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Preface  
This thesis is partly resulting from a decision I made at 
the start of my Biology Master at Wageningen University. 
I then decided that I wanted to combine biology and 
GIS/RS in a thesis, since they form a perfect combination 
for analysis of spatial patterns determined by biological 
processes. I think the tick Ixodes ricinus is a fascinating 
biological study object, because it has such a 
complicated life-cycle that is influenced by many factors. 
What’s more, it also transmits various pathogens, 
including Borrelia, causing Lyme disease in humans. I 
enjoyed it very much to study the tick in a GIS, because I 
always had to come up with challenging and creative 
routes from the starting point to an end result.  
 
Actually, this is a second (optional) thesis within my 
Master and hence only 24 credits. One of my personal 
goals, getting acquainted with ArcGIS and using the 
program in a biological context is reached. It was a new 
experience for me to have only 4 months for all the work 
and I found it difficult to stick to the research questions, 
since new ideas popped up rapidly during my work.  
But all in all, I think I managed to perform interesting 
analysis on the data I got from several sources, with an 
end result that brought us nearer to risk modeling of 
Lyme disease in the Netherlands. However, the current 
map is not ready to use for a broad public.  
 
All this work could never have been done without the 
help and input from various people. Therefore I would 
like to thank Ron van Lammeren and Willem Takken for 
their comments on the report.  
All the people that were involved in collection of the ticks 
from the various studies are being thanked, also for 
allowing me to use their data in my study.  
The following people from Alterra and the GRS-
department are thanked for their kind help during the 
start-up phase; Aldo Bergsma, Gerard Hazeu, Frans Rip 
and Roland van Zoest. 
Last but not least, Margriet Montizaan from the Royal 
Dutch Hunting Association is thanked for providing data 
on roe deer density in the Netherlands. 
 
Jacob Beeuwkes 
February 2007 
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Abstract 
Lyme disease is an infectious disease in humans that is caused by spirochetes of the 
genus Borrelia burgdorferi sensu lato. The European sheep tick (Ixodes ricinus L.) is 
the most important vector of this bacterium and can transmit it during blood meals. 
The density of ticks in an area can indicate the spatial risk of obtaining Lyme disease. 
Therefore data from 6 different tick sampling studies, at 73 different locations broadly 
distributed over the Netherlands, were spatially analyzed and related to GIS and RS-
derived variables. Early summer densities of the nymphal stage were found to be 
associated with roe deer density, land use, April NDVI and climatic variables. Using 
discriminant analysis, a predictive map of the nymphal density in the Netherlands was 
made, based on associative variables. A part of the dataset was used to test the 
predictive capability of the model, which turned out to be 71%. Although the current 
map is not ready for public use, making predictive maps of the risk to obtain 
infections of Borrelia parasites is vital because they may help people to take 
preventative measures at the right place and time. Therefore it is suggested that efforts 
should be taken in developing web-based GIS that enables spatio-temporal mapping 
of this risk in the Netherlands, to inform a broad public in a convenient way.  
 
Key words: Lyme disease, Ixodes ricinus, risk, predictive model 
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1. Introduction 

1.1 Lyme disease 

Lyme borreliosis (Lyme disease) is an infectious disease in humans and domestic 
animals that is caused by the spirochete Borrelia burgdorferi sensu lato (Barbour, 
1984; Burgdorfer et al., 1982). Ticks of the genus Ixodes (hard ticks) are vector of this 
bacterium and can transmit it during blood meals.  
In Europe, the primary vector of B. burgdorferi s.l. is the European sheep tick (Ixodes 
ricinus L.) (Rauter & Hartung, 2005). This broadly distributed tick is not only vector 
of Borrelia, but is known to transmit several other pathogenic microorganisms such as 
ehrlichiae and ricketsia (Wielinga et al., 2006). When the Borrelia parasite is 
transmitted to humans, in ~90% of the cases an increasing red circle on the skin 
appears shortly after the bite, called erythema migrans (EM) (Brouqui, 2004; Parola & 
Raoult, 2001). This is an indication of the first stage of the three infection stages. In 
the final stage, occurring several months to years later, serious clinical manifestations 
may appear, such as skin abnormalities, intermittent attacks of joint swelling and pain, 
fatigue, and ocular and neurological signs (Parola & Raoult, 2001). 
The prevalence of the first infection stage; EM, can be used as an indicator to gain 
insight in disease incidence. Hofhuis et al. (2006) used this approach to point out 
areas with an increased chance to obtain Lyme disease in the Netherlands. They 
reported a tri-fold increase of Lyme disease incidence in the Netherlands compared to 
1994. It was assessed that the total number of patients that had visited a general 
practitioner (GP) because of EM, had risen from about 6000 in 1994 to 17000 in 
2005. It was also assessed that more than one million people had obtained a bite from 
at least one tick. From this strong increase it can be concluded that Lyme disease 
forms an increasing threat to public health in the Netherlands. 
 

1.2 The role and ecology of Ixodes ricinus 

As mentioned before, the arthropod that causes this infection in humans is Ixodes 
ricinus. It is a seasonally active ectoparasite and uses blood as only food-source. It has 
a broad host-range, and feeds on three different hosts during its complicated life-
cycle. In this 2-4-year life-cycle, the tick goes through three active life stages after 
egg-hatch; larva, nymph and adult, in which each a blood meal is necessary for 
development or reproduction. Sexual dimorphism and reproduction does only occur in 
the adult stage.  
Ixodes ricinus is known for its broad host range, but larvae and nymphs mainly feed 
on small or medium-sized rodents or birds, while adult ticks are usually found on 
larger mammalian hosts such as roe deer (Randolph & Craine, 1995; Sonenshine, 
1993; Tälleklint & Jaenson, 1994, 1997).  
Small rodents such as bank voles (Clethrionomys glareolus) or Apodemus mice are 
reservoir hosts for Borrelia burgdorferi, which means they permit long-term survival 
and amplification of the infection and are significantly involved in the infection of the 
ticks (Gray, 1998; Randolph & Craine, 1995; Tälleklint & Jaenson, 1994, 1997). 
Although roe deer are considered reservoir-incompetent, these animals have an 



 

 - 6 - 

important effect on tick population density because they are one of the main hosts for 
the adult tick and may indirectly affect the density of infected nymphs (Gray, 1998; 
Tälleklint & Jaenson, 1996). 
About 90% of the tick’s life cycle is not spent attached to a host, but free in the 
habitat, where it is exposed to the local biotic and abiotic conditions (Parola & Raoult, 
2001). In this habitat they are not actively dispersing in search for a host, but stay 
close to where eggs were laid (in case of larvae) or where they have dropped from a 
previous host (nymphs) (Van Buskirk & Ostfeld, 1998). Ticks that are preparing for 
attachment to a host perform questing behaviour. Questing is defined by Sonenshine 
(1993) as “behaviour expressed by the willingness of the ticks to crawl or climb to 
favorable locations in their environment, e.g., herbaceous or woody stems, where they 
may attach to transient hosts”. Questing is a relatively passive host-seeking strategy, 
although ticks start rapidly waving their forelegs, when host cues are noticed 
(Sonenshine, 1993). When a tick is attached to the host, dispersal totally depends on 
host movements, which automatically means that ticks only may occur at locations 
where suitable hosts occur.  
Since ticks are sensitive to desiccation, especially in the larval stage (Mejlon & 
Jaenson, 1997 and references therein), a suitable habitat of I. ricinus is beside suitable 
host presence, also limited to the possibility to rehydrate (Gray, 1998). This can 
consist of layers of decaying matter or good vegetation cover. When ticks dehydrate 
too much, they momentarily leave their questing site and move to the litter layer 
where they actively absorb water, called ‘quiescence’ (Perret et al., 2004). Vegetation 
communities that do not enable this mechanism are highly unsuitable and ticks cannot 
survive in such a habitat during drought. Together with host density, this was also the 
explanation given by the authors of a recent Dutch study who found very low 
densities of nymphs in a heather area and higher numbers in a dune area and forest 
rich in blueberry (Vaccinium corymbosum) and oak (Quercus) (Wielinga et al., 2006). 
Ixodes ricinus density is not only spatially determined, but also temporally. The 
temporal abundance of ticks is primarily determined by diapause, which may be 
categorized in developmental and behavioural diapause (Gray, 1998). Behavioural 
diapause (quiescence) occurs at unsuitable times during host-seeking periods, while 
developmental diapause involves arrested development of an engorged stage or egg 
during high summer or mid winter.  
 

1.3 Spatial analysis using GIS and RS 

Because only a limited sample of the actual distribution of a vector is usually 
achieved in practice, epidemiologists often need to rely on spatial risk models. The 
combination of Remote Sensing (RS) and Geo Information Systems (GIS) provide a 
strong tool in risk assessment and prediction, since RS-data of the study area can 
usually easily be obtained by satellite images or photos taken from an airplane. And 
with GIS, multiple layers of spatial data can easily be obtained, stored, overlaid and 
displayed (Nicholson & Mather, 1996). Cartographic display capabilities inherent in 
GIS are also accessible and understandable to a broad public (Kitron, 2000). 
GIS and RS approaches are used in entomologic risk predictions in a vastly growing 
frequency (Ostfeld, 2005). Most risk models are made by assessing which are possible 
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important risk indicators and how these are spatially distributed. Subsequently it is 
investigated to what extent these indicators are associated with vector, pathogen or 
disease incidence data. Finally the strongest association(s) can be used as predictor for 
the risk. In this way distribution and abundance of various disease vectors such as 
anopheline mosquitoes, tsetse flies and ticks have already been modeled (Eisen et al., 
2006 and references therein).  
 
In the United States much work has been done on mapping the distribution of ticks. 
There, the most important agent of tick-borne diseases is the black-legged tick Ixodes 
scapularis Say. Bunnel et al. (2003) related abundance of I. scapularis with several 
spatial attributes in a region in the USA. They found significant associations between 
adult tick numbers and land cover, distance to water bodies, distance to forest edge, 
elevation and soil type.  
In another study to I. scapularis, Diuk-Wasser et al. (2006) compared numbers of 
nymphal ticks at different locations and found that peak nymphal host-seeking density 
occurred earlier in the southern than in the northern collection sites, suggesting 
indirect influence of increasing latitude. Randolph and Storey (1999) reported a 
measure for drying power of the atmosphere based on relative humidity (RH) and 
temperature, called saturation deficit (SD). In the study of Diuk-Wasser et al. (2006), 
significant negative correlations were found between mean nymphal tick numbers and 
SD and mean temperature. 
Eisen et al. (2006) studied density of Ixodes pacificus in California in relation to 
environmental parameters by forward-stepwise regression modelling. They even 
found that a model with several GIS / RS derived parameters was more accurate in 
predicting nymphal density, than a model based on field-derived parameters. The 
observed peak nymphal density was best predicted by the July normalized difference 
vegetation index (NDVI), November greenness, coastal influence, May solar 
insolation, November hours of sunlight and dominant hydrological grouping. 
 
Although many environmental parameters at sampling locations may directly be 
derived by overlaying it with other data, Kitron (1998) suggested that beside localized 
biotic and abiotic data, landscape structure may play a role in tick abundance as well. 
This was shown by several authors who considered composition or structure of the 
landscape surrounding focal sites (Brownstein et al., 2005; Jackson et al., 2006; 
Ostfeld, 2005). From two studies it was shown that the entomologic risk of Lyme 
disease (product of tick density and prevalence of Borrelia) was most related to 
fragmentation of the landscape (Allan et al., 2003; Brownstein et al., 2005). In 
another study with a different predictive variable, Jackson et al. (2006) drew similar 
conclusions after investigating the relation between Lyme disease incidence in 
humans and landscape ecology. They showed that a high interspersion between 
forests and herbaceous cover in the landscape was explaining the variation in disease 
incidence.  
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1.4 Risk modeling 

In principle, every location where Borrelia-infected ticks do occur is a risk area for 
obtaining Lyme disease. However, the question ‘What is risk?’ is approached in many 
ways since data on tick abundance or infection percentage may be unavailable or an 
area is not open for public. 
Risk is assessed in numerous ways, but in general risk assessment and prediction 
studies can be categorized as spatial, temporal or a combination of both (Daniel et al., 
2006). Apart from the categorization of studies, the sort of data on which the risk is 
based and the way in which the risk is expressed, also shows much variation. 
Generally, risk can be formulated as exposure to a chance of injury or loss. With 
respect to epidemiological risk one can formulate it as the chance to obtain an 
infection. Some studies use the disease incidence in humans to point out spatial 
differences in risk (Hofhuis et al., 2006; Jackson et al., 2006), since this data is 
relatively easily obtained from hospitals or GP’s. 
In a more fundamental approach that is applied more often, risk is based on tick 
presence or tick density in the vegetation (Bunnell, 2003; Daniel et al., 1998; Eisen et 
al., 2006; Guerra et al., 2002) or attached to a host (Das et al., 2002). In some cases 
also the infection percentage of the ticks is investigated, which provides an even more 
precise possibility to predict the risk of getting Lyme disease (Bunnell, 2003; Das et 
al., 2002). 
Assessment of both (infected) tick density and disease incidence in humans are also 
reported (Brownstein et al., 2005; Diuk-Wasser et al., 2006; Nicholson & Mather, 
1996). These studies provide possibilities of validating model outcomes. 
 
Assuming one is susceptible to infection; the risk to get Lyme disease is based on the 
density of infected questing ticks and the time one spends in a habitat that supports 
tick populations, in absence of active preventative measures. 
This indicates that humans themselves play a role in the chance of getting infected. At 
the one hand this shows the weakness of studies that use only disease incidence as 
predictor for disease risk in a certain area. Because areas that are hardly visited may 
still support high densities of infected ticks. Also discrepancies may occur between 
the site where the bite was obtained and reported (Ostfeld, 2005). At the other hand it 
indicates that when humans do take preventative measures at the right places, they 
may greatly reduce the chance to obtain a bite from an infected tick.  
 
It would be of great use to generate public awareness about locations that have 
increased chances to obtain a bite from an infected tick. Maps that display the risk to 
obtain an infected tick-bite can help a broad public in taking preventative measures 
and may help developing local control strategies (Kitron, 2000). As far as my 
knowledge reaches, this is the first study that tries to predict spatial density of I. 
ricinus in the Netherlands. According to me, predicting the risk of exposure to 
infected ticks would be most correct when it is based on the spatial density of ticks 
and tick infection percentages and not on disease incidence in humans. In case one 
also wants to predict where most bites will occur, one can add human behaviour (e.g. 
recreation, hiking) to the predictive map as well. 
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1.5 Aim and research questions 

In this study it is tried to see whether data on a macro scale can be used to predict 
processes at much smaller scale. In this approach that relies on hierarchy theory, 
localized factors are subsumed in macro-scale variables (Jackson et al., 2006). 
Although the scale on which risk can be predicted may be coarser, when macro data is 
predictive for tick densities, risk prediction can easily be performed, since 
environmental data do not necessarily have to be obtained in the field.  
 
Objectives 

1. To assess the extent of association of nymphal tick densities with several 
spatial factors obtained on macro scale. 

2. To develop a risk model for the Netherlands by predicting density of active 
nymphal ticks. 

 
Research questions 

1. How are sampling transects distributed over the country? 
2. How and why does nymphal tick density vary between several sampling 

transects and sampling periods in the Netherlands?  
3. To what extent are nymphal tick densities in the data-set spatially 

autocorrelated? 
4. To what extent are nymphal tick densities at sampling transects associated 

with the following variables; land use, soil type, climate, host density, NDVI, 
distance to the coast and landscape structure? 

5. Can the spatial distribution of ticks in the Netherlands be predicted by above-
mentioned possibly associative variables? 

6. What is the predictive capability of the model? 
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2.  Methodology 
Data on nymphs were used as input to create a map that shows predicted I. ricinus 
densities in the Netherlands. Only the nymphal stage was used in the assessment and 
the prediction, because of its relative importance in the transmission of Lyme disease. 
Nymphal density data was obtained from several tick studies conducted in different 
years. Tick densities as well as remote sensed data and other environmental data were 
stored in a GIS. Then the extent of association between tick densities and the other 
variables was tested with multivariate statistics and the results were displayed in a 
map.  
 

2.1 Study sites and tick sampling 

The tick sampling transects of the different studies were distributed over the whole of 
the Netherlands. The geographic coordinates of the sampling transects were only in a 
few cases recorded by using a GPS device. For all the other transects, the coordinates 
(decimal degrees) were obtained by pointing the centre of the transect in Google Earth 
(Google Inc.). The accuracy of the coordinates obtained by the latter method was 
estimated to be between 10-100 m.  
All studies had the same tick collection method namely flagging. This method 
consists of dragging a cotton blanket (with known surface) along a transect on the 
ground surface. This method provides the most sensitive measure of potential contact 
between ticks and humans (Diuk-Wasser et al., 2006 and references therein). The 
questing proportion of the tick population will cling to the blanket and can be counted 
per stage. 
The combined dataset consisted of 73 sampling transects, of which the earliest study 
started in the year 2000 and the latest ended in 2006 (see Table 1). In all studies, ticks 
were collected in only one year, except in study 6 where transects were monitored in 
the same season for three years (one transect was monitored for six years). In study 5, 
some transects of 100 m2 were located directly next to each other. Those transects 
were treated as one transect of 200 m2. The dragged area of transects in study 6 was 
not fixed, but based on a maximum number of 50 collected ticks. In the dataset that 
was provided, densities were already scaled to a surface of 100 m2. The frequency in 
which transects were sampled ranged from weekly to monthly. 
 
Table 1. Specification of studies that were part of the tick density dataset  
study n sampling 

transects 
sampling 
frequency 

sampling 
surface 

year (season cover) 

1. Renkum 5 weekly 200 m2 2005 (early summer) 

2. Amst. Waterl. Duin 8 weekly 200 m2 2002 (whole year) 

3. De Hoge Veluwe 8 weekly 200 m2 2002 (whole year) 

4. Vector project LNV 12 weekly 100 m2 
2005 (autumn);  
2006 (early summer) 

5. Natuurkalender 36 monthly 100/200 m2 2006 (autumn) 

6. Animal Sciences Gr. 4 monthly variable 
2000-2002-2005 (early 
summer-autumn) 
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All three active stages of I. ricinus can potentially get infected with the Borrelia 
parasite, but human infection usually results from blood meals taken by nymphs, 
because at this stage the ticks are small and difficult to see, and their peak questing 
period in early summer coincides with human outdoor activity (Barbour & Fish, 
1993). Beside unimodal patterns, bimodal patterns in nymphal phenology have also 
been reported (Perret et al., 2004 and references therein), but not in the Netherlands. 
Infected nymphal tick densities are directly correlated with nymphal densities (Jouda 
et al., 2004; Tälleklint & Jaenson, 1996) so densities of ticks may serve as an 
indicator for risk of exposure to infected ticks. Besides, in an ongoing study in the 
Netherlands, no Borrelia-negative sites were found up till now when ticks were 
present (Takken, unpublished data). 
Therefore in the analysis maximum nymphal density in overlapping months of the 
studies was used as the predictive variable. The periods in which the studies 
overlapped, did not cover the whole period of nymphal questing activity (early 
summer till autumn), but it was assumed that densities in early summer and autumn 
could separately be used as indicator for those periods. Therefore early summer was 
defined as the period between May and June, whereas autumn was defined as 
September till October. Unfortunately, the number of transects that was sampled 
during the known nymphal peak period (early summer) (Tälleklint & Jaenson, 1997) 
was rather low (n = 37). All recorded densities were scaled to 200 m2 and densities of 
early summer and autumn were separately used to obtain and validate both 
predictions. Because ticks of three transects in study 6 were sampled for three 
subsequent years and one transect even 6 years, densities in this study were averaged 
per month and the maximum average nymphal density of a early summer or autumn 
was used in analysis. 
 

2.2 Input data and processing 

Before the RS and GIS data could be used as variables in the statistical analysis, they 
were processed according to the data-action model shown in Figure 1, to obtain 
environmental data for each sampling transect in both seasons. The steps in the action 
model were performed using the computer program ArcGIS 9.1 (ESRI Inc.). In this 
paragraph, the processing is explained in more detail for each possible risk variable. 
The output consisted of a dBase table containing the maximum nymphal I. ricinus 
density in early summer and autumn and the values of the environmental variables at 
each transect.  
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Figure 1. Data action model showing 7 input datasets, 10 numbered actions and 1 output table containing 
nymphal densities and environmental variable values at each of the transects, to be used for analysis of 
association in both seasons. 
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2.2.1 Land use 

Land use of the Netherlands (LGN5) was obtained from Geodesk (Alterra, WUR). 
The file consists of 39 land use classes based on satellite images from Landsat TM5 
taken in 2003 and 2004. The original 39 classes were reclassified into six categories 
(action 2) according to a table presented in Appendix Ia; 1. water 2. not vegetated 
ground, roads and buildings, 3. grasslands and agriculture, 4. open vegetation, 5. 
coniferous forest, 6. deciduous forest. 
The file was in grid format with a spatial resolution of 25 m (map is presented in 
Appendix IIa). 
 

2.2.2 Soil type 

Data on soil types of the Netherlands was also obtained from Geodesk (Alterra, 
WUR). The file consisted of 9 soil classes which were reclassified into four categories 
(action 7) according to a table (Appendix Ib). The classification was based on water 
retaining capabilities of different soils: 1. sand, 2. silt, 3. clay and loam, 4. peat 
(Bunnell, 2003; Guerra et al., 2002). A relatively coarse classification was used since 
the distribution of sampling transects over all soil categories was rather unbalanced. 
The file was in shape format (map is presented in Appendix IIb). 
 

2.2.3 Climate 

Macrometeorological data were obtained from 46 weather stations (Meteoconsult, 
Wageningen, The Netherlands) located in the Netherlands, Germany and Belgium. 
Seasonal averages were calculated on hourly observations for temperature and dew 
point temperature. Data from three of the six sampling years were available; 2003, 
2004 and 2006 and were stored in an Access (Microsoft Inc.) database. Before 
climatic parameters were calculated, the database was queried to obtain annual 
averages and an overall average for three years (action 3.).  
Climatic parameters that are generally used in tick studies were not directly available, 
but had to be calculated from the available parameters. Therefore average actual 
vapor pressure (AVP, equation 1) and the average saturated vapour pressure (SVP, 
equation 2) were calculated using the average temperature (T) and the average dew 
point temperature (DT). Average relative humidity was then calculated according 
formula 3 (equation 1, 2, 3 obtained from D. Van Kralingen via A. Bergsma, personal 
communication). 
An integrated measure for ‘drying power’ of the atmosphere; saturation deficit, was 
calculated using equation 4 (Randolph & Storey, 1999). 
 
AVP = 6.10588 * e (17.32491 * T / (T + 238.102))  (Equation 1) 
SVP = 6.10588 * e (17.32491 * DT / (DT + 238.102))  (Equation 2) 
RH = (AVP / SVP) * 100    (Equation 3) 
SD = (1 - RH / 100) * 4.9464 e (0.0621*T)  (Equation 4) 
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Average parameter values were calculated for each of the weather stations for both 
early summer and autumn. The climatic parameters that were included in the analysis 
were average temperature, average RH and average SD. For both seasons and the 
three parameters, the surface between the weather stations was interpolated using 
Spline tension interpolation (action 8) with cell size 2000 m (maps are presented in 
Appendices IIc-IIh). On the maps clear effects of the buffering effect of seawater is 
shown on all three parameters. 
  

2.2.4 Roe deer density 

Data on the density of roe deer (Capreolus Capreolus L.) were obtained from the 
Royal Dutch Hunting Association (Dutch: Koninklijke Nederlandse Jager Vereniging, 
KNJV). This organization has divided the country in management units with varying 
size (Dutch: Wild beheerseenheden) and the number of observed roe deer is counted 
per management unit. However, this number is an underestimate, because not all 
animals show themselves at the moment of the counting. Therefore this number is 
corrected to an estimated number of present roe deer according to a standard 
procedure (M. Montizaan, KNJV, personal communication). The data that were 
provided were from a roe deer counting that was performed in spring of 2003. Before 
the analysis these roe deer numbers were divided by the surface area of each 
management unit to calculate the density per area unit. The file was in shape format 
(map is presented in Appendix IIj). 
 

2.2.5 NDVI 

NDVI values were obtained via G. Hazeu (Alterra, WUR) who processed Landsat 
TM5 images of the following dates; 31-05-2003, 11-08-2003, 14-04-2004 and 05-09-
2004. NDVI combines the red and near-infrared bands [NDVI = (band 4 - band 3) / 
(band 4 - band 3)] and is related to the fraction of photosynthetically active radiation.  
Unfortunately, the images did not cover all the sampling transects; therefore the two 
images with maximum cover (95% of the sampling transects) were included in the 
model: 14-04-2004 and 05-09-2004. The Landsat TM images had 30 m spatial 
resolution.  
  

2.2.6 Distance to coast 

The earlier mentioned land use file was classified into two classes; salt water and 
other (action 2). The salt water was then transformed into a polygon (action 4). This 
polygon was smoothened with a 1000 m. buffer. Subsequently this layer was spatially 
joined with the point layer containing the sampling transects (action 6). In this way 
the shortest distance from each of the sampling transects to the coast polygon was 
calculated (map is presented in Appendix IIi). This variable was chosen since distance 
to coast may reflect the possible influence on ticks due to indirectly affecting climate 
or vegetation (Eisen et al., 2006). 
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2.2.7 Landscape structure 

Metrics of landscape structure were calculated using Fragstats 3.3 (McGarigal et al., 
2002) that enables calculation of landscape fragmentation metrics. Therefore the land 
use file was classified in three categories: background, forest and vegetation (action 
2). Background consisted of water, not vegetated ground, roads and buildings; forest 
was a combination of deciduous and coniferous forest and vegetation consisted of 
grasslands, agriculture and other vegetation.  
Many metrics to describe landscape structure are available (McGarigal & Marks, 
1995), but two metrics describing the level of forest fragmentation were used; mean 
patch area and total edge length (see Table 2 for definitions). Only total edge-length 
was corrected for effects of roads and buildings, but average forest patch size was not 
corrected. 
As shown by Brownstein et al. (2005), Allan et al. (2003) and Jackson et al. (2006), 
forest fragmentation defines the local scale heterogeneity of tick densities, through 
influencing mammalian host density and species composition. The two selected 
metrics in this study, may indicate habitat suitability for roe deer, since they have a 
preference for fragmented habitats with high adjacency of forest and other vegetation 
(Said & Servanty, 2005). Fragmentation might also indicate habitat suitability for 
rodents (Jackson et al., 2006 and references therein), however no studies were found 
explicitly describing this for rodent hosts of I. ricinus. The Fragstatsbatch extension 
(Mitchell, 2005) for ArcGIS 9 was used to run Fragstats at each sampling transect 
within a user-defined radius around the sampling point (action 5). The radius was was 
set at 250 m, which represents the average home-range size of roe deer in the 
Netherlands (Lange et al., 1994).  
 
Table 2. Definition landscape structure metrics 

Acronym Fragstats metric Unit Description 

AREA_MN Mean Patch Area m2 Mean surface area of forest patches 

TE Total Edge m Total edge length between forest and  
agriculture / open vegetation 
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2.3 Spatial statistics 

Before predicting nymphal density, the degree of spatial clustering was measured. 
Therefore spatial autocorrelation was calculated using Moran’s I statistics (Cliff & 
Ord, 1973). This index measures the relationship among values of a variable 
according to the spatial arrangement of the values (Cliff and Ord, 1973). Moran’s I 
was calculated using the model builder in ArcGIS version 9.1 (ESRI Inc.). Index 
values range from -1 to 1 with a tendency around 0, of which the latter indicates that 
values are distributed according to a random pattern. 
 
In order to perform statistical analysis, the point shapefile containing the nymphal 
densities and the environmental variables at each transect was transformed into a 
dBase table. This table was then imported in the statistical software package SPSS 
12.0 (SPSS, Inc.). 
Since the number of cases did not substantially exceed the number of predictor 
variables in both early summer (3:1) and autumn (7:1), multiple regression could not 
be used to test the extent of association. Furthermore, not all variables were normally 
distributed and two were having an ordinal scale. Therefore Spearman rank 
correlation was performed using the density categories and the possible risk variables 
as input. This was separately done for both early summer and autumn. 
 
The significantly associated variables were then subjected to discriminant analysis 
(DA) to obtain functions that discriminated between the density categories. To obtain 
the discriminating functions, 80% percent of the cases were randomly selected. To 
test the discriminative power of the functions, discriminant functions were applied on 
both the 80% and the other 20% of the cases and original and predicted category 
membership were compared.  
 
The significantly discriminating functions were also used to generate a nymphal 
density prediction map, by applying the functions at points regularly dispersed over 
the country. This was done according the scheme displayed in Figure 2. Hawth’s 
Analysis tools for ArcGIS (Beyer, 2004), was used to generate a point layer of 
regularly distributed points separated by 1000 m. in x and y direction (action 11). This 
point layer was intersected with all layers that had shown significant association with 
nymphal density (action 12). SPSS was then used to predict category membership of 
each point in the DA (action 13). These categories were subsequently displayed in a 
map after being converted to raster format with 1000 m resolution (action 14). 
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Figure 2. Data-action model with 8 input datasets, 4 numbered actions and 1 output map displaying 
nymphal density categories in the Netherlands in early summer. 

OUTPUT 

INPUT 
Land use 

LGN5 

Relative 
humidity 

14. Convert 
to raster 

Tick dens.  
category  

NDVI 
14-04-04 

12. Spatial join 

13. Predict dens. 
category with DA 

Roe deer 
densities 

Joined 
shapefile 

PROCESS 

Borders 
NL 

Rasterfile with 
dens. categories 

Point 
shapefile 

Point shapefile with 
dens. categories 

Saturation 
deficit Temp. 

11. Generate reg. 
points (1 km) with 

Hawth’s Tools 



 

 - 18 - 

3.  Results 

3.1 Nymphal densities 

A number of 37 transects were sampled in the period May till June. The maximum 
density of questing nymphs in this period, defined as early summer, ranged between 0 
and 490 (Mean, 104; SD, 121). The dates on which maximum densities were observed 
varied between locations and years and ranged from begin May till the end of June. 
Densities were skewed to the left. The nymphal densities were classified in three 
density categories according to percentiles; 1. low (0–33rd percentile), 2. moderate 
(34–66th percentile), and 3. high (66–100th percentile) (see Figure 3A). This was a 
relatively coarse classification, but necessary to maximize the number of cases in each 
density category. The highest nymphal densities were observed in forested areas along 
the coast while zero and lowest densities were found in grasslands and floodplains of 
the rivers. 
The densities of the nymphs were tested for spatial autocorrelation using Moran’s I 
statistics and significant clustering was found (Moran’s I = 0.41; Z(I) 2.89; P < 0.01). 
 
Sixty transects were sampled in the period from September till October. Of these 60 
transects, 24 were also sampled in early summer. The maximum density of questing 
nymphs in this autumn period was lower than in early summer and ranged between 0 
and 186 (Mean, 25; SD, 43). The dates on which maximum densities were observed 
here also varied between locations and years and ranged from begin September till 
half of October. With respect to the 24 transects that were sampled in both periods, 
maximum densities were significantly lower in autumn compared to spring (t = 4.20; 
P < 0.01; Paired sample t-test).  
The autumn nymphal densities were also classified in three categories according to 
percentiles. The distribution of nymphal densities in this season was left-skewed as 
well. Highest nymphal densities were again found along the coast, and also in De 
Hoge Veluwe area. Zero and lowest densities did not seem to cluster in specific areas 
of the country. 
Sampling transects in autumn were distributed over a greater area compared to early 
summer (Figure 3) and Moran’s I statistics did not find significant clustering 
(Moran’s I = 0.09; Z(I) 0.61; P = 0.27). 
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Figure 3. Maximum density of host-seeking nymphal Ixodes ricinus in early summer (A) and autumn (B) at 
each transect (scaled to 200 m2). Number of sampling transects at which data was collected is 37 (A) and 60 
(B). Density categories are indicated by filled symbols; 1. zero-low, 2. moderate and 3. high. Not sampled 
transects are indicated by open symbols. 
 

A 

B 
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3.2 Association with environmental variables 

The density categories of both seasons were separately tested for correlation with the 
environmental variables. The variables that significantly correlated with density in 
both early summer and autumn were roe deer density (r = 0.76 and 0.49, respectively; 
P < 0.01) and April NDVI (r = -0.73 and -0.33, respectively; P < 0.01). Other 
variables that significantly correlated in early summer were land use (describing 
vegetation categories) (r = 0.39; P = 0.02) and mean relative humidity (r = 0.56; P < 
0.01), mean saturation deficit (r = -0.59; P < 0.01) and mean temperature (r = -0.58; P 
< 0.01). 
In autumn, similar but also different variables correlated with density, namely; soil 
order (r = -0.27; P = 0.04), mean patch size (r = 0.31; P < 0.01), mean relative 
humidity (r = -0.26; P < 0.05) and mean saturation deficit (r = 0.26; P < 0.05). 
 
Table 3. Spearman rank correlations of nymphal density categories with environmental variables in early 
summer and autumn. The number of transects varies, since not all variables were available for each 
transect. 

 Early summer Autumn 

 Spearman's r P-value n Spearman’s r P-value n 

Roe deer density 0.76 < 0.01 33 0.49 < 0.01 54 
Soil order -0.20 0.23 36 -0.27 0.04 59 
Land use 0.39 0.02 37 0.12 0.35 59 
NDVI 05-09-2004 -0.23 0.19 35 -0.18 0.19 56 
NDVI 14-04-2004 -0.73 < 0.01 35 -0.33 0.01 56 
Edge length 0.29 0.08 37 -0.07 0.62 60 
Mean patch size 0.30 0.07 37 0.31 0.01 60 
Distance to coast -0.30 0.07 37 -0.11 0.42 60 
Mean relative humidity 0.56 < 0.01 37 -0.26 0.05 58 
Mean saturation deficit -0.59 < 0.01 37 0.26 0.05 58 
Mean temperature -0.58 < 0.01 37 0.17 0.21 58 
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3.3 Prediction density categories  

After using only the significantly correlating variables, the discriminant analysis 
yielded two functions for both seasons with coefficients as shown in Table 4 and 
Table 5. The two discriminant functions did enable discrimination between the three 
density categories for selected cases. 
The functions for early summer were significantly better discriminating between 
density categories than chance (p < 0.01 and 0.05). In early summer the first function 
accounted for 80% of the total among-groups variability and the second for 20%. In 
autumn the first of the two functions almost explained all variation (93 vs. 7 %) 
although not significantly (p = 0.19 and 0.92).  
Cases in which at least one discriminating variable was missing could not be used, 
since the functions could not be applied to variables without value. This caused that in 
early summer 6 transects were not selected in the DA and in autumn 12. 
 
Table 4. Standardized canonical discriminant function coefficients and Wilks’ Lambda in early summer. 

 F(x) 1 F(x) 2 

Roe deer density 0.72 -0.07 
Land use 0.07 0.76 
NDVI 14-04-2004 -0.37 -0.08 
Relative humidity 0.84 0.92 
Saturation Deficit 1.41 2.02 
Temperature -0.81 -0.43 
   
% of Variance 80.2 19.8 
Wilks' Lambda 0.13 0.56 
P-value < 0.01 0.05 

 
 
Table 5. Standardized canonical discriminant function coefficients and Wilks’ Lamda in autumn. 

 F(x) 1 F(x) 2 

Roe deer density 0.45 -0.54 
Soil order 0.31 0.76 
NDVI 14-04-2004 -0.57 -0.32 
Mean patch size 0.50 0.46 
Relative humidity 1.02 0.60 
Saturation Deficit 1.34 1.06 
   
% of Variance 92.7 7.3 
Wilks' Lambda 0.61 0.96 
P-value 0.19 0.92 
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From the early summer period significant discriminating functions could be obtained, 
therefore only from this season a predictive map was generated (Figure 4). The 
majority of the points was classified to have zero to low density in early summer 
(81%), 4% was classified as supporting moderate density and 15% high density of 
host seeking nymphs. Important risk areas that were indicated were: three of the 
Wadden islands, De Hoge Veluwe, De Amsterdamse Waterleidingduinen and the 
Drenthe province. 
Missing NDVI data in the outer west and east of the country resulted in the lack of a 
density prediction. Furthermore, other white areas on the map were caused by missing 
data on roe deer densities, or presence of water, buildings or infrastructure.  
 

 
Figure 4. Predictive map of early summer densities of host-seeking Ixodes ricinus nymphs. Density classes 
correspond with classes as defined in Figure 3A. 
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3.4 Predictive capability 

The predictive capability of the discriminant functions was tested by applying them to 
the build set on which the discriminant functions were based, and a validate set. The 
first consisted of randomly selected 80% of the samples and the latter of the other 
20%. For early summer, the model classified 83% of the build data correctly and 71% 
of the validate data (Table 6). The classification efficacy in autumn was worse; 66% 
of the build set and 20% of the cases in the validate set were correctly classified 
(Table 7). As a visual support of these results, category scatter plots are shown, 
depicting both the build and the validation cases (Figure 5 and 6). These plots indicate 
to which category cases were originally belonging to and what discriminant scores 
they got on both functions in the analysis. Cases are classified in the category with the 
least ‘Mahalanobis distance’ to the category centroid. This distance is expressed in 
standard deviations of the function scores and takes in account the correlation 
between the variables. As already indicated by the significance of the discriminating 
capability of the functions, density classes in early summer are better separated 
(Figure 5) compared to autumn (Figure 6). 
 
Table 6. Early summer classification results after application of the discriminant functions. The functions 
were applied on the build set and a validate set. Highlighted numbers are correctly classified densities. 

   Predicted    

 Class 1 2 3 n 
Correctly 
classified 

1 9 0 0 9 

2 1 5 0 6 
Build set 
original 

3 1 2 6 9 

83.3% 

     total 24  
        

1 2 0 0 2 

2 1 1 1 3 
Validate set 

original 
3 0 0 2 2 

71.4% 

    total 7  

 
Table 7. Autumn classification results after application of the discriminant functions. For explanation see 
description Table 6. 

   Predicted    

 Class 1 2 3 n 
Correctly 
classified 

1 9 2 1 12 

2 2 6 3 11 
Build set 
original 

3 3 2 10 15 

65.8% 

     total 38  
        

1 2 3 0 5 

2 3 0 0 3 
Validate set 

original 
3 1 1 0 2 

20.0% 

    total 10  
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Figure 5. Category classification scatter plot early summer (n = 31). 

 

-3 -2 -1 0 1 2 3

Function 1

-2

-1

0

1

2

3

F
u

n
ct

io
n

 2

1

2

3

Nymphal density 
class

1

2

3

Group Centroid

 
Figure 6. Category classification scatter plot autumn (n = 48). 
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4.  Discussion 
As far as my knowledge reaches; this is the first study predicting densities of questing 
I. ricinus nymphs at different locations in the Netherlands, based on RS and GIS-
derived data on the environment. Environmental variables may individually or 
combined, determine survival of ticks and hence indicate risk of obtaining Lyme 
disease. Variables that were tested for association with nymphal densities were 
obtained without actually visiting the tick sampling transects. Some variables were 
indirectly derived from RS-images (NDVI, landscape structure, land use and distance 
to coast) others by geo-referenced field observations in larger areas (climate, roe deer 
density and soil type). Several factors showed association with nymphal densities. 
The discriminant analysis allowed distinguishing density categories and testing of the 
predictive capability of the discriminant functions. Prediction efficacy is bad in 
autumn and fairly good in early summer, although predictions could be validated with 
only few cases.  
 

4.1 Variation in nymphal densities 

By dragging a blanket through the vegetation, only the questing proportion of the 
ticks will be collected. These form a representation of the overall abundance of ticks 
in the near environment. Much variation was observed in the nymphal densities 
collected at the different transects and different seasons. It has to be noted that no 
direct comparison between all early summer and autumn densities can be made. But 
the 24 transects that were sampled in both seasons however, showed that early 
summer densities were significantly higher. This is because the density of questing 
nymphs reaches its highest annual peak in early summer with a gradual decline 
towards autumn (Perret et al., 2004). Differences between nymphal densities in 
suitable and unsuitable habitats may thus become more explicit in early summer. 
Another explanation for the lower densities in autumn may be that data collected in 
the ‘Natuurkalender project’, which forms more than one third of the cases in that 
period, are collected after an extreme hot and dry July month in 2006. The high 
temperatures and the drought may possibly have resulted in high mortality among 
ticks at locations that form suitable habitat during ‘normal’ summers, but not under 
these extreme desiccating circumstances. This can be seen in transects situated in 
deciduous forest probably having a bigger buffering capacity against dehydration  
compared to coniferous forests, although both forest types are known to support tick 
populations (Lindström & Jaenson, 2003). 
The variation in dates on which the highest density was reached in early summer can 
be explained by the annual and local influence of temperature on the tick activity 
(Gray, 1998) and the sampling frequency. Ticks were collected in multiple years and 
at multiple locations with varying frequency. When average spring temperature is 
higher at a certain location, a density peak earlier in the season can be expected 
because ticks get activated sooner (Diuk-Wasser et al., 2006; Jouda et al., 2004). Also 
a weekly sampling frequency may result in that a peak is noticed earlier, compared to 
a monthly sampling frequency. 
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Densities in early summer were autocorrelated, while autumn densities showed a 
random pattern. Since data from sampling locations in close proximity to each other 
tend to be more similar to each other than data from sites farther apart (Cliff & Ord, 
1973), the better distribution of transects over the country in autumn can explain this 
outcome. Transects in early summer were situated only in a band from east to west, 
but not in the north and south like in autumn. Furthermore, some transects were only a 
few hundred meters separated from each other, and the number of transects in early 
summer was lower than in autumn. 
 

4.2 Extent of association with variables 

In both seasons densities were correlated with roe deer density and April NDVI. 
Although correlations in early summer were stronger, in both seasons nymphal 
density correlated strongly with these variables. In several studies deer density has 
been shown to be associated with I. ricinus densities (Gray et al., 1992; Pichon et al., 
1999; Rizzoli et al., 2002). A high roe deer density may probably facilitate higher tick 
densities due to their necessity for adult tick reproduction and feeding of female ticks 
(Gray et al., 1992). With an increased roe deer density, the density of nymphs may 
indirectly be affected due to more frequent production of larger egg batches (Pichon 
et al., 1999). 
The relation between NDVI and tick occurrence or density has also been reported by 
other authors (Eisen et al., 2006; Estrada-Pena, 1998, 2002). Data on monthly NDVI 
was also used by Estrada-Pena (2006) to predict habitat suitability for I. ricinus in 
several western Palaearctic ecoregions. In the current study, only the April NDVI was 
significantly negatively correlated with the densities and not the September NDVI. 
This is due to the difference in photosynthetic activity of forests compared to other 
vegetation in each particular time of the year. Grasslands and vegetated ground may 
have an increased photosynthetic activity earlier in the year compared to forests. 
Since forests with a leaf litter layer or undergrowth of grasses form suitable habitats 
for I. ricinus (Estrada-Pena, 2001; Gray, 1998; Lindström & Jaenson, 2003), higher 
densities may be expected in areas with a low photosynthetic activity in April.  
NDVI may be a crucial predictive factor in future risk studies in the Netherlands, 
since it enables classification of different forest types. As Eisen (2005) showed, it is 
possible to distinguish forest types with or without grass ground layer, as well as 
forests with or without leaf litter layer, and relate this to tick density. In contrast, the 
assessment of tick distribution on the basis of direct botanical units in the field is 
highly time-consuming and difficult to apply to large areas according to Daniel et al. 
(1998). Furthermore, the comparison of habitats composed of different syntaxonomic 
units but with the same suitability for tick survival is not straightforward (Estrada-
Pena, 2001). In the current study, different forest categories could not be 
distinguished based on the NDVI, because satellite images of only two days were 
available, while one needs images of multiple dates for such a classification. It is 
possible that this may also become a problem in the previously idea suggested, since 
the Netherlands are ~85% of the time cloud covered, limiting the view of the satellite. 
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In this study, a relatively coarse land use classification was used as variable 
describing vegetation cover. The classification distinguished grasslands from other 
vegetation and coniferous from deciduous forests. This land use variable was 
positively associated with the density categories in early summer, confirming that 
forested areas are generally more suitable habitats for I. ricinus than open vegetated 
ground (Lindström & Jaenson, 2003).  
 
All three climate parameters were significantly correlated with nymphal density in 
early summer. Since climate is determining off-host tick survival during questing as 
well as quiescence periods, it can be used in both predicting habitat suitability 
(Brownstein et al., 2003) and daily activity rates (Daniel et al., 2006; Perret et al., 
2004).  
Mean early summer temperature and saturation deficit are negatively correlated with 
density, and relative humidity positively. Higher temperatures and SD cause the tick 
to dehydrate, which limits its questing activity, while a higher RH enables 
rehydration. This relation was previously reported in other studies (Diuk-Wasser et 
al., 2006; Hubalek et al., 2003; Perret et al., 2000; Perret et al., 2004).  
The weaker correlation in autumn, where RH was negatively correlated and SD 
positively correlated with density of the nymphs, can be explained by the relatively 
low maximum SD, namely: 3.5 (see Appendix IIh). Since density of the questing 
proportion of ticks decreases when the SD reaches values above 4.4 mmHg (Perret et 
al., 2000), a positive correlation may occur, because the mean atmospheric drying 
power was always below the ticks equilibrium. The regional influence of the seawater 
temperature on air temperature in autumn (see Appendix IIf) did not show direct 
correlation with tick questing activity. This also applied for the variable ‘distance to 
coast’. However, in a study of Eisen et al. (2006) coastal woodlands showed to 
support higher densities of nymphal I. pacificus nymphs than inland woodlands. The 
difference with the current study may be due to a better adaptation of I. pacificus to 
coastal influence, while I. ricinus population density may be less affected by this 
factor in the Netherlands. Although data presented in the thesis of (Holtkamp, 2003) 
suggests that phenology of I. ricinus is affected by coastal influence through the effect 
of the sea on climate. Ticks at the coast were found questing earlier in the season than 
ticks more inland.  
Weather variables are indispensable in a temporal predictive model with tick 
densities, since there is no risk when ticks are not questing, irrespective of the actual 
tick density. Daily activity rates of I. ricinus are well predictable based on climatic 
models with few parameters (Daniel et al., 2006). In the current study however, 
spatial phenology could not yet be predicted with the climate data, because ticks were 
sampled in multiple years and mostly not in a continuous season. 
 
Soil type and landscape structure were not, or slightly (in autumn) correlated with 
nymphal densities. Although soil type has a direct and indirect influence on habitat 
suitability of ticks due to moisture content and suitability of supporting plant and host 
populations (Bunnell, 2003), densities could not be explained by this factor. This may 
be due to the unbalanced distribution of cases over the four soil types or the stronger 
influence of another variable. Landscape structure was also not associated with 
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densities; this may be due to the radius-size (250 m) in which metrics were calculated. 
When different radius-sizes are used, they will reflect fragmentation on different 
orders of spatial magnitude, which may affect the meaning and explanatory power of 
the parameter. Another reason for finding no association may be the effect of roads on 
fragmentation. The average forest patch size may be smaller because of roads, 
although habitat suitability for mammalian hosts of the tick will not automatically be 
better. In other studies it has been shown that fragmentation does positively affect tick 
densities (Allan et al., 2003; Brownstein et al., 2005), however in these studies the 
sampling was stratified by deciduous forest density.  
 

4.3 Predictive capability 

Using the associative variables from the Spearman correlation in the discriminant 
analysis, two predictions were made; nymphal density in early summer and in 
autumn. Although the early summer densities had fewer cases and showed 
autocorrelation, density predictions in this season showed a better fit to the validation 
data (71% vs. 20% correctly classified). This is probably due to the lack of 
discrimination between low and high densities in autumn. Since the nymphal density 
range was smaller and more skewed in the latter season, it is likely that both 
discrimination and prediction of categories is worse compared to early summer, 
because cases are not well separated. But it may also be caused by the earlier-
mentioned extreme climatic circumstances in the summer of 2006, resulting in 
misclassification of potential suitable habitats. 
 
The predictive map of early summer predicted a relatively large proportion of the 
points to support high nymphal densities. Indeed the highest density predictions in the 
Waterleidingduinen, De Hoge Veluwe and Drenthe correspond with the large 
numbers of collected nymphs at those locations in early summer. The prediction also 
corresponds to certain extent with maps published in the Dutch Bulletin of Infectious 
Diseases (see Appendix V) (Hofhuis et al., 2006). This paper showed the prevalence 
of erythema migrans per municipality in three different years. Although the maps 
should not directly be compared, the map of 2005 showing EM-prevalence and the 
current map show a similar pattern.  
Differences are probably caused by the coarse classification of density categories in 
the current study, resulting in that few locations were classified as moderate density. 
Also not many cases were used to build the model, likely resulting in a not very well 
balanced prediction. Besides, the risk map of Hofhuis et al. (2006) is based on reports 
of erythema migrans and this does not automatically has to represent the location 
where the tick bite was obtained (Ostfeld, 2005). This indicates the weakness of using 
EM-prevalence as risk indicator, but the strength of the current study. 
 
With respect to the different geographical scales of the input data, the results highlight 
the strength but at the same time the limitation of the GIS/RS approach. Predictions 
can relatively easy be made when one uses data on macro scale, but it is undoubted 
that heterogeneity in a sampling area is overlooked. The current study predicts the 
density of nymphs based on data obtained on multiple scales; ticks were collected on 
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the scale of a transect (200m2), while NDVI was calculated for cells of 25 m 
resolution (625 m2) and roe deer were counted per management unit with a varying 
size of several ha. The issue of scale should therefore be considered in interpretation 
of the risk model outcomes (Kitron, 1998, 2000).  
At some locations only one transect was sampled, while it is known that distribution 
of questing ticks is usually clumped at micro geographical scale (Estrada-Pena, 2001; 
Tälleklint & Jaenson, 1997 and references therein). Therefore it would be good to 
perform future sampling at multiple transects at each location as in Diuk-Wasser et al. 
(2006) to control for heterogeneity. 
 
The predictive map also shows much resemblance with the map on roe deer densities 
per management unit (Appendix IIj). This is not surprising, because strong 
correlations were found between tick and roe deer density. But since this factor is 
measured on a relatively coarse scale, the proportion of points with high nymphal 
densities are probably overestimated, since management units do not give accurate 
information where the roe deer were observed. For instance, high densities were 
predicted at ‘middle Schouwen Duiveland’, while this area is not known to support 
high tick densities. It is likely that the boundaries of the management units are the 
cause for this overestimation. It is possible to control for this in the future by 
assigning the roe deer density only to the surface-area of land use types that are likely 
to support roe deer populations. In this way the estimations may already become more 
accurate. 
 
The classification of nymphal density categories is somewhat conservative, but the 
used tick data did not allow more categories, because time-span was in some cases too 
short to create a ‘zero density category’. Therefore the low density also comprises 
zero densities. The spatial resolution on which predictions were done (1000 m) also 
needs refinement in future studies to get a better indication of localized risks. 
It cannot be excluded that the sampling method has had possible effect on the chance 
that a tick gets into contact with the blanket, as mentioned in (Wielinga et al., 2006). 
Differently (seasonally) vegetated undergrounds may have had effects on how good 
the blankets touched the underlying vegetation.  
 

4.4 Implications 

Using GIS and RS enables us to assign areas with increased risk of obtaining a tick 
bite. Predicting density of I. ricinus nymphs is a useful approach to reduce the risk to 
get bitten because it enables strategic promotion of preventative measures by humans. 
However the current predictions are limited and not yet suitable for informing a broad 
public. The predictive quality is moderate and the current study predicts the spatial 
density of questing nymphs on a national scale with low resolution. The usability may 
improve when risk is predicted on multiple geographical scales (national, regional and 
local).  
Uninfected nymphs cannot transmit a disease, and only result in biting nuisance. The 
map may therefore also become more useful when actual infection prevalence of the 
nymphs is incorporated in the analysis. These data were not available at the start of 
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this study, but analysis that is currently undertaken as part of the ‘Natuurkalender 
project’ may provide data for that in the future. However, up till now no Borrelia-
negative sites were found in that project when ticks were present at a sampling 
location (Takken et al., unpublished data). This indicates that nymphal density itself 
may already display the actual risk, and infection data may only slightly refine this. 
Preliminary results of the ‘Natuurkalender project’ show alarming high infection 
percentages and indicate that chances of human infection are high when a tick bite is 
obtained (Takken et al., unpublished data).  
 
The current predictive map lacks a temporal component, because the autumn-data 
resulted in very low predictive capability. Since I. ricinus ticks are known to have 
distinct seasonality in their activity patterns (Gray, 1998) it is undoubted that adding a 
temporal component to the map would greatly improve its usability. The next step 
from there on would be a web-based GIS that uses environmental data as spatial 
predictor and up-to-date climatologic data as temporal predictor. The internet 
provides a very effective platform to communicate the message of spatio-temporal 
risk to a broad public and may greatly contribute in reducing the number of tick bites 
and Lyme disease patients in our country. 
 

5.  Conclusions 
• It is possible to predict early summer nymphal density in the Netherlands 

based on environmental data on macro scale. Although the quality of the 
current predictive map is limited, it gives good indication of locations with 
increased risk of obtaining Lyme disease. To improve the risk predictions, 
density categories need refinement and temporal aspects and Borrelia-
infection prevalence in ticks need to be incorporated.  

• The relatively low number of cases compared to the number of predictor 
variables and the climatic circumstances in July 2006, are likely the reason for 
the bad predictive capability in autumn. 

• Since contrast between densities is strongest in early summer, it seems most 
effective to use nymphal densities as dependent variable in spatial predictive 
models with nymphal I. ricinus. It may even be sufficient for spatial risk 
predictions to only use early summer samplings as a base.. 

• Visiting forested areas with high roe deer density without taking preventative 
measures positively affects the risk of obtaining Lyme disease in early 
summer. 

• Predicting nymphal density on different geographical scales would greatly 
improve the usability of the predictive maps. Therefore other sampling 
strategies than the current are needed. 
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6.  Recommendations 
In order to gain more insight in the spatial risk of obtaining Lyme disease in the 
Netherlands I would like to recommend the following for future studies: 
 

• To prevent effects of spatial autocorrelation, sampling transects should be 
selected in a stratified random design way using GIS and RS on forehand. 
Maximum distance between sampling locations can then be used as selection 
criterion.  
Using RS on forehand also enables the division of forests in different 
categories based on NDVI data. Also it will help to distribute sampling 
locations evenly over the different values / categories within variables. 

• To reduce influence of heterogeneity in the densities at sampling locations 
(Tälleklint & Jaenson, 1997 and references therein), multiple randomly 
selected transects should be monitored at each sampling location as in Diuk-
Wasser et al. (2006). This also allows analysis on multiple geographical 
scales. 

• Tick population structure categories (Guerra et al., 2002) or tick absence / 
presence may also be interesting dependent variables to relate to 
environmental variables, because they gives a more holistic view on the tick 
population than nymphs alone. This can be tested simultaneously with 
maximum nymphal density.  

• Using GPS devices on forehand instead of Google Earth afterwards will help 
mapping the sampling transects more precisely, and provide means for cross-
validation of GIS data by field visits. 

• The data that is currently collected by the Dutch public who report tick bites 
on the website of ‘Natuurkalender’ can be used as validation of model 
outcomes, when these reports are corrected for numbers of visits. 

• Possibilities of web-based spatio-temporal risk modeling should be tested 
using historical climatic data to build the model and actual weather data to 
inform a broad public with up-to-data risk maps. 
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Appendices 

Appendix Ia Table reclassification land use 

Code Hoofdklasse Klasse origineel New class New description 

1   gras 1 agriculture 
2   mais 1 agriculture 
3   aardappelen 1 agriculture 
4   bieten 1 agriculture 
5 Agrarische gebied granen 1 agriculture 
6   overige landbouwgewassen 1 agriculture 
8   glastuinbouw 0 not vegetated 
9   boomgaard 1 agriculture 

10   bollen 1 agriculture 

11 Bos loofbos 4 dec. forest 

12   naaldbos 3 con. forest 

16 Water zoet water -1 water 

17   zout water -1 water 

18   stedelijk bebouwd gebied 0 not vegetated 
19 Bebouwd gebied bebouwing in buitengebied 0 not vegetated 
20   loofbos in bebouwd gebied 4 dec. forest 
21   naaldbos in bebouwd gebied 3 con. forest 
22   bos met dichte bebouwing 3 con. forest 
23   gras in bebouwd gebied 1 agriculture 

24   kale grond in bebouwd buitengebied 0 not vegetated 

25 Infrastructuur hoofdwegen en spoorwegen 0 not vegetated 

26 Agrarisch gebied bebouwing in agrarisch gebied 0 not vegetated 
30   Kwelders 0 not vegetated 
31   Open zand in kustgebied 0 not vegetated 
32   Open duinvegetatie 2 open vegetation 
33   Gesloten duinvegetatie 2 open vegetation 

34   Duinheide 2 open vegetation 

35   Open stuifzand 0 not vegetated 
36   Heide 2 open vegetation 
37 Natuur Matig vergraste heide 2 open vegetation 

38   Sterk vergraste heide 2 open vegetation 

39   Hoogveen 2 open vegetation 

40   Bos in hoogveengebied 4 dec. forest 

41   Overige moerasvegetatie 2 open vegetation 
42   Rietvegetatie 2 open vegetation 

43   Bos in moerasgebied 4 dec. forest 

44   Veenweidegebied 1 agriculture 
45   Overig open begroeid natuurgebied 2 open vegetation 

46   Kale grond in natuurgebied 0 not vegetated 

 
 
 



 

 - 37 - 

Appendix Ib Table reclassification soil types 
Code Beschrijving origineel New class New description 

10 Veen 4 peat 
20 Zand 1 sand 
21 Moerig op zand 2 silt 
30 Lichte zavel 2 silt 
40 Zware zavel 2 silt 
50 Lichte klei 3 clay, loam 
60 Zware klei 3 clay, loam 
70 Leem 3 clay, loam 
98 Bebouwing -9999   
99 Water -9999   
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Appendix IIa Map landuse reclassified 
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Appendix IIb Map soil type reclassified 
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Appendix IIc,d Maps average relative humidity 

    
 
 

Appendix IIe,f Maps average temperature 
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Appendix IIg,h Maps average saturation deficit 

    

Appendix IIi Map coastline 
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Appendix IIj Map Roe deer density 
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Appendix III Histograms early summer 
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Appendix IV Histograms autumn 
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Appendix V Erythema migrans, source: (Hofhuis et al., 2006) 
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Appendix VI Coordinates and nymphal densities at the sampling 
transects 

PLOT_ID LAT LONG PLOT_NAME LOCATION 
DENS_ES

_200 
DENS_A

_200 

0 52.00544 5.753294 E Renkum 0   
1 52.00685 5.754361 C Renkum 4   
2 52.00824 5.753819 D Renkum 6   
3 52.01031 5.758367 B Renkum 11   
4 52.01067 5.756144 A Renkum 20   
5 52.33198 4.557314 AB AWD 100 11 
6 52.33269 4.554761 AA AWD 197 12 
7 52.33803 4.562006 VA AWD 490 26 
8 52.33927 4.56145 VB AWD 182 30 
9 52.34265 4.570817 DB AWD 163 18 

10 52.34291 4.567725 DA AWD 227 40 
11 52.35425 4.574081 WA AWD 207 105 
12 52.35485 4.5711 WB AWD 250 91 
13 52.12487 5.866086 OD HV 142   
14 52.12484 5.864575 OE HV 77   
15 52.12352 5.8476 SD HV 100   
16 52.12428 5.851514 SE HV 76   
17 52.10729 5.87605 HBE HV 59   
18 52.10658 5.877466 HBD HV 89   
19 52.10474 5.876462 HED HV 189   
20 52.10463 5.875005 HEE HV 44   
21 52.45548 6.661169 EZ LNV1 74 10 
22 52.48459 6.684336 EN LNV2 348 46 
23 52.37081 6.091647 DW LNV3 2 0 
24 52.44804 5.405061 OP LNV4 6 0 
25 51.92028 6.718567 B LNV5 134 4 
26 51.98446 6.668565 KV LNV6 54 8 
27 51.89258 5.635661 AW LNV7 0 0 
28 51.94489 5.614832 BK LNV8 0 0 
29 51.49998 5.134822 VH LNV9 2 0 
30 51.27394 6.006489 W LNV10 0 0 
31 51.34988 5.818328 GP LNV11 26 2 
32 51.87107 5.652383 R LNV12 0 0 
33 53.07012 7.121705 Bwedde NK1   2 
34 53.49275 6.163133 Schier1 NK2   4 
35 53.49517 6.165367 Schier2 NK2   4 
36 52.92604 6.34585 Oosterwolde NK3   6 
37 53.01502 6.755297 Gieten1 NK4   16 
38 53.01569 6.753561 Gieten2 NK4   14 
39 52.78195 6.304547 Ruinen NK5   19 
40 52.75222 6.523961 Hveen1 NK6   172 
41 52.75324 6.522492 Hveen2 NK6   0 
42 52.33217 6.423564 Hdoorn NK7   16 
43 52.16411 6.799019 Hbergen NK8   23 
44 51.89214 6.219018 Mland1 NK9   58 
45 51.92785 6.221432 Mland2 NK9   2 
46 52.20771 5.892073 Adoorn1 NK10   18 
47 52.21587 5.904998 Adoorn2 NK10   8 
48 52.02798 5.696896 Ede1 NK11   76 
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49 52.02663 5.689195 Ede2 NK11   104 
50 52.10591 5.876736 Hveluwe NK12   179 
51 52.15757 5.228372 DeBilt1 NK13   2 
52 52.15686 5.228556 DeBilt2 NK13   10 
53 52.527 5.686175 Dronten1 NK14   0 
54 52.52565 5.686589 Dronten2 NK14   0 
55 52.64511 4.647208 Kland1 NK16   6 
56 52.64696 4.655067 Kland2 NK16   0 
57 52.44972 4.897389 Twiske1 NK17   10 
58 52.4475 4.893472 Twiske2 NK17   18 
59 51.84027 3.983692 Goeree NK18   25 
60 52.15889 4.361631 Wnaar NK19   14 
61 52.1597 4.359269 Wnaar NK19   0 
62 51.70979 3.742019 Schouwen NK20   5 
63 51.42477 5.319864 Bergeijk NK22   16 
64 51.70397 5.818581 Cuijk NK23   2 
65 50.78928 5.738111 Eijsden1 NK24   10 
66 50.80185 5.743216 Eijsden2 NK24   20 
67 50.79409 5.955741 Baarlo1 NK25   0 
68 50.76321 5.983129 Baarlo2 NK25   14 
69 52.43131 4.619662 DK ASG 406 186 
70 52.32626 4.986552 BW ASG 38 12 
71 52.2063 5.872901 KH-B ASG 115 44 
72 52.20451 5.871418 KH-H ASG 2 2 

 

Appendix VII Complete tick density datasets of the six studies (see CD-
ROM) 

 

Appendix VIII SPSS outputs (see CD-ROM) 

 

Appendix IX Environmental data (see CD-ROM) 

 

Appendix X Prediction data (see CD-ROM) 

 
 


