit it during blood meals.
The density of ticks in an area can indicate thaiaprisk of obtaining Lyme disease.
Therefore data from 6 different tick sampling sagjiat 73 different locations broadly
distributed over the Netherlands, were spatiallglgred and related to GIS and RS-
derived variables. Early summer densities of theyplyal stage were found to be
associated with roe deer density, land use, ApiMNand climatic variables. Using
discriminant analysis, a predictive map of the ngallensity in the Netherlands was
made, based on associative variables. A part ofdtitaset was used to test the
predictive capability of the model, which turned tw be 71%. Although the current
map is not ready for public use, making predictimaps of the risk to obtain
infections of Borrelia parasites is vital because they may help peopld¢ake
preventative measures at the right place and flimerefore it is suggested that efforts
should be taken in developing web-based GIS thables spatio-temporal mapping
of this risk in the Netherlands, to inform a brgadlic in a convenient way.

Key words: Lyme diseasesodes ricinus, risk, predictive model




1. Introduction

1.1 Lyme disease

Lyme borreliosis (Lyme disease) is an infectiousedse in humans and domestic
animals that is caused by the spirochBterelia burgdorferi sensu lato (Barbour,
1984; Burgdorfeet al., 1982). Ticks of the genugodes (hard ticks) are vector of this
bacterium and can transmit it during blood meals.

In Europe, the primary vector 8 burgdorferi s.l. is the European sheep tidkddes
ricinus L.) (Rauter & Hartung, 2005). This broadly distried tick is not only vector
of Borréelia, but is known to transmit several other pathogemroorganisms such as
ehrlichiae and ricketsia (Wielingat al., 2006). When theBorrelia parasite is
transmitted to humans, in ~90% of the cases areasong red circle on the skin
appears shortly after the bite, called erythemaanig) (EM) (Brouqui, 2004; Parola &
Raoult, 2001). This is an indication of the firsage of the three infection stages. In
the final stage, occurring several months to yé&ses, serious clinical manifestations
may appear, such as skin abnormalities, internititackof joint swelling angain,
fatigue, and oculaand neurological signs (Parola & Raoult, 2001).

The prevalence of the first infection stage; EMy t& used as an indicator to gain
insight in disease incidence. Hofhwasal. (2006) used this approach to point out
areas with an increased chance to obtain Lyme shbs@a the Netherlands. They
reported a tri-fold increase of Lyme disease inotgein the Netherlands compared to
1994. It was assessed that the total number oérgatithat had visited a general
practitioner (GP) because of EM, had risen fromual@D00 in 1994 to 17000 in
2005. It was also assessed that more than on@mgkople had obtained a bite from
at least one tick. From this strong increase it banconcluded that Lyme disease
forms an increasing threat to public health inNletherlands.

1.2 Therole and ecology of Ixodes ricinus

As mentioned before, the arthropod that causesitfestion in humans i$xodes
ricinus. It is a seasonally active ectoparasite and uses bloodly food-source. It has
a broad host-range, and feeds on three differestshduring its complicated life-
cycle. In this 2-4-year life-cycle, the tick godsdugh three active life stages after
egg-hatch; larva, nymph and adult, in which eachlad meal is necessary for
development or reproduction. Sexual dimorphismrapdoduction does only occur in
the adult stage.

Ixodes ricinus is known for its broad host range, but larvae apghphs mainly feed
on small or medium-sized rodents or birds, whilaelaticks are usually found on
larger mammalian hosts such as roe deer (Randolf@rane, 1995; Sonenshine,
1993; Talleklint & Jaenson, 1994, 1997).

Small rodents such as bank vol€dethrionomys glareolus) or Apodemus mice are
reservoir hosts foBorrelia burgdorferi, which means they permit long-term survival
andamplification of the infection and are significgnthvolved in the infection of the
ticks (Gray, 1998; Randolph & Craine, 1995; Téliekl& Jaenson, 1994, 1997).
Although roe deer are considered reservoir-incoergetthese animals have an




important effect on tick population density becatis®y are one of the main hosts for
the adult tick and may indirectly affect the depsif infected nymphs (Gray, 1998;
Talleklint & Jaenson, 1996).

About 90% of the tick’s life cycle is not spenteaathed to a host, but free in the
habitat, where it is exposed to the local biotid abiotic conditions (Parola & Raoult,
2001). In this habitat they are not actively dispgy in search for a host, but stay
close to where eggs were laid (in case of larvaeylere they have dropped from a
previous host (nymphs) (Van Buskirk & Ostfeld, 1R98Bicks that are preparing for
attachment to a host perform questing behavioues@ug is defined by Sonenshine
(1993) as “behaviour expressed by the willingnefsthe ticks to crawl or climb to
favorable locations in their environment, e.g.ba@eous or woody stems, where they
may attach to transient hosts”. Questing is aikabt passive host-seeking strategy,
although ticks start rapidly waving their forelegshen host cues are noticed
(Sonenshine, 1993). When a tick is attached tdhtst, dispersal totally depends on
host movements, which automatically means thastmhly may occur at locations
where suitable hosts occur.

Since ticks are sensitive to desiccation, espgciallthe larval stage (Mejlon &
Jaenson, 1997 and references therein), a suitabl&ahofl. ricinus is beside suitable
host presence, also limited to the possibility ébydrate (Gray, 1998). This can
consist of layers of decaying matter or good vegetacover. When ticks dehydrate
too much, they momentarily leave their questing sihd move to the litter layer
where they actively absorb water, called ‘quieseé(eerretet al., 2004). Vegetation
communities that do not enable this mechanism igitdyhunsuitable and ticks cannot
survive in such a habitat during drought. Togethigh host density, this was also the
explanation given by the authors of a recent Dwtidy who found very low
densities of nymphs in a heather area and highetbats in a dune area and forest
rich in blueberry Yaccinium corymbosum) and oak Quercus) (Wielingaet al., 2006).
Ixodes ricinus density is not only spatially determined, but atemporally. The
temporal abundance of ticks is primarily determir®d diapause, which may be
categorized in developmental and behavioural disgpgGray, 1998). Behavioural
diapause (quiescence) occurs at unsuitable timesgdbost-seeking periods, while
developmental diapause involves arrested developofean engorged stage or egg
during high summer or mid winter.

1.3 Spatial analysis using GIS and RS

Because only a limited sample of the actual distiidm of a vector is usually
achieved in practice, epidemiologists often needetp on spatial risk models. The
combination of Remote Sensing (RS) and Geo Infaonaystems (GIS) provide a
strong tool in risk assessment and prediction,esiRS-data of the study area can
usually easily be obtained by satellite images lastps taken from an airplane. And
with GIS, multiple layers of spatial data can eabi¢ obtained, stored, overlaid and
displayed (Nicholson & Mather, 1996). Cartograptiisplay capabilities inherent in
GIS are also accessible and understandable tcad prdolic (Kitron, 2000).

GIS and RS approaches are used in entomologigretictions in a vastly growing
frequency (Ostfeld, 2005). Most risk models are enlagl assessing which are possible




important risk indicators and how these are spwtidiktributed. Subsequently it is
investigated to what extent these indicators asp@ated with vector, pathogen or
disease incidence data. Finally the strongest edgnt(s) can be used as predictor for
the risk. In this way distribution and abundancevafious disease vectors such as
anopheline mosquitoes, tsetse flies and ticks already been modeled (Eiseinal .,
2006 and references therein).

In the United States much work has been done orpimghe distribution of ticks.
There, the most important agent of tick-borne diseds the black-legged titkodes
scapularis Say. Bunnekt al. (2003) related abundance lofscapularis with several
spatial attributes in a region in the USA. Theyrfdwsignificant associations between
adult tick numbers and land cover, distance to matbelies, distance to forest edge,
elevation and soil type.

In another study tad. scapularis, Diuk-Wasseret al. (2006) compared numbers of
nymphal ticks at different locations and found thefk nymphal host-seeking density
occurred earlier in the southern than in the norntheollection sites, suggesting
indirect influence of increasing latitude. Randolphd Storey (1999) reported a
measure for drying power of the atmosphere basecelative humidity (RH) and
temperature, called saturation deficit (SD). In shedy of Diuk-Wassegt al. (2006),
significant negative correlations were found betmveean nymphal tick numbers and
SD and mean temperature.

Eisenet al. (2006) studied density dixodes pacificus in California in relation to
environmental parameters by forward-stepwise rasgrasmodelling. They even
found that a model with several GIS / RS derivethpeeters was more accurate in
predicting nymphal density, than a model based ield-tierived parameters. The
observed peak nymphal density was best predictatidoyuly normalized difference
vegetation index (NDVI), November greenness, céagtfluence, May solar
insolation, November hours of sunlight and domirtgmrological grouping.

Although many environmental parameters at samplowations may directly be
derived by overlaying it with other data, KitrorO@) suggested that beside localized
biotic and abiotic data, landscape structure may plrole in tick abundance as well.
This was shown by several authors who considereaposition or structure of the
landscape surrounding focal sites (Brownstetiral., 2005; Jacksoret al., 2006;
Ostfeld, 2005). From two studies it was shown tihat entomologic risk of Lyme
disease (product of tick density and prevalenceBafrelia) was most related to
fragmentation of the landscape (Allah al., 2003; Brownsteinet al., 2005). In
another study with a different predictive variablackson et al. (2006) drew similar
conclusions after investigating the relation betwdeyme disease incidence in
humans and landscape ecology. They showed thagla ihterspersion between
forests and herbaceous cover in the landscape xpdairgng the variation in disease
incidence.




1.4 Risk modeling

In principle, every location wherBorrelia-infected ticks do occur is a risk area for
obtaining Lyme disease. However, the question ‘Whatk?’ is approached in many
ways since data on tick abundance or infectiongrgegge may be unavailable or an
area is not open for public.

Risk is assessed in numerous ways, but in genstalassessment and prediction
studies can be categorized as spatial, temporalcombination of both (Daniet al.,
2006). Apart from the categorization of studieg #ort of data on which the risk is
based and the way in which the risk is expresséy shows much variation.
Generally, risk can be formulated as exposure thance of injury or loss. With
respect to epidemiological risk one can formuldteas the chance to obtain an
infection. Some studies use the disease incidemckumans to point out spatial
differences in risk (Hofhuigt al., 2006; Jacksomt al., 2006), since this data is
relatively easily obtained from hospitals or GP’s.

In a more fundamental approach that is applied nodten, risk is based on tick
presence or tick density in the vegetation (Bunra€lD3; Daniekt al., 1998; Eiseret
al., 2006; Guerrat al., 2002) or attached to a host (Da&sl., 2002). In some cases
also the infection percentage of the ticks is itigased, which provides an even more
precise possibility to predict the risk of gettihbgme disease (Bunnell, 2003; Dets
al., 2002).

Assessment of both (infected) tick density and aliseincidence in humans are also
reported (Brownsteiret al., 2005; Diuk-Wasseet al., 2006; Nicholson & Mather,
1996). These studies provide possibilities of \ality model outcomes.

Assuming one is susceptible to infection; the tsikget Lyme disease is based on the
density of infected questing ticks and the time spends in a habitat that supports
tick populations, in absence of active preventatneasures.

This indicates that humans themselves play a rotke chance of getting infected. At

the one hand this shows the weakness of studi¢susigaonly disease incidence as
predictor for disease risk in a certain area. Beeareas that are hardly visited may
still support high densities of infected ticks. dldiscrepancies may occur between
the site where the bite was obtained and repo@stf€ld, 2005). At the other hand it

indicates that when humans do take preventativesunea at the right places, they

may greatly reduce the chance to obtain a bite franmfected tick.

It would be of great use to generate public awaergbout locations that have
increased chances to obtain a bite from an infetit&d Maps that display the risk to
obtain an infected tick-bite can help a broad publi taking preventative measures
and may help developing local control strategiestrgid, 2000). As far as my
knowledge reaches, this is the first study thastrio predict spatial density of
ricinus in the Netherlands. According to me, predicting tiek of exposure to
infected ticks would be most correct when it isdzthen the spatial density of ticks
and tick infection percentages and not on diseasideénce in humans. In case one
also wants to predict where most bites will ocaume can add human behaviour (e.g.
recreation, hiking) to the predictive map as well.




1.5 Aim and research questions

In this study it is tried to see whether data omacro scale can be used to predict
processes at much smaller scale. In this apprdaahrelies on hierarchy theory,
localized factors are subsumed in macro-scale Masa(Jacksoret al., 2006).
Although the scale on which risk can be predictey tme coarser, when macro data is
predictive for tick densities, risk prediction casasily be performed, since
environmental data do not necessarily have to beroda in the field.

Objectives
1. To assess the extent of association of nymphal deksities with several
spatial factors obtained on macro scale.
2. To develop a risk model for the Netherlands by jtedy density of active
nymphal ticks.

Research questions

1. How are sampling transects distributed over thentg@

2. How and why does nymphal tick density vary betweseweral sampling
transects and sampling periods in the Netherlands?

3. To what extent are nymphal tick densities in thetad®t spatially
autocorrelated?

4. To what extent are nymphal tick densities at samgptransects associated
with the following variables; land use, soil tyméimate, host density, NDVI,
distance to the coast and landscape structure?

5. Can the spatial distribution of ticks in the Nethads be predicted by above-
mentioned possibly associative variables?

6. What is the predictive capability of the model?




2. Methodology

Data on nymphs were used as input to create a hapshows predicted ricinus
densities in the Netherlands. Only the nymphalestags used in the assessment and
the prediction, because of its relative importaimcée transmission of Lyme disease.
Nymphal density data was obtained from several sicklies conducted in different
years. Tick densities as well as remote sensedat@@ther environmental data were
stored in a GIS. Then the extent of associatiowéen tick densities and the other
variables was tested with multivariate statistiogl #&he results were displayed in a
map.

2.1  Study sites and tick sampling

The tick sampling transects of the different stadieere distributed over the whole of
the Netherlands. The geographic coordinates ofénepling transects were only in a
few cases recorded by using a GPS device. Fonalbther transects, the coordinates
(decimal degrees) were obtained by pointing thereesf the transect in Google Earth
(Google Inc.). The accuracy of the coordinates inbth by the latter method was
estimated to be between 10-100 m.

All studies had the same tick collection method elymflagging. This method
consists of dragging a cotton blanket (with knowanface) along a transect on the
ground surface. This method provides the most Bemsneasure of potential contact
between ticks and humans (Diuk-Wasstial., 2006 and references therein). The
guesting proportion of the tick population willrodj to the blanket and can be counted
per stage.

The combined dataset consisted of 73 samplingdacassof which the earliest study
started in the year 2000 and the latest ended(6 28ee Table 1). In all studies, ticks
were collected in only one year, except in studyh@&re transects were monitored in
the same season for three years (one transect waitoned for six years). In study 5,
some transects of 100°mvere located directly next to each other. Thosesects
were treated as one transect of 200 Tine dragged area of transects in study 6 was
not fixed, but based on a maximum number of 50ect#id ticks. In the dataset that
was provided, densities were already scaled tafaciof 100 rh The frequency in
which transects were sampled ranged from weekigdothly.

Table 1. Specification of studies that were part ahe tick density dataset

study n sampling sampling sampling year (season cover)
transects frequency surface

1. Renkum 5 weekly 200 m? 2005 (early summer)

2. Amst. Waterl. Duin 8 weekly 200 m? 2002 (whole year)

3. De Hoge Veluwe 8 weekly 200 m? 2002 (whole year)

4. Vector project LNV 12 weekly 100 m? 2005 (autumn);

2006 (early summer)
5. Natuurkalender 36 monthly 100/200 m* 2006 (autumn)

2000-2002-2005 (early

6. Animal Sciences Gr. 4 monthly variable
summer-autumn)
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All three active stages df ricinus can potentially get infected with tHgorrelia
parasite, but human infection usually results frblood meals taken by nymphs,
because at this stage the ticks are small anctdliffto see, and their peak questing
period in early summer coincides with human outdactivity (Barbour & Fish,
1993). Beside unimodal patterns, bimodal pattennsymphal phenology have also
been reported (Perretal., 2004 and references therein), but not in the &i&hds.
Infected nymphal tick densities are directly catetl with nymphal densities (Jouda
et al., 2004; Talleklint & Jaenson, 1996) so densitiestioks may serve as an
indicator for risk of exposure to infected ticksedides, in an ongoing study in the
Netherlands, ndorrelia-negative sites were found up till now when ticksreve
present (Takken, unpublished data).

Therefore in the analysis maximum nymphal densityverlapping months of the
studies was used as the predictive variable. Th#og® in which the studies
overlapped, did not cover the whole period of nyaiphuesting activity (early
summer till autumn), but it was assumed that dessih early summer and autumn
could separately be used as indicator for thosmgeer Therefore early summer was
defined as the period between May and June, whemeismn was defined as
September till October. Unfortunately, the numbértransects that was sampled
during the known nymphal peak period (early sumni&g)leklint & Jaenson, 1997)
was rather low (n = 37). All recorded densitiesevecaled to 200 frand densities of
early summer and autumn were separately used tainol@nd validate both
predictions. Because ticks of three transects udyst6 were sampled for three
subsequent years and one transect even 6 yeasstieem this study were averaged
per month and the maximum average nymphal den§igyearly summer or autumn
was used in analysis.

2.2 Input data and processing

Before the RS and GIS data could be used as vasiablthe statistical analysis, they
were processed according to the data-action mdu®ivis in Figure 1, to obtain
environmental data for each sampling transect th beasons. The steps in the action
model were performed using the computer progranG#8c9.1 (ESRI Inc.). In this
paragraph, the processing is explained in mordldetaach possible risk variable.
The output consisted of a dBase table containiegniaximum nymphal. ricinus
density in early summer and autumn and the valfiiseoenvironmental variables at
each transect.

-11 -
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Figure 1. Data action model showing 7 input datasst 10 numbered actions and 1 output table containgn
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association in both seasons.
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2.2.1 Land use

Land use of the Netherlands (LGN5) was obtainechfeeodesk (Alterra, WUR).

The file consists of 39 land use classes basedflite images from Landsat TM5
taken in 2003 and 2004. The original 39 classe® wexlassified into six categories
(action 2) according to a table presented in Appeia} 1. water 2. not vegetated
ground, roads and buildings, 3. grasslands anctdgme, 4. open vegetation, 5.
coniferous forest, 6. deciduous forest.

The file was in grid format with a spatial resatutiof 25 m (map is presented in
Appendix lla).

2.2.2 Soil type

Data on soil types of the Netherlands was alsoimédafrom Geodesk (Alterra,
WUR). The file consisted of 9 soil classes whichreweeclassified into four categories
(action 7) according to a table (Appendix Ib). Tdlassification was based on water
retaining capabilities of different soils: 1. sarit, silt, 3. clay and loam, 4. peat
(Bunnell, 2003; Guerrat al., 2002). A relatively coarse classification wasdisace
the distribution of sampling transects over all saitegories was rather unbalanced.
The file was in shape format (map is presentedgpehdix IIb).

2.2.3 Climate

Macrometeorological data were obtained from 46 heastations (Meteoconsult,
Wageningen, The Netherlands) located in the Nethdd, Germany and Belgium.
Seasonal averages were calculated on hourly oligersdor temperature and dew
point temperature. Data from three of the six samypyears were available; 2003,
2004 and 2006 and were stored in an Access (Mittrdeo.) database. Before
climatic parameters were calculated, the database queried to obtain annual
averages and an overall average for three yeatisr{e&).

Climatic parameters that are generally used ingtcklies were not directly available,
but had to be calculated from the available parametTherefore average actual
vapor pressure (AVP, equation 1) and the averagggatad vapour pressure (SVP,
equation 2) were calculated using the average teatye (T) and the average dew
point temperature (DT). Average relative humiditasasthen calculated according
formula 3 (equation 1, 2, 3 obtained from D. Varalkrgen via A. Bergsma, personal
communication).

An integrated measure for ‘drying power’ of the aiphere; saturation deficit, was
calculated using equation 4 (Randolph & Storey,9)99

AVP = 6.10588 *e (1732491 " T/ (T + 238.102)) (Equation 1)
SVP = 6.10588 & (17.32491 * DT/ (DT + 238.102)) (Equation 2)
RH = (AVP / SVP) * 100 (Equation 3)
SD = (1 - RH / 100) * 4.9464 521D (Equation 4)
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Average parameter values were calculated for ehtcheoweather stations for both

early summer and autumn. The climatic parametetsviiere included in the analysis

were average temperature, average RH and averagé&@Dboth seasons and the
three parameters, the surface between the weatdigons was interpolated using

Spline tension interpolation (action 8) with cdalles2000 m (maps are presented in
Appendices lic-1Ih). On the maps clear effectshad buffering effect of seawater is

shown on all three parameters.

2.2.4 Roe deer density

Data on the density of roe deeZapreolus Capreolus L.) were obtained from the

Royal Dutch Hunting Association (Dutch: KoninklijRéederlandse Jager Vereniging,
KNJV). This organization has divided the countrynianagement units with varying
size (Dutch: Wild beheerseenheden) and the nunfbaloserved roe deer is counted
per management unit. However, this number is arergstimate, because not all
animals show themselves at the moment of the amginfiherefore this number is
corrected to an estimated number of present roe deeording to a standard
procedure (M. Montizaan, KNJV, personal communadti The data that were
provided were from a roe deer counting that wasopmed in spring of 2003. Before

the analysis these roe deer numbers were dividedhbysurface area of each
management unit to calculate the density per anga The file was in shape format
(map is presented in Appendix llj).

2.2.5 NDVI

NDVI values were obtained via G. Hazeu (Alterra, R)Unvho processed Landsat
TM5 images of the following dates; 31-05-2003, BtaD03, 14-04-2004 and 05-09-
2004. NDVI combines the red and near-infrared bghi3¥VI = (band 4 - band 3) /
(band 4 - band 3)] and is related to the fractibphmtosynthetically active radiation.
Unfortunately, the images did not cover all the glang transects; therefore the two
images with maximum cover (95% of the sampling 4eats) were included in the
model: 14-04-2004 and 05-09-2004. The Landsat ThMges had 30 m spatial
resolution.

2.2.6 Distance to coast

The earlier mentioned land use file was classifrgd two classes; salt water and
other (action 2). The salt water was then transéatiimto a polygon (action 4). This
polygon was smoothened with a 1000 m. buffer. Sylsetly this layer was spatially
joined with the point layer containing the sampltngnsects (action 6). In this way
the shortest distance from each of the samplingséets to the coast polygon was
calculated (map is presented in Appendix lli). TWasiable was chosen since distance
to coast may reflect the possible influence onstidke to indirectly affecting climate
or vegetation (Eisedt al., 2006).
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2.2.7 Landscape structure

Metrics of landscape structure were calculatedgufiragstats 3.3 (McGarigat al.,
2002) that enables calculation of landscape fragatien metrics. Therefore the land
use file was classified in three categories: bamligd, forest and vegetation (action
2). Background consisted of water, not vegetatedirgt, roads and buildings; forest
was a combination of deciduous and coniferous famesl vegetation consisted of
grasslands, agriculture and other vegetation.

Many metrics to describe landscape structure aesdladle (McGarigal & Marks,
1995), but two metrics describing the level of &irfagmentation were used; mean
patch area and total edge length (see Table 2dimitions). Only total edge-length
was corrected for effects of roads and buildings,dverage forest patch size was not
corrected.

As shown by Brownsteist al. (2005), Allanet al. (2003) and Jacksoet al. (2006),
forest fragmentation defines the local scale heggmeity of tick densities, through
influencing mammalian host density and species amitipn. The two selected
metrics in this study, may indicate habitat suitgbfor roe deer, since they have a
preference for fragmented habitats with high adjageof forest and other vegetation
(Said & Servanty, 2005). Fragmentation might alsdidate habitat suitability for
rodents (Jacksod al., 2006 and references therein), however no studéezs found
explicitly describing this for rodent hosts bfricinus. The Fragstatsbatch extension
(Mitchell, 2005) for ArcGIS 9 was used to run Frags at each sampling transect
within a user-defined radius around the samplingtp@ction 5). The radius was was
set at 250 m, which represents the average hongeraize of roe deer in the
Netherlands (Langet al., 1994).

Table 2. Definition landscape structure metrics

Acronym Fragstats metric Unit Description

AREA_MN Mean Patch Area m? Mean surface area of forest patches

Total edge length between forest and

TE Total Edge m . .
agriculture / open vegetation
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2.3  Spatial statistics

Before predicting nymphal density, the degree ditigp clustering was measured.
Therefore spatial autocorrelation was calculatedgudoran’s| statistics (Cliff &
Ord, 1973). This index measures the relationshipprgmvalues of a variable
according to the spatial arrangement of the va(@$f and Ord, 1973). Moran's
was calculated using the model builder in ArcGISsian 9.1 (ESRI Inc.). Index
values range from -1 to 1 with a tendency arounaof @vhich the latter indicates that
values are distributed according to a random patter

In order to perform statistical analysis, the pahtpefile containing the nymphal
densities and the environmental variables at eemfiséct was transformed into a
dBase table. This table was then imported in théssical software package SPSS
12.0 (SPSS, Inc.).

Since the number of cases did not substantiallleekcthe number of predictor
variables in both early summer (3:1) and autumf)(7nultiple regression could not
be used to test the extent of association. Furthexymot all variables were normally
distributed and two were having an ordinal scalder&éfore Spearman rank
correlation was performed using the density caiegand the possible risk variables
as input. This was separately done for both eanyrser and autumn.

The significantly associated variables were thebjesited to discriminant analysis
(DA) to obtain functions that discriminated betweka density categories. To obtain
the discriminating functions, 80% percent of theesawere randomly selected. To
test the discriminative power of the functionscdiminant functions were applied on
both the 80% and the other 20% of the cases amjihafriand predicted category
membership were compared.

The significantly discriminating functions were @lsised to generate a nymphal
density prediction map, by applying the functiongaints regularly dispersed over
the country. This was done according the schemglagisd in Figure 2. Hawth's
Analysis tools for ArcGIS (Beyer, 2004), was usedgenerate a point layer of
regularly distributed points separated by 1000mx and y direction (action 11). This
point layer was intersected with all layers thadl Bhown significant association with
nymphal density (action 12). SPSS was then usguletdict category membership of
each point in the DA (action 13). These categonese subsequently displayed in a
map after being converted to raster format withGL@0resolution (action 14).
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Figure 2. Data-action model with 8 input datasets4 numbered actions and 1 output map displaying
nymphal density categories in the Netherlands in ey summer.
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3. Results

3.1 Nymphal densities

A number of 37 transects were sampled in the pevlag till June. The maximum
density of questing nymphs in this period, defiascearly summer, ranged between 0
and 490 (Mean, 104; SD, 121). The dates on whickiimam densities were observed
varied between locations and years and ranged fregm May till the end of June.
Densities were skewed to the left. The nymphal idiesswere classified in three
density categories according to percentiles; 1. (6w33rd percentile), 2. moderate
(34-66th percentile), and 3. high (66—-100th pertgn{see Figure 3A). This was a
relatively coarse classification, but necessaméximize the number of cases in each
density category. The highest nymphal densitiegweserved in forested areas along
the coast while zero and lowest densities weredanrgrasslands and floodplains of
the rivers.

The densities of the nymphs were tested for spatitdcorrelation using Moran’s |
statistics and significant clustering was found (Mos| = 0.41; Z() 2.89; P < 0.01).

Sixty transects were sampled in the period fromt&aper till October. Of these 60
transects, 24 were also sampled in early summes.nféximum density of questing
nymphs in this autumn period was lower than inyesimmer and ranged between 0
and 186 (Mean, 25; SD, 43). The dates on which maxi densities were observed
here also varied between locations and years amgedafrom begin September till
half of October. With respect to the 24 transebts tvere sampled in both periods,
maximum densities were significantly lower in autuosompared to spring (t = 4.20;
P < 0.01; Paired sample t-test).

The autumn nymphal densities were also classifiethiee categories according to
percentiles. The distribution of nymphal densitieghis season was left-skewed as
well. Highest nymphal densities were again founmhglthe coast, and also in De
Hoge Veluwe area. Zero and lowest densities didcsaet to cluster in specific areas
of the country.

Sampling transects in autumn were distributed @vgreater area compared to early
summer (Figure 3) and Moran’s | statistics did dimid significant clustering
(Moran’sl =0.09; Z() 0.61; P =0.27).
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Figure 3. Maximum density of host-seeking nymphalxodes ricinus in early summer (A) and autumn (B) at
each transect (scaled to 200 #n Number of sampling transects at which data wasotiected is 37 (A) and 60
(B). Density categories are indicated by filled sybols; 1. zero-low, 2. moderate and 3. high. Not saied
transects are indicated by open symbols.
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3.2 Association with environmental variables

The density categories of both seasons were sepatasted for correlation with the
environmental variables. The variables that sigaiftly correlated with density in
both early summer and autumn were roe deer defnsity).76 and 0.49, respectively;
P < 0.01) and April NDVI = -0.73 and -0.33, respectively; P < 0.01). Other
variables that significantly correlated in earlymsuer were land use (describing
vegetation categories) € 0.39; P = 0.02) and mean relative humidity=(0.56; P <
0.01), mean saturation deficit£ -0.59; P < 0.01) and mean temperature {0.58; P
<0.01).

In autumn, similar but also different variablesretated with density, namely; soil
order ¢ = -0.27; P = 0.04), mean patch size=0.31; P < 0.01), mean relative
humidity = -0.26; P < 0.05) and mean saturation deficit 0.26; P < 0.05).

Table 3. Spearman rank correlations of nymphal dengj categories with environmental variables in early
summer and autumn. The number of transects variessince not all variables were available for each
transect.

Early summer Autumn

Spearman'sr  P-value n Spearman’sr  P-value n
Roe deer density 0.76 <0.01 33 0.49 <0.01 54
Soil order -0.20 0.23 36 -0.27 0.04 59
Land use 0.39 0.02 37 0.12 0.35 59
NDVI 05-09-2004 -0.23 0.19 35 -0.18 0.19 56
NDVI 14-04-2004 -0.73 <0.01 35 -0.33 0.01 56
Edge length 0.29 0.08 37 -0.07 0.62 60
Mean patch size 0.30 0.07 37 0.31 0.01 60
Distance to coast -0.30 0.07 37 -0.11 0.42 60
Mean relative humidity 0.56 <0.01 37 -0.26 0.05 58
Mean saturation deficit -0.59 <0.01 37 0.26 0.05 58
Mean temperature -0.58 <0.01 37 0.17 0.21 58
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3.3 Prediction density categories

After using only the significantly correlating vables, the discriminant analysis
yielded two functions for both seasons with coéffits as shown in Table 4 and
Table 5. The two discriminant functions did enadblecrimination between the three
density categories for selected cases.

The functions for early summer were significantlgttbr discriminating between
density categories than chance (p < 0.01 and Ol@®arly summer the first function
accounted for 80% of the total among-groups vditgkand the second for 20%. In
autumn the first of the two functions almost expéal all variation (93 vs. 7 %)
although not significantly (p = 0.19 and 0.92).

Cases in which at least one discriminating variatdes missing could not be used,
since the functions could not be applied to vadaablithout value. This caused that in
early summer 6 transects were not selected in feari2l in autumn 12.

Table 4. Standardized canonical discriminant functio coefficients and Wilks' Lambda in early summer.

F(x) 1 F(x) 2
Roe deer density 0.72 -0.07
Land use 0.07 0.76
NDVI 14-04-2004 -0.37 -0.08
Relative humidity 0.84 0.92
Saturation Deficit 1.41 2.02
Temperature -0.81 -0.43
% of Variance 80.2 19.8
Wilks' Lambda 0.13 0.56
P-value <0.01 0.05

Table 5. Standardized canonical discriminant functio coefficients and Wilks’ Lamda in autumn.

F(x) 1 F(x) 2
Roe deer density 0.45 -0.54
Soil order 0.31 0.76
NDVI 14-04-2004 -0.57 -0.32
Mean patch size 0.50 0.46
Relative humidity 1.02 0.60
Saturation Deficit 1.34 1.06
% of Variance 92.7 7.3
Wilks' Lambda 0.61 0.96
P-value 0.19 0.92
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From the early summer period significant discrinimg functions could be obtained,
therefore only from this season a predictive mags \ganerated (Figure 4). The
majority of the points was classified to have zeydow density in early summer
(81%), 4% was classified as supporting moderatssiieand 15% high density of
host seeking nymphs. Important risk areas that vimdecated were: three of the
Wadden islands, De Hoge Veluwe, De Amsterdamse Ngatmgduinen and the
Drenthe province.

Missing NDVI data in the outer west and east of¢bentry resulted in the lack of a
density prediction. Furthermore, other white ar@ashe map were caused by missing
data on roe deer densities, or presence of waigditgs or infrastructure.

Predicted nymphal =
density P A

|:] 1 zero - low f

- 2 moderate
B :hioh @
E no data

BN BN B <iometers
012525 50 75 100

Figure 4. Predictive map of early summer densitiesf host-seekinglxodes ricinus nymphs. Density classes
correspond with classes as defined in Figure 3A.
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3.4  Predictive capability

The predictive capability of the discriminant fuiocts was tested by applying them to
the build set on which the discriminant functionsrevbased, and a validate set. The
first consisted of randomly selected 80% of the @asiand the latter of the other
20%. For early summer, the model classified 83%efbuild data correctly and 71%
of the validate data (Table 6). The classificatficacy in autumn was worse; 66%
of the build set and 20% of the cases in the vidid®t were correctly classified
(Table 7). As a visual support of these resultéegary scatter plots are shown,
depicting both the build and the validation casegure 5 and 6). These plots indicate
to which category cases were originally belongiogahd what discriminant scores
they got on both functions in the analysis. Caseskassified in the category with the
least ‘Mahalanobis distance’ to the category ceaitrdhis distance is expressed in
standard deviations of the function scores and stake account the correlation
between the variables. As already indicated bystpeificance of the discriminating
capability of the functions, density classes inlye@ummer are better separated
(Figure 5) compared to autumn (Figure 6).

Table 6. Early summer classification results after aplication of the discriminant functions. The functions
were applied on the build set and a validate set.ighlighted numbers are correctly classified densits.

Predicted
Correctly
Class 1 2 3 n classified
Build set 1l 0 0 9 65 39
original 2 1 S 0 6 o7
3 1 2 6 9
total 24
Validate set 0 0 2
0,
original 1 1 1 3 71.4%
3 0 0 2 2
total 7

Table 7. Autumn classification results after appliction of the discriminant functions. For explanation see
description Table 6.

Predicted
Correctly
Class 1 2 3 n classified
Build set 1 2 2 1 12 65.8%
original 2 2 6 3 11 o
3 3 2 10 15
total 38
Validate set 2 3 0 S
0,
original 2 3 0 0 3 20.0%
3 1 1 0 2
total 10
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4, Discussion

As far as my knowledge reaches; this is the fitstl\s predicting densities of questing
I. ricinus nymphs at different locations in the Netherlandssdal on RS and GIS-
derived data on the environment. Environmental aldeis may individually or
combined, determine survival of ticks and henceaceté risk of obtaining Lyme
disease. Variables that were tested for associatith nymphal densities were
obtained without actually visiting the tick sampgjitransects. Some variables were
indirectly derived from RS-images (NDVI, landscagtructure, land use and distance
to coast) others by geo-referenced field obsematin larger areas (climate, roe deer
density and soil type). Several factors showed aason with nymphal densities.
The discriminant analysis allowed distinguishingngley categories and testing of the
predictive capability of the discriminant functionBrediction efficacy is bad in
autumn and fairly good in early summer, althougédjmtions could be validated with
only few cases.

4.1  Variation in nymphal densities

By dragging a blanket through the vegetation, dhly questing proportion of the
ticks will be collected. These form a representatd the overall abundance of ticks
in the near environment. Much variation was obsgrire the nymphal densities
collected at the different transects and differegdisons. It has to be noted that no
direct comparison between all early summer andnantdensities can be made. But
the 24 transects that were sampled in both seasowsver, showed that early
summer densities were significantly higher. Thidbéxause the density of questing
nymphs reaches its highest annual peak in earlym@mwith a gradual decline
towards autumn (Perre#t al., 2004). Differences between nymphal densities in
suitable and unsuitable habitats may thus becomes regplicit in early summer.
Another explanation for the lower densities in awtumay be that data collected in
the ‘Natuurkalender project’, which forms more thame third of the cases in that
period, are collected after an extreme hot and Jily month in 2006. The high
temperatures and the drought may possibly havdtedsin high mortality among
ticks at locations that form suitable habitat dgrinormal’ summers, but not under
these extreme desiccating circumstances. This easebn in transects situated in
deciduous forest probably having a bigger bufferaagpacity against dehydration
compared to coniferous forests, although both farsgses are known to support tick
populations (Lindstrom & Jaenson, 2003).

The variation in dates on which the highest denstg reached in early summer can
be explained by the annual and local influenceeofigerature on the tick activity
(Gray, 1998) and the sampling frequency. Ticks vesiéected in multiple years and
at multiple locations with varying frequency. Whawerage spring temperature is
higher at a certain location, a density peak aarhethe season can be expected
because ticks get activated sooner (Diuk-Wastsal, 2006; Joudat al., 2004). Also

a weekly sampling frequency may result in that akge noticed earlier, compared to
a monthly sampling frequency.
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Densities in early summer were autocorrelated, evialitumn densities showed a
random pattern. Since data from sampling locationdose proximity to each other
tend to be more similar to each other than data fsdes farther apart (Cliff & Ord,
1973), the better distribution of transects over ¢buntry in autumn can explain this
outcome. Transects in early summer were situatégiora band from east to west,
but not in the north and south like in autumn. Rennore, some transects were only a
few hundred meters separated from each other, ldumber of transects in early
summer was lower than in autumn.

4.2 Extent of association with variables

In both seasons densities were correlated withdesr density and April NDVI.
Although correlations in early summer were strongar both seasons nymphal
density correlated strongly with these variablesséveral studies deer density has
been shown to be associated withicinus densities (Gragt al., 1992; Pichoret al.,
1999; Rizzoliet al., 2002). A high roe deer density may probably fedg higher tick
densities due to their necessity for adult tickroepiction and feeding of female ticks
(Gray et al., 1992). With an increased roe deer density, thesithe of nymphs may
indirectly be affected due to more frequent promucof larger egg batches (Pichon
etal., 1999).

The relation between NDVI and tick occurrence angity has also been reported by
other authors (Eiseet al., 2006; Estrada-Pena, 1998, 2002). Data on moiBly|
was also used by Estrada-Pena (2006) to predictabhauitability forl. ricinus in
several western Palaearctic ecoregions. In thetustudy, only the April NDVI was
significantly negatively correlated with the derestand not the September NDVI.
This is due to the difference in photosynthetiavatgt of forests compared to other
vegetation in each particular time of the year.SSlands and vegetated ground may
have an increased photosynthetic activity earleithe year compared to forests.
Since forests with a leaf litter layer or undergtiowf grasses form suitable habitats
for I. ricinus (Estrada-Pena, 2001; Gray, 1998; Lindstrom & Jaen2003), higher
densities may be expected in areas with a low [@yatbetic activity in April.

NDVI may be a crucial predictive factor in futurisk studies in the Netherlands,
since it enables classification of different forggies. As Eisen (2005) showed, it is
possible to distinguish forest types with or with@uass ground layer, as well as
forests with or without leaf litter layer, and réhis to tick density. In contrast, the
assessment of tick distribution on the basis oédlibotanical units in the field is
highly time-consuming and difficult to apply to ¢gr areas according to Danéetlal.
(1998). Furthermore, the comparison of habitatspmmsad of different syntaxonomic
units but with the same suitability for tick suralvis not straightforward (Estrada-
Pena, 2001). In the current study, different foresttegories could not be
distinguished based on the NDVI, because sateftiges of only two days were
available, while one needs images of multiple déessuch a classification. It is
possible that this may also become a problem irpteeiously idea suggested, since
the Netherlands are ~85% of the time cloud covdmitjng the view of the satellite.
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In this study, a relatively coarse land use clasgibn was used as variable
describing vegetation cover. The classificatiortingaiished grasslands from other
vegetation and coniferous from deciduous forestsis Tland use variable was
positively associated with the density categoriesearly summer, confirming that
forested areas are generally more suitable halfaats ricinus than open vegetated
ground (Lindstrém & Jaenson, 2003).

All three climate parameters were significantly retated with nymphal density in
early summer. Since climate is determining off-hiskt survival during questing as
well as quiescence periods, it can be used in Ipoddicting habitat suitability
(Brownsteinet al., 2003) and daily activity rates (Danietl al., 2006; Perrett al.,
2004).

Mean early summer temperature and saturation tetiei negatively correlated with
density, and relative humidity positively. Highentperatures and SD cause the tick
to dehydrate, which limits its questing activity,hite a higher RH enables
rehydration. This relation was previously reportedther studies (Diuk-Wasset
al., 2006; Hubalelet al., 2003; Perrett al., 2000; Perregt al., 2004).

The weaker correlation in autumn, where RH was tegg correlated and SD
positively correlated with density of the nymphande explained by the relatively
low maximum SD, namely: 3.5 (see Appendix llh). c@rdensity of the questing
proportion of ticks decreases when the SD reachkges above 4.4 mmHg (Perget
al., 2000), a positive correlation may occur, becaige mean atmospheric drying
power was always below the ticks equilibrium. Tagional influence of the seawater
temperature on air temperature in autumn (see Appelf) did not show direct
correlation with tick questing activity. This alspplied for the variable ‘distance to
coast’. However, in a study of Eises al. (2006) coastal woodlands showed to
support higher densities of nympHapacificus nymphs than inland woodlands. The
difference with the current study may be due tcetieln adaptation df. pacificus to
coastal influence, whilé. ricinus population density may be less affected by this
factor in the Netherlands. Although data presemeithe thesis of (Holtkamp, 2003)
suggests that phenology loticinusis affected by coastal influence through the effect
of the sea on climate. Ticks at the coast weredayuesting earlier in the season than
ticks more inland.

Weather variables are indispensable in a temporadigtive model with tick
densities, since there is no risk when ticks ateqoesting, irrespective of the actual
tick density. Daily activity rates df ricinus are well predictable based on climatic
models with few parameters (Daniel al., 2006). In the current study however,
spatial phenology could not yet be predicted whih ¢climate data, because ticks were
sampled in multiple years and mostly not in a cardgus season.

Soil type and landscape structure were not, ohjig(in autumn) correlated with

nymphal densities. Although soil type has a dimutl indirect influence on habitat
suitability of ticks due to moisture content andtaility of supporting plant and host
populations (Bunnell, 2003), densities could noekplained by this factor. This may
be due to the unbalanced distribution of cases teefour soil types or the stronger
influence of another variable. Landscape structwes also not associated with
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densities; this may be due to the radius-size (@b which metrics were calculated.
When different radius-sizes are used, they willectf fragmentation on different
orders of spatial magnitude, which may affect theamng and explanatory power of
the parameter. Another reason for finding no asgimeci may be the effect of roads on
fragmentation. The average forest patch size maysrhaller because of roads,
although habitat suitability for mammalian hostglod tick will not automatically be
better. In other studies it has been shown thgnfentation does positively affect tick
densities (Allanet al., 2003; Brownsteiret al., 2005), however in these studies the
sampling was stratified by deciduous forest density

4.3 Predictive capability

Using the associative variables from the Spearn@relation in the discriminant
analysis, two predictions were made; nymphal dgnsit early summer and in
autumn. Although the early summer densities hadefewases and showed
autocorrelation, density predictions in this seasloowed a better fit to the validation
data (71% vs. 20% correctly classified). This iohably due to the lack of
discrimination between low and high densities ituewn. Since the nymphal density
range was smaller and more skewed in the lattesoseat is likely that both

discrimination and prediction of categories is worompared to early summer,
because cases are not well separated. But it nsy @@ caused by the earlier-
mentioned extreme climatic circumstances in the mamof 2006, resulting in

misclassification of potential suitable habitats.

The predictive map of early summer predicted atikedly large proportion of the
points to support high nymphal densities. Indeedhiighest density predictions in the
Waterleidingduinen, De Hoge Veluwe and Drenthe espond with the large
numbers of collected nymphs at those locationsaityesummer. The prediction also
corresponds to certain extent with maps publisheitieé Dutch Bulletin of Infectious
Diseases (see Appendix V) (Hofhwsal., 2006). This paper showed the prevalence
of erythema migrans per municipality in three diéf& years. Although the maps
should not directly be compared, the map of 200Bvelg EM-prevalence and the
current map show a similar pattern.

Differences are probably caused by the coarseifitag®n of density categories in
the current study, resulting in that few locationere classified as moderate density.
Also not many cases were used to build the motttellylresulting in a not very well
balanced prediction. Besides, the risk map of Hisfaual. (2006) is based on reports
of erythema migrans and this does not automatidadly to represent the location
where the tick bite was obtained (Ostfeld, 200%)sTndicates the weakness of using
EM-prevalence as risk indicator, but the strendtthe current study.

With respect to the different geographical scafeh® input data, the results highlight
the strength but at the same time the limitatiothef GIS/RS approach. Predictions
can relatively easy be made when one uses dataacrorscale, but it is undoubted
that heterogeneity in a sampling area is overlooRér current study predicts the
density of nymphs based on data obtained on melspales; ticks were collected on
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the scale of a transect (20§mwhile NDVI was calculated for cells of 25 m
resolution (625 1) and roe deer were counted per management uritavitarying
size of several ha. The issue of scale should fitverde considered in interpretation
of the risk model outcomes (Kitron, 1998, 2000).

At some locations only one transect was sampledgevithis known that distribution
of questing ticks is usually clumped at micro gepinical scale (Estrada-Pena, 2001;
Talleklint & Jaenson, 1997 and references theréihgrefore it would be good to
perform future sampling at multiple transects athelacation as in Diuk-Wasser al.
(2006) to control for heterogeneity.

The predictive map also shows much resemblancetivgimap on roe deer densities
per management unit (Appendix llj). This is not @iging, because strong
correlations were found between tick and roe desrsidy. But since this factor is
measured on a relatively coarse scale, the prapodf points with high nymphal
densities are probably overestimated, since managiemits do not give accurate
information where the roe deer were observed. Retance, high densities were
predicted at ‘middle Schouwen Duiveland’, whilestlirea is not known to support
high tick densities. It is likely that the bounderiof the management units are the
cause for this overestimation. It is possible totow for this in the future by
assigning the roe deer density only to the surbaee-of land use types that are likely
to support roe deer populations. In this way theregions may already become more
accurate.

The classification of nymphal density categoriesasnewhat conservative, but the
used tick data did not allow more categories, beedne-span was in some cases too
short to create a ‘zero density category’. Theeefibre low density also comprises
zero densities. The spatial resolution on whichdisteons were done (1000 m) also
needs refinement in future studies to get a batthcation of localized risks.

It cannot be excluded that the sampling methodhlaalspossible effect on the chance
that a tick gets into contact with the blanketpentioned in (Wielingat al., 2006).
Differently (seasonally) vegetated undergrounds imaye had effects on how good
the blankets touched the underlying vegetation.

4.4 Implications

Using GIS and RS enables us to assign areas withased risk of obtaining a tick
bite. Predicting density df ricinus nymphs is a useful approach to reduce the risk to
get bitten because it enables strategic promotigmayventative measures by humans.
However the current predictions are limited andymsttsuitable for informing a broad
public. The predictive quality is moderate and therent study predicts the spatial
density of questing nymphs on a national scale {@ithresolution. The usability may
improve when risk is predicted on multiple geogiephscales (national, regional and
local).

Uninfected nymphs cannot transmit a disease, ahdresult in biting nuisance. The
map may therefore also become more useful wheralaictiection prevalence of the
nymphs is incorporated in the analysis. These dat@ not available at the start of
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this study, but analysis that is currently undestalas part of the ‘Natuurkalender
project’ may provide data for that in the futureovever, up till now ndBorrelia-
negative sites were found in that project whenstigkere present at a sampling
location (Takkeret al., unpublished data). This indicates that nymphaisdg itself
may already display the actual risk, and infectilata may only slightly refine this.
Preliminary results of the ‘Natuurkalender projestiow alarming high infection
percentages and indicate that chances of humactiorieare high when a tick bite is
obtained (Takkewt al., unpublished data).

The current predictive map lacks a temporal compgneecause the autumn-data
resulted in very low predictive capability. Sintericinus ticks are known to have

distinct seasonality in their activity patterns §&r1998) it is undoubted that adding a
temporal component to the map would greatly impritseusability. The next step

from there on would be a web-based GIS that usesoemental data as spatial

predictor and up-to-date climatologic data as tempg@redictor. The internet

provides a very effective platform to communicdte message of spatio-temporal
risk to a broad public and may greatly contributedducing the number of tick bites
and Lyme disease patients in our country.

5. Conclusions

* It is possible to predict early summer nymphal dgns the Netherlands
based on environmental data on macro scale. Althabg quality of the
current predictive map is limited, it gives goodlication of locations with
increased risk of obtaining Lyme disease. To imprtive risk predictions,
density categories need refinement and temporakcéspand Borrelia-
infection prevalence in ticks need to be incorpedat

* The relatively low number of cases compared to rthenber of predictor
variables and the climatic circumstances in Juy& @re likely the reason for
the bad predictive capability in autumn.

» Since contrast between densities is strongestriy sammer, it seems most
effective to use nymphal densities as dependemhlarin spatial predictive
models with nymphal. ricinus. It may even be sufficient for spatial risk
predictions to only use early summer samplings lzasa..

» Visiting forested areas with high roe deer dengiiyhout taking preventative
measures positively affects the risk of obtainingme disease in early
summer.

* Predicting nymphal density on different geograph®eales would greatly
improve the usability of the predictive maps. There other sampling
strategies than the current are needed.
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0. Recommendations

In order to gain more insight in the spatial riskabtaining Lyme disease in the
Netherlands | would like to recommend the followifiog future studies:

 To prevent effects of spatial autocorrelation, siamgptransects should be
selected in a stratified random design way usin§ @hd RS on forehand.
Maximum distance between sampling locations can thieeused as selection
criterion.

Using RS on forehand also enables the division aredts in different
categories based on NDVI data. Also it will help destribute sampling
locations evenly over the different values / catesgowithin variables.

* To reduce influence of heterogeneity in the deesitit sampling locations
(Talleklint & Jaenson, 1997 and references therempltiple randomly
selected transects should be monitored at eachlisgngcation as in Diuk-
Wasseret al. (2006). This also allows analysis on multiple gapdical
scales.

» Tick population structure categories (Gueetaal., 2002) or tick absence /
presence may also be interesting dependent vasialbbe relate to
environmental variables, because they gives a molistic view on the tick
population than nymphs alone. This can be test@dul&neously with
maximum nymphal density.

* Using GPS devices on forehand instead of GooglénEdterwards will help
mapping the sampling transects more precisely,pradide means for cross-
validation of GIS data by field visits.

* The data that is currently collected by the Dutablig who report tick bites
on the website of ‘Natuurkalender’ can be used akdation of model
outcomes, when these reports are corrected for etswf visits.

» Possibilities of web-based spatio-temporal risk atiog should be tested
using historical climatic data to build the modeldaactual weather data to
inform a broad public with up-to-data risk maps.
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Appendices

Appendix la Table reclassification land use

Code | Hoofdklasse Klasse origineel New class New description

1 gras 1 | agriculture

2 mais 1 | agriculture

3 aardappelen 1 | agriculture

4 bieten 1 | agriculture

5 | Agrarische gebied granen 1 | agriculture

6 overige landbouwgewassen 1 | agriculture

8 glastuinbouw 0 | not vegetated

9 boomgaard 1 | agriculture
10 bollen 1 | agriculture
11 | Bos loofbos 4 | dec. forest
12 naaldbos 3 | con. forest
16 | Water zoet water -1 | water
17 zout water -1 | water
18 stedelijk bebouwd gebied 0 | not vegetated
19 | Bebouwd gebied bebouwing in buitengebied 0 | not vegetated
20 loofbos in bebouwd gebied 4 | dec. forest
21 naaldbos in bebouwd gebied 3 | con. forest
22 bos met dichte bebouwing 3 | con. forest
23 gras in bebouwd gebied 1 | agriculture
24 kale grond in bebouwd buitengebied 0 | not vegetated
25 | Infrastructuur hoofdwegen en spoorwegen 0 | not vegetated
26 | Agrarisch gebied bebouwing in agrarisch gebied 0 | not vegetated
30 Kwelders 0 | not vegetated
31 Open zand in kustgebied 0 | not vegetated
32 Open duinvegetatie 2 | open vegetation
33 Gesloten duinvegetatie 2 | open vegetation
34 Duinheide 2 | open vegetation
35 Open stuifzand 0 | not vegetated
36 Heide 2 | open vegetation
37 | Natuur Matig vergraste heide 2 | open vegetation
38 Sterk vergraste heide 2 | open vegetation
39 Hoogveen 2 | open vegetation
40 Bos in hoogveengebied 4 | dec. forest
41 Overige moerasvegetatie 2 | open vegetation
42 Rietvegetatie 2 | open vegetation
43 Bos in moerasgebied 4 | dec. forest
44 Veenweidegebied 1 | agriculture
45 Overig open begroeid natuurgebied 2 | open vegetation
46 Kale grond in natuurgebied 0 | not vegetated
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Appendix Ib Table reclassification soil types

Code | Beschrijving origineel | New class | New description
10 | Veen 4 | peat
20 | Zand 1 | sand
21 | Moerig op zand 2 | silt
30 | Lichte zavel 2 | silt
40 | Zware zavel 2 | silt
50 | Lichte klei 3 | clay, loam
60 | Zware Klei 3 | clay, loam
70 | Leem 3 | clay, loam
98 | Bebouwing -9999
99 | Water -9999
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Appendix lla Map landuse reclassified
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Appendix lIlb Map soil type reclassified

Soil type
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Appendix llc,d Maps average relative humidity
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Appendix llg,h Maps average saturation deficit

Early summer|
SD (mmHg)
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Appendix Il Map Roe deer density
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Appendix Il Histograms early summer
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Appendix IV Histograms autumn
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Appendix V Erythema migrans, source: (Hofhuis et al., 2006)
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Appendix VI Coordinates and nymphal densities at the sampling
transects
DENS_ES DENS_A
PLOT ID LAT LONG PLOT NAME LOCATION 200 200
0 52.00544  5.753294 E Renkum 0
1 52.00685  5.754361 C Renkum 4
2 52.00824  5.753819 D Renkum 6
3 52.01031  5.758367 B Renkum 11
4 52.01067  5.756144 A Renkum 20
5 52.33198  4.557314 AB AWD 100 11
6 52.33269  4.554761 AA AWD 197 12
7 52.33803  4.562006 VA AWD 490 26
8 52.33927 4.56145 VB AWD 182 30
9 52.34265  4.570817 DB AWD 163 18
10 52.34291  4.567725 DA AWD 227 40
11 52.35425  4.574081 WA AWD 207 105
12 52.35485 45711 WB AWD 250 91
13 52.12487  5.866086 oD HV 142
14 52.12484  5.864575 OE HV 77
15 52.12352 5.8476 SD HV 100
16 52.12428  5.851514 SE HV 76
17 52.10729 5.87605 HBE HV 59
18 52.10658  5.877466 HBD HV 89
19 52.10474  5.876462 HED HV 189
20 52.10463  5.875005 HEE HV 44
21 52.45548  6.661169 EZ LNV1 74 10
22 52.48459  6.684336 EN LNV2 348 46
23 52.37081  6.091647 DW LNV3 2 0
24 52.44804  5.405061 oP LNV4 6 0
25 51.92028  6.718567 B LNV5 134 4
26 51.98446  6.668565 KV LNV6 54 8
27 51.89258  5.635661 AW LNV7 0 0
28 51.94489  5.614832 BK LNV8 0 0
29 51.49998  5.134822 VH LNV9 2 0
30 51.27394  6.006489 w LNV10 0 0
31 51.34988  5.818328 GP LNV11 26 2
32 51.87107  5.652383 R LNV12 0 0
33 53.07012  7.121705 Bwedde NK1 2
34 53.49275  6.163133 Schierl NK2 4
35 53.49517  6.165367 Schier2 NK2 4
36 52.92604 6.34585 Oosterwolde NK3 6
37 53.01502  6.755297 Gietenl NK4 16
38 53.01569  6.753561 Gieten2 NK4 14
39 52.78195  6.304547 Ruinen NK5 19
40 52.75222  6.523961 Hveenl NK6 172
41 52.75324  6.522492 Hveen2 NK6 0
42 52.33217  6.423564 Hdoorn NK7 16
43 52.16411  6.799019 Hbergen NK8 23
44 51.89214  6.219018 Mland1 NK9 58
45 51.92785  6.221432 Mland2 NK9 2
46 52.20771  5.892073 Adoornl NK10 18
47 52.21587  5.904998 Adoorn2 NK10 8
48 52.02798  5.696896 Edel NK11 76
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49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

52.02663
52.10591
52.15757
52.15686
52.527
52.52565
52.64511
52.64696
52.44972
52.4475
51.84027
52.15889
52.1597
51.70979
51.42477
51.70397
50.78928
50.80185
50.79409
50.76321
52.43131
52.32626
52.2063
52.20451

5.689195
5.876736
5.228372
5.228556
5.686175
5.686589
4.647208
4.655067
4.897389
4.893472
3.983692
4.361631
4.359269
3.742019
5.319864
5.818581
5.738111
5.743216
5.955741
5.983129
4.619662
4.986552
5.872901
5.871418

Ede2
Hveluwe
DeBiltl
DeBilt2
Drontenl
Dronten2
Klandl
Kland2
Twiskel
Twiske2
Goeree
Whaar
Whaar
Schouwen
Bergeijk
Cuijk
Eijsdenl
Eijsden2
Baarlol
Baarlo2
DK
BW
KH-B
KH-H

NK11
NK12
NK13
NK13
NK14
NK14
NK16
NK16
NK17
NK17
NK18
NK19
NK19
NK20
NK22
NK23
NK24
NK24
NK25
NK25
ASG
ASG
ASG
ASG

406
38
115

104
179

10

o O

10
18
25
14

16

10
20

14
186
12
44

Appendix VII Complete tick density datasets of the six studies (see CD-

ROM)

Appendix VIII SPSS outputs (see CD-ROM)

Appendix IX Environmental data (see CD-ROM)

Appendix X Prediction data (see CD-ROM)
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